How Cells Release Chemical Energy. Chapter 8

Save this PDF as:
 WORD  PNG  TXT  JPG

Size: px
Start display at page:

Download "How Cells Release Chemical Energy. Chapter 8"

Transcription

1 How Cells Release Chemical Energy Chapter 8

2 Impacts, Issues: When Mitochondria Spin Their Wheels More than forty disorders related to defective mitochondria are known (such as Friedreich s ataxia); many of those afflicted die young

3 8.1 Overview of Carbohydrate Breakdown Pathways Photoautotrophs make ATP during photosynthesis and use it to synthesize glucose and other carbohydrates Most organisms, including photoautotrophs, make ATP by breaking down glucose and other organic compounds

4 Comparison of the Main Pathways Aerobic respiration Aerobic metabolic pathways (using oxygen) are used by most eukaryotic cells Fermentation Anaerobic metabolic pathways (occur in the absence of oxygen) are used by prokaryotes and protists in anaerobic habitats

5 Comparison of the Main Pathways Aerobic respiration and fermentation both begin with glycolysis, which converts one molecule of glucose into two molecules of pyruvate After glycolysis, the two pathways diverge Fermentation is completed in the cytoplasm, yielding 2 ATP per glucose molecule Aerobic respiration is completed in mitochondria, yielding 36 ATP per glucose molecule

6 Comparison of the Main Pathways

7 Fig. 8-2b, p. 124

8 A Carbohydrate breakdown pathways start in the cytoplasm, with glycolysis. B Fermentation pathways are completed in the semifluid matrix of the cytoplasm. C In eukaryotes, aerobic respiration is completed inside mitochondria. Fig. 8-2b, p. 124

9 Animation: Where pathways start and finish

10 Overview of Aerobic Respiration Three stages Glycolysis Acetyl-CoA formation and Krebs cycle Electron transfer phosphorylation (ATP formation) C 6 H 12 O 6 (glucose) + O 2 (oxygen) CO 2 (carbon dioxide) + H 2 O (water) Coenzymes NADH and FADH 2 carry electrons and hydrogen

11 Overview of Aerobic Respiration

12 glucose 2 ATP ATP Glycolysis 4 ATP (2 net) 2 NADH 2 pyruvate ATP Cytoplasm A The first stage, glycolysis, occurs in the cell s cytoplasm. Enzymes convert a glucose molecule to 2 pyruvate for a net yield of 2 ATP. During the reactions, 2 NAD + pick up electrons and hydrogen ions, so 2 NADH form. oxygen Electron Transfer Phosphorylation Krebs Cycle 6 CO 2 2 ATP ATP 8 NADH, 2 FADH 2 ATP 32 ATP Mitochondrion B The second stage occurs in mitochondria. The 2 pyruvates are converted to acetyl CoA, which enters the Krebs cycle. CO 2 forms and leaves the cell. 2 ATP form. During the reactions, 8 NAD + and 2 FAD pick up electrons and hydrogen ions, so 8 NADH and 2 FADH 2 also form. C The third and final stage, electron transfer phosphorylation, occurs inside mitochondria. 10 NADH and 2 FADH 2 donate electrons and hydrogen ions to electron transfer chains. Electron fl ow through the chains sets up H+ gradients that drive ATP formation. Oxygen accepts electrons at the end of the chains. Fig. 8-3a, p. 125

13 glucose 2 ATP ATP Glycolysis 4 ATP (2 net) oxygen 2 NADH 2 pyruvate Krebs Cycle Electron Transfer Phosphorylation 8 NADH, 2 FADH 2 ATP 6 CO 2 2 ATP ATP 32 ATP ATP Cytoplasm A The first stage, glycolysis, occurs in the cell s cytoplasm. Enzymes convert a glucose molecule to 2 pyruvate for a net yield of 2 ATP. During the reactions, 2 NAD + pick up electrons and hydrogen ions, so 2 NADH form. Mitochondrion B The second stage occurs in mitochondria. The 2 pyruvates are converted to acetyl CoA, which enters the Krebs cycle. CO 2 forms and leaves the cell. 2 ATP form. During the reactions, 8 NAD + and 2 FAD pick up electrons and hydrogen ions, so 8 NADH and 2 FADH 2 also form. C The third and final stage, electron transfer phosphorylation, occurs inside mitochondria. 10 NADH and 2 FADH 2 donate electrons and hydrogen ions to electron transfer chains. Electron fl ow through the chains sets up H+ gradients that drive ATP formation. Oxygen accepts electrons at the end of the chains. Stepped Art Fig. 8-3a, p. 125

14 Fig. 8-3b, p. 125

15 Animation: Overview of aerobic respiration

16 8.1 Key Concepts: Energy From Carbohydrate Breakdown Various degradative pathways convert the chemical energy of glucose and other organic compounds to the chemical energy of ATP Aerobic respiration yields the most ATP from each glucose molecule; in eukaryotes, it is completed inside mitochondria

17 8.2 Glycolysis Glucose Breakdown Starts Glycolysis starts and ends in the cytoplasm of all prokaryotic and eukaryotic cells An energy investment of ATP starts glycolysis

18 Glycolysis Two ATP are used to split glucose and form 2 PGAL, each with one phosphate group Enzymes convert 2 PGAL to 2 PGA, forming 2 NADH Four ATP are formed by substrate-level phosphorylation (net 2 ATP)

19 Glycolysis

20 glycolysis occurs in the cytoplasm Animal Cell (eukaryotic) Plant Cell (eukaryotic) Bacterial Cell (prokaryotic) Fig. 8-4a, p. 126

21 Fig. 8-4a (1), p. 126

22 Fig. 8-4a (2), p. 126

23 Fig. 8-4b, p. 127

24 Fig. 8-4b (1), p. 127

25 Glycolysis glucose ATP ADP glucose-6-phosphate ATP ADP fructose-1,6-bisphosphate ATP-Requiring Steps A An enzyme transfers a phosphate group from ATP to glucose, forming glucose- 6-phosphate. B A phosphate group from a second ATP is transferred to the glucose- 6- phosphate. The resulting molecule is unstable, and it splits into two three- carbon molecules. The molecules are interconvertible, so we will call them both PGAL (phosphoglyceraldehyde). So far, two ATP have been invested in the reactions. Fig. 8-4b (1), p. 127

26 Fig. 8-4b (2), p. 127

27 2 PGAL 2 NAD P i NADH 2 ADP 2 ADP 2 PGA 2 PEP 2 pyruvate to second stage 2 reduced coenzymes ATP 2 ATP produced by substrate-level phosphorylation ATP 2 ATP produced by substrate-level phosphorylation Net 2 ATP + 2 NADH ATP-Generating Steps C Enzymes attach a phosphate to the two PGAL, and transfer two electrons and a hydrogen ion from each PGAL to NAD +. Two PGA (phosphoglycerate) and two NADH are the result. D Enzymes transfer a phosphate group from each PGA to ADP. Thus, two ATP have formed by substratelevel phosphorylation. The original energy investment of two ATP has now been recovered. E Enzymes transfer a phosphate group from each of two intermediates to ADP. Two more ATP have formed by substrate-level phosphorylation. Two molecules of pyruvate form at this last reaction step. F Summing up, glycolysis yields two NADH, two ATP (net), and two pyruvate for each glucose molecule. Fig. 8-4b (2), p. 127

28 Animation: Glycolysis

29 8.2 Key Concepts: Glycolysis Glycolysis is the first stage of aerobic respiration and of anaerobic routes such as fermentation pathways Enzymes of glycolysis convert glucose to pyruvate

30 8.3 Second Stage of Aerobic Respiration The second stage of aerobic respiration finishes breakdown of glucose that began in glycolysis Occurs in mitochondria Includes two stages: acetyl CoA formation and the Krebs cycle (each occurs twice in the breakdown of one glucose molecule)

31 Acetyl CoA Formation In the inner compartment of the mitochondrion, enzymes split pyruvate, forming acetyl CoA and CO 2 (which diffuses out of the cell) NADH is formed

32 The Krebs Cycle Krebs cycle A sequence of enzyme-mediated reactions that break down 1 acetyl CoA into 2 CO 2 Oxaloacetate is used and regenerated 3 NADH and 1 FADH 2 are formed 1 ATP is formed

33 Inside a Mitochondrion

34 Fig. 8-5a, p. 128

35 outer membrane (next to cytoplasm) inner membrane inner mitochondrial compartment outer mitochondrial compartment (in between the two membranes) Fig. 8-5a, p. 128

36 Fig. 8-5b, p. 128

37 glucose 2 pyruvate (glycolysis) OUTER COMPARTMENT 6 CO 2 INNER COMPARTMENT 2 acetyl-coa Krebs Cycle ATP NADH FADH 2 Breakdown of 2 pyruvate 6 CO 2 yields 2 ATP. Also, 10 coenzymes (8 NAD +, 2 FAD) are reduced. The coenzymes carry hydrogen ions and electrons to the third stage of aerobic respiration. Fig. 8-5b, p. 128

38 Animation: Functional zones in mitochondria

39 Acetyl CoA Formation and the Krebs Cycle

40 A An enzyme splits a pyruvate molecule into a two-carbon acetyl group and CO 2. Coenzyme A binds the acetyl group (forming acetyl CoA). NAD + combines with released hydrogen ions and electrons, forming NADH. Acetyl CoA Formation coenzyme A pyruvate NAD + NADH CO 2 B The Krebs cycle starts as one carbon atom is transferred from acetyl CoA to oxaloacetate. Citrate forms, and coenzyme A is regenerated. C A carbon atom is removed from an intermediate and leaves the cell as CO 2. NAD + combines with released hydrogen ions and electrons, forming NADH. D A carbon atom is removed from another intermediate and leaves the cell as CO 2, and another NADH forms. coenzyme A CO 2 NAD + NADH citrate CO 2 NAD + NADH acetyl CoA ADP + P i Krebs Cycle ATP oxaloacetate FAD NADH NAD + FADH 2 H The final steps of the Krebs cycle regenerate oxaloacetate. G NAD + combines with hydrogen ions and electrons, forming NADH. F The coenzyme FAD combines with hydrogen ions and electrons, forming FADH 2. E One ATP forms by substrate-level phosphorylation. Pyruvate s three carbon atoms have now exited the cell, in CO 2. Stepped Art Fig. 8-6, p. 129

41 Animation: The Krebs Cycle - details

42 8.4 Aerobic Respiration s Big Energy Payoff Many ATP are formed during the third and final stage of aerobic respiration Electron transfer phosphorylation Occurs in mitochondria Results in attachment of phosphate to ADP to form ATP

43 Electron Transfer Phosphorylation Coenzymes NADH and FADH 2 donate electrons and H + to electron transfer chains Active transport forms a H + concentration gradient in the outer mitochondrial compartment H + follows its gradient through ATP synthase, which attaches a phosphate to ADP Finally, oxygen accepts electrons and combines with H +, forming water

44 Electron Transfer Phosphorylation

45 Summary: The Energy Harvest Typically, the breakdown of one glucose molecule yields 36 ATP Glycolysis: 2 ATP Acetyl CoA formation and Krebs cycle: 2 ATP Electron transfer phosphorylation: 32 ATP

46 Summary: Aerobic Respiration

47 Animation: Third-stage reactions

48 Key Concepts: How Aerobic Respiration Ends The final stages of aerobic respiration break down pyruvate to CO 2 Many coenzymes that become reduced deliver electrons and hydrogen ions to electron transfer chains; energy released by electrons flowing through the chains is captured in ATP Oxygen accepts electrons at ends of the chains

49 8.5 Anaerobic Energy-Releasing Pathways Fermentation pathways break down carbohydrates without using oxygen The final steps in these pathways regenerate NAD + but do not produce ATP

50 Fermentation Pathways Glycolysis is the first stage of fermentation Forms 2 pyruvate, 2 NADH, and 2 ATP Pyruvate is converted to other molecules, but is not fully broken down to CO 2 and water Regenerates NAD + but doesn t produce ATP Provides enough energy for some single-celled anaerobic species

51 Two Pathways of Fermentation Alcoholic fermentation Pyruvate is split into acetaldehyde and CO 2 Acetaldehyde receives electrons and hydrogen from NADH, forming NAD + and ethanol Lactate fermentation Pyruvate receives electrons and hydrogen from NADH, forming NAD + and lactate

52 Two Pathways of Fermentation

53 Fig. 8-9a, p. 132

54 Glycolysis glucose 2 NAD + 2 ATP 2 NADH 4 ATP pyruvate Alcoholic Fermentation 2 CO 2 acetaldehyde 2 NADH ethanol 2 NAD + Fig. 8-9a, p. 132

55 Fig. 8-9b, p. 132

56 Glycolysis glucose 2 NAD + 2 ATP 2 NADH 4 ATP pyruvate Lactate Fermentation 2 NADH 2 NAD + lactate Fig. 8-9b, p. 132

57 Glycolysis glucose 2 NAD + 2 ATP 2 NADH 4 ATP pyruvate Glycolysis glucose 2 NAD + 2 ATP 2 NADH 4 ATP pyruvate Alcoholic Fermentation 2 CO 2 acetaldehyde 2 NADH Lactate Fermentation 2 NADH 2 NAD + 2 NAD + ethanol lactate Stepped Art Fig. 8-9, p. 132

58 Animation: Fermentation pathways

59 Alcoholic Fermentation

60 Fig. 8-10a, p. 133

61 Fig. 8-10b, p. 133

62 Fig. 8-10c, p. 133

63 8.6 The Twitchers Slow-twitch muscle fibers ( red muscles) make ATP by aerobic respiration Have many mitochondria Dominate in prolonged activity Fast-twitch muscle fibers ( white muscles) make ATP by lactate fermentation Have few mitochondria and no myoglobin Sustain short bursts of activity

64 Sprinters and Lactate Fermentation

65 Fig. 8-11b, p. 133

66 Key Concepts: How Anaerobic Pathways End Fermentation pathways start with glycolysis Substances other than oxygen accept electrons at the end of the pathways Compared with aerobic respiration, the net yield of ATP from fermentation is small

67 8.7 Alternative Energy Sources in the Body Pathways that break down molecules other than carbohydrates also keep organisms alive In humans and other mammals, the entrance of glucose and other organic compounds into an energy-releasing pathway depends on the kinds and proportions of carbohydrates, fats and proteins in the diet

68 The Fate of Glucose at Mealtime and Between Meals When blood glucose concentration rises, the pancreas increases insulin secretion Cells take up glucose faster, more ATP is formed, glycogen and fatty-acid production increases When blood glucose concentration falls, the pancreas increases glucagon secretion Stored glycogen is converted to glucose

69 Energy From Fats About 78% of an adult s energy reserves is stored in fat (mostly triglycerides) Enzymes cleave fats into glycerol and fatty acids Glycerol products enter glycolysis Fatty acid products enter the Krebs cycle Compared to carbohydrates, fatty acid breakdown yields more ATP per carbon atom

70 Energy from Proteins Enzymes split dietary proteins into amino acid subunits, which enter the bloodstream Used to build proteins or other molecules Excess amino acids are broken down into ammonia (NH 3 ) and various products that can enter the Krebs cycle

71 Alternative Energy Sources in the Human Body

72 FOOD FATS COMPLEX CARBOHYDRATES PROTEINS fatty acids glycerol glucose, other simple sugars amino acids acetyl CoA PGAL acetyl CoA Glycolysis NADH pyruvate Krebs Cycle oxaloacetate or another intermediate of the Krebs NADH, FADH 2 Electron Transfer Phosphorylation Fig. 8-12, p. 135

73 FOOD FATS COMPLEX CARBOHYDRATES PROTEINS fatty acids glycerol glucose, other simple sugars amino acids acetyl CoA PGAL acetyl CoA Glycolysis NADH pyruvate Krebs Cycle oxaloacetate or another intermediate of the Krebs NADH, FADH 2 Electron Transfer Phosphorylation Stepped Art Fig. 8-12, p. 135

74 Animation: Alternative energy sources

75 8.7 Key Concepts: Other Metabolic Pathways Molecules other than glucose are common energy sources Different pathways convert lipids and proteins to substances that may enter glycolysis or the Krebs cycle

76 8.8 Reflections on Life s Unity Life s diversity and continuity arise from unity at the level of molecules and energy Energy inputs drive the organization of molecules into cells (one-way flow of energy) Energy from the sun sustains life s organization Photosynthesizers use energy from the sun to feed themselves and other forms of life Aerobic respiration balances photosynthesis

77 Links Between Photosynthesis and Aerobic Respiration

78 energy in (mainly from sunlight) Photosynthesis glucose, oxygen Aerobic Respiration energy out (ATP, heat) carbon dioxide, water energy out (ATP, heat) Fig. 8-13, p. 136

79 Animation: Electron transfer phosphorylation

80 Animation: Electron transfer system and oxidative phosphorylation

81 Animation: Krebs cycle overview

82 Animation: Links with photosynthesis

83 Animation: Recreating the reactions of glycolysis

84 Video: When mitochondria spin their wheels

CHAPTER 7 10/16/2012. How cells release Chemical Energy

CHAPTER 7 10/16/2012. How cells release Chemical Energy CHAPTER 7 10/16/2012 How cells release Chemical Energy 1 7.1 OVERVIEW OF CARBOHYDRATE BREAKDOWN PATHWAYS Organisms stay alive by taking in energy. Plants and all other photosynthetic autotrophs get energy

More information

How Cells Release Chemical Energy Cellular Respiration

How Cells Release Chemical Energy Cellular Respiration How Cells Release Chemical Energy Cellular Respiration Overview of Cellular Respiration HO double membrane outer membrane inner membrane CO matrix Produces molecules Requires oxygen Releases carbon dioxide

More information

Respiration. Respiration. How Cells Harvest Energy. Chapter 7

Respiration. Respiration. How Cells Harvest Energy. Chapter 7 How Cells Harvest Energy Chapter 7 Respiration Organisms can be classified based on how they obtain energy: autotrophs: are able to produce their own organic molecules through photosynthesis heterotrophs:

More information

How Cells Harvest Chemical Energy

How Cells Harvest Chemical Energy How Cells Harvest Chemical Energy Chapter 6 Introduction: How Is a Marathoner Different from a Sprinter? Individuals inherit various percentages of the two main types of muscle fibers, slow and fast The

More information

Cellular Metabolism 9/24/2013. Metabolism. Cellular Metabolism. Consists of all the chemical reactions that take place in a cell!

Cellular Metabolism 9/24/2013. Metabolism. Cellular Metabolism. Consists of all the chemical reactions that take place in a cell! Cellular Metabolism Biology 105 Lecture 6 Chapter 3 (pages 56-61) Metabolism Consists of all the chemical reactions that take place in a cell! Cellular Metabolism Aerobic cellular respiration requires

More information

HOW CELLS RELEASE CHEMICAL ENERGY

HOW CELLS RELEASE CHEMICAL ENERGY 8 HOW CELLS RELEASE CHEMICAL ENERGY INTRODUCTION Chapter 8 looks at the various ways that cells can extract energy from food. Both aerobic and anaerobic mechanisms are covered, but a major emphasis of

More information

How Cells Harvest Energy. Chapter 7. Respiration

How Cells Harvest Energy. Chapter 7. Respiration How Cells Harvest Energy Chapter 7 Respiration Organisms classified on how they obtain energy: autotrophs: produce their own organic molecules through photosynthesis heterotrophs: live on organic compounds

More information

Unit 2: Metabolic Processes

Unit 2: Metabolic Processes How is energy obtained biologically? Recall: Red Ox Reactions Unit 2: Metabolic Processes Oxidation Is the chief mechanism by which chemical potential energy is released This energy comes from reduced

More information

Chapter 9 Notes. Cellular Respiration and Fermentation

Chapter 9 Notes. Cellular Respiration and Fermentation Chapter 9 Notes Cellular Respiration and Fermentation Objectives Distinguish between fermentation and anaerobic respiration. Name the three stages of cellular respiration and state the region of the cell

More information

Cellular Respiration and Fermentation

Cellular Respiration and Fermentation LECTURE PRESENTATIONS For CAMPBELL BIOLOGY, NINTH EDITION Jane B. Reece, Lisa A. Urry, Michael L. Cain, Steven A. Wasserman, Peter V. Minorsky, Robert B. Jackson Chapter 9 Cellular Respiration and Fermentation

More information

Chapter 7 Cellular Respiration and Fermentation*

Chapter 7 Cellular Respiration and Fermentation* Chapter 7 Cellular Respiration and Fermentation* *Lecture notes are to be used as a study guide only and do not represent the comprehensive information you will need to know for the exams. Life Is Work

More information

Cellular Metabolism. Biol 105 Lecture 6 Read Chapter 3 (pages 63 69)

Cellular Metabolism. Biol 105 Lecture 6 Read Chapter 3 (pages 63 69) Cellular Metabolism Biol 105 Lecture 6 Read Chapter 3 (pages 63 69) Metabolism Consists of all of the chemical reactions that take place in a cell Metabolism Animation Breaking Down Glucose For Energy

More information

Chapter 9. Cellular Respiration and Fermentation

Chapter 9. Cellular Respiration and Fermentation Chapter 9 Cellular Respiration and Fermentation Energy flows into an ecosystem as sunlight and leaves as heat Photosynthesis generates O 2 and organic molecules, which are used in cellular respiration

More information

Concept 9.1: Catabolic pathways yield energy by oxidizing organic fuels Several processes are central to cellular respiration and related pathways

Concept 9.1: Catabolic pathways yield energy by oxidizing organic fuels Several processes are central to cellular respiration and related pathways Overview: Life Is Work Living cells require energy from outside sources Some animals, such as the chimpanzee, obtain energy by eating plants, and some animals feed on other organisms that eat plants Energy

More information

Lesson Overview. Cellular Respiration: An Overview. 9.2 process of cell respiration

Lesson Overview. Cellular Respiration: An Overview. 9.2 process of cell respiration 9.2 process of cell respiration Glycolysis During glycolysis, glucose is broken down into 2 molecules of the 3-carbon molecule pyruvic acid. Pyruvic acid is a reactant in the Krebs cycle. ATP and NADH

More information

Cellular Respiration. Unit 5: Plants, Photosynthesis, and Cellular Respiration

Cellular Respiration. Unit 5: Plants, Photosynthesis, and Cellular Respiration Cellular Respiration Unit 5: Plants, Photosynthesis, and Cellular Respiration Overview! Organisms obtain energy (ATP) by breaking down (catabolic pathway, exergonic reaction) organic molecules (glucose)

More information

Cell Respiration Ch 7. Both autotrophs and heterotrophs use cellular respiration to make CO2 and water from

Cell Respiration Ch 7. Both autotrophs and heterotrophs use cellular respiration to make CO2 and water from Cell Respiration Ch 7 Objectives: Identify the 2 major steps of cellular respiration Describe the major events in glycolysis Compare lactic acid fermentation with alcoholic fermentation Calculate the efficiency

More information

Releasing Chemical Energy

Releasing Chemical Energy Releasing Chemical Energy Ø Energy From Carbohydrates Ø Aerobic Respiration/ Stages Ø Fermentation Ø Food as a Source of Energy How Do Cells Access the Chemical Energy in Carbohydrayes? Aerobic Respiration

More information

Metabolism. Chapter 5. Catabolism Drives Anabolism 8/29/11. Complete Catabolism of Glucose

Metabolism. Chapter 5. Catabolism Drives Anabolism 8/29/11. Complete Catabolism of Glucose 8/29/11 Metabolism Chapter 5 All of the reactions in the body that require energy transfer. Can be divided into: Cell Respiration and Metabolism Anabolism: requires the input of energy to synthesize large

More information

Cellular Respiration: Harvesting Chemical Energy

Cellular Respiration: Harvesting Chemical Energy Chapter 9 Cellular Respiration: Harvesting Chemical Energy You should be able to: 1. Explain how redox reactions are involved in energy exchanges. Name and describe the three stages of cellular respiration;

More information

Cell Respiration - 1

Cell Respiration - 1 Cell Respiration - 1 All cells must do work to stay alive and maintain their cellular environment. The energy needed for cell work comes from the bonds of ATP. Cells obtain their ATP by oxidizing organic

More information

9.2 The Process of Cellular Respiration

9.2 The Process of Cellular Respiration 9.2 The Process of Cellular Respiration Oxygen Carbon 2 2 Dioxide 34 Water Glycolysis Glycolysis is the first stage of cellular respiration. During glycolysis, glucose is broken down into 2 molecules of

More information

Section B: The Process of Cellular Respiration

Section B: The Process of Cellular Respiration CHAPTER 9 CELLULAR RESPIRATION: HARVESTING CHEMICAL ENERGY Section B: The Process of Cellular Respiration 1. Respiration involves glycolysis, the Krebs cycle, and electron transport: an overview 2. Glycolysis

More information

KEY CONCEPT The overall process of cellular respiration converts sugar into ATP using oxygen.

KEY CONCEPT The overall process of cellular respiration converts sugar into ATP using oxygen. KEY CONCEPT The overall process of cellular respiration converts sugar into ATP using oxygen. ! Cellular respiration makes ATP by breaking down sugars. Cellular respiration is aerobic, or requires oxygen.

More information

Cellular Respiration: Harvesting Chemical Energy

Cellular Respiration: Harvesting Chemical Energy Chapter 9 Cellular Respiration: Harvesting Chemical Energy PowerPoint Lecture Presentations for Biology Eighth Edition Neil Campbell and Jane Reece Lectures by Chris Romero, updated by Erin Barley with

More information

Chapter 9 Cellular Respiration

Chapter 9 Cellular Respiration Chapter 9 Cellular Respiration Biology and Society: Marathoners versus Sprinters Sprinters do not usually compete at short and long distances. Natural differences in the muscles of these athletes favor

More information

Energy Flow. Chapter 7. Cellular Respiration: Overview. Cellular Respiration. Cellular Respiration. Cellular Respiration occurs in three stages

Energy Flow. Chapter 7. Cellular Respiration: Overview. Cellular Respiration. Cellular Respiration. Cellular Respiration occurs in three stages Energy Flow Chapter 7 Cellular Respiration hotosynthesis uses solar energy to produce glucose and O from CO and H O Cellular respiration makes and consumes O during the oxidation of glucose to CO and H

More information

4. Which step shows a split of one molecule into two smaller molecules? a. 2. d. 5

4. Which step shows a split of one molecule into two smaller molecules? a. 2. d. 5 1. Which of the following statements about NAD + is false? a. NAD + is reduced to NADH during both glycolysis and the citric acid cycle. b. NAD + has more chemical energy than NADH. c. NAD + is reduced

More information

Cellular Respiration: Harvesting Chemical Energy

Cellular Respiration: Harvesting Chemical Energy Chapter 9 Cellular Respiration: Harvesting Chemical Energy PowerPoint Lecture Presentations for Biology Eighth Edition Neil Campbell and Jane Reece Lectures by Chris Romero, updated by Erin Barley with

More information

Cellular Respiration

Cellular Respiration Cellular Respiration Cellular respiration is the process that releases energy by breaking down glucose and other food molecules in the presence of oxygen In biology and chemistry, energy is referred to

More information

Cellular Respiration. Chapter 9

Cellular Respiration. Chapter 9 Cellular Respiration Chapter 9 1.A)Explain where organisms get the energy needed for life processes. Organisms get the energy they need from food. Energy stored in food is expressed as calories. Calorie

More information

3.7.1 Define cell respiration [Cell respiration is the controlled release of energy from organic compounds in cells to form ATP]

3.7.1 Define cell respiration [Cell respiration is the controlled release of energy from organic compounds in cells to form ATP] 3.7 Cell respiration ( Chapter 9 in Campbell's book) 3.7.1 Define cell respiration [Cell respiration is the controlled release of energy from organic compounds in cells to form ATP] Organic compounds store

More information

Section 9 2 The Krebs Cycle and Electron Transport (pages )

Section 9 2 The Krebs Cycle and Electron Transport (pages ) Section 9 2 The Krebs Cycle and Electron Transport (pages 226 232) This section describes what happens during the second stage of cellular respiration, called the Krebs cycle. It also explains how high-energy

More information

g) Cellular Respiration Higher Human Biology

g) Cellular Respiration Higher Human Biology g) Cellular Respiration Higher Human Biology What can you remember about respiration? 1. What is respiration? 2. What are the raw materials? 3. What are the products? 4. Where does it occur? 5. Why does

More information

Consists of all of the chemical reactions that take place in a cell. Summary of Cellular Respiration. Electrons transferred. Cytoplasm Blood vessel

Consists of all of the chemical reactions that take place in a cell. Summary of Cellular Respiration. Electrons transferred. Cytoplasm Blood vessel 7/19/2014 Metabolism Cellular Metabolism Metabolism Consists of all of the chemical reactions that take place in a cell PLAY Animation Breaking Down Glucose For Energy Biol 105 Lecture Packet 6 Read Chapter

More information

Cellular Respiration: Harvesting Chemical Energy Chapter 9

Cellular Respiration: Harvesting Chemical Energy Chapter 9 Cellular Respiration: Harvesting Chemical Energy Chapter 9 Assemble polymers, pump substances across membranes, move and reproduce The giant panda Obtains energy for its cells by eating plants which get

More information

Cellular Respiration

Cellular Respiration Cellular Respiration 1. To perform cell work, cells require energy. a. A cell does three main kinds of work: i. Mechanical work, such as the beating of cilia, contraction of muscle cells, and movement

More information

Respiration 30/04/2013. Dr.M.R.Vaezi K., Hakim Sabzevari University

Respiration 30/04/2013. Dr.M.R.Vaezi K., Hakim Sabzevari University Respiration Metabolism - the sum of all the chemical reactions that occur in the body. It is comprised of: anabolism synthesis of molecules, requires input of energy catabolism break down of molecules,

More information

MULTIPLE CHOICE QUESTIONS

MULTIPLE CHOICE QUESTIONS MULTIPLE CHOICE QUESTIONS 1. Which of the following statements concerning anabolic reactions is FALSE? A. They are generally endergonic. B. They usually require ATP. C. They are part of metabolism. D.

More information

Chapter 9: Cellular Respiration: Harvesting Chemical Energy

Chapter 9: Cellular Respiration: Harvesting Chemical Energy AP Biology Reading Guide Name: Date: Period Chapter 9: Cellular Respiration: Harvesting Chemical Energy Overview: Before getting involved with the details of cellular respiration and photosynthesis, take

More information

What s the point? The point is to make ATP! ATP

What s the point? The point is to make ATP! ATP ATP Chapter 8 What s the point? The point is to make ATP! ATP Flows into an ecosystem as sunlight and leaves as heat Energy is stored in organic compounds Carbohydrates, lipids, proteins Heterotrophs eat

More information

CH 7: Cell Respiration and Fermentation Overview. Concept 7.1: Catabolic pathways yield energy by oxidizing organic fuels

CH 7: Cell Respiration and Fermentation Overview. Concept 7.1: Catabolic pathways yield energy by oxidizing organic fuels CH 7: Cell Respiration and Fermentation Overview Living cells require energy from outside sources Some animals obtain energy by eating plants, and some animals feed on other organisms Energy flows into

More information

1st half of glycolysis (5 reactions) Glucose priming get glucose ready to split phosphorylate glucose rearrangement split destabilized glucose

1st half of glycolysis (5 reactions) Glucose priming get glucose ready to split phosphorylate glucose rearrangement split destabilized glucose Warm- Up Objective: Describe the role of in coupling the cell's anabolic and catabolic processes. Warm-up: What cellular processes produces the carbon dioxide that you exhale? 1st half of glycolysis (5

More information

3.2 Aerobic Respiration

3.2 Aerobic Respiration 3.2 Aerobic Respiration Aerobic Cellular Respiration Catabolic pathways Breaks down energy-rich compounds to make ATP Requires oxygen Occurs in different parts of the cell C 6 H 12 O 6 (s) + 6O 2 (g) 6CO

More information

Complete breakdown of Glucose: + Light + 6 H 2 O = C 6 H 12 O 6 6 CO O 2. + Energy = 6 CO 2 C 6 H 12 O 6. What is Glucose Metabolism?

Complete breakdown of Glucose: + Light + 6 H 2 O = C 6 H 12 O 6 6 CO O 2. + Energy = 6 CO 2 C 6 H 12 O 6. What is Glucose Metabolism? Chapter 8: Harvesting Energy: Glycolysis and Cellular Respiration What is Metabolism? Answer: The breakdown of glucose to release energy from its chemical bonds Photosynthesis: 6 CO 2 Carbon Dioxide +

More information

Chapter 9 Cellular Respiration. Copyright Pearson Prentice Hall

Chapter 9 Cellular Respiration. Copyright Pearson Prentice Hall Chapter 9 Cellular Respiration Copyright Pearson Prentice Hall 9-1 Chemical Pathways Both plant and animal cells carry out the final stages of cellular respiration in the mitochondria. Animal Cells Animal

More information

Cellular Respiration Harvesting Chemical Energy ATP

Cellular Respiration Harvesting Chemical Energy ATP Cellular Respiration Harvesting Chemical Energy ATP 2006-2007 What s the point? The point is to make ATP! ATP 2006-2007 Harvesting stored energy Energy is stored in organic molecules carbohydrates, fats,

More information

ATP. Principles of Energy Harvest. Chapter 9~ The point is to make ATP! Cellular Respiration: Harvesting Chemical Energy. What s the point?

ATP. Principles of Energy Harvest. Chapter 9~ The point is to make ATP! Cellular Respiration: Harvesting Chemical Energy. What s the point? Chapter 9~ Cellular Respiration: Harvesting Chemical Energy What s the point? The point is to make! 2006-2007 Principles of Energy Harvest Catabolic pathway Fermentation Cellular Respiration C6H126 + 62

More information

Releasing Food Energy

Releasing Food Energy Releasing Food Energy All food is broken down by the body into small molecules through digestion. By the time food reaches your, bloodstream it has been broken down into nutrient rich molecules that can

More information

Energy Production In A Cell (Chapter 25 Metabolism)

Energy Production In A Cell (Chapter 25 Metabolism) Energy Production In A Cell (Chapter 25 Metabolism) Large food molecules contain a lot of potential energy in the form of chemical bonds but it requires a lot of work to liberate the energy. Cells need

More information

Cellular Respiration: Harvesting Chemical Energy

Cellular Respiration: Harvesting Chemical Energy Chapter 9 Cellular Respiration: Harvesting Chemical Energy PowerPoint Lecture Presentations for Biology Eighth Edition Neil Campbell and Jane Reece Lectures by Chris Romero, updated by Erin Barley with

More information

Cellular Respiration Harvesting Chemical Energy ATP

Cellular Respiration Harvesting Chemical Energy ATP Cellular Respiration Harvesting Chemical Energy ATP 2006-2007 What s the point? The point is to make ATP! ATP 2006-2007 Harvesting stored energy Energy is stored in organic molecules carbohydrates, fats,

More information

Biology Kevin Dees. Chapter 9 Harvesting Chemical Energy: Cellular Respiration

Biology Kevin Dees. Chapter 9 Harvesting Chemical Energy: Cellular Respiration Chapter 9 Harvesting Chemical Energy: Cellular Respiration Life is Work!!! Biology Kevin Dees Catabolic pathways and ATP production Catabolic pathways release energy by breaking down large molecules into

More information

Photosynthesis in chloroplasts. Cellular respiration in mitochondria ATP. ATP powers most cellular work

Photosynthesis in chloroplasts. Cellular respiration in mitochondria ATP. ATP powers most cellular work Light energy ECOSYSTEM CO + H O Photosynthesis in chloroplasts Cellular respiration in mitochondria Organic molecules + O powers most cellular work Heat energy 1 becomes oxidized (loses electron) becomes

More information

9.1 Chemical Pathways ATP

9.1 Chemical Pathways ATP 9.1 Chemical Pathways ATP 2009-2010 Objectives Explain cellular respiration. Describe what happens during glycolysis. Describe what happens during fermentation. Where do we get energy? Energy is stored

More information

2) The molecule that functions as the reducing agent (electron donor) in a redox or oxidationreduction

2) The molecule that functions as the reducing agent (electron donor) in a redox or oxidationreduction Campbell Biology in Focus (Urry) Chapter 7 Cellular Respiration and Fermentation 7.1 Multiple-Choice Questions 1) What is the term for metabolic pathways that release stored energy by breaking down complex

More information

Cellular Respira,on. Topic 3.7 and 3.8

Cellular Respira,on. Topic 3.7 and 3.8 Cellular Respira,on Topic 3.7 and 3.8 Defini,on of cellular respira,on Controlled release of energy from organic compounds to produce ATP Cells break down organic compounds by SLOW oxida,on Chemical energy

More information

Cellular Respiration: Harvesting Chemical Energy

Cellular Respiration: Harvesting Chemical Energy Chapter 9 Cellular Respiration: Harvesting Chemical Energy Edited by Shawn Lester PowerPoint Lecture Presentations for Biology Eighth Edition Neil Campbell and Jane Reece Lectures by Chris Romero, updated

More information

Cellular Respiration and Fermentation

Cellular Respiration and Fermentation LECTURE PRESENTATIONS For CAMPBELL BIOLOGY, NINTH EDITION Jane B. Reece, Lisa A. Urry, Michael L. Cain, Steven A. Wasserman, Peter V. Minorsky, Robert B. Jackson Chapter 9 Cellular Respiration and Fermentation

More information

Food serves as a source of raw materials for the cells in the body and as a source of energy.

Food serves as a source of raw materials for the cells in the body and as a source of energy. 9-1 Chemical Pathways Food serves as a source of raw materials for the cells in the body and as a source of energy. Animal Cells Animal Mitochondrion Plant Plant Cells 1 of 39 Both plant and animal cells

More information

serves as a source of raw materials and energy for cellsslide

serves as a source of raw materials and energy for cellsslide 9-1 Chemical Pathways (Metabolism) refers to all of the chemical that take place in an organism or cell. Each reaction may handle materials or and is catalyzed by an enzyme. Metabolism has two parts: 1.

More information

Cellular Respiration and Fermentation

Cellular Respiration and Fermentation Chapter 9 LECTURE PRESENTATIONS For CAMPBELL BIOLOGY, NINTH EDITION Jane B. Reece, Lisa A. Urry, Michael L. Cain, Steven A. Wasserman, Peter V. Minorsky, Robert B. Jackson Cellular Respiration and Fermentation

More information

9-1 Chemical Pathways Interactive pgs

9-1 Chemical Pathways Interactive pgs Interactive pgs. 221-225 1 of 39 9-1 Chemical Pathways Food serves as a source of raw materials for the cells in the body and as a source of energy. Animal Cells Animal Mitochondrion Plant Plant Cells

More information

Cellular Respiration- -conversion of stored energy in glucose to usable energy for the cell -energy in cells is stored in the form of ATP

Cellular Respiration- -conversion of stored energy in glucose to usable energy for the cell -energy in cells is stored in the form of ATP Cellular Respiration Notes Chapter 7 How Cells Make ATP Energy Releasing Pathways Cellular Respiration- -conversion of stored energy in glucose to usable energy for the cell -energy in cells is stored

More information

CELLULAR RESPIRATION SUMMARY EQUATION. C 6 H 12 O 6 + O 2 6CO2 + 6H 2 O + energy (ATP) STEPWISE REDOX REACTION

CELLULAR RESPIRATION SUMMARY EQUATION. C 6 H 12 O 6 + O 2 6CO2 + 6H 2 O + energy (ATP) STEPWISE REDOX REACTION CELLULAR RESPIRATION SUMMARY EQUATION C 6 H 12 O 6 + O 2 6CO2 + 6H 2 O + energy (ATP) STEPWISE REDOX REACTION Oxidation: partial or complete loss of electrons Reduction: partial or complete gain of electrons

More information

Cellular Respiration. How is energy in organic matter released for used for in living systems?

Cellular Respiration. How is energy in organic matter released for used for in living systems? Cellular Respiration How is energy in organic matter released for used for in living systems? Cellular Respiration Organisms that perform cellular respiration are called chemoheterotrophs Includes both

More information

3/28/17. Cellular Respiration. Chapter 9: Cellular Respiration & Fermentation. Chapter 9: Cellular Respiration & Fermentation

3/28/17. Cellular Respiration. Chapter 9: Cellular Respiration & Fermentation. Chapter 9: Cellular Respiration & Fermentation Chapter 9: Cellular Respiration & Fermentation SE C TION 1: C E LLULAR RE SP IRATION: AN OVERVIEW As we learned last chapter, energy from the sun is transformed into different forms. In this chapter you

More information

MULTIPLE CHOICE. Choose the one alternative that best completes the statement or answers the question.

MULTIPLE CHOICE. Choose the one alternative that best completes the statement or answers the question. Respiration Practice Name MULTIPLE CHOICE. Choose the one alternative that best completes the statement or answers the question. 1) Which of the following statements describes NAD+? A) NAD+ can donate

More information

Transfer of food energy to chemical energy. Includes anabolic and catabolic reactions. The cell is the metabolic processing center

Transfer of food energy to chemical energy. Includes anabolic and catabolic reactions. The cell is the metabolic processing center Metabolism There are a lot of diagrams here. DO NOT, I repeat, DO NOT get overly anxious or excited about them. We will go through them again slowly!! Read the slides, read the book, DO NOT TAKE NOTES.

More information

Photosynthesis in chloroplasts CO2 + H2O. Cellular respiration in mitochondria ATP. powers most cellular work. Heat energy

Photosynthesis in chloroplasts CO2 + H2O. Cellular respiration in mitochondria ATP. powers most cellular work. Heat energy Figure 9-01 LE 9-2 Light energy ECOSYSTEM Photosynthesis in chloroplasts CO2 + H2O Cellular respiration in mitochondria Organic + O molecules 2 powers most cellular work Heat energy LE 9-UN161a becomes

More information

Cellular Respiration

Cellular Respiration Cellular Respiration The breakdown of glucose for cellular energy. happens in all living cells. is exothermic H atoms and e are removed from glucose (oxidization) and added to oxygen (reduction) excess

More information

Cellular Respiration

Cellular Respiration ellular Respiration 1 ellular Respiration A catabolic, exergonic, oxygen (O 2 ) requiring process that uses energy extracted from macromolecules (glucose) to produce energy (ATP) and water (H 2 O). 6 H

More information

CELLULAR RESPIRATION GETTING ENERGY TO MAKE ATP

CELLULAR RESPIRATION GETTING ENERGY TO MAKE ATP ELLULAR RESPIRATION GETTING ENERGY TO MAKE ATP ELLULAR RESPIRATION ellular process by which mitochondria releases energy by breaking down food molecules (glucose or other organic molecules) to produce

More information

Name: Block: Date: PACKET #8 Unit 3: Energy Transfer, Part II: Cellular Respiration

Name: Block: Date: PACKET #8 Unit 3: Energy Transfer, Part II: Cellular Respiration Name: Block: Date: PACKET #8 Unit 3: Energy Transfer, Part II: Cellular Respiration Reading: BSCS Text chapters 4, 5, and 2.8. Objectives: By the conclusion of this unit the student will be able to: Topic

More information

ATP ATP. Cellular Respiration Harvesting Chemical Energy. The point is to make ATP!

ATP ATP. Cellular Respiration Harvesting Chemical Energy. The point is to make ATP! ellular Respiration Harvesting hemical Energy 1 The point is to make! 2 Harvesting stored energy Energy is stored in organic molecules carbohydrates, fats, proteins Heterotrophs eat these organic molecules

More information

Class XI Chapter 14 Respiration in Plants Biology. 1. It is a biochemical process. 1. It is a physiochemical process.

Class XI Chapter 14 Respiration in Plants Biology. 1. It is a biochemical process. 1. It is a physiochemical process. Question 1: Differentiate between (a) Respiration and Combustion (b) Glycolysis and Krebs cycle (c) Aerobic respiration and Fermentation (a) Respiration and combustion Respiration Combustion 1. It is a

More information

2: Describe glycolysis in general terms, including the molecules that exist at its start and end and some intermediates

2: Describe glycolysis in general terms, including the molecules that exist at its start and end and some intermediates 1 Life 20 - Glycolysis Raven & Johnson Chapter 9 (parts) Objectives 1: Know the location of glycolysis in a eukaryotic cell 2: Describe glycolysis in general terms, including the molecules that exist at

More information

1. Cyanide is introduced into a culture of cells and is observed binding to a mitochondrion, as shown in the diagram below.

1. Cyanide is introduced into a culture of cells and is observed binding to a mitochondrion, as shown in the diagram below. 1. Cyanide is introduced into a culture of cells and is observed binding to a mitochondrion, as shown in the diagram below. The following observations are made: Cyanide binds to and inhibits an enzyme

More information

CHAPTER 5 MICROBIAL METABOLISM

CHAPTER 5 MICROBIAL METABOLISM CHAPTER 5 MICROBIAL METABOLISM I. Catabolic and Anabolic Reactions A. Metabolism - The sum of all chemical reactions within a living cell either releasing or requiring energy. (Overhead) Fig 5.1 1. Catabolism

More information

Cellular Respiration. By C. Kohn Agricultural Sciences

Cellular Respiration. By C. Kohn Agricultural Sciences Cellular Respiration By C. Kohn Agricultural Sciences In a nutshell O Cellular Respiration is a series of chemical reactions in which hydrogen atoms on a glucose molecule are removed so that they can be

More information

Copyrighted by Amy Brown Science Stuff. Cellular Respiration Let s get energized!

Copyrighted by Amy Brown Science Stuff. Cellular Respiration Let s get energized! Copyrighted by Amy Brown Science Stuff Cellular Respiration Let s get energized! A. Food provides living things with the: chemical building blocks they need to grow and reproduce. C. Food serves as a source

More information

Cellular Respiration Part V: Oxidative Phosphorylation

Cellular Respiration Part V: Oxidative Phosphorylation Cellular Respiration Part V: Oxidative Phosphorylation Figure 9.16 Electron shuttles span membrane 2 NADH or 2 FADH 2 MITOCHONDRION 2 NADH 2 NADH 6 NADH 2 FADH 2 Glucose Glycolysis 2 Pyruvate Pyruvate

More information

Campbell's Biology: Concepts and Connections, 7e (Reece et al.) Chapter 6 How Cells Harvest Chemical Energy. 6.1 Multiple-Choice Questions

Campbell's Biology: Concepts and Connections, 7e (Reece et al.) Chapter 6 How Cells Harvest Chemical Energy. 6.1 Multiple-Choice Questions Campbell's Biology: Concepts and Connections, 7e (Reece et al.) Chapter 6 How Cells Harvest Chemical Energy 6.1 Multiple-Choice Questions 1) Which of the following statements regarding photosynthesis and

More information

CELLULAR RESPIRATION. Glycolysis

CELLULAR RESPIRATION. Glycolysis CELLULAR RESPIRATION Glycolysis Sources of Energy Carbohydrates glucose most usable source of energy cells turn to other fuels only if glucose supplies have been depleted stored in glycogen (animal) &

More information

Enzymes and Metabolism

Enzymes and Metabolism PowerPoint Lecture Slides prepared by Vince Austin, University of Kentucky Enzymes and Metabolism Human Anatomy & Physiology, Sixth Edition Elaine N. Marieb 1 Protein Macromolecules composed of combinations

More information

How Cells Harvest Chemical Energy. Chapter 9

How Cells Harvest Chemical Energy. Chapter 9 How Cells Harvest Chemical Energy Chapter 9 Cellular Respiration Releasing energy (ATP) from glucose (chemical energy) in the presence of O 2 Energy flows Matter cycles True or False Plants only perform

More information

Ch. 9 Cellular Respiration Stage 2 & 3: Oxidation of Pyruvate Krebs Cycle

Ch. 9 Cellular Respiration Stage 2 & 3: Oxidation of Pyruvate Krebs Cycle Ch. 9 Cellular Respiration Stage 2 & 3: Oxidation of Pyruvate Krebs Cycle 2006-2007 Glycolysis is only the start Glycolysis glucose pyruvate 6C Pyruvate has more energy to yield 3 more C to strip off (to

More information

Physiological Chemistry II Exam IV Dr. Melissa Kelley April 13, 2004

Physiological Chemistry II Exam IV Dr. Melissa Kelley April 13, 2004 Name Write your name on the back of the exam Physiological Chemistry II Exam IV Dr. Melissa Kelley April 13, 2004 This examination consists of forty-four questions, each having 2 points. The remaining

More information

Cell Respiration. Anaerobic & Aerobic Respiration

Cell Respiration. Anaerobic & Aerobic Respiration Cell Respiration Anaerobic & Aerobic Respiration Understandings/Objectives 2.8.U1: Cell respiration is the controlled release of energy from organic compounds to produce ATP. Define cell respiration State

More information

2. What are the products of cellular respiration? Include all forms of energy that are products.

2. What are the products of cellular respiration? Include all forms of energy that are products. Name Per Cellular Respiration An Overview Why Respire Anyhoo? Because bucko all cells need usable chemical energy to do work. The methods cells use to convert glucose into ATP vary depending on the availability

More information

CELLULAR RESPIRATION: HARVESTING CHEMICAL ENERGY. The Principles of Energy Harvest

CELLULAR RESPIRATION: HARVESTING CHEMICAL ENERGY. The Principles of Energy Harvest CELLULAR RESPIRATION: HARVESTING CHEMICAL ENERGY The Principles of Energy Harvest 1. Cellular respiration and fermentation are catabolic, energy-yielding pathways 2. Cells recycle the ATP they use for

More information

Chapter 6 Cellular Respiration: Obtaining Energy from Food Biology and Society: Marathoners versus Sprinters

Chapter 6 Cellular Respiration: Obtaining Energy from Food Biology and Society: Marathoners versus Sprinters Chapter 6 Cellular Respiration: Obtaining Energy from Food Biology and Society: Marathoners versus Sprinters Sprinters do not usually compete at short and long distances. Natural differences in the muscles

More information

Name: Date: Per: Enzymes Review & Using text to understand ATP & Cellular Respiration

Name: Date: Per: Enzymes Review & Using text to understand ATP & Cellular Respiration Name: Date: Per: Enzymes Review & Using text to understand ATP & Cellular Respiration Read this: Digestive enzymes are protein-based biological catalysts that play important roles in our lives. They help

More information

Lecture Outline Correlates with our Chapter 7

Lecture Outline Correlates with our Chapter 7 Chapter 9 Cellular Respiration: Harvesting Chemical Energy Lecture Outline Correlates with our Chapter 7 Overview: Life Is Work To perform their many tasks, living cells require energy from outside sources.

More information

Lecture 5: Cell Metabolism. Biology 219 Dr. Adam Ross

Lecture 5: Cell Metabolism. Biology 219 Dr. Adam Ross Lecture 5: Cell Metabolism Biology 219 Dr. Adam Ross Cellular Respiration Set of reactions that take place during the conversion of nutrients into ATP Intricate regulatory relationship between several

More information

Photosynthesis and Cellular Respiration: Cellular Respiration

Photosynthesis and Cellular Respiration: Cellular Respiration Photosynthesis and Cellular Respiration: Cellular Respiration Unit Objective I can compare the processes of photosynthesis and cellular respiration in terms of energy flow, reactants, and products. During

More information

Portal module: m Glycolysis. First Last. 1 First Half of Glycolysis (Energy-Requiring Steps)

Portal module: m Glycolysis. First Last. 1 First Half of Glycolysis (Energy-Requiring Steps) Portal module: m10399 1 Glycolysis First Last This work is produced by Portal and licensed under the Creative Commons Attribution License 4.0 Abstract By the end of this section, you will be able to do

More information

Glycolysis and Cellular Respiration

Glycolysis and Cellular Respiration Glycolysis and Cellular Respiration An Introduction to Essential Cellular Metabolic athways GLY e- Cytolplasm TS e- KC Matrix of Mitochondria Cytolplasm By Noel Ways Basic Metabolic athways: Glycolosis,

More information

Aerobic Respiration. The four stages in the breakdown of glucose

Aerobic Respiration. The four stages in the breakdown of glucose Aerobic Respiration The four stages in the breakdown of glucose 1 I. Aerobic Respiration Why can t we break down Glucose in one step? (Flaming Gummy Bear) Enzymes gently lower the potential energy until

More information

1 CH:14 RESPIRATION IN PLANTS https://biologyaipmt.com/

1 CH:14 RESPIRATION IN PLANTS https://biologyaipmt.com/ 1 CH:14 RESPIRATION IN PLANTS https://biologyaipmt.com/ CHAPTER 14 RESPIRATION IN PLANTS All the energy required for 'life' processes is obtained by oxidation of some macromolecules that we call 'food'.

More information