The Golgi Apparatus: Shipping and Receiving Center. The Golgi apparatus. Functions of the Golgi apparatus. Lysosomes: Digestive Compartments

Size: px
Start display at page:

Download "The Golgi Apparatus: Shipping and Receiving Center. The Golgi apparatus. Functions of the Golgi apparatus. Lysosomes: Digestive Compartments"

Transcription

1 The Golgi Apparatus: Shipping and Receiving Center The Golgi apparatus Receives (on the cis-side) many of the transport vesicles produced in the rough ER Consists of flattened membranous sacs called cisternae Exports many substances (from the transside) in transport vesicles Functions of the Golgi apparatus Golgi apparatus - Modification of the products of the rough ER cis face ( receiving side of Golgi apparatus) - Manufacture of certain macromolecules 1 Vesicles move 2 6 Vesicles also from ER to Golgi transport certain proteins back to ER Vesicles coalesce to form new cis Golgi cisternae Cisternae 3 Cisternal maturation: Golgi cisternae move in a cisto-trans direction -Probably evolved from ER µm Figure Vesicles transport specific proteins backward to newer Golgi cisternae 4 Vesicles form and leave Golgi, carrying specific proteins to other locations or to the plasma for secretion trans face ( shipping side of Golgi apparatus) TEM of Golgi apparatus Lysosomes: Digestive Compartments Lysosomes are membranous sacs of hydrolytic enzymes, and they carry out intracellular digestion. They digest food from food vacuoles that form by phagocytosis and they recycle old cell parts in autophagy. Lysosome Lysosome contains active hydrolytic enzymes Food vacuole fuses with lysosome Digestive enzymes Nucleus 1 µm Hydrolytic enzymes digest food particles Lysosome Plasma Digestion Food vacuole Figure 6.14 A (a) Phagocytosis: lysosome digesting food 1

2 Lysosomes different lysosomes have different enzymes for breaking down different macromolecules Lysosome containing two damaged organelles 1 µ m They have a low ph (around 5); pump H + ions in from the cell Example of a lysosomal disease: Tay-Sachs disease, caused by a missing lysosomal enzyme for lipid breakdown, leads to buildup of lipids in the brain, killing the individual in infancy. Figure 6.14 B Mitochondrion fragment Peroxisome fragment Lysosome fuses with Hydrolytic enzymes vesicle containing digest organelle damaged organelle components Lysosome Digestion Vesicle containing damaged mitochondrion (b) Autophagy: lysosome breaking down damaged organelle Vacuoles: Diverse Maintenance Compartments Vacuoles are fluid filled and enclosed. A cell may have one or several vacuoles. Food vacuoles Are formed by phagocytosis Contractile vacuoles Pump excess water out of protist cells Vacuoles: Diverse Maintenance Compartments Central vacuoles Found in plant cells Function in cell size and turgidity Store reserves of important organic compounds and water Central vacuole Cytosol Figure 6.15 Nucleus Cell wall Chloroplast Tonoplast Central vacuole 5 µm 2

3 The Endo System: A Review Relationships among s/organelles of the endo system 1 Nuclear envelope is connected to rough ER, which is also continuous with smooth ER Nucleus Rough ER 2 Membranes and proteins produced by the ER flow in the form of transport vesicles to the Golgi Smooth ER Nuclear envelop cis Golgi 3 Golgi pinches off transport Vesicles and other vesicles that give rise to lysosomes and Vacuoles trans Golgi Plasma Figure Lysosome available 5 Transport vesicle carries 6 Plasma expands for fusion with another proteins to plasma by fusion of vesicles; proteins vesicle for digestion for secretion are secreted from cell Organelles of Endosymbiotic Origin Mitochondria and chloroplasts change energy from one form to another Mitochondria Are sites of cellular respiration Plastids Found only in plants, are sites of photosynthesis Mitochondria: Chemical Energy Conversion Mitochondria (powerhouse of the cell) Are found in nearly all eukaryotic cells Have their own DNA- derived from the mother. This DNA changes very slowly over time because there is no recombination, only change is due to drift (chance). Mitochondrion Inter space Outer Free ribosomes in the mitochondrial matrix Inner Cristae Matrix Figure 6.17 Mitochondrial DNA 100 µm 3

4 Mitochondria: Chemical Energy Conversion Are the site of oxidative metabolism (conversion of glucose to ATP, carbon dioxide, and water), also known as cellular respiration. * Which type of cell would you expect to have a lot of mitochondria? Are enclosed in a double. Inner is folded for increased surface area. This is where the metabolism occurs; enzymes are embedded in the. Mitochondrion Inter space Outer Free ribosomes in the mitochondrial matrix Inner Cristae Matrix Figure 6.17 Mitochondrial DNA 100 µm Plastids: Capture of Light Energy Plastids have a double have their own DNA function in photosynthesis (the chloroplast is an example) contain pigments such as chlorophyll, carotenoids can also be for storage (leukoplasts) Chloroplasts Are found in leaves and other green organs of plants and in algae Their structure includes Thylakoids, membranous sacs Stroma, the internal fluid Chloroplast Chloroplast DNA Ribosomes Stroma Inner and outer s Granum Figure 6.18 Thylakoid 1 µm 4

5 Peroxisomes: Oxidation Peroxisomes Produce hydrogen peroxide and convert it to water Chloroplast Peroxisome Mitochondrion Figure µm The Cytoskeleton Cytoplasm includes all the space inside the plasma but outside the nucleus (includes organelles, cytosol, and cytoskeleton) Cytoskeleton: microlattice of fibers supports the cell and gives it 3-dimensional shape. Organelles attach to the fibers. The cytoskeleton gives the cell spatial information, which is very important in development The cytoskeleton is not stationary, it is dynamic. The Cytoskeleton Is a network of fibers extending throughout the cytoplasm, and it organizes cell structures and activities. Microtubule Figure µm Microfilaments 5

6 Roles of the Cytoskeleton: Support, Motility, and Regulation Gives mechanical support to the cell Is involved in cell motility, which utilizes motor proteins ATP Vesicle Receptor for motor protein Motor protein Microtubule (ATP powered) of cytoskeleton (a) Motor proteins that attach to receptors on organelles can walk the organelles along microtubules or, in some cases, microfilaments. Microtubule Vesicles 0.25 µm Figure 6.21 A, B (b) Vesicles containing neurotransmitters migrate to the tips of nerve cell axons via the mechanism in (a). In this SEM of a squid giant axon, two vesicles can be seen moving along a microtubule. (A separate part of the experiment provided the evidence that they were in fact moving.) Components of the Cytoskeleton There are three main types of fibers that make up the cytoskeleton Table 6.1 Microtubules Microtubules Shape the cell Cilia and flagella for motility Guide the movement of organelles Help separate the chromosome copies in dividing cells 6

7 Centrosomes and Centrioles The centrosome Is considered to be a microtubule-organizing center and it organizes the spindle fibers used to guide the movement of chromosomes during cell division. In animal cells, the centrosome: Contains a pair of centrioles which are made of microtubules in a nine-triplets pattern. Centrosome Microtubule Centrioles 0.25 µm Figure 6.22 Longitudinal section of one centriole Microtubules Cross section of the other centriole Cilia and flagella locomotory organelles Cilia and flagella share a common ultrastructure of microtubules in a arrangement. The base structure is similar to that of centrioles (nine triplets). 0.1 µm Outer microtubule doublet Dynein arms Plasma Microtubules Plasma Central microtubule Outer doublets cross-linking proteins inside Radial spoke Basal body (b) (a) 0.5 µm 0.1 µm Triplet (c) Figure 6.24 A-C Cross section of basal body 7

8 Cilia and Flagella move through the action of motor proteins The protein dynein Is responsible for the bending movement of cilia and flagella Microtubule doublets ATP Dynein arm (a) Powered by ATP, the dynein arms of one microtubule doublet grip the adjacent doublet, push it up, release, and then grip again. If the two microtubule doublets were not attached, they would slide Figure 6.25 A relative to each other. Ciliary/flagellar motion Outer doublets cross-linking proteins ATP Anchorage in cell (b) In a cilium or flagellum, two adjacent doublets cannot slide far because they are physically restrained by proteins, so they bend. (Only two of Figure 6.25 B the nine outer doublets in Figure 6.24b are shown here.) Microfilaments (Actin Filaments) Are built from molecules of the protein actin Are found in microvilli Microvillus Plasma Microfilaments (actin filaments) Intermediate filaments Figure µm 8

9 Microfilaments of muscle Microfilaments that function in cellular motility Contain the protein myosin in addition to actin Muscle cell Actin filament Myosin filament Myosin arm Figure 6.27 A (a) Myosin motors in muscle cell contraction. Amoeboid motion Involves the contraction of actin and myosin filaments Cortex (outer cytoplasm): gel with actin network Inner cytoplasm: sol with actin subunits Extending pseudopodium Figure 6.27 B (b) Amoeboid movement Cytoplasmic streaming Is another form of locomotion created by microfilaments Streaming cytoplasm (sol) Nonmoving cytoplasm (gel) Chloroplast Parallel actin filaments Cell wall Figure 6.27 C (b) Cytoplasmic streaming in plant cells 9

10 Intermediate Filaments Support cell shape Fix organelles in place Are fixed and do not disassemble. Extracellular components and connections between cells help coordinate cellular activities Cell Walls of Plants Extracellular structures of plant cells that distinguish them from animal cells Are made of cellulose fibers embedded in other polysaccharides and protein May have multiple layers Central vacuole of cell Central vacuole of cell Plasma Secondary cell wall Primary cell wall Middle lamella 1 µm Central vacuole Cytosol Plasma Plant cell walls Figure 6.28 Plasmodesmata 10

11 The Extracellular Matrix (ECM) of Animal Cells Animal cells Lack cell walls Are covered by an elaborate matrix, the ECM The ECM Is made up of glycoproteins and other macromolecules. Some of these molecules can be part of self-recognition or - interactions (e.g. tissue glue that holds cells together). Collagen Fibronectin EXTRACELLULAR FLUID A proteoglycan complex Microfilaments Polysaccharide molecule Carbohydrates Core protein Plasma Integrins Proteoglycan molecule Integrin Figure 6.29 CYTOPLASM Functions of the ECM include Support Adhesion Movement Regulation 11

12 Intercellular Junctions in Plants Plasmodesmata are channels that perforate plant cell walls. The cell s of neighboring cells are continuous through these pores in the cell walls. This allows cells to share molecules and communicate. Cell walls Interior of cell Interior of cell Figure µm Plasmodesmata Plasma s Animal Cell Junctions In animals, there are three types of intercellular junctions Tight junctions Desmosomes Gap junctions Animal Cell Junctions Types of intercellular junctions in animals TIGHT JUNCTIONS Tight junctions prevent fluid from moving across a layer of cells Tight junctions Intermediate filaments Desmosome Tight junction At tight junctions, the s of neighboring cells are very tightly pressed against each other, bound together by specific proteins (purple). Forming continuous seals around the cells, tight junctions prevent leakage of extracellular fluid across A layer of epithelial cells. 0.5 µm DESMOSOMES Desmosomes (also called anchoring junctions) function like rivets, fastening cells Together into strong sheets. Intermediate Filaments made of sturdy keratin proteins Anchor desmosomes in the cytoplasm. Gap junctions 1 µm GAP JUNCTIONS Space between Plasma s cells of adjacent cells Figure 6.31 Extracellular matrix Gap junction 0.1 µm Gap junctions (also called communicating junctions) provide cytoplasmic channels from one cell to an adjacent cell. Gap junctions consist of special proteins that surround a pore through which ions, sugars, amino acids, and other small molecules may pass rapidly. Gap junctions are necessary for communication between cells in many types of tissues, including heart muscle and animal embryos. 12

Human height. Length of some nerve and muscle cells. Chicken egg. Frog egg. Most plant and animal cells Nucleus Most bacteria Mitochondrion

Human height. Length of some nerve and muscle cells. Chicken egg. Frog egg. Most plant and animal cells Nucleus Most bacteria Mitochondrion 10 m 1 m 0.1 m 1 cm Human height Length of some nerve and muscle cells Chicken egg Unaided eye 1 mm Frog egg 100 µm 10 µm 1 µm 100 nm 10 nm Most plant and animal cells Nucleus Most bacteria Mitochondrion

More information

(a) TEM of a plasma. Fimbriae. Nucleoid. Ribosomes. Plasma membrane. Cell wall Capsule. Bacterial chromosome

(a) TEM of a plasma. Fimbriae. Nucleoid. Ribosomes. Plasma membrane. Cell wall Capsule. Bacterial chromosome 0 m m 0. m cm mm 00 µm 0 µm 00 nm 0 nm Human height Length of some nerve and muscle cells Chicken egg Frog egg Most plant and animal cells Most bacteria Smallest bacteria Viruses Proteins Unaided eye Light

More information

A TOUR OF THE CELL 10/1/2012

A TOUR OF THE CELL 10/1/2012 A TOUR OF THE CELL Chapter 6 KEY CONCEPTS: Eukaryotic cells have internal membranes that compartmentalize their functions The eukaryotic cell s genetic instructions are housed in the nucleus and carried

More information

A. Major parts 1. Nucleus 2. Cytoplasm a. Contain organelles (see below) 3. Plasma membrane (To be discussed in Cellular Transport Lecture)

A. Major parts 1. Nucleus 2. Cytoplasm a. Contain organelles (see below) 3. Plasma membrane (To be discussed in Cellular Transport Lecture) Lecture 5: Cellular Biology I. Cell Theory Concepts: 1. Cells are the functional and structural units of living organisms 2. The activity of an organism is dependent on both the individual and collective

More information

A Tour of the Cell. Chapter 6. Slide 1. Slide 2. Slide 3. Overview: The Fundamental Units of Life

A Tour of the Cell. Chapter 6. Slide 1. Slide 2. Slide 3. Overview: The Fundamental Units of Life Slide 1 Chapter 6 A Tour of the Cell PowerPoint Lecture Presentations for Biology Eighth Edition Neil Campbell and Jane Reece Lectures by Chris Romero, updated by Erin Barley with contributions from Joan

More information

Microfilaments. myosin. In muscle cells. Microfilaments. Microfilaments. Video: Cytoplasmic Streaming. amoeboid movement. Pseudopodia.

Microfilaments. myosin. In muscle cells. Microfilaments. Microfilaments. Video: Cytoplasmic Streaming. amoeboid movement. Pseudopodia. Microfilaments Fig, 6-27a myosin Microfilaments protein func3ons in cellular mo3lity in addi3on to ac3n In muscle cells Thousands of ac3n filaments are arranged parallel to one another Thicker myosin filaments

More information

A Tour of the Cell. Chapter 7

A Tour of the Cell. Chapter 7 A Tour of the Cell Chapter 7 Cytology: Study of Cells Light Microscopes uses light & a set of lenses Magnification ratio of object s image size to its real size Resolution measures the clarity of the image

More information

Cytosol the fluid Cytoplasm cell interior, everything outside the nucleus but within the cell membrane, includes the organelles, cytosol, and

Cytosol the fluid Cytoplasm cell interior, everything outside the nucleus but within the cell membrane, includes the organelles, cytosol, and Cell Organelles Plasma Membrane comprised of a phospholipid bilayer and embedded proteins Outer surface has oligosaccharides separates the cells s contents from its surroundings Cytosol the fluid Cytoplasm

More information

Review from Biology A

Review from Biology A Chapter 4 Review from Biology A The Cell Theory All organisms are made of cells Cells come from pre-existing cells The cell is the simplest collection of matter that can live Scientists whose work you

More information

Lecture 5- A Tour of the Cell

Lecture 5- A Tour of the Cell Lecture 5- A Tour of the Cell 1 In this lecture Prokaryotes vs. eukaryotes The organelles of the eukaryotic cell The cytoskeleton Extracellular components 2 What are cells? Cells are the fundamental unit

More information

Plasma Membrane. comprised of a phospholipid bilayer and embedded proteins separates the cells s contents from its surroundings

Plasma Membrane. comprised of a phospholipid bilayer and embedded proteins separates the cells s contents from its surroundings Cell Organelles Plasma Membrane comprised of a phospholipid bilayer and embedded proteins separates the cells s contents from its surroundings Cytosol the fluid Cytoplasm cell interior, everything outside

More information

ORGANELLES OF THE ENDOMEMBRANE SYSTEM

ORGANELLES OF THE ENDOMEMBRANE SYSTEM Membranes compartmentalize the interior of the cell and facilitate a variety of metabolic activities. Chloroplasts and a rigid cell wall are what distinguish a plant cell from an animal cell. A typical

More information

4 A Tour of the Cell CAMPBELL BIOLOGY IN FOCUS. Urry Cain Wasserman Minorsky Jackson Reece

4 A Tour of the Cell CAMPBELL BIOLOGY IN FOCUS. Urry Cain Wasserman Minorsky Jackson Reece CAMPBELL BIOLOGY IN FOCUS Urry Cain Wasserman Minorsky Jackson Reece 4 A Tour of the Cell Lecture Presentations by Kathleen Fitzpatrick and Nicole Tunbridge Overview: The Fundamental Units of Life All

More information

CHAPTER 6: A TOUR OF THE CELL AP BIOLOGY 2011

CHAPTER 6: A TOUR OF THE CELL AP BIOLOGY 2011 CHAPTER 6: A TOUR OF THE CELL AP BIOLOGY 2011 1 IMPORTANCE OF CELLS ALL ORGANISMS ARE MADE OF CELLS CELLS ARE THE SMALLEST LIVING UNIT STRUCTURE IS CORRELATED TO FUNCTION ALL CELLS ARE RELATED BY THEIR

More information

Lysosomes. Vacuoles. Phagocytosis. One cell engulfing another. forms a food vacuole. fuses with lysosome. Autophagy. Lysosomes use enzymes

Lysosomes. Vacuoles. Phagocytosis. One cell engulfing another. forms a food vacuole. fuses with lysosome. Autophagy. Lysosomes use enzymes Lysosomes Phagocytosis One cell engulfing another forms a food vacuole fuses with lysosome Autophagy Lysosomes use enzymes to recycle the cell s own organelles and macromolecules Fig. 6-14 Nucleus 1 µm

More information

Cytology. Light microscopy resolving power Electron microscopy TEM SEM Cell fractionation Ultracentrifuges

Cytology. Light microscopy resolving power Electron microscopy TEM SEM Cell fractionation Ultracentrifuges Chapter 7: A Tour of the Cell Cytology Light microscopy resolving power Electron microscopy TEM SEM Cell fractionation Ultracentrifuges Prokaryotic cells Nucleoid No organelles with membranes Ribosomes

More information

Cell Theory. Chapter 6. cell. fundamental unit of structure and function for all living organisms. arise only from previously existing cell

Cell Theory. Chapter 6. cell. fundamental unit of structure and function for all living organisms. arise only from previously existing cell Chapter 6 cell Cell Theory fundamental unit of structure and function for all living organisms arise only from previously existing cell Figure 5.4 The size range of cells WHY are your brain cells the same

More information

Lectures by Erin Barley Kathleen Fitzpatrick Pearson Education, Inc Pearson Education, Inc. Figure 6.5. Bacterial chromosome

Lectures by Erin Barley Kathleen Fitzpatrick Pearson Education, Inc Pearson Education, Inc. Figure 6.5. Bacterial chromosome Chapter 6 LECTURE PRESENTATIONS For CAMPBELL BIOLOGY, NINTH EDITION Jane B. Reece, Lisa A. Urry, Michael L. Cain, Steven A. Wasserman, Peter V. Minorsky, Robert B. Jackson A Tour of the Cell Overview:

More information

Cells. Variation and Function of Cells

Cells. Variation and Function of Cells Cells Variation and Function of Cells Cell Theory states that: 1. All living things are made of cells 2. Cells are the basic unit of structure and function in living things 3. New cells are produced from

More information

A Tour of the Cell 4/10/12. Chapter 6. Overview: The Fundamental Units of Life

A Tour of the Cell 4/10/12. Chapter 6. Overview: The Fundamental Units of Life Chapter 6 LECTURE PRESENTATIONS For CAMPBELL BIOLOGY, NINTH EDITION Jane B. Reece, Lisa A. Urry, Michael L. Cain, Steven A. Wasserman, Peter V. Minorsky, Robert B. Jackson A Tour of the Cell Lectures by

More information

A Tour of the Cell. Chapter 4. Most cells are microscopic. Cells vary in size and shape

A Tour of the Cell. Chapter 4. Most cells are microscopic. Cells vary in size and shape Chapter 4 A Tour of the Cell Most cells are microscopic Cells vary in size and shape 10 m Human height 1 m Length of some nerve and muscle cells 100 mm (10 cm) 10 mm (1 cm) Chicken egg Unaided eye 1 mm

More information

BIOLOGY. A Tour of the Cell CAMPBELL. Reece Urry Cain Wasserman Minorsky Jackson. Lecture Presentation by Nicole Tunbridge and Kathleen Fitzpatrick

BIOLOGY. A Tour of the Cell CAMPBELL. Reece Urry Cain Wasserman Minorsky Jackson. Lecture Presentation by Nicole Tunbridge and Kathleen Fitzpatrick CAMPBELL BIOLOGY TENTH EDITION Reece Urry Cain Wasserman Minorsky Jackson 6 A Tour of the Cell Lecture Presentation by Nicole Tunbridge and Kathleen Fitzpatrick Concept 6.2: Eukaryotic cells have internal

More information

Early scientists who observed cells made detailed sketches of what they saw.

Early scientists who observed cells made detailed sketches of what they saw. Early scientists who observed cells made detailed sketches of what they saw. Early scientists who observed cells made detailed sketches of what they saw. CORK Early scientists who observed cells made detailed

More information

NOTES: CH 6 A Tour of the Cell

NOTES: CH 6 A Tour of the Cell NOTES: CH 6 A Tour of the Cell Overview: The Importance of Cells All organisms are made of cells The cell is the simplest collection of matter that can live Cell structure is correlated to cellular function

More information

LECTURE PRESENTATIONS

LECTURE PRESENTATIONS LECTURE PRESENTATIONS For CAMPBELL BIOLOGY, NINTH EDITION Jane B. Reece, Lisa A. Urry, Michael L. Cain, Steven A. Wasserman, Peter V. Minorsky, Robert B. Jackson Chapter 6 A Tour of the Cell Lectures by

More information

Organelles of the Cell & How They Work Together. Packet #7

Organelles of the Cell & How They Work Together. Packet #7 Organelles of the Cell & How They Work Together Packet #7 Introduction Introduction Organization of cells is basically similar in all cells. Additionally, most cells are tiny Ranging from 1 1000 cubic

More information

LECTURE PRESENTATIONS

LECTURE PRESENTATIONS LECTURE PRESENTATIONS For CAMPBELL BIOLOGY, NINTH EDITION Jane B. Reece, Lisa A. Urry, Michael L. Cain, Steven A. Wasserman, Peter V. Minorsky, Robert B. Jackson Chapter 6 A Tour of the Cell Lectures by

More information

AP Biology Summer Assignment

AP Biology Summer Assignment AP Biology Summer Assignment 2018-2019 AP Biology is a rigorous course and due to the large amount of material that needs to be covered during the school year, a summer assignment is essential. The first

More information

CHAPTER 4 A TOUR OF THE CELL

CHAPTER 4 A TOUR OF THE CELL CHAPTER 4 A TOUR OF THE CELL Microscopes Con. 4.1 magnification: size resolution: clarity contrast: differences in parts Light Microscopy Techniques (p.68) a. Brightfield unstained b. Brightfield stained

More information

All organisms are made of cells (cells are the basic units of life) Cell structure is highly correlated to cellular function

All organisms are made of cells (cells are the basic units of life) Cell structure is highly correlated to cellular function CELLS CHAPTER 6 I. CELL THEORY - All organisms are made of cells (cells are the basic units of life) Cell structure is highly correlated to cellular function All cells are related by their descent from

More information

A Tour of the Cell. Chapter 6. Biology Eighth Edition Neil Campbell and Jane Reece. PowerPoint Lecture Presentations for

A Tour of the Cell. Chapter 6. Biology Eighth Edition Neil Campbell and Jane Reece. PowerPoint Lecture Presentations for Chapter 6 1 A Tour of the Cell PowerPoint Lecture Presentations for Biology Eighth Edition Neil Campbell and Jane Reece Lectures by Chris Romero, updated by Erin Barley with contributions from Joan Sharp

More information

Nucleic acids. Nucleic acids are information-rich polymers of nucleotides

Nucleic acids. Nucleic acids are information-rich polymers of nucleotides Nucleic acids Nucleic acids are information-rich polymers of nucleotides DNA and RNA Serve as the blueprints for proteins and thus control the life of a cell RNA and DNA are made up of very similar nucleotides.

More information

CELL PARTS TYPICAL ANIMAL CELL

CELL PARTS TYPICAL ANIMAL CELL AP BIOLOGY CText Reference, Campbell v.8, Chapter 6 ACTIVITY1.12 NAME DATE HOUR CELL PARTS TYPICAL ANIMAL CELL ENDOMEMBRANE SYSTEM TYPICAL PLANT CELL QUESTIONS: 1. Write the name of the cell part in the

More information

A Tour of the Cell. Chapter 6. Biology Eighth Edition Neil Campbell and Jane Reece. PowerPoint Lecture Presentations for

A Tour of the Cell. Chapter 6. Biology Eighth Edition Neil Campbell and Jane Reece. PowerPoint Lecture Presentations for Chapter 6 A Tour of the Cell PowerPoint Lecture Presentations for Biology Eighth Edition Neil Campbell and Jane Reece Lectures by Chris Romero, updated by Erin Barley with contributions from Joan Sharp

More information

A Tour of the Cell. Chapter 6. Biology Eighth Edition Neil Campbell and Jane Reece. PowerPoint Lecture Presentations for

A Tour of the Cell. Chapter 6. Biology Eighth Edition Neil Campbell and Jane Reece. PowerPoint Lecture Presentations for Chapter 6 1 A Tour of the Cell PowerPoint Lecture Presentations for Biology Eighth Edition Neil Campbell and Jane Reece Lectures by Chris Romero, updated by Erin Barley with contributions from Joan Sharp

More information

CH 4: A tour of the cell Overview: The Fundamental Units of Life. Concept 4.1: Biologists use microscopes and the tools of biochemistry to study cells

CH 4: A tour of the cell Overview: The Fundamental Units of Life. Concept 4.1: Biologists use microscopes and the tools of biochemistry to study cells CH 4: A tour of the cell Overview: The Fundamental Units of Life All organisms are made of cells The cell is the simplest collection of matter that is alive All cells are related by descent from earlier

More information

A Tour of the Cell. Chapter 6. Biology Eighth Edition Neil Campbell and Jane Reece. PowerPoint Lecture Presentations for

A Tour of the Cell. Chapter 6. Biology Eighth Edition Neil Campbell and Jane Reece. PowerPoint Lecture Presentations for Chapter 6 A Tour of the Cell PowerPoint Lecture Presentations for Biology Eighth Edition Neil Campbell and Jane Reece Lectures by Chris Romero, updated by Erin Barley with contributions from Joan Sharp

More information

Ch. 6 Tour of the Cell

Ch. 6 Tour of the Cell Ch. 6 Tour of the Cell 2007-2008 Microscopy Scientists use microscopes to visualize cells too small to see with the naked eye In a light microscope (LM), visible light is passed through a specimen and

More information

Ch. 6: A Tour of the Cell

Ch. 6: A Tour of the Cell Ch. 6: A Tour of the Cell 1. Compare the 2 Types of Cells PROKARYOTES BOTH EUKARYOTES Domain: Domain: Relative Size & Complexity: Relative Size & Complexity: No DNA in No Examples: Has Has Examples: 2.

More information

Organelles of the Cell & How They Work Together. Packet #5

Organelles of the Cell & How They Work Together. Packet #5 Organelles of the Cell & How They Work Together Packet #5 Developed by Mr. Barrow 2018 1 Introduction Organization of cells is basically similar in all cells. Additionally, most cells are tiny Ranging

More information

LECTURE PRESENTATIONS

LECTURE PRESENTATIONS LECTURE PRESENTATIONS For CAMPBELL BIOLOGY, NINTH EDITION Jane B. Reece, Lisa A. Urry, Michael L. Cain, Steven A. Wasserman, Peter V. Minorsky, Robert B. Jackson Chapter 6 A Tour of the Cell Lectures by

More information

Fungal cell walls are rigid with less flexibility due to a combination of more sugar (more chitin) and protein flexibility.

Fungal cell walls are rigid with less flexibility due to a combination of more sugar (more chitin) and protein flexibility. Cell Structure Assignment Score. Name Sec.. Date. Working by yourself or in a group, answer the following questions about the Cell Structure material. This assignment is worth 40 points with the possible

More information

Organelles of the Cell & How They Work Together. Packet #5

Organelles of the Cell & How They Work Together. Packet #5 Organelles of the Cell & How They Work Together Packet #5 Developed by Mr. Barrow 2018 1 Introduction Organization of cells is basically similar in all cells. Additionally, most cells are tiny Ranging

More information

A Tour of the Cell. Chapter 6. PowerPoint Lecture Presentations for Biology Eighth Edition Neil Campbell and Jane Reece

A Tour of the Cell. Chapter 6. PowerPoint Lecture Presentations for Biology Eighth Edition Neil Campbell and Jane Reece Chapter 6 A Tour of the Cell PowerPoint Lecture Presentations for Biology Eighth Edition Neil Campbell and Jane Reece Lectures by Chris Romero, updated by Erin Barley with contributions from Joan Sharp

More information

The Jobs of Cells. Food & water storage. Vacuoles & vesicles. Vacuoles in plants 10/5/2015. plant cells

The Jobs of Cells. Food & water storage. Vacuoles & vesicles. Vacuoles in plants 10/5/2015. plant cells Cells have 3 main jobs make energy need energy for all activities need to clean up waste produced while making energy make proteins proteins do all the work in a cell, so we need lots of them make more

More information

A Tour of the Cell. Chapter 6. Biology. Edited by Shawn Lester. Inner Life of Cell. Eighth Edition Neil Campbell and Jane Reece

A Tour of the Cell. Chapter 6. Biology. Edited by Shawn Lester. Inner Life of Cell. Eighth Edition Neil Campbell and Jane Reece Chapter 6 A Tour of the Cell Inner Life of Cell Edited by Shawn Lester PowerPoint Lecture Presentations for Biology Eighth Edition Neil Campbell and Jane Reece Lectures by Chris Romero, updated by Erin

More information

A Tour of the Cell CAMPBELL BIOLOGY IN FOCUS URRY CAIN WASSERMAN MINORSKY REECE. Overview: The Fundamental Units of Life

A Tour of the Cell CAMPBELL BIOLOGY IN FOCUS URRY CAIN WASSERMAN MINORSKY REECE. Overview: The Fundamental Units of Life 4 A Tour of the Cell CAMPBELL BIOLOGY IN FOCUS URRY CAIN WASSERMAN MINORSKY REECE Lecture Presentations by Kathleen Fitzpatrick and Nicole Tunbridge, Simon Fraser University SECOND EDITION Overview: The

More information

AP Biology Book Notes Chapter 4: Cells v Cell theory implications Ø Studying cell biology is in some sense the same as studying life Ø Life is

AP Biology Book Notes Chapter 4: Cells v Cell theory implications Ø Studying cell biology is in some sense the same as studying life Ø Life is AP Biology Book Notes Chapter 4: Cells v Cell theory implications Ø Studying cell biology is in some sense the same as studying life Ø Life is continuous v Small cell size is becoming more necessary as

More information

Organelles. copyright cmassengale 1

Organelles. copyright cmassengale 1 Organelles copyright cmassengale 1 Organelles Very small (Microscopic) Perform various functions for a cell Found in the cytoplasm May or may not be membrane-bound 2 Animal Cell Organelles Nucleolus Nucleus

More information

10 m Human height 1 m Length of some nerve and muscle cells eye 100 mm (10 cm) Chicken egg aid n 10 mm

10 m Human height 1 m Length of some nerve and muscle cells eye 100 mm (10 cm) Chicken egg aid n 10 mm Biology 112 Unit Three Chapter Four 1 Cell Sizes Smallest Bacteria Largest Bird egg Longest Giraffe s Nerve Cell Most Cells Diameter of 0.7µm to 105 µm 2 10 m 1 m 100 mm (10 cm) 10 mm (1 cm) Human height

More information

Cell Structure and Function

Cell Structure and Function Cell Theory Cell Structure and Function Chapter 6 Pg. 94-124 What is a cell? The basic functional unit of all living things. The Cell Theory states All organisms are made of one or more cells. Cells are

More information

Human Epithelial Cells

Human Epithelial Cells The Cell Human Epithelial Cells Plant Cells Cells have an internal structure Eukaryotic cells are organized Protective membrane around them that communicates with other cells Organelles have specific jobs

More information

A Tour of the Cell. Ch. 6. Figure 6.32

A Tour of the Cell. Ch. 6. Figure 6.32 5 µm A Tour of the Cell Ch. 6 Figure 6.32 Cell Types Eukaryotic: - internal membranes that compartmentalize their functions - True nucleus - Larger in size Prokaryotic: - Do not contain a nucleus - Have

More information

Eukaryotic cell. Premedical IV Biology

Eukaryotic cell. Premedical IV Biology Eukaryotic cell Premedical IV Biology The size range of organisms Light microscopes visible light is passed through the specimen and glass lenses the resolution is limited by the wavelength of the visible

More information

Chapter 6. A Tour of the Cell. Concept 6.1 Biologists use microscopes and the tools of biochemistry to study cells

Chapter 6. A Tour of the Cell. Concept 6.1 Biologists use microscopes and the tools of biochemistry to study cells Chapter 6 A Tour of the Cell Chapter Outline Concept 6.1 Biologists use microscopes and the tools of biochemistry to study cells In a light microscope (LM), visible light passes through the specimen and

More information

11/1/2014. accumulate in brain.

11/1/2014. accumulate in brain. EU 4.A: Interactions within biological systems lead to complex properties. EU 4.B: Competition and cooperation are important aspects of biological systems. EU 4.C: Naturally occurring diversity among and

More information

Ch. 4 Cells: The Working Units of Life

Ch. 4 Cells: The Working Units of Life Ch. 4 Cells: The Working Units of Life Originally prepared by Kim B. Foglia. Revised and adapted by Nhan A. Pham Types of cells Cell Size Why organelles? Specialized structures - specialized functions

More information

CHAPTER 6 A TOUR OF THE CELL

CHAPTER 6 A TOUR OF THE CELL Electron microscope Light microscope Unaided eye Overview: The Fundamental Units of Life All organisms are made of cells The cell is the simplest collection of matter that can live Cell structure is correlated

More information

4/12/17. Cells. Cell Structure. Ch. 2 Cell Structure and Func.on. Range of Cell Sizes BIOL 100

4/12/17. Cells. Cell Structure. Ch. 2 Cell Structure and Func.on. Range of Cell Sizes BIOL 100 Ch. 2 Cell Structure and Func.on BIOL 100 Cells Fundamental units of life Cell theory All living things are composed of one or more cells. The cell is the most basic unit of life. All cells come from pre-existing

More information

Bell Work: What is the fundamental unit of life? 2014 Pearson Education, Inc.

Bell Work: What is the fundamental unit of life? 2014 Pearson Education, Inc. Bell Work: What is the fundamental unit of life? All organisms are made of cells The cell is the simplest collection of matter that can be alive All cells are related by their descent from earlier cells

More information

Cytology = the study of cells. Chapter 4 CELL STRUCTURE

Cytology = the study of cells. Chapter 4 CELL STRUCTURE Cytology = the study of cells Chapter 4 CELL STRUCTURE Cellular basis of life: Basic unit of life Lowest level with all attributes of life Organisms composed of one or more cells Cell structure correlated

More information

Unit A: Cells. Ch. 4 A Tour of the Cell

Unit A: Cells. Ch. 4 A Tour of the Cell Unit A: Cells Ch. 4 A Tour of the Cell Standards By the end of this unit you should be able to: Recognize and explain the function of each organelle Look at micrographs/diagrams/pictures and correctly

More information

A Tour of the Cell Lecture 2, Part 1 Fall 2008

A Tour of the Cell Lecture 2, Part 1 Fall 2008 Cell Theory 1 A Tour of the Cell Lecture 2, Part 1 Fall 2008 Cells are the basic unit of structure and function The lowest level of structure that can perform all activities required for life Reproduction

More information

Bio10 Cell Structure SRJC

Bio10 Cell Structure SRJC 3.) Cell Structure and Function Structure of Cell Membranes Fluid mosaic model Mixed composition: Phospholipid bilayer Glycolipids Sterols Proteins Fluid Mosaic Model Phospholipids are not packed tightly

More information

Plasma Membrane defines inside from outside. lasma membrane. Common features of all cells. Plasma Membrane defines inside from outside

Plasma Membrane defines inside from outside. lasma membrane. Common features of all cells. Plasma Membrane defines inside from outside A Tour of the Cell Friday Sept 16, 2005 BCOR 011 Lecture 8 Common features of all cells Plasma Membrane defines inside from outside 10 µm 1 2 lasma Functions as a selective barrier Specific portals for

More information

Chapter 4. A Tour of the Cell. Lecture by Richard L. Myers

Chapter 4. A Tour of the Cell. Lecture by Richard L. Myers Chapter 4 A Tour of the Cell PowerPoint Lectures for Biology: Concepts & Connections, Sixth Edition Campbell, Reece, Taylor, Simon, and Dickey Lecture by Richard L. Myers Introduction: Cells on the Move

More information

Name 4 A Tour of the Cell Test Date Study Guide You must know: The difference between prokaryotic and eukaryotic cells. The structure and function of

Name 4 A Tour of the Cell Test Date Study Guide You must know: The difference between prokaryotic and eukaryotic cells. The structure and function of Name _ 4 A Tour of the Cell Test Date Study Guide You must know: The difference between prokaryotic and eukaryotic cells. The structure and function of organelles common to plant and animal cells. The

More information

10/13/11. Cell Theory. Cell Structure

10/13/11. Cell Theory. Cell Structure Cell Structure Grade 12 Biology Cell Theory All organisms are composed of one or more cells. Cells are the smallest living units of all living organisms. Cells arise only by division of a previously existing

More information

Chapter 4. A Tour of the Cell. Lecture by Richard L. Myers

Chapter 4. A Tour of the Cell. Lecture by Richard L. Myers Chapter 4 A Tour of the Cell PowerPoint Lectures for Biology: Concepts & Connections, Sixth Edition Campbell, Reece, Taylor, Simon, and Dickey Lecture by Richard L. Myers Introduction: Cells on the Move

More information

Chapter 6. A Tour of the Cell

Chapter 6. A Tour of the Cell Chapter 6 A Tour of the Cell PowerPoint lectures are originally from Campbell / Reece Media Manager and Instructor Resources for BIOLOGY, 7 th & 8 th Edition by N. A. Campbell & J. B. Reece Copyright 2005

More information

Peroxisomes. Endomembrane System. Vacuoles 9/25/15

Peroxisomes. Endomembrane System. Vacuoles 9/25/15 Contains enzymes in a membranous sac that produce H 2 O 2 Help survive environmental toxins including alcohol Help the cell use oxygen to break down fatty acids Peroxisomes Endo System Components of the

More information

Plant organelle used for storage. Some store starches and lipids and pigments. Named according to the color or pigment that they contain.

Plant organelle used for storage. Some store starches and lipids and pigments. Named according to the color or pigment that they contain. Animal Cell: Plant Cell: Plastid: Plant organelle used for storage. Some store starches and lipids and pigments. Named according to the color or pigment that they contain. Chloroplasts:contain light absorbing

More information

10/5/2015. Cell Size. Relative Rate of Reaction

10/5/2015. Cell Size. Relative Rate of Reaction The Cell Biology 102 Fundamental unit of life Smallest unit that displays all the basic elements of life Lecture 5: Cells Cell Theory 1. All living things are made of one or more cells Cell Theory 2. The

More information

Chapter 4: Cell Structure and Function

Chapter 4: Cell Structure and Function Chapter 4: Cell Structure and Function Robert Hooke Fig. 4-2, p.51 The Cell Smallest unit of life Can survive on its own or has potential to do so Is highly organized for metabolism Senses and responds

More information

Cytology II Study of Cells

Cytology II Study of Cells Cytology II Study of Cells Biology 20 Cellular Basis of Life 1. Basic unit of Life 2. Composed of one or more cells 3. Arises from pre-existing cells Asexual (Mitosis)/Sexual (Meiosis) 4. Surrounded by

More information

Chapter 6: A Tour of the Cell. 1. Studying Cells 2. Intracellular Structures 3. The Cytoskeleton 4. Extracellular Structures

Chapter 6: A Tour of the Cell. 1. Studying Cells 2. Intracellular Structures 3. The Cytoskeleton 4. Extracellular Structures Chapter 6: A Tour of the Cell 1. Studying Cells 2. Intracellular Structures 3. The Cytoskeleton 4. Extracellular Structures 1. Studying Cells Concepts of Microscopy MAGNIFICATION factor by which the image

More information

1. Studying Cells. Concepts of Microscopy 11/7/2016. Chapter 6: A Tour of the Cell

1. Studying Cells. Concepts of Microscopy 11/7/2016. Chapter 6: A Tour of the Cell Electron microscope Light microscope Unaided eye 11/7/2016 Chapter 6: A Tour of the Cell 1. Studying Cells 2. Intracellular Structures 3. The Cytoskeleton 4. Extracellular Structures 1. Studying Cells

More information

A Tour of the Cell. Chapter 6. Biology Eighth Edition Neil Campbell and Jane Reece. PowerPoint Lecture Presentations for

A Tour of the Cell. Chapter 6. Biology Eighth Edition Neil Campbell and Jane Reece. PowerPoint Lecture Presentations for Chapter 6 A Tour of the Cell PowerPoint Lecture Presentations for Biology Eighth Edition Neil Campbell and Jane Reece Lectures by Chris Romero, updated by Erin Barley with contributions from Joan Sharp

More information

Unit 2:The Cell. Section 3: Organelle Structure and Function Mrs. McNamara Biology

Unit 2:The Cell. Section 3: Organelle Structure and Function Mrs. McNamara Biology Unit 2:The Cell Section 3: Organelle Structure and Function Mrs. McNamara Biology Organelle-cell part that performs a specific function for the cell Most are surrounded by a membrane Each helps to maintain

More information

Eukaryotic cells contain organelles that allow the specializations and the separation of functions within the cell.

Eukaryotic cells contain organelles that allow the specializations and the separation of functions within the cell. Section 3: Eukaryotic cells contain organelles that allow the specializations and the separation of functions within the cell. K What I Know W What I Want to Find Out L What I Learned Essential Questions

More information

Chapter 7. (7-1 and 7-2) A Tour of the Cell

Chapter 7. (7-1 and 7-2) A Tour of the Cell Chapter 7 (7-1 and 7-2) A Tour of the Cell Microscopes as Windows to the World of Cells Cells were first described in 1665 by Robert Hooke. By the mid-1800s, the accumulation of scientific evidence led

More information

First to View Cells. copyright cmassengale

First to View Cells. copyright cmassengale CELL THEORY All living things are made of cells Cells are the basic unit of structure and function in an organism (basic unit of life) Cells come from the reproduction of existing cells (cell division)

More information

Cell Structure. Cells. Why are cells so small? 9/15/2016. Schleiden and Schwann proposed Cell Theory in

Cell Structure. Cells. Why are cells so small? 9/15/2016. Schleiden and Schwann proposed Cell Theory in Cell Structure Cells Cells are sacs of fluid that are reinforced by proteins and surrounded by membranes. Inside the fluid float organelles. Organelles: structures inside the cell that are used for metabolic

More information

A Tour of the Cell Chapter 4. Outline. Early contributors to Understanding Cells. Cell Theory. Cell Size s Matt Schleiden & Ted Schann

A Tour of the Cell Chapter 4. Outline. Early contributors to Understanding Cells. Cell Theory. Cell Size s Matt Schleiden & Ted Schann A Tour of the Cell Chapter 4 Outline History of the science behind cells Cell theory & its importance Why are cells small? Microscopes Cell structure and function Prokaryotic cells Eukaryotic cells Early

More information

The Cell Organelles. Eukaryotic cell. The plasma membrane separates the cell from the environment. Plasma membrane: a cell s boundary

The Cell Organelles. Eukaryotic cell. The plasma membrane separates the cell from the environment. Plasma membrane: a cell s boundary Eukaryotic cell The Cell Organelles Enclosed by plasma membrane Subdivided into membrane bound compartments - organelles One of the organelles is membrane bound nucleus Cytoplasm contains supporting matrix

More information

BIOLOGY 111. CHAPTER 3: The Cell: The Fundamental Unit of Life

BIOLOGY 111. CHAPTER 3: The Cell: The Fundamental Unit of Life BIOLOGY 111 CHAPTER 3: The Cell: The Fundamental Unit of Life The Cell: The Fundamental Unit of Life Learning Outcomes 3.1 Explain the similarities and differences between prokaryotic and eukaryotic cells

More information

CELL PART OF THE DAY. Chapter 7: Cell Structure and Function

CELL PART OF THE DAY. Chapter 7: Cell Structure and Function CELL PART OF THE DAY Chapter 7: Cell Structure and Function Cell Membrane Cell membranes are composed of two phospholipid layers. Cell membrane is flexible, not rigid The cell membrane has two major functions.

More information

Objectives. To determine the differences between plant and animal cells To discover the structure and function of cellular organelles.

Objectives. To determine the differences between plant and animal cells To discover the structure and function of cellular organelles. Cell Organelles 3.2 Objectives To determine the differences between plant and animal cells To discover the structure and function of cellular organelles. Basic Cellular Structures Cell membrane (cytoplasmic

More information

Cell Biology. a review! Cell Theory & Cell Structures

Cell Biology. a review! Cell Theory & Cell Structures Cell Biology Cell Theory & a review! Cell Structures Cell Theory refers to the idea that cells are the basic unit of structure and function of all living things. Cells are either prokaryotic or eukaryotic

More information

Structures in Cells. Lecture 5, EH1008: Biology for Public Health, Biomolecules.

Structures in Cells. Lecture 5, EH1008: Biology for Public Health, Biomolecules. Structures in Cells Lecture 5, EH1008: Biology for Public Health, Biomolecules Limian.zheng@ucc.ie 1 Cytoplasm Nucleus Centrioles Cytoskeleton Cilia Microvilli 2 Cytoplasm Cellular material outside nucleus

More information

THE CELL Cells: Part 1

THE CELL Cells: Part 1 THE CELL Cells: Part 1 OBJECTIVES By the end of the lesson you should be able to: State the 2 types of cells Relate the structure to function for all the organelles TYPES OF CELLS There are two types of

More information

Structures in Cells. Cytoplasm. Lecture 5, EH1008: Biology for Public Health, Biomolecules

Structures in Cells. Cytoplasm. Lecture 5, EH1008: Biology for Public Health, Biomolecules Structures in Cells Lecture 5, EH1008: Biology for Public Health, Biomolecules Limian.zheng@ucc.ie 1 Cytoplasm Nucleus Centrioles Cytoskeleton Cilia Microvilli 2 Cytoplasm Cellular material outside nucleus

More information

Biological diversity & Unity. Chapter 7. Activities of life. How do we study cells? Light Microscope. Electron Microscope 9/7/2012

Biological diversity & Unity. Chapter 7. Activities of life. How do we study cells? Light Microscope. Electron Microscope 9/7/2012 Biological diversity & Unity Chapter 7 The cell: Basic unit of Life Underlying the diversity of life is a striking unity DNA is universal genetic language Cells are the basic unit of structure & function

More information

Cell Structure and Function. Biology 12 Unit 1 Cell Structure and Function Inquiry into Life pages and 68-69

Cell Structure and Function. Biology 12 Unit 1 Cell Structure and Function Inquiry into Life pages and 68-69 Cell Structure and Function Biology 12 Unit 1 Cell Structure and Function Inquiry into Life pages 45 59 and 68-69 Assignments for this Unit Pick up the notes/worksheet for this unit and the project There

More information

SBI3U7 Cell Structure & Organelles. 2.2 Prokaryotic Cells 2.3 Eukaryotic Cells

SBI3U7 Cell Structure & Organelles. 2.2 Prokaryotic Cells 2.3 Eukaryotic Cells SBI3U7 Cell Structure & Organelles 2.2 Prokaryotic Cells 2.3 Eukaryotic Cells No nucleus Prokaryotic Cells No membrane bound organelles Has a nucleus Eukaryotic Cells Membrane bound organelles Unicellular

More information

A Tour of the cell. 2- Eukaryotic cells have internal membranes that compartmentalize their functions

A Tour of the cell. 2- Eukaryotic cells have internal membranes that compartmentalize their functions A Tour of the cell 1- To study cells, biologists use microscopes and the tools of biochemistry 2- Eukaryotic cells have internal membranes that compartmentalize their functions 3- The eukaryotic cell s

More information

Don t Freak Out. Test on cell organelle on Friday!

Don t Freak Out. Test on cell organelle on Friday! Cell Structure 1 Don t Freak Out Test on cell organelle on Friday! This test should be a buffer test and help raise your overall test score. All information will come from this week! 2 Cells Provide Compartments

More information

LECTURE 3 CELL STRUCTURE

LECTURE 3 CELL STRUCTURE LECTURE 3 CELL STRUCTURE HISTORY The cell was first discovered by Robert Hooke in 1665 examining very thin slices of cork and saw a multitude of tiny pores that remarked looked like the walled compartments

More information

5/12/2015. Cell Size. Relative Rate of Reaction

5/12/2015. Cell Size. Relative Rate of Reaction Cell Makeup Chapter 4 The Cell: The Fundamental Unit of Life We previously talked about the cell membrane The cytoplasm is everything inside the membrane, except the nucleus Includes Cytosol = liquid portion

More information

What Are Cell Membranes?

What Are Cell Membranes? What Are Cell Membranes? Chapter 5, Lesson 1 24 Directions Match each term in Column A with its meaning in Column B. Write the letter on the line. Column A 1. cytoplasm 2. cytosol 3. extracellular matrix

More information