Paper 12: Membrane Biophysics Module 15: Principles of membrane transport, Passive Transport, Diffusion, Fick s law

Size: px
Start display at page:

Download "Paper 12: Membrane Biophysics Module 15: Principles of membrane transport, Passive Transport, Diffusion, Fick s law"

Transcription

1 Paper 12: Membrane Biophysics Module 15: Principles of membrane transport, Passive Transport, Diffusion, Fick s law LEARNING OBJECTIVES OF MODULE: We would begin this module by considering some general principles and intend to answer the following objectives: 1. What are the general principles that regulate the passage of solutes and water molecules across the membrane? 2. What are the mechanisms of transportation in biological membranes? 1. INTRODUCTION The aim of present module is to provide the brief and basic fundamental knowledge of molecular transport through cell membranes. However, considerable ultra-structural and biochemical data on cellular membranes exist, the term will be used here in operational sense to define the barrier that separates cells from their bathing fluids.the importance of the cell membrane transport in living organisms is indicated by the fact that large numbers of genes in all organisms are involved for coding the transport proteins that contribute between 15 to 30% of the membrane proteins in all cells. Cell membranes, however, have to allow the passage of various polar molecules, like cellular metabolites, ions, amino acids, sugars and nucleotides. Special membrane transport proteins are responsible for transferring such solutes across cell membranes. These proteins exist in multiple forms and in all types of biological membranes. On the basis of the cell membrane properties, cell can be divided in to polar and non-polar cell. The membrane of the polar cells, exhibit a certain degree of asymmetry permitting them to transport water and solute particles across the multi-cellular sheet. Therefore, mucosa cells of the gallbladder are capable of absorbing large amount of water and salt from lumen. Since, the apical membranes have properties different from those of the baso-lateral surface allowing the net transport of fluids. Although, in the membrane of non-polar cells (nerve cells, muscles and erythrocytes etc.) demonstrate the symmetrical properties over their whole extent. These membranes play a crucial role to transport ingredient in to and out of the cell serving to maintain the internal composition of the cells.cells can also transfer macromolecules across their membranes, but the mechanism involved in most of these cases is different from that 1

2 used for transferring micro molecules. It is noted that some specialized mammalian cells consume more than75% of their total metabolic energy during membrane transport process. 1.2 PRINCIPLES OF MEMBRANE TRANSPORT In our day to day life there are many observations which make us understand the relationship between the flows of any species; it may be heat, matter or charge and a particular force driving that flow. Thus heat flows from the hotter to the colder substance, driven by the temperature difference; likewise current flows from the higher potential to the lower potential, the potential difference being the driving force. In general, in systems close to equilibrium and characterized by the flow of a single species, Flow α Driving Force or, Flow = Constant x Driving Force Here, constant of proportionality would be flow per unit driving force. In practice, however, complications arise because the flow of one species is often resisted by flows of other species. In biological systems, such interactions are the rules rather than the exception and following examples will illustrate such interactions. In each case Membrane (M) separates two aqueous solutions A and B from each other. Condition-1: Solution A : 1M Glucose (180g/liter) Solution B : 1M Glucose (180g/liter) Membrane : Permeable to water only (A) (B) Figure-1: Effect of Hydrostatic pressure In this case, the two solutions being identical, no movement of solute or water occurs at equilibrium (Figure-1A). When hydrostatic pressure is applied on one side (on solution A), then 2

3 the pressure difference would force movement of water on to side B and a new equilibrium will be established (Figure-1B). Thus, Flow = Hydraulic conductivity x Pressure difference. Condition-2: Solution A : 0.5M Glucose (90g/liter) Solution B : 1M Glucose (180g/liter) Membrane : Permeable to water only (A) (B) Figure-2: Effect of Osmotic pressure Here, solution has more solute molecules as such would be expected to exert some effect (Figure-2A). Since, the membrane is impermeable to glucose, osmotic effects are observed whereby water moves from the dilute solution to the more concentrated solution B till a new equilibrium is established (Figure-2B). As per Boyle-Van t Hoff equation, osmotic pressure difference is responsible for this flow: Where,R = Gas constant,t = absolute temperature, and ΔC = Concentration difference. Condition-3: Solution A : 0.5M KCl (37.2g/liter) + 0.5M NaCl (29.2g/liter) Solution B : 1M KCl (74.5 g/liter) Membrane : Selectively permeable to K + 3

4 (A) (B) Figure-3: Effect of Electrochemical gradient In this case, the concentration of solutes on both sides has been chosen to eliminate osmotic effects. Since the membrane is impermeable to Na + the concentration difference does not drive Na + from A to B (Figure-3A). However, the concentration of K + being greater in B, that ion tends to diffuse down its concentration gradient to A. During this process it leads to the accumulation of net positive charges on the membrane facing solution A, and thus causing retardation of further movement of K + (Figure-3B). At equilibrium, the tendency for K + to move down the concentration gradient is balanced by the potential difference retarding that movement. The potential difference at that equilibrium is given by the Nernst equation: 10 K + B K + A Thus, where movement of electrolytes is concerned, the effects of charge have to be considered as well. By generating ionic concentration differences across the lipid bilayer, cell membranes can store potential energy in the form of electrochemical gradients, which can be used to drive various transport processes, thus conveying electrical signals in electrically excitable cells, (in mitochondria, chloroplasts, and bacteria) to make most of the cell's ATP. 1.3 MECHANISMS OF TRANSPORT Membrane transport is very essential for cellular life. As cells proceed through their life cycle, an immense amount of exchange is necessary to maintain cellular function. The cell membrane acts as a gatekeeper, being recognized as key elements in cellular control, serving as they do to interface one compartment of a cell to another, i.e. membrane is selectively permeable. This selective permeability is an essential feature of the membranes of all living cells, because it provides them with the power to control internal environments and facilitate varied functions in the economy of the cell. 4

5 Cell membranes are the selectively permeable lipid bilayers inclusive of membrane proteins that delimit altogether prokaryotic and eukaryotic cells. In prokaryotes and plants, the plasma membrane is the inner layer of protection built in the inner-side of a rigid cell wall. Eukaryotes Figure-4: Tri-laminar structure of cell membrane under the Transmission Electron Microscope (TEM) lack this external layer of protection or the cell wall. The plasma membrane is 5-10nm wide and lookalike as a tri laminar structure under the Transmission Electron Microscope (TEM), which is a layer of hydrophobic tails of phospholipids sandwiched between two layers of hydrophilic heads Figure-4.The modes of movement that maintain the hydrophilic head in contact with the aqueous surroundings and the acyl groups in the interior are: a) Rotation, b) Lateral diffusion and c) Flexing of the acyl chains. Transverse movement from side to side of the bilayer (flip-flop) is relatively slow, and is not considered to occur significantly. Lipid bilayers are highly impermeable to most polar molecules. To transport small water-soluble molecules into or out of cells or intracellular membrane-enclosed compartments, cell membranes contain various membrane transport proteins, each of which is responsible for transferring a particular solute or class of solutes across the membrane. Cell membrane is Primary active transporters Carriers Transporters Secondary active transporters Channels Figure-5: Classification of membrane transporter Uniporters involved in a plethora of functions, however the membrane directly play an important role in the functions such as enzymatic activity, signal transduction, intracellular joining, cytoskeleton, extracellular matrix attachment and transport etc. There are two major classes of membrane transport proteins that mediate the transfer carriers and channels as shown in Figure-5. Carrier proteins, (also called carriers, permeases, or transporters) are integral/intrinsic membrane proteins; that is they exist across and within the span of the membrane and undergo a series of conformational changes, due to which they transport specific molecules across the membrane. These proteins may assist in the movement of substances by facilitating diffusion or active transport (Figure-6). These proteins can be coupled to a source of energy to catalyse active transport and a combination of selective passive permeability. 5

6 Figure-6: Membrane Transport through Carrier proteins and channel proteins Channel proteins, which form a narrow hydrophilic (aqueous) pore, allowing the passive movement primarily of small inorganic ions of appropriate size and charge, in the membrane and are the hallmark of facilitated diffusion (Figure-6). Transport through channel proteins occurs at a much faster rate than transport mediated by carrier proteins. All channel proteins have two things in common; they facilitate a thermodynamically favorable net movement of particles and they demonstrate an affinity and specificity for the particle being transported. Membrane transport obeys physical laws that define its capabilities and therefore its biological utility. Thermodynamically the flow of substances from one compartment to another can occur in the direction of a concentration or electrochemical gradient or against it. If the exchange of substances occurs in the direction of the gradient, that is, in the direction of decreasing potential, there is no requirement for an input of energy from outside the system; if, however, the transport is against the gradient, it will require the input of energy, metabolic energy in this particular case. Two types of transport processes occur across the membrane. 1. Non-mediated transport (protein-independent) 2. Mediated transport (protein-dependent) Non-mediated transport: This transport occurs through the simple diffusion process and the driving force for the transport of a substance thro ugh a medium depends on its chemical potential gradient Mediated transport: This transport requires specific carrier proteins. Thus, the substance diffuses in the direction that eliminates its concentration gradient; at a rate proportional to the magnitude of this gradient and also depends on its solubility in the membrane s non-polar core. Mediated transport is classified into two categories depending on the thermodynamics of the system: 1. Passive-mediated transport or facilitated diffusion: In this type of process a specific molecule flows from high concentration to low concentration. 2. Active transport: In this type of process a specific molecule is transported from low concentration to high concentration, that is, against its concentration gradient. Such an endergonic process Carrier mediated Solutes Passive Transport Channel mediated must be coupled to a sufficiently exergonic process to make it favorable (ΔG < 0). Lipid bilayer Figure-7. Passive Transport 6

7 Passive transport: It is the simplest method of transport and is dependent upon the concentration gradient, size of molecules and charge of the solute. In passive transport, smalluncharged solute particles diffuse across the membrane until both sides of the membrane reach equilibrium (similar in concentration) (Figure-7). The direction of solute travel is indicative of the concentration of that particular particle on each side of the membrane. The nature of biological membranes especially that of its lipids, is amphiphilic, as they form bilayers containing an internal hydrophobic layer and an external hydrophilic layer. This structure makes transport possible by simple or passive diffusion, which consists of the diffusion of substances through the membrane without expending metabolic energy and without the aid of transport proteins. If the transported substance has a net electrical charge, it will move both in responses to a concentration gradient, as well as to an electrochemical gradient due to the membrane potential. Types of passive transport: I. Diffusion a. Simple Diffusion b. Facilitated Diffusion II. Osmosis I. Diffusion: The concept of diffusion emerged from physical sciences. The classic examples are heat diffusion, molecular diffusion and Brownian motion. Their mathematical description was elaborated by Joseph Fourier in 1822, Adolf Fick in 1855 and by Albert Einstein in Diffusion is the net passive movement of particles (atoms, ions or molecules) from a region in which they are in higher concentration towards the regions of lower concentration. The differences of concentration between the two regions are termed as concentration gradient and the diffusion continues until the concentration of substances is uniform throughout. Diffusion occurs down the concentration gradient. Major examples of diffusion in biology: Gas exchange for photosynthesis carbon dioxide from air to leaf, oxygen from leaf to air. Gas exchange for respiration oxygen from blood to cells, carbon dioxide from cells to blood. Transfer of transmitter substance acetylcholine from presynaptic to postsynaptic membrane at a synapse. 7

8 Factors affecting the diffusion: High temperatures increase thediffusion and large molecules make it slow. Rate of Diffusion Since the average kinetic energy of different types of molecules (different masses) that are at thermal equilibrium is the same, but their average velocities are different. Their average diffusion rate is expected to depend upon that average velocity, whic h gives a relative diffusion rate: where; K is the constant, it depends upon geometric factors including the area across which the diffusion is occurring. The relative diffusion rate for two different molecular species is then given by; Fick's laws: Adolf Fick gives the simplest explanation of diffusion in the 19th century. Today these explanations are known as by his name, Fick's laws. There are two laws: 1. Fick's first law: The molar flux due to diffusion is proportional to the concentration gradient, and 2. Fick's second law: The rate of change of concentration at a point in space is proportional to the second derivative of concentration with space. According to this law the net diffusion rate of a gas through a membrane is proportional to the difference in partial pressure, proportional to the area of the membrane and inversely proportional to the thickness of the membrane. Combined with the diffusion rate determined from Graham's law, this law provides the means for calculating exchange rates of gases across membranes. In case of gas exchange in lung, the total membrane surface area in the lungs (alveoli) may be on the order of 100 square mete rs and have a thickness of less than a millionth of a meter, so it is a very effective gas exchange interface. The transport of solutes by diffusion method is governed by the solute concentration in both the sides of compartment and the thickness of the membrane. In the schematic shown 8

9 here the flux, J of a solute will be towards the right and it can be estimated by Fick s law: Where, dc/dx is the concentration gradient per unit length, and D is the diffusion constant. Summary: 1. Membrane transport refers to the group of mechanisms that regulate the passage of solutes (ions, molecules etc.) through the biological membranes (lipid bilayers). 2. There are two types of transport processes which occur across the membrane; a).nonmediated transport (protein-independent); b) Mediated transport (protein-dependent). 3. Solute movements through the membrane are mediated by membrane transport proteins. There are two classes of membrane transport proteins carriers and channels. 4. Transport by carriers can be either active or passive while solute flow through channel proteins is always passive. Carrier proteins bind specific solutes and transfer them across the lipid bilayer through undergoing conformational changes. 5. Thermodynamically the flow of substances from one compartment to another can occur in the direction of an electrochemical gradient or against it. 6. When solute or molecular substances move across cell membranes, they don t not require an input of energy, being driven by the growth of entropy of the system, this is called Passive transport. 7. There are four main kinds of passive transport systems, diffusion, facilitated diffusion, filtration and osmosis. 8. The mathematical description of diffusion was elaborated by Adolf Fick in According to this law diffusion through a membrane is directly proportional to crosssectional area, driving pressure and gas coefficient and inversely proportional to membrane thickness. 9

Chapter 2 Transport Systems

Chapter 2 Transport Systems Chapter 2 Transport Systems The plasma membrane is a selectively permeable barrier between the cell and the extracellular environment. It permeability properties ensure that essential molecules such as

More information

Membrane Structure and Membrane Transport of Small Molecules. Assist. Prof. Pinar Tulay Faculty of Medicine

Membrane Structure and Membrane Transport of Small Molecules. Assist. Prof. Pinar Tulay Faculty of Medicine Membrane Structure and Membrane Transport of Small Molecules Assist. Prof. Pinar Tulay Faculty of Medicine Introduction Cell membranes define compartments of different compositions. Membranes are composed

More information

Transport through membranes

Transport through membranes Transport through membranes Membrane transport refers to solute and solvent transfer across both cell membranes, epithelial and capillary membranes. Biological membranes are composed of phospholipids stabilised

More information

Cell membrane & Transport. Dr. Ali Ebneshahidi Ebneshahidi

Cell membrane & Transport. Dr. Ali Ebneshahidi Ebneshahidi Cell membrane & Transport Dr. Ali Ebneshahidi Cell Membrane To enclose organelles and other contents in cytoplasm. To protect the cell. To allow substances into and out of the cell. To have metabolic reactions

More information

Membrane Structure and Function. Cell Membranes and Cell Transport

Membrane Structure and Function. Cell Membranes and Cell Transport Membrane Structure and Function Cell Membranes and Cell Transport 1895 1917 1925 Membrane models Membranes are made of lipids Phospholipids can form membranes Its actually 2 layers - there are proteins

More information

Lipids and Membranes

Lipids and Membranes Lipids and Membranes Presented by Dr. Mohammad Saadeh The requirements for the Pharmaceutical Biochemistry I Philadelphia University Faculty of pharmacy Biological membranes are composed of lipid bilayers

More information

CH 7.2 & 7.4 Biology

CH 7.2 & 7.4 Biology CH 7.2 & 7.4 Biology LABEL THE MEMBRANE Phospholipids Cholesterol Peripheral proteins Integral proteins Cytoskeleton Cytoplasm Extracellular fluid Most of the membrane A phospholipid bi-layer makes up

More information

The Cell Membrane & Movement of Materials In & Out of Cells PACKET #11

The Cell Membrane & Movement of Materials In & Out of Cells PACKET #11 1 February 26, The Cell Membrane & Movement of Materials In & Out of Cells PACKET #11 Introduction I 2 Biological membranes are phospholipid bilayers with associated proteins. Current data support a fluid

More information

The Cell Membrane & Movement of Materials In & Out of Cells PACKET #11

The Cell Membrane & Movement of Materials In & Out of Cells PACKET #11 1 The Cell Membrane & Movement of Materials In & Out of Cells PACKET #11 Introduction I 2 Biological membranes are phospholipid bilayers with associated proteins. Current data support a fluid mosaic model

More information

BIOL 158: BIOLOGICAL CHEMISTRY II

BIOL 158: BIOLOGICAL CHEMISTRY II BIOL 158: BIOLOGICAL CHEMISTRY II Lecture 1: Membranes Lecturer: Christopher Larbie, PhD Introduction Introduction Cells and Organelles have membranes Membranes contain lipids, proteins and polysaccharides

More information

Chapter 3: Exchanging Materials with the Environment. Cellular Transport Transport across the Membrane

Chapter 3: Exchanging Materials with the Environment. Cellular Transport Transport across the Membrane Chapter 3: Exchanging Materials with the Environment Cellular Transport Transport across the Membrane Transport? Cells need things water, oxygen, balance of ions, nutrients (amino acids, sugars..building

More information

Phospholipids. Extracellular fluid. Polar hydrophilic heads. Nonpolar hydrophobic tails. Polar hydrophilic heads. Intracellular fluid (cytosol)

Phospholipids. Extracellular fluid. Polar hydrophilic heads. Nonpolar hydrophobic tails. Polar hydrophilic heads. Intracellular fluid (cytosol) Module 2C Membranes and Cell Transport All cells are surrounded by a plasma membrane. Eukaryotic cells also contain internal membranes and membrane- bound organelles. In this module, we will examine the

More information

Membrane Transport. Anatomy 36 Unit 1

Membrane Transport. Anatomy 36 Unit 1 Membrane Transport Anatomy 36 Unit 1 Membrane Transport Cell membranes are selectively permeable Some solutes can freely diffuse across the membrane Some solutes have to be selectively moved across the

More information

Diffusion, Osmosis and Active Transport

Diffusion, Osmosis and Active Transport Diffusion, Osmosis and Active Transport Particles like atoms, molecules and ions are always moving Movement increases with temperature (affects phases of matter - solid, liquid, gas) Solids - atoms, molecules

More information

Membranes. Chapter 5

Membranes. Chapter 5 Membranes Chapter 5 Membrane Structure The fluid mosaic model of membrane structure contends that membranes consist of: -phospholipids arranged in a bilayer -globular proteins inserted in the lipid bilayer

More information

Membrane Structure. Membrane Structure. Membrane Structure. Membranes

Membrane Structure. Membrane Structure. Membrane Structure. Membranes Membrane Structure Membranes Chapter 5 The fluid mosaic model of membrane structure contends that membranes consist of: -phospholipids arranged in a bilayer -globular proteins inserted in the lipid bilayer

More information

Biology. Membranes.

Biology. Membranes. 1 Biology Membranes 2015 10 28 www.njctl.org 2 Vocabulary active transport carrier protein channel protein concentration gradient diffusion enzymatic activity facilitated diffusion fluid mosaic hypertonic

More information

The Cell Membrane and Homeostasis What is the cell membrane? A quick review A. Cell Membrane and Cell Transport. Unit 2: Cells and Cell Transport

The Cell Membrane and Homeostasis What is the cell membrane? A quick review A. Cell Membrane and Cell Transport. Unit 2: Cells and Cell Transport Unit 2: Cells and Cell Transport Cell Membrane and Cell Transport Name: Directions: Go to https://shimkoscience.weebly.com/ and on the Biology page, find the document labelled Cell Membrane and Cell Transport

More information

Cellular Neurophysiology I Membranes and Ion Channels

Cellular Neurophysiology I Membranes and Ion Channels Cellular Neurophysiology I Membranes and Ion Channels Reading: BCP Chapter 3 www.bioelectriclab All living cells maintain an electrical potential (voltage) across their membranes (V m ). Resting Potential

More information

CELLS and TRANSPORT Student Packet SUMMARY CELL MEMBRANES ARE SELECTIVELY PERMEABLE DUE TO THEIR STRUCTURE Hydrophilic head

CELLS and TRANSPORT Student Packet SUMMARY CELL MEMBRANES ARE SELECTIVELY PERMEABLE DUE TO THEIR STRUCTURE Hydrophilic head CELLS and TRANSPORT Student Packet SUMMARY CELL MEMBRANES ARE SELECTIVELY PERMEABLE DUE TO THEIR STRUCTURE Hydrophilic head Hydrophobic tail Hydrophobic regions of protein Hydrophilic regions of protein

More information

Chapter 7: Membranes

Chapter 7: Membranes Chapter 7: Membranes Roles of Biological Membranes The Lipid Bilayer and the Fluid Mosaic Model Transport and Transfer Across Cell Membranes Specialized contacts (junctions) between cells What are the

More information

3.2.3 Transport across cell membranes

3.2.3 Transport across cell membranes alevelbiology.co.uk 3.2.3 Transport across cell membranes SPECIFICATION The basic structure of all cell membranes, including cell-surface membranes and the membranes around the cell organelles of eukaryotes,

More information

Membranes. Chapter 5. Membrane Structure

Membranes. Chapter 5. Membrane Structure Membranes Chapter 5 Membrane Structure Lipid Bilayer model: - double phospholipid layer - Gorter & Grendel: 1925 Fluid Mosaic model: consist of -phospholipids arranged in a bilayer -globular proteins inserted

More information

7.3 Cell Boundaries. Regents Biology. Originally prepared by Kim B. Foglia. Revised and adapted by Nhan A. Pham

7.3 Cell Boundaries. Regents Biology. Originally prepared by Kim B. Foglia. Revised and adapted by Nhan A. Pham 7.3 Cell Boundaries Originally prepared by Kim B. Foglia. Revised and adapted by Nhan A. Pham Don t look at your reading guide/textbook or talk with each other yet! Write down one thing you know/remember

More information

CHAPTER 8 MEMBRANE STRUCTURE AND FUNCTION

CHAPTER 8 MEMBRANE STRUCTURE AND FUNCTION CHAPTER 8 MEMBRANE STRUCTURE AND FUNCTION Section B: Traffic Across Membranes 1. A membrane s molecular organization results in selective permeability 2. Passive transport is diffusion across a membrane

More information

Membrane Structure and Function - 1

Membrane Structure and Function - 1 Membrane Structure and Function - 1 The Cell Membrane and Interactions with the Environment Cells interact with their environment in a number of ways. Each cell needs to obtain oxygen and other nutrients

More information

Introduction. Biochemistry: It is the chemistry of living things (matters).

Introduction. Biochemistry: It is the chemistry of living things (matters). Introduction Biochemistry: It is the chemistry of living things (matters). Biochemistry provides fundamental understanding of the molecular basis for the function and malfunction of living things. Biochemistry

More information

Lecture Series 5 Cellular Membranes

Lecture Series 5 Cellular Membranes Lecture Series 5 Cellular Membranes Cellular Membranes A. Membrane Composition and Structure B. Animal Cell Adhesion C. Passive Processes of Membrane Transport D. Active Transport E. Endocytosis and Exocytosis

More information

A. Membrane Composition and Structure. B. Animal Cell Adhesion. C. Passive Processes of Membrane Transport. D. Active Transport

A. Membrane Composition and Structure. B. Animal Cell Adhesion. C. Passive Processes of Membrane Transport. D. Active Transport Cellular Membranes A. Membrane Composition and Structure Lecture Series 5 Cellular Membranes B. Animal Cell Adhesion E. Endocytosis and Exocytosis A. Membrane Composition and Structure The Fluid Mosaic

More information

Biology 2201 Unit 1 Matter & Energy for Life

Biology 2201 Unit 1 Matter & Energy for Life Biology 2201 Unit 1 Matter & Energy for Life 2.2 Cell Membrane Structure Primary Membrane Function: Homeostasis Conditions in the cell must remain more or less constant under many different conditions

More information

How Cells Work. Chapter 4

How Cells Work. Chapter 4 How Cells Work Chapter 4 Energy Laws Energy is the capacity to do work The total amount of energy in the universe is constant-energy can t be created or destroyed..only transferred! Energy is flowing from

More information

Biomembranes structure and function. B. Balen

Biomembranes structure and function. B. Balen Biomembranes structure and function B. Balen All cells are surrounded by membranes Selective barrier But also important for: 1. Compartmentalization 2. Biochemical activities 3. Transport of dissolved

More information

The Working Cell: G: Membrane Transport & H: Enzymes. Chapter 5

The Working Cell: G: Membrane Transport & H: Enzymes. Chapter 5 The Working Cell: G: Membrane Transport & H: Enzymes Chapter 5 Standards Unit G: Membrane Transport I can recognize the fluid mosaic model and accurately identify and describe the function of the components.

More information

Plant Cells. Chapter 3

Plant Cells. Chapter 3 Plant Cells Chapter 3 Major Learning Objectives Contrast prokaryotic and eukaryotic cells Describe the functions of 10 parts of a plant cell Summarize the similarities and differences between plant cells

More information

Membrane Structure and Function

Membrane Structure and Function Membrane Structure and Function Chapter 7 Objectives Define the following terms: amphipathic molecules, aquaporins, diffusion Distinguish between the following pairs or sets of terms: peripheral and integral

More information

I. Chemical Properties of Phospholipids. Figure 1: Phospholipid Molecule. Amphiphatic:

I. Chemical Properties of Phospholipids. Figure 1: Phospholipid Molecule. Amphiphatic: I. Chemical Properties of Phospholipids Figure 1: Phospholipid Molecule Amphiphatic: a) The amphiphatic nature & cylindrical shape of phospholipids contributes to their ability to assume bilayers in an

More information

Cell Membranes Valencia college

Cell Membranes Valencia college 6 Cell Membranes Valencia college 6 Cell Membranes Chapter objectives: The Structure of a Biological Membrane The Plasma Membrane Involved in Cell Adhesion and Recognition Passive Processes of Membrane

More information

Chapter 7: Membrane Structure & Function

Chapter 7: Membrane Structure & Function Chapter 7: Membrane Structure & Function 1. Membrane Structure 2. Transport Across Membranes 1. Membrane Structure Chapter Reading pp. 125-129 What are Biological Membranes? Hydrophilic head WATER They

More information

Chapter 7: Membrane Structure & Function. 1. Membrane Structure. What are Biological Membranes? 10/21/2015. Why phospholipids? 1. Membrane Structure

Chapter 7: Membrane Structure & Function. 1. Membrane Structure. What are Biological Membranes? 10/21/2015. Why phospholipids? 1. Membrane Structure Chapter 7: Membrane Structure & Function 1. Membrane Structure 2. Transport Across Membranes 1. Membrane Structure Chapter Reading pp. 125-129 What are Biological Membranes? Hydrophilic head WATER They

More information

Key Concepts - All Cells Use Energy Energy Conversions - Reactions Absorb or Release Energy Endergonic, Exergonic - ATP is Cellular Energy

Key Concepts - All Cells Use Energy Energy Conversions - Reactions Absorb or Release Energy Endergonic, Exergonic - ATP is Cellular Energy Key Concepts - All Cells Use Energy Energy Conversions - Reactions Absorb or Release Energy Endergonic, Exergonic - ATP is Cellular Energy ATP Cycle - Enzymes Speed Up Reactions Enzyme Function, Factors

More information

Plasma Membrane Function

Plasma Membrane Function Plasma Membrane Function Cells have to maintain homeostasis, they do this by controlling what moves across their membranes Structure Double Layer of phospholipids Head (polar) hydrophiliclikes water -

More information

Lecture Series 4 Cellular Membranes

Lecture Series 4 Cellular Membranes Lecture Series 4 Cellular Membranes Reading Assignments Read Chapter 11 Membrane Structure Review Chapter 21 pages 709-717 717 (Animal( Cell Adhesion) Review Chapter 12 Membrane Transport Review Chapter

More information

UNIVERSITY OF MEDICAL SCIENCES, ONDO DEPARTMENT OF PHYSIOLOGY PHS 211 TRANSPORT MECHANISM LECTURER: MR A.O. AKINOLA

UNIVERSITY OF MEDICAL SCIENCES, ONDO DEPARTMENT OF PHYSIOLOGY PHS 211 TRANSPORT MECHANISM LECTURER: MR A.O. AKINOLA UNIVERSITY OF MEDICAL SCIENCES, ONDO DEPARTMENT OF PHYSIOLOGY PHS 211 TRANSPORT MECHANISM LECTURER: MR A.O. AKINOLA OUTLINE Introduction Basic mechanisms Passive transport Active transport INTRODUCTION

More information

Ch7: Membrane Structure & Function

Ch7: Membrane Structure & Function Ch7: Membrane Structure & Function History 1915 RBC membranes studied found proteins and lipids 1935 membrane mostly phospholipids 2 layers 1950 electron microscopes supported bilayer idea (Sandwich model)

More information

Ch. 7 Diffusion, Osmosis, and Movement across a Membrane

Ch. 7 Diffusion, Osmosis, and Movement across a Membrane Ch. 7 Diffusion, Osmosis, and Movement across a Membrane Diffusion Spontaneous movement of particles from an area of high concentration to an area of low concentration Does not require energy (exergonic)

More information

Cell Membranes and Signaling

Cell Membranes and Signaling 5 Cell Membranes and Signaling Concept 5.1 Biological Membranes Have a Common Structure and Are Fluid A membrane s structure and functions are determined by its constituents: lipids, proteins, and carbohydrates.

More information

CHAPTER 8 MEMBRANE STUCTURE AND FUNCTION

CHAPTER 8 MEMBRANE STUCTURE AND FUNCTION CHAPTER 8 MEMBRANE STUCTURE AND FUNCTION Plasma Membrane Plasma membrane is selectively permeable, (allowing some substances to cross more easily than others) PM is flexible bends and changes shape

More information

Ch. 7 Cell Membrane BIOL 222

Ch. 7 Cell Membrane BIOL 222 Ch. 7 Cell Membrane BIOL 222 Overview: Plasma Membrane Plasma membrane boundary that separates the living cell from its surroundings Selec4ve permeability Allowance of some substances to cross more easily

More information

Unit 1 Matter & Energy for Life

Unit 1 Matter & Energy for Life Unit 1 Matter & Energy for Life Chapter 2 Interaction of Cell Structure Biology 2201 Primary Membrane Function: Homeostasis Conditions in the cell must remain more or less constant under many different

More information

Chapter 4: Cell Membrane Structure and Function

Chapter 4: Cell Membrane Structure and Function Chapter 4: Cell Membrane Structure and Function Plasma Membrane: Thin barrier separating inside of cell (cytoplasm) from outside environment Function: 1) Isolate cell s contents from outside environment

More information

Membrane Structure and Function

Membrane Structure and Function BIOL1040 Page 1 Membrane Structure and Function Friday, 6 March 2015 2:58 PM Cellular Membranes Fluid mosaics of lipids and proteins Phospholipids - abundant Phospholipids are amphipathic molecules (has

More information

NANO 243/CENG 207 Course Use Only

NANO 243/CENG 207 Course Use Only L9. Drug Permeation Through Biological Barriers May 3, 2018 Lipids Lipid Self-Assemblies 1. Lipid and Lipid Membrane Phospholipid: an amphiphilic molecule with a hydrophilic head and 1~2 hydrophobic tails.

More information

Paul Njiruh Nthakanio, The University of Embu Cytology CHAPTER 15

Paul Njiruh Nthakanio, The University of Embu Cytology CHAPTER 15 CHAPTER 15 15 FUNCTIONS OF CELL SURFACE. 15.1 Overview Cell Surface components; a) Cell wall / Glycocalyx b) Cell membrane. Functions of cell surface are; a) Boundary that surrounds and protects the cell.

More information

What do you remember about the cell membrane?

What do you remember about the cell membrane? Cell Membrane What do you remember about the cell membrane? Cell (Plasma) Membrane Separates the internal environment of the cell from the external environment All cells have a cell membrane Selectively

More information

Comprehensive and Easy Course Notes for BIOL1040 Exams and Assessment

Comprehensive and Easy Course Notes for BIOL1040 Exams and Assessment Comprehensive and Easy Course Notes for BIOL1040 Exams and Assessment MODULE 1: PRINCIPLES OF CELL FUNCTION Membrane Structure & Function Cellular membranes are fluid mosaics of lipids and proteins Phospholipids

More information

Chapter 5. The Working Cell. Lecture by Richard L. Myers

Chapter 5. The Working Cell. Lecture by Richard L. Myers Chapter 5 The Working Cell PowerPoint Lectures for Biology: Concepts & Connections, Sixth Edition Campbell, Reece, Taylor, Simon, and Dickey Lecture by Richard L. Myers MEMBRANE STRUCTURE AND FUNCTION

More information

The Cell Membrane and Cellular Transportation

The Cell Membrane and Cellular Transportation The Cell Membrane and Cellular Transportation Oct 20 7:07 PM Cell Membrane Forms a barrier between the cell and the external environment. Has three main functions: 1) helps the cell retain the molecules

More information

Fall Name Student ID

Fall Name Student ID Name Student ID PART 1: Matching. Match the organelle to its function (11 points) 1.Proton motive force 2. Fluid Mosiac 3. Oxidative Phosphorylation 4. Pyruvate dehydrogenase 5. Electrochemical Force 6.

More information

Chapter 5. The Working Cell. PowerPoint Lectures for Campbell Biology: Concepts & Connections, Seventh Edition Reece, Taylor, Simon, and Dickey

Chapter 5. The Working Cell. PowerPoint Lectures for Campbell Biology: Concepts & Connections, Seventh Edition Reece, Taylor, Simon, and Dickey Chapter 5 The Working Cell PowerPoint Lectures for Campbell Biology: Concepts & Connections, Seventh Edition Reece, Taylor, Simon, and Dickey Lecture by Edward J. Zalisko Lesson Plans Flipped Classroom

More information

Cell Structure and Function Exam Study Guide Part I

Cell Structure and Function Exam Study Guide Part I Cell Structure and Function Exam Study Guide Part I 1. Which image best depicts the hot water, which the cold? 2. What is the relationship between temperature and the speed of molecular motion? 3. If a

More information

Homeostasis, Transport & The Cell Membrane. Chapter 4-2 (pg 73 75) Chapter 5

Homeostasis, Transport & The Cell Membrane. Chapter 4-2 (pg 73 75) Chapter 5 Homeostasis, Transport & The Cell Membrane Chapter 4-2 (pg 73 75) Chapter 5 Unit 5: Lecture 1 Topic: The Cell Membrane Covers: Chapter 5, pages 95-96 Chapter 4, pages 73-75 The Cell Membrane The chemistry

More information

MEMBRANE STRUCTURE AND FUNCTION

MEMBRANE STRUCTURE AND FUNCTION MEMBRANE STRUCTURE AND FUNCTION 2.4.2 Membranes organize the chemical activities of cells Membranes provide structural order for metabolism Form most of the cell's organelles Compartmentalize chemical

More information

Cell Structure and Function C H A P T E R 7

Cell Structure and Function C H A P T E R 7 Cell Structure and Function C H A P T E R 7 EQ: What Scientists and inventions helped aid in creating Cell Theory? 7.1 Cell Theory (Cells and Living Things) Cells are the basic building block of all life

More information

The Plasma Membrane - Gateway to the Cell

The Plasma Membrane - Gateway to the Cell The Plasma Membrane - Gateway to the Cell 1 Photograph of a Cell Membrane 2 Cell Membrane The cell membrane is flexible and allows a unicellular organism to move 3 Homeostasis Balanced internal condition

More information

Chapter 8 Cells and Their Environment

Chapter 8 Cells and Their Environment Chapter Outline Chapter 8 Cells and Their Environment Section 1: Cell Membrane KEY IDEAS > How does the cell membrane help a cell maintain homeostasis? > How does the cell membrane restrict the exchange

More information

The Plasma Membrane - Gateway to the Cell

The Plasma Membrane - Gateway to the Cell The Plasma Membrane - Gateway to the Cell 1 Photograph of a Cell Membrane 2 Cell Membrane The cell membrane is flexible and allows a unicellular organism to move 3 Homeostasis Balanced internal condition

More information

Describe the Fluid Mosaic Model of membrane structure.

Describe the Fluid Mosaic Model of membrane structure. Membranes and Cell Transport All cells are surrounded by a plasma membrane. Eukaryotic cells also contain internal membranes and membranebound organelles. In this topic, we will examine the structure and

More information

Gateway to the Cell 11/1/2012. The cell membrane is flexible and allows a unicellular organism to move FLUID MOSAIC MODEL

Gateway to the Cell 11/1/2012. The cell membrane is flexible and allows a unicellular organism to move FLUID MOSAIC MODEL Gateway to the Cell The cell membrane is flexible and allows a unicellular organism to move Isolates the cell, yet allows communication with its surroundings fluid mosaics = proteins (and everything else)

More information

Membrane Structure & Function (Learning Objectives)

Membrane Structure & Function (Learning Objectives) Membrane Structure & Function (Learning Objectives) Review the basic function and biochemical composition of the plasma membrane. Learn the fluid state of membranes and the movement of its lipids and proteins.

More information

Transport. Slide 1 of 47. Copyright Pearson Prentice Hall

Transport. Slide 1 of 47. Copyright Pearson Prentice Hall & Transport 1 of 47 Learning Targets TN Standard CLE 3216.1.3 Explain how materials move into and out of cells. CLE 3216.1.5 Investigate how proteins regulate the internal environment of a cell through

More information

DistanceLearningCentre.com

DistanceLearningCentre.com DistanceLearningCentre.com Course: Essential reading: Tortora, G.J., and Grabowski, S.R., 2002. Principles of Anatomy and Physiology. 10 th ed. London: John Wiley & Sons. ISBN: 9780471224723 Recommended

More information

Plasma Membranes. Plasma Membranes WJEC GCE BIOLOGY 4.6

Plasma Membranes. Plasma Membranes WJEC GCE BIOLOGY 4.6 4.6 Repeat Fig 3.20A here Fluid Mosaic Model of the Plasma Membrane Carbohydrate chain Glycoprotein Intrinsic Protein Non-polar hydrophobic fatty acid Phospholipids Appearance of the Cell Membrane Seen

More information

TRANSPORT ACROSS MEMBRANES

TRANSPORT ACROSS MEMBRANES Unit 2: Cells, Membranes and Signaling TRANSPORT ACROSS MEMBRANES Chapter 5 Hillis Textbook TYPES OF TRANSPORT ACROSS THE CELL (PLASMA) MEMBRANE: What do you remember? Complete the chart with what you

More information

1.14. Passive Transport

1.14. Passive Transport Passive Transport 1.14 Simple Diffusion Cell s are selectively permeable only certain substances are able to pass through them. As mentioned in section 1.2, cell s are largely composed of a phospholipid

More information

Movement Through the Cell Membrane

Movement Through the Cell Membrane Movement Through the Cell Membrane Cellular Movement All living organisms rely on diffusion Get oxygen for respiration Removing waste products Transpiration in plants Cellular Movement The cell membrane

More information

Chapter 1 Membrane Structure and Function

Chapter 1 Membrane Structure and Function Chapter 1 Membrane Structure and Function Architecture of Membranes Subcellular fractionation techniques can partially separate and purify several important biological membranes, including the plasma and

More information

Consider the structure of the plasma membrane (fig. 8.6)- phospholipid bilayer with peripheral and integral proteins.

Consider the structure of the plasma membrane (fig. 8.6)- phospholipid bilayer with peripheral and integral proteins. Topic 8: MEMBRANE TRANSPORT (lectures 11-12) OBJECTIVES: 1. Have a basic appreciation of the chemical characteristics of substances that impact their ability to travel across plasma membranes. 2. Know

More information

Will s Pre-Test. (4) A collection of cells that work together to perform a function is termed a(n): a) Organelle b) Organ c) Cell d) Tissue e) Prison

Will s Pre-Test. (4) A collection of cells that work together to perform a function is termed a(n): a) Organelle b) Organ c) Cell d) Tissue e) Prison Will s Pre-Test This is a representative of Exam I that you will take Tuesday September 18, 2007. The actual exam will be 50 multiple choice questions. (1) The basic structural and functional unit of the

More information

Bear: Neuroscience: Exploring the Brain 3e

Bear: Neuroscience: Exploring the Brain 3e Bear: Neuroscience: Exploring the Brain 3e Chapter 03: The Neuronal Membrane at Rest Introduction Action potential in the nervous system Action potential vs. resting potential Slide 1 Slide 2 Cytosolic

More information

Introduction to Metal Transport Bertini et al Ch. 5 and 8

Introduction to Metal Transport Bertini et al Ch. 5 and 8 Introduction to Metal Transport Bertini et al Ch. 5 and 8 Prof. Arthur D. Tinoco University of Puerto Rico, Rio Piedras Campus 1 Focus on Metal Transport to Cells Movement through Membranes www.nineplanets.org

More information

Membrane Structure. Membrane Structure. Membranes. Chapter 5

Membrane Structure. Membrane Structure. Membranes. Chapter 5 Membranes Chapter 5 Membrane Structure The fluid mosaic model of membrane structure contends that membranes consist of: -phospholipids arranged in a bilayer -globular proteins inserted in the lipid bilayer

More information

Cells and Their Environment Chapter 8. Cell Membrane Section 1

Cells and Their Environment Chapter 8. Cell Membrane Section 1 Cells and Their Environment Chapter 8 Cell Membrane Section 1 Homeostasis Key Idea: One way that a cell maintains homeostasis is by controlling the movement of substances across the cell membrane. Homeostasis

More information

Plasma Membrane Structure and Function

Plasma Membrane Structure and Function Plasma Membrane Structure and Function The plasma membrane separates the internal environment of the cell from its surroundings. The plasma membrane is a phospholipid bilayer with embedded proteins. The

More information

Slide 2 of 47. Copyright Pearson Prentice Hall. End Show

Slide 2 of 47. Copyright Pearson Prentice Hall. End Show 2 of 47 7-3 Cell Boundaries All cells are surrounded by a thin, flexible barrier known as the cell membrane. Many cells also produce a strong supporting layer around the membrane known as a cell wall.

More information

Unit 1 Matter & Energy for Life

Unit 1 Matter & Energy for Life Unit 1 Matter & Energy for Life Chapter 2 Interaction of Cell Structure Biology 2201 Sept. 2011 Primary Membrane Function: Homeostasis Section 2.2 Conditions in the cell must remain more or less constant

More information

Biology. Slide 1 / 74. Slide 2 / 74. Slide 3 / 74. Membranes. Vocabulary

Biology. Slide 1 / 74. Slide 2 / 74. Slide 3 / 74. Membranes. Vocabulary Slide 1 / 74 Slide 2 / 74 iology Membranes 2015-10-28 www.njctl.org Vocabulary Slide 3 / 74 active transport carrier protein channel protein concentration gradient diffusion enzymatic activity facilitated

More information

Cell Boundaries Section 7-3

Cell Boundaries Section 7-3 Cell Boundaries Section 7-3 The most important parts of a cell are its borders, which separate the cell from its surroundings. The cell membrane is a thin, flexible barrier that surrounds all cells. The

More information

Unit 1 Matter & Energy for Life

Unit 1 Matter & Energy for Life Unit 1 Matter & Energy for Life Chapter 2 Interaction of Cell Structures Biology 2201 Primary Membrane Function: Homeostasis Section 2.2 Conditions in the cell must remain more or less constant under many

More information

II. Active Transport (move molecules against conc. gradient - cell must expend energy) (uses carrier proteins)

II. Active Transport (move molecules against conc. gradient - cell must expend energy) (uses carrier proteins) Chapter 5 - Homeostasis and Transport I. Passive Transport (no energy from cell required) A. Diffusion 1. movement of molecules from an area of higher concentration to an area of lower concentration a.

More information

Contents. Module A Cells and Cell Processes. Module B Continuity and Unity Of Life. Introduction to Keystone Finish Line Biology...

Contents. Module A Cells and Cell Processes. Module B Continuity and Unity Of Life. Introduction to Keystone Finish Line Biology... Contents Introduction to Keystone Finish Line Biology...5 Module A Cells and Cell Processes Unit 1 Basic Biological Principles...7 Lesson 1 Unifying Characteristics of Life BIO.A.1.1.1, BIO.A.1.2.1...8

More information

Unit 4 ~ Learning Guide

Unit 4 ~ Learning Guide Unit 4 ~ Learning Guide Name: INSTRUCTIONS Complete the following notes and questions as you work through the related lessons You are required to have this package completed BEFORE you write your unit

More information

Molecular Cell Biology. Prof. D. Karunagaran. Department of Biotechnology. Indian Institute of Technology Madras

Molecular Cell Biology. Prof. D. Karunagaran. Department of Biotechnology. Indian Institute of Technology Madras Molecular Cell Biology Prof. D. Karunagaran Department of Biotechnology Indian Institute of Technology Madras Module 4 Membrane Organization and Transport Across Membranes Lecture 1 Cell Membrane and Transport

More information

Homeostasis and The Plasma Membrane

Homeostasis and The Plasma Membrane Mosaic Homeostasis and The Plasma Membrane phospholipid cholesterol PLASMA MEMBRANE (FLUID MOSAIC MODEL) membrane protein filaments of cytoskeleton phospholipid cytoplasm (inside of cell) PHOSPHOLIPID

More information

10/28/2013. Double bilayer of lipids with imbedded, dispersed proteins Bilayer consists of phospholipids, cholesterol, and glycolipids

10/28/2013. Double bilayer of lipids with imbedded, dispersed proteins Bilayer consists of phospholipids, cholesterol, and glycolipids Structure of a Generalized Cell MEMBRANES Figure 3.1 Plasma Membrane Fluid Mosaic Model Separates intracellular fluids from extracellular fluids Plays a dynamic role in cellular activity Glycocalyx is

More information

Ch 3 Membrane Transports

Ch 3 Membrane Transports Ch 3 Membrane Transports what's so dynamic about cell membranes? living things get nutrients and energy from the envrionment this is true of the entire organism and each cell this requires transport in/out

More information

Movement of substances across the cell membrane

Movement of substances across the cell membrane Ch 4 Movement of substances across the cell membrane Think about (Ch 4, p.2) 1. The structure of the cell membrane can be explained by the fluid mosaic model. It describes that the cell membrane is mainly

More information

Lecture Series 4 Cellular Membranes. Reading Assignments. Selective and Semi-permeable Barriers

Lecture Series 4 Cellular Membranes. Reading Assignments. Selective and Semi-permeable Barriers Lecture Series 4 Cellular Membranes Reading Assignments Read Chapter 11 Membrane Structure Review Chapter 12 Membrane Transport Review Chapter 15 regarding Endocytosis and Exocytosis Read Chapter 20 (Cell

More information

Cells & Transport. Chapter 7.1, 7.2, & 7.4

Cells & Transport. Chapter 7.1, 7.2, & 7.4 Cells & Transport Chapter 7.1, 7.2, & 7.4 Do Now How big is a cell? How many cells are we made of? How many cells is the smallest living organism made of? Objectives Describe how cells were discovered

More information

Written Response #1: True/False

Written Response #1: True/False Written Response #1: True/False 1. Osmosis means to absorb something. 2. Cells are able to excrete waste. 3. Cells obtain energy by gaining nutrition from food. 4. Plants use sunlight for food. 5. Plants

More information

Chapter 1 Plasma membranes

Chapter 1 Plasma membranes 1 of 5 TEXTBOOK ANSWERS Chapter 1 Plasma membranes Recap 1.1 1 The plasma membrane: keeps internal contents of the cell confined to one area keeps out foreign molecules that damage or destroy the cell

More information