Cellular Metabolism. Biol 105 Lecture 6 Read Chapter 3 (pages 63 69)
|
|
- Julius Richardson
- 11 months ago
- Views:
Transcription
1 Cellular Metabolism Biol 105 Lecture 6 Read Chapter 3 (pages 63 69)
2 Metabolism Consists of all of the chemical reactions that take place in a cell
3 Metabolism Animation Breaking Down Glucose For Energy
4 Cellular Metabolism Aerobic cellular respiration requires oxygen, produces carbon dioxide Anaerobic Fermentation does not require oxygen
5 Summary of Cellular Respiration Blood vessel Electrons transferred by NADH Electrons transferred by NADH Cytoplasm Carrier protein Glucose Plasma membrane Electrons transferred by NADH and FADH 2 Glycolysis glucose pyruvate Transition Reaction Citric Acid Cycle Electron Transport Chain Oxygen Mitochondrion Extracellular fluid +2 ATP +2 ATP +32 ATP 36 ATP Figure 3.27
6 Aerobic Cellular respiration In aerobic cellular respiration cells take in sugar (glucose) and breaks it down to into carbon dioxide and water, this requires oxygen. This process produces energy in the form of ATP C 6 H 12 O 6 + 6O 2 6CO 2 +6H 2 O + Energy
7 Aerobic Cellular respiration There are four steps of aerobic cellular respiration: 1. Glycolysis 2. Transition Reaction 3. Citric Acid Cycle (Krebs Cycle) 4. Electron Transport Chain
8
9
10 NADH and FADH 2 are important carriers of electrons
11 Cellular Respiration - Glycolysis Phase 1: Glycolysis Occurs in the cytoplasm Splits one glucose into two pyruvate molecules Generates a net gain of 2 ATP and 2 NADH molecules Does not require oxygen
12 Cellular Respiration - Glycolysis Starts with glucose Ends with 2 ATP, 2 NADH, 2 pyruvate
13 Glycolysis Glycolysis (in cytoplasm) Cytoplasm During the first steps, two molecules of ATP are consumed in preparing glucose for splitting. Glucose Energyinvestment phase 2 ADP 2 ATP During the remaining steps, four molecules of ATP are produced. 4 ADP The two molecules of pyruvate then diffuse from the cytoplasm into the inner compartment of the mitochondrion, where they pass through a few preparatory steps (the transition reaction) before entering the citric acid cycle. 2 Pyruvate 4 ATP 2 NAD + 2 NADH Energyyielding phase Two molecules of nicotine adenine dinucleotide (NADH), a carrier of high-energy electrons, also are produced. Figure 3.23
14 In Cytosol
15 Cellular Respiration Transition Reaction Phase 2: Transition reaction Occurs within the mitochondria Coenzyme A combines with pyruvate and CO 2 is removed from each pyruvate Forms 2 acetyl CoA molecules Produces 2 NADH
16 Transition Reaction Start with: 2 pyruvate (3 carbon molecules) 2 Coenzyme A End with: 2 CO 2 2 NADH 2 Acetyl CoA (2 carbon molecule)
17 Transition Reaction Transition Reaction (in mitochondrion) Pyruvate (from glycolysis) A molecule of NADH is formed when NAD + gains two electrons and one proton. NAD + One carbon (in the form of CO 2 ) is removed from pyruvate. CO 2 NADH (electron passes to electron transport chain) Acetyl CoA CoA Coenzyme A The two-carbon molecule, called an acetyl group, binds to coenzyme A (CoA), forming acetyl CoA, which enters the citric acid cycle. Citric Acid Cycle Figure 3.24
18 Cellular Respiration Citric acid cycle Phase 3: Citric acid cycle Occurs in the mitochondria Acetyl CoA enters the citric acid cycle Releases 2 ATP, 2 FADH 2 and 6 NADH, 4 CO 2 molecules Requires oxygen
19 Citric Acid Cycle Also called the Krebs Cycle Start with 2 Acetyl CoA End with: 4 CO 2 2 ATP 6 NADH and 2 FADH 2
20 Citric Acid Cycle Citric Acid Cycle (in mitochondrion) The citric acid cycle also yields several molecules of FADH 2 and NADH, carriers of high-energy electrons that enter the electron transport chain. NADH Oxaloacetate Acetyl CoA Acetyl CoA, the two-carbon compound formed during the transition reaction, enters the citric acid cycle. CoA CoA Citrate NAD + Malate FADH 2 FAD Citric Acid Cycle ATP ADP + Pi NAD + CO 2 leaves cycle NADH Succinate NADH NAD + -Ketoglutarate CO 2 leaves cycle The citric acid cycle yields One ATP from each acetyl CoA that enters the cycle, for a net gain of two ATP. Figure 3.25
21 Cellular Respiration Phase 4: Electron transport chain Electrons of FADH 2 and NADH are transferred from one protein to another, until they reach oxygen Releases energy that results in 32 ATP Requires oxygen
22 The Big Pay Off Electron Transport Chain NADH and FADH 2 are important carriers of electrons They donate electrons to the electron transport chain At the end of the chain oxygen accepts the electrons.
23 The Big Pay Off Electron Transport Chain Electron Transport Chain produces ATP using the ATP synthase protein molecule The Electron Transport Chain produces 32 ATP
24 Electron Transport Chain Potential energy Electron Transport Chain (inner membrane of mitochondrion) High The molecules of NADH and FADH 2 produced by earlier phases of cellular respiration pass their electrons to a series of protein molecules embedded in the inner membrane of the mitochondrion. NAD + NADH 2e As the electrons are transferred from one protein to the next, energy is released and used to make ATP. FADH 2 FAD 2e 2e Membrane proteins 2e Eventually, the electrons are passed to oxygen, which combines with two hydrogens to form water. 2e H 2 O Low Energy released is used for synthesis of ATP 2 H O 2 Figure 3.26
25
26
27 How is ATP made using the ETC 1. In the mitochondria, the NADH and FADH donate electrons to the electron transport chain (ETC) 2. Oxygen is the final electron acceptor from the ETC 3. The ETC uses the energy from the electrons to transport H + against the concentration gradient, transporting them from the lumen of the mitochondria to the intermembrane space.
28 How is ATP made using the ETC 4. The ATPsynthase transports the H + back to the lumen of the mitochondria. 5. The H + falling through the ATPsynthase provides the energy for the ATPsynthase to catalyze the reaction of ADP + P ATP
29 Summary of Cellular Respiration Table 3.5
30 Summary of Cellular Respiration One molecule of glucose is broken down and 36 ATP are generated. Oxygen is used by the electron transport chain it accepts electrons from the ETC Carbon dioxide is produced by the Transition Reaction and the Citric acid cycle
31 Summary of Cellular Respiration Glycolysis: Starts the process by taking in glucose. Produces 2 ATP The Transition Reaction produces CO 2 and NADH The Citric acid cycle: Produces 2 ATP but also produces lots of NADH and FADH 2. Produces CO 2.
32 Summary of Cellular Respiration Electron transport chain Takes electrons from NADH and FADH 2 and uses them to produce ATP using the ATP synthase molecule. Requires oxygen. Oxygen is the final electron acceptor on the electron transport chain One glucose can produce a total of 36 ATP
33 Complex Carbohydrates must first be broken down into glucose before entering glycolysis Fats and proteins enter the process at different steps
34 Oxygen Cellular respiration requires oxygen this is aerobic cellular respiration Sometimes organisms, including humans, need to produce energy without using oxygen When you need energy quick, or if there is not enough O 2 then the cell will use only glycolysis
35 Anaerobic Fermentation Breakdown of glucose without oxygen Takes place entirely in the cytoplasm It is very inefficient - results in only two ATP
36 Anaerobic Fermentation Anaerobic Fermentation: Anaerobic pathway to produce ATP from glycolysis without the Krebs and ETC
37 Fermentation in Animals When cells need energy quick they will use this pathway for a short time 2 pyruvic acid + 2 NADH 2 lactate and 2 NAD + End result = lactate and 2 ATP produced (from glycolysis) and NAD + is regenerated
38
39 What is the starting molecule of glycolysis? 1. Acetyl CoA 2. Protein 3. Glucose 4. Pyruvate (pyruvic acid)
40 Which stage produces CO 2 1. Glycolysis 2. Electron Transport Chain 3. Transition 4. Citric acid Cycle 5. Both 3 and 4
41 Which stage uses O 2 1. Glycolysis 2. Krebs Cycle 3. Electron Transport Chain
42 Which stage produces the most NADHs 1. Glycolysis 2. Krebs Cycle 3. Electron Transport Chain
43 Which stage produces the most ATP 1. Glycolysis 2. Krebs Cycle 3. Electron Transport Chain
44 Important Concepts Read Ch 4 What is Cellular respiration and Anaerobic Fermentation and what are the differences between them. What are the four steps of aerobic cellular respiration, what happens in each step, what are the starting molecules, what comes out of each step, where in the cell does each step occur, how many ATP and NADH/FADH 2 are produced in each step.
45 Important Concepts Describe in detail how is ATP made using the electron transport chain What is the role of ATPsynthase, H +, O 2, NADH and FADH 2 and the electron transport chain in ATP production? Know the overall picture of cellular respiration (summary slides)
46 Important Concepts What is the role of oxygen in cellular respiration, what steps produce carbon dioxide What is anaerobic fermentation, what steps are involved in fermentation, what end products are produced in humans, is oxygen required? when is it used.
47 Definitions Aerobic cellular respiration, anaerobic fermentation, ATP synthase, metabolism
Cellular Metabolism 9/24/2013. Metabolism. Cellular Metabolism. Consists of all the chemical reactions that take place in a cell!
Cellular Metabolism Biology 105 Lecture 6 Chapter 3 (pages 56-61) Metabolism Consists of all the chemical reactions that take place in a cell! Cellular Metabolism Aerobic cellular respiration requires
Consists of all of the chemical reactions that take place in a cell. Summary of Cellular Respiration. Electrons transferred. Cytoplasm Blood vessel
7/19/2014 Metabolism Cellular Metabolism Metabolism Consists of all of the chemical reactions that take place in a cell PLAY Animation Breaking Down Glucose For Energy Biol 105 Lecture Packet 6 Read Chapter
Lesson Overview. Cellular Respiration: An Overview. 9.2 process of cell respiration
9.2 process of cell respiration Glycolysis During glycolysis, glucose is broken down into 2 molecules of the 3-carbon molecule pyruvic acid. Pyruvic acid is a reactant in the Krebs cycle. ATP and NADH
4. Which step shows a split of one molecule into two smaller molecules? a. 2. d. 5
1. Which of the following statements about NAD + is false? a. NAD + is reduced to NADH during both glycolysis and the citric acid cycle. b. NAD + has more chemical energy than NADH. c. NAD + is reduced
Releasing Chemical Energy
Releasing Chemical Energy Ø Energy From Carbohydrates Ø Aerobic Respiration/ Stages Ø Fermentation Ø Food as a Source of Energy How Do Cells Access the Chemical Energy in Carbohydrayes? Aerobic Respiration
Cellular Respiration Harvesting Chemical Energy ATP
Cellular Respiration Harvesting Chemical Energy ATP 2009-2010 Ch.8.3 Section Objectives: Compare and contrast cellular respiration and fermentation. Explain how cells obtain energy from cellular respiration.
Lecture 5: Cell Metabolism. Biology 219 Dr. Adam Ross
Lecture 5: Cell Metabolism Biology 219 Dr. Adam Ross Cellular Respiration Set of reactions that take place during the conversion of nutrients into ATP Intricate regulatory relationship between several
How Cells Harvest Energy. Chapter 7. Respiration
How Cells Harvest Energy Chapter 7 Respiration Organisms classified on how they obtain energy: autotrophs: produce their own organic molecules through photosynthesis heterotrophs: live on organic compounds
Respiration. Respiration. How Cells Harvest Energy. Chapter 7
How Cells Harvest Energy Chapter 7 Respiration Organisms can be classified based on how they obtain energy: autotrophs: are able to produce their own organic molecules through photosynthesis heterotrophs:
How Cells Release Chemical Energy Cellular Respiration
How Cells Release Chemical Energy Cellular Respiration Overview of Cellular Respiration HO double membrane outer membrane inner membrane CO matrix Produces molecules Requires oxygen Releases carbon dioxide
Cellular Respiration
Cellular Respiration Cellular respiration is the process that releases energy by breaking down glucose and other food molecules in the presence of oxygen In biology and chemistry, energy is referred to
Chapter 9: Cellular Respiration
Chapter 9: Cellular Respiration Breaking down glucose a little at a time.. It s like turning a five pound bag of sugar into several tiny sugar packets worth of energy in the form of ATP. Remember the carbon
Cell Respiration Ch 7. Both autotrophs and heterotrophs use cellular respiration to make CO2 and water from
Cell Respiration Ch 7 Objectives: Identify the 2 major steps of cellular respiration Describe the major events in glycolysis Compare lactic acid fermentation with alcoholic fermentation Calculate the efficiency
KEY CONCEPT The overall process of cellular respiration converts sugar into ATP using oxygen.
KEY CONCEPT The overall process of cellular respiration converts sugar into ATP using oxygen. ! Cellular respiration makes ATP by breaking down sugars. Cellular respiration is aerobic, or requires oxygen.
1 Which pathway for aerobic cellular respiration is located in the cytoplasm of the cell?
1 Which pathway for aerobic cellular respiration is located in the cytoplasm of the cell? glycolysis citric cycle 2 Which of the following statements is NOT correct regarding aerobic cellular respiration?
Section 9 2 The Krebs Cycle and Electron Transport (pages )
Section 9 2 The Krebs Cycle and Electron Transport (pages 226 232) This section describes what happens during the second stage of cellular respiration, called the Krebs cycle. It also explains how high-energy
Biology Kevin Dees. Chapter 9 Harvesting Chemical Energy: Cellular Respiration
Chapter 9 Harvesting Chemical Energy: Cellular Respiration Life is Work!!! Biology Kevin Dees Catabolic pathways and ATP production Catabolic pathways release energy by breaking down large molecules into
Cellular Respiration
Cellular Respiration The breakdown of glucose for cellular energy. happens in all living cells. is exothermic H atoms and e are removed from glucose (oxidization) and added to oxygen (reduction) excess
9.2 The Process of Cellular Respiration
9.2 The Process of Cellular Respiration Oxygen Carbon 2 2 Dioxide 34 Water Glycolysis Glycolysis is the first stage of cellular respiration. During glycolysis, glucose is broken down into 2 molecules of
3.7.1 Define cell respiration [Cell respiration is the controlled release of energy from organic compounds in cells to form ATP]
3.7 Cell respiration ( Chapter 9 in Campbell's book) 3.7.1 Define cell respiration [Cell respiration is the controlled release of energy from organic compounds in cells to form ATP] Organic compounds store
MIDDLETOWN HIGH SCHOOL SOUTH BIOLOGY
MIDDLETOWN HIGH SCHOOL SOUTH BIOLOGY BOOKLET 10 NAME: CLASS: 1 S.Tagore Middletown South High School March 2013 LEARNING OUTCOMES The role and production of ATP (a) Importance, role and structure of ATP
Cellular Pathways That Harvest Chemical Energy. Cellular Pathways That Harvest Chemical Energy. Cellular Pathways In General
Cellular Pathways That Harvest Chemical Energy A. Obtaining Energy and Electrons from Glucose Lecture Series 12 Cellular Pathways That Harvest Chemical Energy B. An Overview: Releasing Energy from Glucose
Chapter 9 Cellular Respiration. Copyright Pearson Prentice Hall
Chapter 9 Cellular Respiration Copyright Pearson Prentice Hall 9-1 Chemical Pathways Both plant and animal cells carry out the final stages of cellular respiration in the mitochondria. Animal Cells Animal
Chapter 9. Cellular Respiration and Fermentation
Chapter 9 Cellular Respiration and Fermentation Energy flows into an ecosystem as sunlight and leaves as heat Photosynthesis generates O 2 and organic molecules, which are used in cellular respiration
CH 9 CELLULAR RESPIRATION. 9-1 Chemical Pathways 9-2 The Krebs Cycle and Electron Transport
CH 9 CELLULAR RESPIRATION 9-1 Chemical Pathways 9-2 The Krebs Cycle and Electron Transport Chemical Energy and Food Energy source = food = ATP A calorie is the unit for the amount of energy needed to raise
AP BIOLOGY Chapter 7 Cellular Respiration =
1 AP BIOLOGY Chapter 7 Cellular Respiration = Day 1 p. I. Overview A. Cellular Respiration 1. Respiration breathing, exchange of O 2 for CO 2 2. Cellular respiration aerobic harvesting of energy from food
serves as a source of raw materials and energy for cellsslide
9-1 Chemical Pathways (Metabolism) refers to all of the chemical that take place in an organism or cell. Each reaction may handle materials or and is catalyzed by an enzyme. Metabolism has two parts: 1.
CELLULAR RESPIRATION SUMMARY EQUATION. C 6 H 12 O 6 + O 2 6CO2 + 6H 2 O + energy (ATP) STEPWISE REDOX REACTION
CELLULAR RESPIRATION SUMMARY EQUATION C 6 H 12 O 6 + O 2 6CO2 + 6H 2 O + energy (ATP) STEPWISE REDOX REACTION Oxidation: partial or complete loss of electrons Reduction: partial or complete gain of electrons
Chapter 9: Cellular Respiration: Harvesting Chemical Energy
AP Biology Reading Guide Name: Date: Period Chapter 9: Cellular Respiration: Harvesting Chemical Energy Overview: Before getting involved with the details of cellular respiration and photosynthesis, take
MULTIPLE CHOICE QUESTIONS
MULTIPLE CHOICE QUESTIONS 1. Which of the following statements concerning anabolic reactions is FALSE? A. They are generally endergonic. B. They usually require ATP. C. They are part of metabolism. D.
Section B: The Process of Cellular Respiration
CHAPTER 9 CELLULAR RESPIRATION: HARVESTING CHEMICAL ENERGY Section B: The Process of Cellular Respiration 1. Respiration involves glycolysis, the Krebs cycle, and electron transport: an overview 2. Glycolysis
2. What are the products of cellular respiration? Include all forms of energy that are products.
Name Per Cellular Respiration An Overview Why Respire Anyhoo? Because bucko all cells need usable chemical energy to do work. The methods cells use to convert glucose into ATP vary depending on the availability
Food serves as a source of raw materials for the cells in the body and as a source of energy.
9-1 Chemical Pathways Food serves as a source of raw materials for the cells in the body and as a source of energy. Animal Cells Animal Mitochondrion Plant Plant Cells 1 of 39 Both plant and animal cells
Cellular Respiration: Harvesting Chemical Energy
Chapter 9 Cellular Respiration: Harvesting Chemical Energy PowerPoint Lecture Presentations for Biology Eighth Edition Neil Campbell and Jane Reece Lectures by Chris Romero, updated by Erin Barley with
Cellular Respiration. Unit 5: Plants, Photosynthesis, and Cellular Respiration
Cellular Respiration Unit 5: Plants, Photosynthesis, and Cellular Respiration Overview! Organisms obtain energy (ATP) by breaking down (catabolic pathway, exergonic reaction) organic molecules (glucose)
Cellular Respiration and Fermentation
LECTURE PRESENTATIONS For CAMPBELL BIOLOGY, NINTH EDITION Jane B. Reece, Lisa A. Urry, Michael L. Cain, Steven A. Wasserman, Peter V. Minorsky, Robert B. Jackson Chapter 9 Cellular Respiration and Fermentation
9-1 Chemical Pathways Interactive pgs
Interactive pgs. 221-225 1 of 39 9-1 Chemical Pathways Food serves as a source of raw materials for the cells in the body and as a source of energy. Animal Cells Animal Mitochondrion Plant Plant Cells
Higher Biology. Unit 2: Metabolism and Survival Topic 2: Respiration. Page 1 of 25
Higher Biology Unit 2: Metabolism and Survival Topic 2: Respiration Page 1 of 25 Sub Topic: Respiration I can state that: All living cells carry out respiration. ATP is the energy currency of the cell
Chapter 7 Cellular Respiration and Fermentation*
Chapter 7 Cellular Respiration and Fermentation* *Lecture notes are to be used as a study guide only and do not represent the comprehensive information you will need to know for the exams. Life Is Work
Cellular Respiration. Chapter 9
Cellular Respiration Chapter 9 1.A)Explain where organisms get the energy needed for life processes. Organisms get the energy they need from food. Energy stored in food is expressed as calories. Calorie
Biology 30 Structure & Function of Cells (Part 2) Bioenergetics: Energy: Potential energy: Examples: Kinetic energy. Examples:
Biology 30 Structure & Function of Cells (Part 2) Bioenergetics: Energy: Potential energy: Examples: Kinetic energy Examples: Energy can be transformed: Thermodynamics: First law of Thermodynamics: Second
How Cells Release Chemical Energy. Chapter 8
How Cells Release Chemical Energy Chapter 8 Impacts, Issues: When Mitochondria Spin Their Wheels More than forty disorders related to defective mitochondria are known (such as Friedreich s ataxia); many
Ch. 9 Cellular Respiration Stage 2 & 3: Oxidation of Pyruvate Krebs Cycle
Ch. 9 Cellular Respiration Stage 2 & 3: Oxidation of Pyruvate Krebs Cycle 2006-2007 Glycolysis is only the start Glycolysis glucose pyruvate 6C Pyruvate has more energy to yield 3 more C to strip off (to
Metabolism. Metabolism. Energy. Metabolism. Energy. Energy 5/22/2016
5//016 Metabolism Metabolism All the biochemical reactions occurring in the body Generating, storing and expending energy ATP Supports body activities Assists in constructing new tissue Metabolism Two
Cellular Respiration: Harvesting Chemical Energy
Chapter 9 Cellular Respiration: Harvesting Chemical Energy You should be able to: 1. Explain how redox reactions are involved in energy exchanges. Name and describe the three stages of cellular respiration;
Cellular Respiration Harvesting Chemical Energy ATP
Cellular Respiration Harvesting Chemical Energy ATP 2006-2007 What s the point? The point is to make ATP! ATP 2006-2007 Harvesting stored energy Energy is stored in organic molecules carbohydrates, fats,
Cellular Respiration. The process by which cells harvest the energy stored in food
Cellular Respiration The process by which cells harvest the energy stored in food 1 SAVING FOR A Rainy Day Suppose you earned extra money by having a part-time job. At first, you might be tempted to spend
Chapter 9 Notes. Cellular Respiration and Fermentation
Chapter 9 Notes Cellular Respiration and Fermentation Objectives Distinguish between fermentation and anaerobic respiration. Name the three stages of cellular respiration and state the region of the cell
Cell Respiration - 1
Cell Respiration - 1 All cells must do work to stay alive and maintain their cellular environment. The energy needed for cell work comes from the bonds of ATP. Cells obtain their ATP by oxidizing organic
2) The molecule that functions as the reducing agent (electron donor) in a redox or oxidationreduction
Campbell Biology in Focus (Urry) Chapter 7 Cellular Respiration and Fermentation 7.1 Multiple-Choice Questions 1) What is the term for metabolic pathways that release stored energy by breaking down complex
Complete breakdown of Glucose: + Light + 6 H 2 O = C 6 H 12 O 6 6 CO O 2. + Energy = 6 CO 2 C 6 H 12 O 6. What is Glucose Metabolism?
Chapter 8: Harvesting Energy: Glycolysis and Cellular Respiration What is Metabolism? Answer: The breakdown of glucose to release energy from its chemical bonds Photosynthesis: 6 CO 2 Carbon Dioxide +
Cellular Respiration: Harvesting Chemical Energy
Chapter 9 Cellular Respiration: Harvesting Chemical Energy PowerPoint Lecture Presentations for Biology Eighth Edition Neil Campbell and Jane Reece Lectures by Chris Romero, updated by Erin Barley with
Cellular Respiration- -conversion of stored energy in glucose to usable energy for the cell -energy in cells is stored in the form of ATP
Cellular Respiration Notes Chapter 7 How Cells Make ATP Energy Releasing Pathways Cellular Respiration- -conversion of stored energy in glucose to usable energy for the cell -energy in cells is stored
MULTIPLE CHOICE. Choose the one alternative that best completes the statement or answers the question.
Respiration Practice Name MULTIPLE CHOICE. Choose the one alternative that best completes the statement or answers the question. 1) Which of the following statements describes NAD+? A) NAD+ can donate
Concept 9.1: Catabolic pathways yield energy by oxidizing organic fuels Several processes are central to cellular respiration and related pathways
Overview: Life Is Work Living cells require energy from outside sources Some animals, such as the chimpanzee, obtain energy by eating plants, and some animals feed on other organisms that eat plants Energy
Energy Production In A Cell (Chapter 25 Metabolism)
Energy Production In A Cell (Chapter 25 Metabolism) Large food molecules contain a lot of potential energy in the form of chemical bonds but it requires a lot of work to liberate the energy. Cells need
Name: Block: Date: PACKET #8 Unit 3: Energy Transfer, Part II: Cellular Respiration
Name: Block: Date: PACKET #8 Unit 3: Energy Transfer, Part II: Cellular Respiration Reading: BSCS Text chapters 4, 5, and 2.8. Objectives: By the conclusion of this unit the student will be able to: Topic
Cellular Respiration. How is energy in organic matter released for used for in living systems?
Cellular Respiration How is energy in organic matter released for used for in living systems? Cellular Respiration Organisms that perform cellular respiration are called chemoheterotrophs Includes both
CH 7: Cell Respiration and Fermentation Overview. Concept 7.1: Catabolic pathways yield energy by oxidizing organic fuels
CH 7: Cell Respiration and Fermentation Overview Living cells require energy from outside sources Some animals obtain energy by eating plants, and some animals feed on other organisms Energy flows into
Releasing Food Energy
Releasing Food Energy All food is broken down by the body into small molecules through digestion. By the time food reaches your, bloodstream it has been broken down into nutrient rich molecules that can
Unit 2: Metabolic Processes
How is energy obtained biologically? Recall: Red Ox Reactions Unit 2: Metabolic Processes Oxidation Is the chief mechanism by which chemical potential energy is released This energy comes from reduced
Cellular Respiration: Harvesting Chemical Energy Chapter 9
Cellular Respiration: Harvesting Chemical Energy Chapter 9 Assemble polymers, pump substances across membranes, move and reproduce The giant panda Obtains energy for its cells by eating plants which get
What s the point? The point is to make ATP! ATP
ATP Chapter 8 What s the point? The point is to make ATP! ATP Flows into an ecosystem as sunlight and leaves as heat Energy is stored in organic compounds Carbohydrates, lipids, proteins Heterotrophs eat
Energy Flow. Chapter 7. Cellular Respiration: Overview. Cellular Respiration. Cellular Respiration. Cellular Respiration occurs in three stages
Energy Flow Chapter 7 Cellular Respiration hotosynthesis uses solar energy to produce glucose and O from CO and H O Cellular respiration makes and consumes O during the oxidation of glucose to CO and H
3/28/17. Cellular Respiration. Chapter 9: Cellular Respiration & Fermentation. Chapter 9: Cellular Respiration & Fermentation
Chapter 9: Cellular Respiration & Fermentation SE C TION 1: C E LLULAR RE SP IRATION: AN OVERVIEW As we learned last chapter, energy from the sun is transformed into different forms. In this chapter you
g) Cellular Respiration Higher Human Biology
g) Cellular Respiration Higher Human Biology What can you remember about respiration? 1. What is respiration? 2. What are the raw materials? 3. What are the products? 4. Where does it occur? 5. Why does
Enzymes and Metabolism
PowerPoint Lecture Slides prepared by Vince Austin, University of Kentucky Enzymes and Metabolism Human Anatomy & Physiology, Sixth Edition Elaine N. Marieb 1 Protein Macromolecules composed of combinations
9.1 Chemical Pathways ATP
9.1 Chemical Pathways ATP 2009-2010 Objectives Explain cellular respiration. Describe what happens during glycolysis. Describe what happens during fermentation. Where do we get energy? Energy is stored
Chapter 9 Cellular Respiration
Chapter 9 Cellular Respiration Biology and Society: Marathoners versus Sprinters Sprinters do not usually compete at short and long distances. Natural differences in the muscles of these athletes favor
Cellular Respiration an overview Section 9.1
Cellular Respiration an overview Section 9.1 Where do organisms get their energy? Unit calories 1 calorie = amount of energy required to increase 1 gram of water by 1 degrees Celsius 1000 calories 1 Calorie
Photosynthesis in chloroplasts CO2 + H2O. Cellular respiration in mitochondria ATP. powers most cellular work. Heat energy
Figure 9-01 LE 9-2 Light energy ECOSYSTEM Photosynthesis in chloroplasts CO2 + H2O Cellular respiration in mitochondria Organic + O molecules 2 powers most cellular work Heat energy LE 9-UN161a becomes
Essential Question. How do organisms obtain energy?
Dr. Bertolotti Essential Question How do organisms obtain energy? What is cellular respiration? Burn fuels to make energy combustion making heat energy by burning fuels in one step O 2 Fuel (carbohydrates)
Cell Respiration. Anaerobic & Aerobic Respiration
Cell Respiration Anaerobic & Aerobic Respiration Understandings/Objectives 2.8.U1: Cell respiration is the controlled release of energy from organic compounds to produce ATP. Define cell respiration State
Cellular Respiration
Cellular Respiration 1. To perform cell work, cells require energy. a. A cell does three main kinds of work: i. Mechanical work, such as the beating of cilia, contraction of muscle cells, and movement
Class XI Chapter 14 Respiration in Plants Biology. 1. It is a biochemical process. 1. It is a physiochemical process.
Question 1: Differentiate between (a) Respiration and Combustion (b) Glycolysis and Krebs cycle (c) Aerobic respiration and Fermentation (a) Respiration and combustion Respiration Combustion 1. It is a
Metabolism. Chapter 5. Catabolism Drives Anabolism 8/29/11. Complete Catabolism of Glucose
8/29/11 Metabolism Chapter 5 All of the reactions in the body that require energy transfer. Can be divided into: Cell Respiration and Metabolism Anabolism: requires the input of energy to synthesize large
Name: Date: Per: Enzymes Review & Using text to understand ATP & Cellular Respiration
Name: Date: Per: Enzymes Review & Using text to understand ATP & Cellular Respiration Read this: Digestive enzymes are protein-based biological catalysts that play important roles in our lives. They help
Cellular Respira,on. Topic 3.7 and 3.8
Cellular Respira,on Topic 3.7 and 3.8 Defini,on of cellular respira,on Controlled release of energy from organic compounds to produce ATP Cells break down organic compounds by SLOW oxida,on Chemical energy
I. ATP: Energy In A Molecule
I. ATP: Energy In A Molecule All food is broken down by the body into small molecules through digestion By the time food reaches your bloodstream, it has been broken down into nutrient molecules that can
MULTIPLE CHOICE. Choose the one alternative that best completes the statement or answers the question.
Exam Name MULTIPLE CHOICE. Choose the one alternative that best completes the statement or answers the question. 1) What is the term for metabolic pathways that release stored energy by breaking down complex
Photosynthesis in chloroplasts. Cellular respiration in mitochondria ATP. ATP powers most cellular work
Light energy ECOSYSTEM CO + H O Photosynthesis in chloroplasts Cellular respiration in mitochondria Organic molecules + O powers most cellular work Heat energy 1 becomes oxidized (loses electron) becomes
How Cells Harvest Chemical Energy. Chapter 9
How Cells Harvest Chemical Energy Chapter 9 Cellular Respiration Releasing energy (ATP) from glucose (chemical energy) in the presence of O 2 Energy flows Matter cycles True or False Plants only perform
How Cells Harvest Chemical Energy
How Cells Harvest Chemical Energy Chapter 6 Introduction: How Is a Marathoner Different from a Sprinter? Individuals inherit various percentages of the two main types of muscle fibers, slow and fast The
3.2 Aerobic Respiration
3.2 Aerobic Respiration Aerobic Cellular Respiration Catabolic pathways Breaks down energy-rich compounds to make ATP Requires oxygen Occurs in different parts of the cell C 6 H 12 O 6 (s) + 6O 2 (g) 6CO
Review. Respiration. Glycolysis. Glycolysis is the decomposition (lysis) of glucose (glyco) to pyruvate (or pyruvic acid).
Review Photosynthesis is the process of incorporating energy from light into energy-rich molecules like glucose. Respiration is the opposite process extracting that stored energy from glucose to form ATP
Aerobic Respiration. The four stages in the breakdown of glucose
Aerobic Respiration The four stages in the breakdown of glucose 1 I. Aerobic Respiration Why can t we break down Glucose in one step? (Flaming Gummy Bear) Enzymes gently lower the potential energy until
Cellular Respiration Harvesting Chemical Energy ATP
Cellular Respiration Harvesting Chemical Energy ATP 2006-2007 What s the point? The point is to make ATP! ATP 2006-2007 Harvesting stored energy Energy is stored in organic molecules carbohydrates, fats,
Chapter 6 Cellular Respiration: Obtaining Energy from Food
Chapter 6 Cellular Respiration: Obtaining Energy from Food PowerPoint Lectures for Campbell Essential Biology, Fifth Edition, and Campbell Essential Biology with Physiology, Fourth Edition Eric J. Simon,
Cellular Respiration and Fermentation
Chapter 9 LECTURE PRESENTATIONS For CAMPBELL BIOLOGY, NINTH EDITION Jane B. Reece, Lisa A. Urry, Michael L. Cain, Steven A. Wasserman, Peter V. Minorsky, Robert B. Jackson Cellular Respiration and Fermentation
Cellular Respiration: Obtaining Energy from Food
Chapter 6 Cellular Respiration: Obtaining Energy from Food PowerPoint Lectures for Campbell Essential Biology, Fourth Edition Eric Simon, Jane Reece, and Jean Dickey Campbell Essential Biology with Physiology,
Bio 111 Study Guide Chapter 7 Cellular Respiration & Fermentation
Bio 111 Study Guide Chapter 7 Cellular Respiration & Fermentation BEFORE CLASS: Reading: Read the whole chapter from pp. 141-158. In Concept 7.1, pay special attention to oxidation & reduction and the
Cellular Respiration and Fermentation
LECTURE PRESENTATIONS For CAMPBELL BIOLOGY, NINTH EDITION Jane B. Reece, Lisa A. Urry, Michael L. Cain, Steven A. Wasserman, Peter V. Minorsky, Robert B. Jackson Chapter 9 Cellular Respiration and Fermentation
Cellular Respiration: Harvesting Chemical Energy
Chapter 9 Cellular Respiration: Harvesting Chemical Energy Edited by Shawn Lester PowerPoint Lecture Presentations for Biology Eighth Edition Neil Campbell and Jane Reece Lectures by Chris Romero, updated
1. Cyanide is introduced into a culture of cells and is observed binding to a mitochondrion, as shown in the diagram below.
1. Cyanide is introduced into a culture of cells and is observed binding to a mitochondrion, as shown in the diagram below. The following observations are made: Cyanide binds to and inhibits an enzyme
ATP. Principles of Energy Harvest. Chapter 9~ The point is to make ATP! Cellular Respiration: Harvesting Chemical Energy. What s the point?
Chapter 9~ Cellular Respiration: Harvesting Chemical Energy What s the point? The point is to make! 2006-2007 Principles of Energy Harvest Catabolic pathway Fermentation Cellular Respiration C6H126 + 62
CELLULAR RESPIRATION GETTING ENERGY TO MAKE ATP
ELLULAR RESPIRATION GETTING ENERGY TO MAKE ATP ELLULAR RESPIRATION ellular process by which mitochondria releases energy by breaking down food molecules (glucose or other organic molecules) to produce
CHAPTER 6 CELLULAR RESPIRATION
CHAPTER 6 CELLULAR RESPIRATION Chemical Energy In Food Purpose of food: Source of raw materials used to make new molecules Source of energy calorie the amount of energy needed to raise the temperature
Respiration 30/04/2013. Dr.M.R.Vaezi K., Hakim Sabzevari University
Respiration Metabolism - the sum of all the chemical reactions that occur in the body. It is comprised of: anabolism synthesis of molecules, requires input of energy catabolism break down of molecules,
Chapter 12 Respiration
Chapter 12 Respiration R. Cummins 1 Chapter 12 Respiration External Respiration is the exchange of gases with the environment. Internal Respiration is the controlled release of energy from food. Respiration
Cellular Respiration. Overview of Cellular Respiration. Lecture 8 Fall Overview of Cellular Respiration. Overview of Cellular Respiration
Overview of Cellular Respiration 1 Cellular Respiration Lecture 8 Fall 2008 All organisms need ATP to do cellular work Cellular Respiration: The conversion of chemical energy of carbon compounds into another