CALCIUM CASEINATE. What Is Casein?

Size: px
Start display at page:

Download "CALCIUM CASEINATE. What Is Casein?"

Transcription

1 CALCIUM CASEINATE A high quality milk protein that is Calcium Rich, manufactured from fresh pasteurized skimmed milk through precipitation of casein followed by neutralization and natural drying, which protects sensitive amino acids. In addition to the protein provided by calcium caseinate, this protein also provides (as the name suggests) the valuable mineral calcium. Calcium is important to bone, tendon as well as muscle growth. What Is Casein? Casein is the most abundant and principal protein of cow's milk. It is the most commonly used milk protein in the food industry and contains 21 rich amino acids. Casein is highly nutritional, very low in fat and cholesterol, and flavorful, making it ideal for medical and nutritional applications. It is used primarily in infant formulas, good quality protein powders and for use in pharmaceutical products, especially for cancer and aids patients. Calcium caseinate has good binding properties and is highly bioavailable and has a milky appearance and smooth feel in the mouth. 1

2 TYPICAL ANALYSIS Protein % Fat % Fiber 0.0% Ash % Moisture % TECHNICAL CASEIN Casein behaves differently than most proteins. They have extremely flexible structures. Recently, workers at the USDA Eastern Regional Research Center in Philadelphia have studied casein using Raman spectroscopy. They have been able to make estimates of the amount of secondary structure in the various caseins. The structure resolved for a s-casein is presented in figure 1. 2

3 Figure 1. Three-dimensional molecular model for a s-casein. These researchers describe the structure as a short hydrophillic segment on the right of the molecule connected to a hydrophobic b-shhet region. This is connected to the region that contains the phospahte groups which is connected to a shory alpha-helical segment. This is connected to the very hydrophobic carboxyterminal domain which contains extended beta strands. This mode suggests that a s-casien contains approximately 15% alpha helical structure, 22% beta structure, 45% turns and 18% that can not be specified. This is probably a reasonable approximation of the conformation of the molecule in solution and is in reasonable agreement with estimates made by other methods. The fact that it is impossible to obtain crystals of the molecule suggests that this secondary structure is not as permanent as in a more typical protein and that considerbale variation is possible. The proposed structure for k-casein is presented in figure 2. Figure 2. Three-dimensional model for kappa casein. 3

4 The authors have described this as a "horse and rider" model. The amino terminal section of the molecule makes up the "horse" and the c-terminal section the "rider". The two legs of the horse are made up of b-structure. This mode suggests that k-casien contains approximately 16% alpha helical structure, 27% beta structure, 37% turns and 20% that can not be specified. The "leg" sections are very hydrophobic and the authors have postulated that his may be the area of interaction with other caseins. Casein Micelles In milk, the caseins exist in large colloidal particles called micelles. These are large aggregates with diameters of from 90 to 150 nm. Evidence from electron microscopy and other means, suggests that the micelles are composed of smaller units called sub-micelles having diameters of from 10 to 20 nm. A number of observations have been made regarding the properties of casein micelles. Any model that proposes to explain the structure of these micelles must be tested against hw well it can explain these observations. Characteristics of micelles include: 1. Precipitation by the enzyme rennin. Rennin is known to specifically cleave the bond between phenylalanine 105 and methionine 106 of k casein. The k casein must be accessible to the enzyme. 2. The content of calcium and phosphorous of milk is much higher than the solubility of calcium phosphate at ph 6.7. Much of this phosphate in present in an insoluble colloidal state and will precipitate with the micelles upon high speed centrifugation. 3. Milks that contain relatively more k casein have smaller average micelle diameters than do milks with less k-casein. 4

5 4. If the casein micelles are disrupted and then reformed, the size distribution of the final micceles will be very similar to those of the initial micelles. Reformed micelles from milk that originally had a large average micelle diameter will be larger than those reformed from milk that had small average micelle diameters. This property has been called memory. 5. Micelles are highly solvated and contain approximately 3.7 g water per gram of protein. 6. The addition of extra k casein to a mixture of casein micelles will result in a decrease in the average micelle diameter of the mixture. 7. Kappa casein will stabilize a s-casein from precipitation by calcium. There is complete stabilization at alpha s/kappa ratios of 10 and some stability at higher ratios. 8. Micelle formation requires the presence of calcium at concentrations greater than are required to precipitate a s- casein. 9. At low temperatures, some of the b casein is able to leave the micelle and becomes soluble. As the temperature is increased, the beta casein returns to the micelle. The first generally accepted model for casein micelle structure was proposed by Waugh in the mid 1960s. The essential elements of this model are a hydrophobic association of a s and b caseins that are roughly spherical. These aggregates are coated with a monolayer of k casein. This model has been described as a corecoat model because of its hydrophonic core that is stabilized by the k casein coat. A schematic representation of this model is presented in figure 3. 5

6 Figure 3. Model of casein micelles proposed by Waugh. This model is able to explain a number of the observations listed above. The accessibility of k casein to rennin is obvious. The final size of the micelles would presumably depend on the amount of k casein available to form a coating. If there were relatively less k casein, the average micelle diameter would have to be increased to ensure complete coverage. The model does not directly address the location of calcium and phosphate, but the colloidal metrail would presumably be associated with the phosphate clusters on the a and caseins. These are indicated by the rings at one end of the molecule. Following a number of observations of the composition of casein following ultra-centrifgual fractionation, Morr proposed the model shown in figure 4 a few years later. 6

7 Figure 4. Model for casein micelles proposed by Morr. This model is best viewed as a variation of the model proposed by Waugh. The hydrophobic a and b caseins are located with the dotted circles and are coated by a layer of b casein. The colloidal calcium phosphate is represented by the S in the diagram that connect the sub micelles. This is a very porous molecule and would accommodate a large amount of water. The diagram suggests that soluble casein could enter and leave the micelle, but the nature of 7

8 the interaction is not specified. The relatively uniform size of the sub-micelles do not readily explain the differences in size of micelles with differing b casein contents. Figure 5. Conceptual model of a casein micelle containing about 40 subunits. The lighter surface represents As and b casein polymers ( hydrophobic area ). The darker patches cover about 20% of the surface area and represent associated k casein polymers ( hydrophillic area ). The model provides for open channels through the micelle. Further growth is impeded by the extensive hydrophillic peripheral surface. Adapted from Slattery and Evard. Properties of Casein The open and flexible nature of the casein makes it very unusual unusual. While they may have a preferred secondary and tertiary structure, they are often in other conformations. These other structures must expose hydrophobic groups to contact with water. The structures attained by casein can accommodate this contact. For most proteins, unfolding and exposure of hydrophobic groups to water results in unstable structures. The proteins must refold to lower the contact with water and precipitation often results. Because casein exists in open 8

9 structures to begin with, it is not as sensitive to structural alterations. For example, casein is very stable to heating. Casein maybe exposed to boiling for extended periods of time and remain totally soluble. This is an extremely useful property. Casein also finds applications where flexibility is required for functionality. Most proteins that contain significant amounts of strong secondary and tertiary structure require time to unfold at air or oil interfaces. The time required depends upon the flexibility of the protein. The most stable air cells and lipid droplets result from proteins that are able to quickly rearrange their structures and lower the interfacial free energy. Casein functions very well in these applications and there is very little lag between the time the molecules arrive at the interface and they exert their full functional affect. This is why Calcium caseinate is highly absorbable High solution viscosity is a result of the very open, nearly random, structures of casein molecules. Calcium caseinate finds applications in products were high viscosity is required. The lack of solubility in the presence of calcium changes the behavior of casein in its presence. As calcium is added to a solution of casein, a number of changes are evident. The calcium will cause aggregation of casein into structures that resemble micromicelles. Calcium caseinate should be selected when a solution of relatively low viscosity and high turbidity (milky appearance) is desired. Casein also exhibits melting properties that are unique among proteins. Following limited proteolysis, casein will become thermoplastic and will flow beautifully upon heating. A similar affect can be achieved by chelation of some of the calcium ions 9

10 present. These phenomena are the basis for the melting of natural cheeses. Structure must exist before a substance can be said to melt. With caseins this structure may be obtained by precipitation with calcium, acid. Casein does not form thermal gels and has little functionality in applications that require temperature set. High heat stability and the ability to melt are the two properties of caseinates that make them difficult to replace in many food applications, especially protein formulations. 10

RESEARCH ON THE INFLUENCE OF MICROWAVE TREATMENT ON MILK COMPOSITION

RESEARCH ON THE INFLUENCE OF MICROWAVE TREATMENT ON MILK COMPOSITION Bulletin of the Transilvania University of Braşov Vol. 3 (52) - 2010 Series II: Forestry Wood Industry Agricultural Food Engineering RESEARCH ON THE INFLUENCE OF MICROWAVE TREATMENT ON MILK COMPOSITION

More information

Cell Membrane Structure (1.3) IB Diploma Biology

Cell Membrane Structure (1.3) IB Diploma Biology Cell Membrane Structure (1.3) IB Diploma Biology Essential idea: The structure of biological membranes makes them fluid and dynamic http://www.flickr.com/photos/edsweeney/6346198056/ 1.3.1 Phospholipids

More information

Colloidal Stability and Whiskey (and other aged Spirit) Hazes. Gary Spedding, PhD. BDAS, LLC, Lexington, KY

Colloidal Stability and Whiskey (and other aged Spirit) Hazes. Gary Spedding, PhD. BDAS, LLC, Lexington, KY Colloidal Stability and Whiskey (and other aged Spirit) Hazes Gary Spedding, PhD. BDAS, LLC, Lexington, KY At BDAS, LLC we are frequently asked about hazes and particulate formation in craft spirits. While

More information

Macromolecules. Note: If you have not taken Chemistry 11 (or if you ve forgotten some of it), read the Chemistry Review Notes on your own.

Macromolecules. Note: If you have not taken Chemistry 11 (or if you ve forgotten some of it), read the Chemistry Review Notes on your own. Macromolecules Note: If you have not taken Chemistry 11 (or if you ve forgotten some of it), read the Chemistry Review Notes on your own. Macromolecules are giant molecules made up of thousands or hundreds

More information

Paper No. 01. Paper Title: Food Chemistry. Module-16: Protein Structure & Denaturation

Paper No. 01. Paper Title: Food Chemistry. Module-16: Protein Structure & Denaturation Paper No. 01 Paper Title: Food Chemistry Module-16: Protein Structure & Denaturation The order of amino acids in a protein molecule is genetically determined. This primary sequence of amino acids must

More information

BCM 101 BIOCHEMISTRY Week 4 Practical Chemistry of proteins

BCM 101 BIOCHEMISTRY Week 4 Practical Chemistry of proteins BCM 101 BIOCHEMISTRY Week 4 Practical Chemistry of proteins The word protein is derived from the Greek word proteios, which means of primary importance. In fact, proteins plays an important role in all

More information

Development of Nutrient Delivery Systems: Ingredients & Challenges

Development of Nutrient Delivery Systems: Ingredients & Challenges Development of Nutrient Delivery Systems David Julian McClements and Hang Xiao Department of Food Science University of Massachusetts Development of Nutrient Delivery Systems: Ingredients & Challenges

More information

GLOBAL SPECIALTY INGREDIENTS (M) SDN BHD ( M)

GLOBAL SPECIALTY INGREDIENTS (M) SDN BHD ( M) 2 Product List Summary Product Category Products \ Brand Name STANDARD LECITHIN PREMIUM/SPECIAL LECITHIN LECITHIN COMPOUND MODIFIED LECITHIN PURE DE-OILED LECITHIN MCT OIL 3 Product Name: STERNFINE - Standard

More information

The production complexity of a complex fluid

The production complexity of a complex fluid The production complexity of a complex fluid Gil Katz 1, Uzi Merin 2, Gabriel Leitner 3 1 S.A.E. Afikim, Israel 2 A.R.O., The Volcani Center, Israel 3 Kimron Veterinary Institute, Israel Outline Introduction

More information

BIOLOGICAL MOLECULES. Although many inorganic compounds are essential to life, the vast majority of substances in living things are organic compounds.

BIOLOGICAL MOLECULES. Although many inorganic compounds are essential to life, the vast majority of substances in living things are organic compounds. BIOLOGY 12 BIOLOGICAL MOLECULES NAME: Although many inorganic compounds are essential to life, the vast majority of substances in living things are organic compounds. ORGANIC MOLECULES: Organic molecules

More information

Practice Questions for Biochemistry Test A. 1 B. 2 C. 3 D. 4

Practice Questions for Biochemistry Test A. 1 B. 2 C. 3 D. 4 Practice Questions for Biochemistry Test 1. The quaternary structure of a protein is determined by: A. interactions between distant amino acids of the same polypeptide. B.interactions between close amino

More information

B. semisolid materials consisting of hydrophilic and hydrophobic portions

B. semisolid materials consisting of hydrophilic and hydrophobic portions CHEM 470 Understanding Emulsions I. Definitions A. Any heterogeneous system which has at least one immiscible or barely miscible liquid dispersed in another liquid in the form of tiny droplets. A. Becher,

More information

Cell Walls, the Extracellular Matrix, and Cell Interactions (part 1)

Cell Walls, the Extracellular Matrix, and Cell Interactions (part 1) 14 Cell Walls, the Extracellular Matrix, and Cell Interactions (part 1) Introduction Many cells are embedded in an extracellular matrix which is consist of insoluble secreted macromolecules. Cells of bacteria,

More information

AP BIOLOGY: READING ASSIGNMENT FOR CHAPTER 5

AP BIOLOGY: READING ASSIGNMENT FOR CHAPTER 5 1) Complete the following table: Class Monomer Functions Carbohydrates 1. 3. Lipids 1. 3. Proteins 1. 3. 4. 5. 6. Nucleic Acids 1. 2) Circle the atoms of these two glucose molecules that will be removed

More information

Life s molecular diversity is based on the. properties of carbon. Chain Ring Branching chain

Life s molecular diversity is based on the. properties of carbon. Chain Ring Branching chain Carbon Compounds Life s molecular diversity is based on the properties of carbon Chain Ring Branching chain The Chemistry of Carbon : carbon based Carbon can make 4 covalent bonds The foundation of organic

More information

Quiz 8 Introduction to Polymers (Chemistry)

Quiz 8 Introduction to Polymers (Chemistry) 051117 Quiz 8 Introduction to Polymers (Chemistry) (Figures from Heimenz Colloid Sci.) 1) Surfactants are amphiphilic molecules (molecules having one end hydrophobic and the other hydrophilic) and are

More information

SYNOPSIS STUDIES ON THE PREPARATION AND CHARACTERISATION OF PROTEIN HYDROLYSATES FROM GROUNDNUT AND SOYBEAN ISOLATES

SYNOPSIS STUDIES ON THE PREPARATION AND CHARACTERISATION OF PROTEIN HYDROLYSATES FROM GROUNDNUT AND SOYBEAN ISOLATES 1 SYNOPSIS STUDIES ON THE PREPARATION AND CHARACTERISATION OF PROTEIN HYDROLYSATES FROM GROUNDNUT AND SOYBEAN ISOLATES Proteins are important in food processing and food product development, as they are

More information

Proteins and their structure

Proteins and their structure Proteins and their structure Proteins are the most abundant biological macromolecules, occurring in all cells and all parts of cells. Proteins also occur in great variety; thousands of different kinds,

More information

APPLIED CHEMISTRY SURFACE TENSION, SURFACTANTS TYPES OF SURFACTANTS & THEIR USES IN TEXTILE PROCESSING

APPLIED CHEMISTRY SURFACE TENSION, SURFACTANTS TYPES OF SURFACTANTS & THEIR USES IN TEXTILE PROCESSING APPLIED CHEMISTRY SURFACE TENSION, SURFACTANTS TYPES OF SURFACTANTS & THEIR USES IN TEXTILE PROCESSING Lecture No. 13 & 14 2 Surface Tension This property of liquids arises from the intermolecular forces

More information

Emulsions. Purpose of emulsions and of emulsification:

Emulsions. Purpose of emulsions and of emulsification: Pharmacist Ghada Hamid Emulsions Emulsion is a dispersion in which the dispersed phase is composed of small globules of a liquid distributed throughout a vehicle in which it is immiscible. The dispersed

More information

H 2 O. Liquid, solid, and vapor coexist in the same environment

H 2 O. Liquid, solid, and vapor coexist in the same environment Water H 2 O Liquid, solid, and vapor coexist in the same environment WATER MOLECULES FORM HYDROGEN BONDS Water is a fundamental requirement for life, so it is important to understand the structural and

More information

Head. Tail. Carboxyl group. group. group. air water. Hydrocarbon chain. lecture 5-sa Seth Copen Goldstein 2.

Head. Tail. Carboxyl group. group. group. air water. Hydrocarbon chain. lecture 5-sa Seth Copen Goldstein 2. Lipids Some lipid structures Organic compounds Amphipathic Polar head group (hydrophilic) Non-polar tails (hydrophobic) Lots of uses Energy storage Membranes Hormones Vitamins HO O C H 2 C CH 2 H 2 C CH

More information

Biological Chemistry. Is biochemistry fun? - Find it out!

Biological Chemistry. Is biochemistry fun? - Find it out! Biological Chemistry Is biochemistry fun? - Find it out! 1. Key concepts Outline 2. Condensation and Hydrolysis Reactions 3. Carbohydrates 4. Lipids 5. Proteins 6. Nucleic Acids Key Concepts: 1. Organic

More information

Mozzarella Cheese Making

Mozzarella Cheese Making Mozzarella Cheese Making Ricki s 30 Minute Mozzarella from New England CheeseMaking Supply Company http://www.cheesemaking.com/ Kathryn McCarthy, Professor Emerita Erin DiCaprio, Food Safety Extension

More information

Chapter 1 Membrane Structure and Function

Chapter 1 Membrane Structure and Function Chapter 1 Membrane Structure and Function Architecture of Membranes Subcellular fractionation techniques can partially separate and purify several important biological membranes, including the plasma and

More information

EDUCATIONAL OBJECTIVES

EDUCATIONAL OBJECTIVES EDUCATIONAL OBJECTIVES The lectures and reading assignments of BIS 2A are designed to convey a large number of facts and concepts that have evolved from modern studies of living organisms. In order to

More information

Honors Biology Chapter 3: Macromolecules PPT Notes

Honors Biology Chapter 3: Macromolecules PPT Notes Honors Biology Chapter 3: Macromolecules PPT Notes 3.1 I can explain why carbon is unparalleled in its ability to form large, diverse molecules. Diverse molecules found in cells are composed of carbon

More information

3.1.3 Lipids. Source: AQA Spec

3.1.3 Lipids. Source: AQA Spec alevelbiology.co.uk SPECIFICATION Triglycerides and phospholipids are two groups of lipid. Triglycerides are formed by the condensation of one molecule of glycerol and three molecules of fatty acid. A

More information

PRESS RELEASE. Food Ingredients Asia 2013: WACKER Showcases Highly Bioavailable Curcumin. Number 51

PRESS RELEASE. Food Ingredients Asia 2013: WACKER Showcases Highly Bioavailable Curcumin. Number 51 Wacker Chemie AG Hanns-Seidel-Platz 4 81737 München, Germany www.wacker.com PRESS RELEASE Number 51 Food Ingredients Asia 2013: WACKER Showcases Highly Bioavailable Curcumin Munich/Bangkok, September 11,

More information

Biology Chapter 2 Review

Biology Chapter 2 Review Biology Chapter 2 Review Vocabulary: Define the following words on a separate piece of paper. Element Compound Ion Ionic Bond Covalent Bond Molecule Hydrogen Bon Cohesion Adhesion Solution Solute Solvent

More information

2.1.1 Biological Molecules

2.1.1 Biological Molecules 2.1.1 Biological Molecules Relevant Past Paper Questions Paper Question Specification point(s) tested 2013 January 4 parts c and d p r 2013 January 6 except part c j k m n o 2012 June 1 part ci d e f g

More information

Physical Pharmacy. Interfacial phenomena. Khalid T Maaroof MSc. Pharmaceutical sciences School of pharmacy Pharmaceutics department

Physical Pharmacy. Interfacial phenomena. Khalid T Maaroof MSc. Pharmaceutical sciences School of pharmacy Pharmaceutics department Physical Pharmacy Interfacial phenomena Khalid T Maaroof MSc. Pharmaceutical sciences School of pharmacy Pharmaceutics department 1 Introduction The boundary between two phases is generally described as

More information

Lecture Series 2 Macromolecules: Their Structure and Function

Lecture Series 2 Macromolecules: Their Structure and Function Lecture Series 2 Macromolecules: Their Structure and Function Reading Assignments Read Chapter 4 (Protein structure & Function) Biological Substances found in Living Tissues The big four in terms of macromolecules

More information

Biochemistry Macromolecules and Enzymes. Unit 02

Biochemistry Macromolecules and Enzymes. Unit 02 Biochemistry Macromolecules and Enzymes Unit 02 Organic Compounds Compounds that contain CARBON are called organic. What is Carbon? Carbon has 4 electrons in outer shell. Carbon can form covalent bonds

More information

Right time, right place: bioactive delivery systems

Right time, right place: bioactive delivery systems Right time, right place: bioactive delivery systems Zhigao Niu, Alejandra Acevedo-Fani & Ali Rashidinejad Science of Food Team Riddet Institute, Massey University Developing High-Value Foods Food Systems

More information

Chapter 7: Membranes

Chapter 7: Membranes Chapter 7: Membranes Roles of Biological Membranes The Lipid Bilayer and the Fluid Mosaic Model Transport and Transfer Across Cell Membranes Specialized contacts (junctions) between cells What are the

More information

Recombination theory and technology and Recombined UHT milk. Ranjan Sharma.

Recombination theory and technology and Recombined UHT milk. Ranjan Sharma. Recombination theory and technology and Recombined UHT milk Ranjan Sharma 1 Outlines Background Recombining theory Recombined UHT milk 2 Descriptions Natural milk - white fluid produced by animals and

More information

Lecture Series 2 Macromolecules: Their Structure and Function

Lecture Series 2 Macromolecules: Their Structure and Function Lecture Series 2 Macromolecules: Their Structure and Function Reading Assignments Read Chapter 4 (Protein structure & Function) Biological Substances found in Living Tissues The big four in terms of macromolecules

More information

Biology. Chapter 3. Molecules of Life. Concepts and Applications 9e Starr Evers Starr

Biology. Chapter 3. Molecules of Life. Concepts and Applications 9e Starr Evers Starr Biology Concepts and Applications 9e Starr Evers Starr Chapter 3 Molecules of Life 2015 3.1 What Are the Molecules of Life? The molecules of life contain a high proportion of carbon atoms: Complex carbohydrates

More information

1.4. Lipids - Advanced

1.4. Lipids - Advanced 1.4. Lipids - Advanced www.ck12.org In humans, triglycerides are a mechanism for storing unused calories, and their high concentration in blood correlates with the consumption of excess starches and other

More information

Biopharmaceutics Dosage form factors influencing bioavailability Lec:5

Biopharmaceutics Dosage form factors influencing bioavailability Lec:5 Biopharmaceutics Dosage form factors influencing bioavailability Lec:5 Ali Y Ali BSc Pharmacy MSc Industrial Pharmaceutical Sciences Dept. of Pharmaceutics School of Pharmacy University of Sulaimani 09/01/2019

More information

the nature and importance of biomacromolecules in the chemistry of the cell: synthesis of biomacromolecules through the condensation reaction lipids

the nature and importance of biomacromolecules in the chemistry of the cell: synthesis of biomacromolecules through the condensation reaction lipids the nature and importance of biomacromolecules in the chemistry of the cell: synthesis of biomacromolecules through the condensation reaction lipids and their sub-units; the role of lipids in the plasma

More information

Lecture Series 2 Macromolecules: Their Structure and Function

Lecture Series 2 Macromolecules: Their Structure and Function Lecture Series 2 Macromolecules: Their Structure and Function Reading Assignments Read Chapter 4 (Protein structure & Function) Biological Substances found in Living Tissues The big four in terms of macromolecules

More information

Self-Guided Learning Module Handout

Self-Guided Learning Module Handout Self-Guided Learning Module Handout Day 1 Bell Ringer Quiz (5 minutes) Identify the following separation techniques as being suitable for separating liquid-based homogeneous or heterogeneous mixtures.

More information

BASIC BIOCHEMISTRY AND CELL ORGANISATION

BASIC BIOCHEMISTRY AND CELL ORGANISATION BASIC BIOCHEMISTRY AND CELL ORGANISATION (Specification points are highlighted in blue) 1. Chemical elements are joined together to form biological compounds (a) the key elements present as inorganic ions

More information

Amino Acids and Proteins Hamad Ali Yaseen, PhD MLS Department, FAHS, HSC, KU Biochemistry 210 Chapter 22

Amino Acids and Proteins Hamad Ali Yaseen, PhD MLS Department, FAHS, HSC, KU Biochemistry 210 Chapter 22 Amino Acids and Proteins Hamad Ali Yaseen, PhD MLS Department, FAHS, HSC, KU Hamad.ali@hsc.edu.kw Biochemistry 210 Chapter 22 Importance of Proteins Main catalysts in biochemistry: enzymes (involved in

More information

OCR (A) Biology A-level

OCR (A) Biology A-level OCR (A) Biology A-level Topic 2.2: Biological molecules Notes Water Water is a very important molecule which is a major component of cells, for instance: Water is a polar molecule due to uneven distribution

More information

Protein Structure and Function

Protein Structure and Function Protein Structure and Function Protein Structure Classification of Proteins Based on Components Simple proteins - Proteins containing only polypeptides Conjugated proteins - Proteins containing nonpolypeptide

More information

I. Fluid Mosaic Model A. Biological membranes are lipid bilayers with associated proteins

I. Fluid Mosaic Model A. Biological membranes are lipid bilayers with associated proteins Lecture 6: Membranes and Cell Transport Biological Membranes I. Fluid Mosaic Model A. Biological membranes are lipid bilayers with associated proteins 1. Characteristics a. Phospholipids form bilayers

More information

CHAPTER 6 FUNCTIONAL PROPERTIES OF PROTEIN HYDROLYSATES

CHAPTER 6 FUNCTIONAL PROPERTIES OF PROTEIN HYDROLYSATES 68 CHAPTER 6 FUNCTIONAL PROPERTIES OF PROTEIN HYDROLYSATES 6.1 INTRODUCTION Functional properties can be defined as the overall physicochemical properties of proteins in food systems during processing,

More information

Carbon s Bonding Pattern

Carbon s Bonding Pattern Organic Compounds It used to be thought that only living things could synthesize the complicated carbon compounds found in cells German chemists in the 1800 s learned how to do this in the lab, showing

More information

Biological Molecules. Carbohydrates, Proteins, Lipids, and Nucleic Acids

Biological Molecules. Carbohydrates, Proteins, Lipids, and Nucleic Acids Biological Molecules Carbohydrates, Proteins, Lipids, and Nucleic Acids Organic Molecules Always contain Carbon (C) and Hydrogen (H) Carbon is missing four electrons Capable of forming 4 covalent bonds

More information

Some Current Issues in Dairy Technology Where Neutrons Could Play a Role

Some Current Issues in Dairy Technology Where Neutrons Could Play a Role Some Current Issues in Dairy Technology Where Neutrons Could Play a Role Richard Ipsen (ri@life.ku.dk) Dairy Technology Department of Food Science University of Copenhagen What I Imagine Neutrons can do

More information

Macromolecules (Learning Objectives)

Macromolecules (Learning Objectives) Macromolecules (Learning Objectives) Recognize the role of water in synthesis and breakdown of polymers Name &recognize the monomer and the chemical bond that holds the polymeric structure of all biomolecules

More information

What are the molecules of life?

What are the molecules of life? Molecules of Life What are the molecules of life? Organic Compounds Complex Carbohydrates Lipids Proteins Nucleic Acids Organic Compounds Carbon- hydrogen based molecules From Structure to Function Ø Carbon

More information

BIOCHEMISTRY. How Are Macromolecules Formed? Dehydration Synthesis or condensation reaction Polymers formed by combining monomers and removing water.

BIOCHEMISTRY. How Are Macromolecules Formed? Dehydration Synthesis or condensation reaction Polymers formed by combining monomers and removing water. BIOCHEMISTRY Organic compounds Compounds that contain carbon are called organic. Inorganic compounds do not contain carbon. Carbon has 4 electrons in outer shell. Carbon can form covalent bonds with as

More information

The Structure and Function of Macromolecules (Chapter Five)

The Structure and Function of Macromolecules (Chapter Five) 1 Most Macromolecules are Polymers The Structure and Function of Macromolecules (Chapter Five) POLYMER PRINCIPLES The four main classes of macromolecules are carbohydrates, lipids, proteins and nucleic

More information

I. Polymers & Macromolecules Figure 1: Polymers. Polymer: Macromolecule: Figure 2: Polymerization via Dehydration Synthesis

I. Polymers & Macromolecules Figure 1: Polymers. Polymer: Macromolecule: Figure 2: Polymerization via Dehydration Synthesis I. Polymers & Macromolecules Figure 1: Polymers Polymer: Macromolecule: Figure 2: Polymerization via Dehydration Synthesis 1 Dehydration Synthesis: Figure 3: Depolymerization via Hydrolysis Hydrolysis:

More information

Enhanced delivery methods for greater efficacy

Enhanced delivery methods for greater efficacy On-Line Formulation Training - Anywhere In The World - Enhanced delivery methods for greater efficacy Belinda Carli Director, Institute of Personal Care Science Image showing absorbance in the outer stratum

More information

Lecture 5. Secondary Structure of Proteins. "-Pleated Sheet. !-Helix. Examples of Protein Structures

Lecture 5. Secondary Structure of Proteins. -Pleated Sheet. !-Helix. Examples of Protein Structures econdary tructure of Proteins Lecture 5 Proteins- tructure and Properties Chapter 21 ections 7-11! There are two main aspects of 2 o structure!the type of fold or bend in the protein chain!the types of

More information

Carbon. Isomers. The Chemical Building Blocks of Life

Carbon. Isomers. The Chemical Building Blocks of Life The Chemical Building Blocks of Life Carbon Chapter 3 Framework of biological molecules consists primarily of carbon bonded to Carbon O, N, S, P or H Can form up to 4 covalent bonds Hydrocarbons molecule

More information

1)Nitrite is added to meats specifically to inhibit growth of. 3) Which of the following statements about viruses is NOT correct?

1)Nitrite is added to meats specifically to inhibit growth of. 3) Which of the following statements about viruses is NOT correct? 1)Nitrite is added to meats specifically to inhibit growth of a) Staphylococcus aureus b) Clostridium botulinum c) Bacillus cereus d) Salmonella spp. e) Listeria monocytogenes 2) Pasteurization kills all

More information

Biomolecules. Biomolecules. Carbohydrates. Biol 219 Lec 3 Fall Polysaccharides. Function: Glucose storage Fig. 2.2

Biomolecules. Biomolecules. Carbohydrates. Biol 219 Lec 3 Fall Polysaccharides. Function: Glucose storage Fig. 2.2 Biomolecules Biomolecules Monomers Polymers Carbohydrates monosaccharides polysaccharides fatty acids triglycerides Proteins amino acids polypeptides Nucleic Acids nucleotides DNA, RNA Carbohydrates Carbohydrates

More information

BIOCHEMISTRY & MEDICINE:

BIOCHEMISTRY & MEDICINE: BIOCHEMISTRY & MEDICINE: INTRODUCTION Biochemistry can be defined as the science of the chemical basis of life (Gk bios "life"). The cell is the structural unit of living systems. Thus, biochemistry can

More information

Lipids and Membranes

Lipids and Membranes Lipids Lipids are hydrophobic or amphiphilic insoluble in water soluble in organic solvents soluble in lipids Lipids are used as energy storage molecules structural components of membranes protective molecules

More information

Cellular Neurophysiology I Membranes and Ion Channels

Cellular Neurophysiology I Membranes and Ion Channels Cellular Neurophysiology I Membranes and Ion Channels Reading: BCP Chapter 3 www.bioelectriclab All living cells maintain an electrical potential (voltage) across their membranes (V m ). Resting Potential

More information

The Structure and Function of Large Biological Molecules

The Structure and Function of Large Biological Molecules NAME DATE Chapter 5 - The Structure and Function of Large Biological Molecules Guided Reading Concept 5.1: Macromolecules are polymers, built from monomers 1. The large molecules of all living things fall

More information

Chapter 2 pt 2. Atoms, Molecules, and Life. Gregory Ahearn. John Crocker. Including the lecture Materials of

Chapter 2 pt 2. Atoms, Molecules, and Life. Gregory Ahearn. John Crocker. Including the lecture Materials of Chapter 2 pt 2 Atoms, Molecules, and Life Including the lecture Materials of Gregory Ahearn University of North Florida with amendments and additions by John Crocker Copyright 2009 Pearson Education, Inc..

More information

Chapter 6, Part Read Activity 6A - Choosing a Meal and orally attempt the procedure and discussion on page 99.

Chapter 6, Part Read Activity 6A - Choosing a Meal and orally attempt the procedure and discussion on page 99. Science 9 Unit 1 Worksheet Chapter 6, Part 1. 1. Read Activity 6A - Choosing a Meal and orally attempt the procedure and discussion on page 99. 2. Your body is made up of,,,, and many other materials.

More information

Chapter Three (Biochemistry)

Chapter Three (Biochemistry) Chapter Three (Biochemistry) 1 SECTION ONE: CARBON COMPOUNDS CARBON BONDING All compounds can be classified in two broad categories: organic compounds and inorganic compounds. Organic compounds are made

More information

Structural aspects of the casein micelle

Structural aspects of the casein micelle Structural aspects of the casein micelle M. Madende & G. Osthoff T: +27(0)51 401 9111 info@ufs.ac.za www.ufs.ac.za Contents Introduction Caseins Casein micelle Diversity PTMs Casein micelle models Biological

More information

(65 pts.) 27. (10 pts.) 28. (15 pts.) 29. (10 pts.) TOTAL (100 points) Moorpark College Chemistry 11 Spring Instructor: Professor Gopal

(65 pts.) 27. (10 pts.) 28. (15 pts.) 29. (10 pts.) TOTAL (100 points) Moorpark College Chemistry 11 Spring Instructor: Professor Gopal Moorpark College Chemistry 11 Spring 2012 Instructor: Professor Gopal Examination # 5: Section Five May 1, 2012 Name: (print) GOOD LUCK! Directions: Make sure your examination contains TWELVE total pages

More information

Proteins. (b) Protein Structure and Conformational Change

Proteins. (b) Protein Structure and Conformational Change Proteins (b) Protein Structure and Conformational Change Protein Structure and Conformational Change Proteins contain the elements carbon (C), hydrogen (H), oxygen (O2) and nitrogen (N2) Some may also

More information

Fats and oils. Three fatty acids combine with one glycerol to form a triglyceride Fat found in foods is made up of triglycerides Fat

Fats and oils. Three fatty acids combine with one glycerol to form a triglyceride Fat found in foods is made up of triglycerides Fat Fats and oils Lipids is a general term for both fats and oils Fats are lipids that are solid at room temperature while oils are lipids that are liquid at room temperature Fats and oils are made up of carbon,

More information

There are two groups of minerals: Major salt components: K, Na, Ca, Mg, Cl -, sulfate, phosphate, and HCO

There are two groups of minerals: Major salt components: K, Na, Ca, Mg, Cl -, sulfate, phosphate, and HCO MINERALS INTRODUCTION 90 elements in the earth s s crust, 25 are known to be essential to life, they are present in living cells, including in food. Food contains additional, non-essential elements. Some

More information

Question Expected Answers Mark Additional Guidance 1 (a) (i) peptide (bond / link) ; 1 DO NOT CREDIT dipeptide (a) (ii) hydrolysis ;

Question Expected Answers Mark Additional Guidance 1 (a) (i) peptide (bond / link) ; 1 DO NOT CREDIT dipeptide (a) (ii) hydrolysis ; Question Expected Answers Mark Additional Guidance 1 (a) (i) peptide (bond / link) ; 1 DO NOT CREDIT dipeptide (a) (ii) hydrolysis ; IGNORE name of bond (b) 1 water / H O, is, added / used / needed ; substrate

More information

Unit 3: Chemistry of Life Mr. Nagel Meade High School

Unit 3: Chemistry of Life Mr. Nagel Meade High School Unit 3: Chemistry of Life Mr. Nagel Meade High School IB Syllabus Statements 3.2.1 Distinguish between organic and inorganic compounds. 3.2.2 Identify amino acids, glucose, ribose and fatty acids from

More information

The Structure and Function of Macromolecules

The Structure and Function of Macromolecules The Structure and Function of Macromolecules Macromolecules are polymers Polymer long molecule consisting of many similar building blocks. Monomer the small building block molecules. Carbohydrates, proteins

More information

From Atoms to Cells: Fundamental Building Blocks. Models of atoms. A chemical connection

From Atoms to Cells: Fundamental Building Blocks. Models of atoms. A chemical connection From Atoms to Cells: A chemical connection Fundamental Building Blocks Matter - all materials that occupy space & have mass Matter is composed of atoms Atom simplest form of matter not divisible into simpler

More information

Ulrick&Short. Technical Briefing Replacing Milk Solids. starches flours fibres proteins. Technically the Best

Ulrick&Short. Technical Briefing Replacing Milk Solids. starches flours fibres proteins. Technically the Best Ulrick&Short Technically the Best Technical Briefing Replacing Milk Solids starches flours fibres proteins Ulrick&Short Technically the Best Replacing Milk Solids Milk solids are what is left after all

More information

the properties of carbon

the properties of carbon Carbon Compounds Learning Objectives Describe the unique qualities of carbon. Describe the structures and functions of each of the four groups of macromolecules. For each macromolecule you will need to

More information

Chapter 2: Biochemistry

Chapter 2: Biochemistry Chapter 2: Biochemistry Biochemistry Biochemistry is the study of chemical makeup and reactions of living matter All chemicals in the body are either organic & inorganic Organic compounds contain carbon

More information

Functions of Lipids. - Storage Fats are long term energy (9 kcal/g) while carbohydrates are quick energy (4 kcal/g).

Functions of Lipids. - Storage Fats are long term energy (9 kcal/g) while carbohydrates are quick energy (4 kcal/g). Chapter 8: Lipids Functions of Lipids - Storage Fats are long term energy (9 kcal/g) while carbohydrates are quick energy (4 kcal/g). - Membrane Components Lipid barriers keep water out. - Messengers Hormones

More information

Non-Food Uses of Polysaccharides

Non-Food Uses of Polysaccharides Non-Food Uses of Polysaccharides John Mitchell John.Mitchell@biopolymersolutions.co.uk Acknowledgements Fundamentals of Hydrocolloid Technology Course (2003-2009) Rob Winwood Colin Melia Steve Harding

More information

Macro molecule = is all the reactions that take place in cells, the sum of all chemical reactions that occur within a living organism Anabolism:

Macro molecule = is all the reactions that take place in cells, the sum of all chemical reactions that occur within a living organism Anabolism: Macromolecule Macro molecule = molecule that is built up from smaller units The smaller single subunits that make up macromolecules are known as Joining two or more single units together form a M is all

More information

The building blocks of life.

The building blocks of life. The building blocks of life. The 4 Major Organic Biomolecules The large molecules (biomolecules OR polymers) are formed when smaller building blocks (monomers) bond covalently. via anabolism Small molecules

More information

Nutritional Oil Powder Series. Medium-Chain Triglyceride (MCT) Powder

Nutritional Oil Powder Series. Medium-Chain Triglyceride (MCT) Powder Nutritional Oil Powder Series Medium-Chain Triglyceride (MCT) Powder Introduction Application Challenges for MCT Oil in Food Formulae Microencapsulation is the Solution Microencapsulated MCT Powder Summary

More information

Anatomy & Physiology I. Macromolecules

Anatomy & Physiology I. Macromolecules Anatomy & Physiology I Macromolecules Many molecules in the human body are very large, consisting of hundreds or even thousands of atoms. These are called macromolecules. Four types of macromolecules are

More information

Biology: Life on Earth Chapter 3 Molecules of life

Biology: Life on Earth Chapter 3 Molecules of life Biology: Life on Earth Chapter 3 Molecules of life Chapter 3 Outline 3.1 Why Is Carbon So Important in Biological Molecules? p. 38 3.2 How Are Organic Molecules Synthesized? p. 38 3.3 What Are Carbohydrates?

More information

2- Minimum toxic concentration (MTC): The drug concentration needed to just produce a toxic effect.

2- Minimum toxic concentration (MTC): The drug concentration needed to just produce a toxic effect. BIOPHARMACEUTICS Drug Product Performance Parameters: 1- Minimum effective concentration (MEC): The minimum concentration of drug needed at the receptors to produce the desired pharmacologic effect. 2-

More information

Biological Molecules B Lipids, Proteins and Enzymes. Triglycerides. Glycerol

Biological Molecules B Lipids, Proteins and Enzymes. Triglycerides. Glycerol Glycerol www.biologymicro.wordpress.com Biological Molecules B Lipids, Proteins and Enzymes Lipids - Lipids are fats/oils and are present in all cells- they have different properties for different functions

More information

Details of Organic Chem! Date. Carbon & The Molecular Diversity of Life & The Structure & Function of Macromolecules

Details of Organic Chem! Date. Carbon & The Molecular Diversity of Life & The Structure & Function of Macromolecules Details of Organic Chem! Date Carbon & The Molecular Diversity of Life & The Structure & Function of Macromolecules Functional Groups, I Attachments that replace one or more of the hydrogens bonded to

More information

The source of protein structures is the Protein Data Bank. The unit of classification of structure in SCOP is the protein domain.

The source of protein structures is the Protein Data Bank. The unit of classification of structure in SCOP is the protein domain. UNIT 14 PROTEINS DEFINITION A large molecule composed of one or more chains of amino acids in a specific order; the order is determined by the base sequence of nucleotides in the gene that codes for the

More information

Organic Compounds: Carbohydrates

Organic Compounds: Carbohydrates Organic Compounds: Carbohydrates Carbohydrates include sugars and starches Contain the elements C,H,O (H & O ratio like water, 2 H s to 1O), ex. glucose C 6 H 12 O 6 Word means hydrated carbon Classified

More information

NOTE: For studying for the final, you only have to worry about those with an asterix (*)

NOTE: For studying for the final, you only have to worry about those with an asterix (*) NOTE: For studying for the final, you only have to worry about those with an asterix (*) (*)1. An organic compound is one that: a. contains carbon b. is slightly acidic c. forms long chains d. is soluble

More information

Easy, fast and reliable!

Easy, fast and reliable! Product Overview Easy, fast and reliable! Special easy-to-use preparations for film coating, sugar-coating, colouring and tabletting. s film coating products are one-step coating systems for pharmaceutical

More information

A. Lipids: Water-Insoluble Molecules

A. Lipids: Water-Insoluble Molecules Biological Substances found in Living Tissues Lecture Series 3 Macromolecules: Their Structure and Function A. Lipids: Water-Insoluble Lipids can form large biological molecules, but these aggregations

More information

EH1008 Biomolecules. Inorganic & Organic Chemistry. Water. Lecture 2: Inorganic and organic chemistry.

EH1008 Biomolecules. Inorganic & Organic Chemistry. Water. Lecture 2: Inorganic and organic chemistry. EH1008 Biomolecules Lecture 2: Inorganic and organic chemistry limian.zheng@ucc.ie 1 Inorganic & Organic Chemistry Inorganic Chemistry: generally, substances that do not contain carbon Inorganic molecules:

More information

BIOLOGICAL MOLECULES REVIEW-UNIT 1 1. The factor being tested in an experiment is the A. data. B. variable. C. conclusion. D. observation. 2.

BIOLOGICAL MOLECULES REVIEW-UNIT 1 1. The factor being tested in an experiment is the A. data. B. variable. C. conclusion. D. observation. 2. BIOLOGICAL MOLECULES REVIEW-UNIT 1 1. The factor being tested in an experiment is the A. data. B. variable. C. conclusion. D. observation. 2. A possible explanation for an event that occurs in nature is

More information

Why Carbon? What does a carbon atom look like?

Why Carbon? What does a carbon atom look like? Biomolecules Organic Chemistry In the 1800 s it was believed to be impossible to recreate molecules in a lab Thus, the study of organic chemistry was originally the study of molecules in living organisms

More information