An Introduction to Enzyme Structure and Function

Size: px
Start display at page:

Download "An Introduction to Enzyme Structure and Function"

Transcription

1 An Introduction to Enzyme Structure and Function

2 Enzymes Many reactions in living systems are similar to laboratory reactions. 1. Reactions in living systems often occur with the aid of enzymes. 2. Enzymes are proteins produced by living systems which catalyze specific biological reactions. 3. ther requirements: vitamins, minerals, or hormones in order to catalyze a specific reaction.

3 Enzymes Enzymes are roteins Enzymes possess unique catalytic properties which depend upon their structural integrity. 1. artial hydrolysis of an enzyme results in the loss of enzymatic activity. 2. Activity is also lost under conditions that denature enzymes: high temperature and extremes of ph.

4 Enzymes Enzymes are roteins Catalysis takes place at active sites on the enzyme s surface. 1. An active site is a cleft or indentation occupying a very small part of the enzyme s surface. 2. art of the active site s structure provides the catalytic ability of the enzyme. 3. art of the active site s structure functions as a binding site for the substrates of the reaction being catalyzed.

5 Enzymes Active Site Enzyme Enzyme-Substrate Complex

6 Enzymes Enzymes are Catalysts A catalyst lowers the activation energy of a reaction by providing a different pathway leading to products.

7 What is a Catalyst Reactants roducts uncatalyzed reaction otential energy Ea Ea catalyzed reaction Reactants roducts Reaction coordinate

8 Enzymes Enzymes are Catalysts A catalyst lowers the activation energy of a reaction by providing a different pathway leading to products. It does so by becoming an active participant in the chemical process, but it emerges unchanged. It does not alter the results of a reaction, it changes only the speed at which the reaction takes place.

9 Enzymes are Superior Catalysts 1. Catalytic power - Most biochemical reactions would occur too slowly without a catalyst. 2. Specificity - The selectivity of enzymes towards the thousands of different possible substrates that exist in a cell is very strong. Specificity can be toward a specific compound, a specific type of chemical bond, or even a specific stereoisomer. 3. Enzymes can be regulated by a biological response. 4. Enzymes function within physiological constraints. a. ~ 37º c. Aqueous system b. ~ ph d. Limited reagents

10 Enzyme Substrate Interactions Enzyme-substrate attractions takes place via non-covalent intermolecular forces. Enzyme Surface Substrate Molecule

11 Enzyme Substrate Interactions The enzyme-substrate interaction at the active site is sometimes called a lock and key fit (a). (The substrate is complementary to the active site in both shape and stereochemistry.)

12 Enzyme Substrate Interactions In most cases, the enzyme changes upon substrate binding This phenomenon is called inducible fit (b). (The enzyme changes the complementary character of the binding site as it binds the substrate.)

13 Inducible-Fit Model

14 Enzyme Cofactors and Coenzymes Most enzymes are combined with other small chemical entities called cofactors or coenzymes. The protein portion alone is called the apoenzyme. The protein portion together with its cofactors and coenzymes is called the holoenzyme. ne purpose of cofactors and coenzymes is to maintain the protein portion of the enzyme in the correct conformation. Cofactors are usually metal cations. Coenzymes are usually organic in nature.

15 Enzyme Cofactors and Coenzymes apoenzyme cofactors or coenzymes active enzyme

16 Enzyme Cofactors and Coenzymes Many catalytic functions cannot be accomplished using the functional groups provided by the amino acid side chains of a protein alone. In these cases, coenzymes carrying the necessary organic functional groups, are transiently bound to the apoenzyme. These coenzymes are usually derived from vitamins.

17 Enzyme Classification Classification according to SUBSTRATE (the specific compound upon which an enzyme acts) SUBSTRATE(S) Enzyme RDUCT(S) Examples: Galactosidase, Ribonuclease, Urease, Lipase, eptidase, Esterase, Amidase Classification according to TYE F REACTIN CATALYZED 1. XIDREDUCTASES 2. TRANSFERASES 3. HYDRLASES 4. ISMERASES 5. LYASES - Catalyze addition or 6. LIGASES - Catalyze formation of removal of small molecules bonds using the energy from AT hydrolysis

18 fficial Classes of Enzymes

19 fficial Classes of Enzymes

20 fficial Classes of Enzymes 1. xidoreductases Alcohol dehydrogenase (EC ) (oxidation with NAD+) NAD+ NADH/H+ H 3 C H C H H H 3 C C H Ethanol Acetaldehyde 2. Transferases Hexokinase (EC ) (phosphorylation) CH 2 H AT AD CH H H H H H H H H D-Glucose D-Glucose-6-phosphate

21 fficial Classes of Enzymes 3. Hydrolases Carboxypeptidase A (EC ) (peptide bond cleavage) H 2 N R' C C N R C C N R' C C + H 3 N R C C H H H H H H H C-terminus of polypeptide Shortened polypeptide C-terminal residue 4. Lyases yruvate decarboxylase (EC ) (decarboxylation) C C yruvate CH 3 + H+ + C H C CH 3 Acetaldehyde

22 fficial Classes of Enzymes 5. Isomerases Maleate isomerase (EC ) (cis-trans isomerization) C H C C C C C C H C H H Maleate Fumarate 6. Ligases yruvate carboxylase (EC ) (carboxylation) C C CH 3 yruvate + C AT AD + i C C C CH 2 xaloacetate

23 Enzyme Activity If a fixed amount of enzyme is present (as is the case in most biological systems) the rate of an enzyme reaction can be measured as a function of the substrate concentration. The rate of the reaction reaches a maximum value as the substrate concentration is increased. At this point the enzyme is said to be saturated. When saturated with substrate, the enzyme activity is described as the turnover number of the enzyme: the number of substrate molecules converted into product molecules per enzyme molecule per unit time. Enzymes, may increase the rate of a reaction over that of the uncatalyzed reaction by factors up to 100,000,000.

24 Enzymes are Superior Catalysts Enzyme Reaction Turnover Number molecules/sec

25 Enzyme Activity If an excess of substrate is present (as is the case in most clinical laboratory test systems) the initial rate of an enzyme reaction can be measured as a function of the enzyme concentration. The rate of an enzyme catalyzed reaction also increases with an increase in the enzyme concentration. In the presence of excess substrate, the observed enzyme activity (per unit time) is proportional to the amount of enzyme present. This factor can be used in medical diagnosis of cell damage where cell contents leak from damaged cells.

26 Enzyme Activity : Temperature and ph What factors influence the 3-D conformation of an enzyme? Reaction Rate vs Temperature Reaction Rate vs ph

27 Enzyme Activity Blood levels of enzymes following heart attack Troponins Relative amount above normal Blood levels of troponins, creatine phosphokinase (CK-2), aspartate transaminase (AST), and lactate dehydrogenase (LDH) in the days following a heart attack.

28 Control of Enzyme Activity

29 Control of Enzyme Activity Which factors influence whether an enzyme reaction is taking place: 1. Is the enzyme present? 2. Is the substrate or cofactor present? 3. Is the enzyme in its correct 3-D conformation? 4. Is the active site of the enzyme vacant and ready to accept a substrate molecule?

30 Control of Enzyme Activity Is the enzyme present? 1. Enzymes are synthesized under the direction of a gene (a particular segment of DNA) a. Repressors - Bind to DNA and prevent protein synthesis b. Inducers - Cause a change in the repressor molecule which drops off DNA 2. Enzymes may be synthesized in an inactive form: RENZYME (zymogen) > ACTIVE ENZYME

31 Control of Enzyme Activity Are the substrate or necessary cofactors present? 1. Another enzyme might synthesize the substrate or cofactor. Enzyme 1 Enzyme 2 Enzyme 3 A B C D 2. Access of the substrate or cofactor to the enzyme may be limited by membrane permeability. 3. A necessary cofactor or precursor may not be present in the diet. (vitamin deficiency)

32 Control of Enzyme Activity What factors influence the 3-D conformation of an enzyme? Reaction Rate vs Temperature Reaction Rate vs ph

33 Biochemical Control Mechanisms Feedback Inhibition A molecule at the end of a biosynthetic pathway inhibits an enzyme at the beginning of the pathway. Enzyme 1 Enzyme 2 Enzyme 3 A B C D

34 Reversible Enzyme Inhibitors Inhibitors are molecules that affect activity of an enzyme towards its substrate. Competitive inhibitors: resemble the substrate but do not undergo a reaction. They bind to the active site and exclude the substrate. The binding is reversible and the inhibitor can be displaced by raising the substrate concentration. Uncompetitive inhibitor Uncompetitive inhibitors: are not structurally related to the substrate. They bind to a site on the enzyme distinct from the active site. Raising the substrate concentration does not reverse this type of inhibition.

35 Kinetics of Enzyme Inhibitors

36 Noncompetitive or Uncompetitive Inhibition inhibitor binds to enzyme-substrate complex, altering the enzyme s conformation enzyme-substrate complex forms enzyme-product complex releases product at a reduced rate or, in some cases, the inhibitor prevents the binding of a second substrate

37 Allosteric Control Mechanisms Many regulatory enzymes of metabolic activity are allosteric enzymes. The activity of an allosteric enzyme is controlled by the binding of specific molecules called activators and inhibitors. The activator or inhibitor binds to a site on the enzyme distinct from the substrate binding site. Binding of the activator or inhibitor results in a conformational change of the enzyme which either increases or decreases its catalytic activity.

38 Irreversible Enzyme Inhibitors Essentially oisons Alter the enzyme through a permanent covalent modification An example - The nerve gas Sarin inactivates the enzyme acetylcholine esterase. H 3 C CH 3 CH F CH 3 Sarin

39 roposed Mechanism for Acetylcholine Esterase Acetylcholine H 3 C H 3 C CH 3 CH 2 N CH 2 C CH 3 Acetic Acid H CH 3 C C + Glu H Ser H 3 C CH 3 CH 2 N CH 2 H Acetylcholine Esterase H 3 C Choline

40 roposed Mechanism for Nerve Gas Sarin C Glu H 3 C CH 3 CH F H CH 3 Sarin H 3 C Acetylcholine CH 3 CH 2 N CH 2 C CH 3 Ser H 3 C X Acetylcholine Esterase C Glu H CH 3 C 3 CH CH 3 + HF Ser Covalent Bond Irreversibly Inhibits Enzyme

41 Control of Enzyme Activity Which factors influence whether an enzyme reaction is taking place: 1. Is the enzyme present? 2. Is the substrate or cofactor present? 3. Is the enzyme in its correct 3-D conformation? 4. Is the active site of the enzyme vacant and ready to accept a substrate molecule?

42 Biochemical Control Mechanisms: Covalent Modification: Reversible phosphorylation and dephosphorylation. ENZYME Ser The Tyr ENZYME Ser The Tyr ENZYME ENZYME The modified enzyme (protein) may have increased or decreased biological activity

43 Covalent Modification of ne Enzyme by Another Many enzymes can exist in two forms, which are interconverted by phosphorylation and dephosphorylation. This covalent modification creates an enzyme with a different overall conformation. hosphorylation Ser Ser ENZYME Thr ENZYME Thr Tyr Tyr Dephosphorylation

44 A- Covalent Modification of ne Enzyme by Another The source of the phosphate groups is usually AT. A- A- A- A- A- Ser Ser ENZYME Thr ENZYME Thr Tyr Tyr

45 Covalent Modification of ne Enzyme by Another A- Specific enzymes are needed to catalyze the transformations. A- A- A- A- A- rotein Kinase Ser Ser ENZYME Thr ENZYME Thr Tyr Tyr rotein hosphatase

46 + Covalent Modification of ne Enzyme by Another By turning protein kinases and protein phosphatases on and off reciprocally, a cell choses which form of the enzyme will be present. + _ rotein Kinase Ser Ser ENZYME Thr ENZYME Thr Tyr Tyr rotein hosphatase _

47 Covalent Modification of ne Enzyme by Another rotein Kinase Ser Ser ENZYME Thr ENZYME Thr Tyr Tyr Sometimes it is the nonphosphorylated form of the target enzyme which is active. rotein hosphatase So where is the regulation? Sometimes it is the phosphorylated form of the target enzyme which is active.

48 Entire hysiological Responses Can Be Controlled In This Manner

49 hysiological Response rotein Kinase 1 rotein Kinase 2 hysiological Response

50 hysiological Response rotein hosphatase A hysiological Response rotein hosphatase B

Chapter 23 Enzymes 1

Chapter 23 Enzymes 1 Chapter 23 Enzymes 1 Enzymes Ribbon diagram of cytochrome c oxidase, the enzyme that directly uses oxygen during respiration. 2 Enzyme Catalysis Enzyme: A biological catalyst. With the exception of some

More information

ENZYMES: CLASSIFICATION, STRUCTURE

ENZYMES: CLASSIFICATION, STRUCTURE ENZYMES: CLASSIFICATION, STRUCTURE Enzymes - catalysts of biological reactions Accelerate reactions by a millions fold Common features for enzymes and inorganic catalysts: 1. Catalyze only thermodynamically

More information

FIRST BIOCHEMISTRY EXAM Tuesday 25/10/ MCQs. Location : 102, 105, 106, 301, 302

FIRST BIOCHEMISTRY EXAM Tuesday 25/10/ MCQs. Location : 102, 105, 106, 301, 302 FIRST BIOCHEMISTRY EXAM Tuesday 25/10/2016 10-11 40 MCQs. Location : 102, 105, 106, 301, 302 The Behavior of Proteins: Enzymes, Mechanisms, and Control General theory of enzyme action, by Leonor Michaelis

More information

Enzymes: The Catalysts of Life

Enzymes: The Catalysts of Life Chapter 6 Enzymes: The Catalysts of Life Lectures by Kathleen Fitzpatrick Simon Fraser University Activation Energy and the Metastable State Many thermodynamically feasible reactions in a cell that could

More information

Figure 1 Original Advantages of biological reactions being catalyzed by enzymes:

Figure 1 Original Advantages of biological reactions being catalyzed by enzymes: Enzyme basic concepts, Enzyme Regulation I III Carmen Sato Bigbee, Ph.D. Objectives: 1) To understand the bases of enzyme catalysis and the mechanisms of enzyme regulation. 2) To understand the role of

More information

Six Types of Enzyme Catalysts

Six Types of Enzyme Catalysts Six Types of Enzyme Catalysts Although a huge number of reactions occur in living systems, these reactions fall into only half a dozen types. The reactions are: 1. Oxidation and reduction. Enzymes that

More information

Enzymes. Enzyme. Aim: understanding the basic concepts of enzyme catalysis and enzyme kinetics

Enzymes. Enzyme. Aim: understanding the basic concepts of enzyme catalysis and enzyme kinetics Enzymes Substrate Enzyme Product Aim: understanding the basic concepts of enzyme catalysis and enzyme kinetics Enzymes are efficient Enzyme Reaction Uncatalysed (k uncat s -1 ) Catalysed (k cat s -1 )

More information

CHEM121. Unit 6: Enzymes. Lecture 10. At the end of the lecture, students should be able to:

CHEM121. Unit 6: Enzymes. Lecture 10. At the end of the lecture, students should be able to: CHEM121 Unit 6: Enzymes Lecture 10 At the end of the lecture, students should be able to: Define the term enzyme Name and classify enzymes according to the: type of reaction catalyzed type of specificity

More information

Chapter 20. Proteins & Enzymes. Proteins & Enzymes - page 1

Chapter 20. Proteins & Enzymes. Proteins & Enzymes - page 1 Chapter 20 Proteins & Enzymes Proteins & Enzymes - page 1 Proteins & Enzymes Part 1: Amino Acids The building blocks of proteins are -amino acids, small molecules that contain a carboxylic acid and an

More information

Enzymes. Enzymes accelerate chemical reactions as the engine accelerates this drag race.

Enzymes. Enzymes accelerate chemical reactions as the engine accelerates this drag race. Chapter 30 Enzymes Enzymes accelerate chemical reactions as the engine accelerates this drag race. Introduction to General, Organic, and Biochemistry, 10e John Wiley & Sons, Inc Morris Hein, Scott Pattison,

More information

CHAPTER 20: Enzymes 20.2 CLASSIFICATION. Page GENERAL CHARACTERISTICS ENZMATIC PROCESSES

CHAPTER 20: Enzymes 20.2 CLASSIFICATION. Page GENERAL CHARACTERISTICS ENZMATIC PROCESSES CAPTER 20: Enzymes Describe the general characteristics and functions of enzymes Identify the general function of cofactors Illustrate the mechanism of enzyme function Identify factors for the regulation

More information

Biochem sheet (5) done by: razan krishan corrected by: Shatha Khtoum DATE :4/10/2016

Biochem sheet (5) done by: razan krishan corrected by: Shatha Khtoum DATE :4/10/2016 Biochem sheet (5) done by: razan krishan corrected by: Shatha Khtoum DATE :4/10/2016 Note about the last lecture: you must know the classification of enzyme Sequentially. * We know that a substrate binds

More information

AP Biology. Metabolism & Enzymes

AP Biology. Metabolism & Enzymes Metabolism & Enzymes From food webs to the life of a cell energy energy energy Flow of energy through life Life is built on chemical reactions transforming energy from one form to another organic molecules

More information

Chemistry 107 Exam 4 Study Guide

Chemistry 107 Exam 4 Study Guide Chemistry 107 Exam 4 Study Guide Chapter 10 10.1 Recognize that enzyme catalyze reactions by lowering activation energies. Know the definition of a catalyst. Differentiate between absolute, relative and

More information

Microbial Metabolism (Chapter 5) Lecture Materials for Amy Warenda Czura, Ph.D. Suffolk County Community College Eastern Campus

Microbial Metabolism (Chapter 5) Lecture Materials for Amy Warenda Czura, Ph.D. Suffolk County Community College Eastern Campus Microbial Metabolism (Chapter 5) Lecture Materials for Amy Warenda Czura, Ph.D. Suffolk County Community College Eastern Campus Primary Source for figures and content: Tortora, G.J. Microbiology An Introduction

More information

Enzymes. Ms. Paxson. From food webs to the life of a cell. Enzymes. Metabolism. Flow of energy through life. Examples. Examples

Enzymes. Ms. Paxson. From food webs to the life of a cell. Enzymes. Metabolism. Flow of energy through life. Examples. Examples From food webs to the life of a cell energy energy energy Flow of energy through life Life is built on chemical reactions sun transforming energy from one form to another solar energy ATP & organic molecules

More information

Enzymes. Gibbs Free Energy of Reaction. Parameters affecting Enzyme Catalysis. Enzyme Commission Number

Enzymes. Gibbs Free Energy of Reaction. Parameters affecting Enzyme Catalysis. Enzyme Commission Number SCBC203 Enzymes Jirundon Yuvaniyama, Ph.D. Department of Biochemistry Faculty of Science Mahidol University Gibbs Free Energy of Reaction Free Energy A B + H 2 O A OH + B H Activation Energy Amount of

More information

GRU3L1 Metabolism & Enzymes. AP Biology

GRU3L1 Metabolism & Enzymes. AP Biology GRU3L1 Metabolism & Enzymes From food webs to the life of a cell energy energy energy Flow of energy through life Life is built on chemical reactions u transforming energy from one form to organic molecules

More information

Chapter 8.4, 8.5. Enzymes. AP Biology

Chapter 8.4, 8.5. Enzymes. AP Biology Chapter 8.4, 8.5 Enzymes Activation energy Breaking down large molecules requires an initial input of energy activation energy large biomolecules are stable must absorb energy to break bonds cellulose

More information

increase rate of reaction without being consumed reduce activation energy don t change free energy ( G) released or required

increase rate of reaction without being consumed reduce activation energy don t change free energy ( G) released or required Enzymes Enzymes Biological catalysts proteins (& RNA) facilitate chemical reactions increase rate of reaction without being consumed reduce activation energy don t change free energy ( G) released or required

More information

UNIVERSITY OF GUELPH CHEM 4540 ENZYMOLOGY Winter 2005 Quiz #2: March 24, 2005, 11:30 12:50 Instructor: Prof R. Merrill ANSWERS

UNIVERSITY OF GUELPH CHEM 4540 ENZYMOLOGY Winter 2005 Quiz #2: March 24, 2005, 11:30 12:50 Instructor: Prof R. Merrill ANSWERS UNIVERSITY F GUELPH CHEM 4540 ENZYMLGY Winter 2005 Quiz #2: March 24, 2005, 11:30 12:50 Instructor: Prof R. Merrill ANSWERS Instructions: Time allowed = 80 minutes. Total marks = 30. This quiz represents

More information

Chapter 10. Regulatory Strategy

Chapter 10. Regulatory Strategy Chapter 10 Regulatory Strategy Regulation of enzymatic activity: 1. Allosteric Control. Allosteric proteins have a regulatory site(s) and multiple functional sites Activity of proteins is regulated by

More information

Chapter 6. Metabolism & Enzymes. AP Biology

Chapter 6. Metabolism & Enzymes. AP Biology Chapter 6. Metabolism & Enzymes Flow of energy through life Life is built on chemical reactions Chemical reactions of life Metabolism forming bonds between molecules dehydration synthesis anabolic reactions

More information

Syllabus for BASIC METABOLIC PRINCIPLES

Syllabus for BASIC METABOLIC PRINCIPLES Syllabus for BASIC METABOLIC PRINCIPLES The video lecture covers basic principles you will need to know for the lectures covering enzymes and metabolism in Principles of Metabolism and elsewhere in the

More information

Examples. Chapter 8. Metabolism & Enzymes. Flow of energy through life. Examples. Chemical reactions of life. Chemical reactions & energy

Examples. Chapter 8. Metabolism & Enzymes. Flow of energy through life. Examples. Chemical reactions of life. Chemical reactions & energy WH Examples dehydration synthesis Chapter 8 Metabolism & Enzymes + H 2 O hydrolysis + H 2 O Flow of energy through life Life is built on chemical reactions Examples dehydration synthesis hydrolysis 2005-2006

More information

Enzymes. Enzymes : are protein catalysts that increase the rate of reactions without being changed in the overall process.

Enzymes. Enzymes : are protein catalysts that increase the rate of reactions without being changed in the overall process. Enzymes Enzymes Enzymes : are protein catalysts that increase the rate of reactions without being changed in the overall process. All reactions in the body are mediated by enzymes A + B E C A, B: substrate

More information

Concept 8.3: ATP powers cellular work by coupling exergonic reactions to endergonic reactions

Concept 8.3: ATP powers cellular work by coupling exergonic reactions to endergonic reactions Concept 8.3: ATP powers cellular work by coupling exergonic reactions to endergonic reactions A cell does three main kinds of work: Chemical Transport Mechanical To do work, cells manage energy resources

More information

Enzymes Biological Catalysts Review

Enzymes Biological Catalysts Review Enzymes Biological Catalysts Review Catalyst a substance that speeds up a reaction but is not actually a part of the reaction nor changes because of the reaction Catalysis the process of speeding a chemical

More information

Chapter 6. Flow of energy through life. Chemical reactions of life. Examples. Examples. Chemical reactions & energy 9/7/2012. Enzymes & Metabolism

Chapter 6. Flow of energy through life. Chemical reactions of life. Examples. Examples. Chemical reactions & energy 9/7/2012. Enzymes & Metabolism Flow of energy through life Chapter 6 Life is built on chemical reactions Enzymes & Metabolism Chemical reactions of life Examples Metabolism Forming bonds between molecules Dehydration synthesis Anabolic

More information

Metabolism & Enzymes. From food webs to the life of a cell. Flow of energy through life. Life is built on chemical reactions

Metabolism & Enzymes. From food webs to the life of a cell. Flow of energy through life. Life is built on chemical reactions Metabolism & Enzymes 2007-2008 From food webs to the life of a cell energy energy energy Flow of energy through life Life is built on chemical reactions transforming energy from one form to another organic

More information

Coenzymes, vitamins and trace elements 209. Petr Tůma Eva Samcová

Coenzymes, vitamins and trace elements 209. Petr Tůma Eva Samcová Coenzymes, vitamins and trace elements 209 Petr Tůma Eva Samcová History and nomenclature of enzymes 1810, Gay-Lussac made an experiment with yeats alter saccharide to ethanol and CO 2 Fermentation From

More information

Review of Biochemistry

Review of Biochemistry Review of Biochemistry Chemical bond Functional Groups Amino Acid Protein Structure and Function Proteins are polymers of amino acids. Each amino acids in a protein contains a amino group, - NH 2,

More information

Mohammad Alfarra. Faisal Al Nemri. Hala Al Suqi

Mohammad Alfarra. Faisal Al Nemri. Hala Al Suqi 25 Mohammad Alfarra Faisal Al Nemri Hala Al Suqi Review: - Modes of regulation:- Feed-back regulation is when an enzyme present early in a biochemical pathway is regulated by a late product of the pathway.

More information

2. You will need a Scantron and a pencil for this exam.

2. You will need a Scantron and a pencil for this exam. Exam III Chemistry 306 Fall 2009 Roper Name Exam Number Instructions: 1. Please turn in your chapter 21 and 23 homework. 2. You will need a Scantron and a pencil for this exam. 3. Please bring your backpacks

More information

CHM 341 C: Biochemistry I. Test 2: October 24, 2014

CHM 341 C: Biochemistry I. Test 2: October 24, 2014 CHM 341 C: Biochemistry I Test 2: ctober 24, 2014 This test consists of 14 questions worth points. Make sure that you read the entire question and answer each question clearly and completely. To receive

More information

Microbial Metabolism. PowerPoint Lecture Presentations prepared by Bradley W. Christian, McLennan Community College C H A P T E R

Microbial Metabolism. PowerPoint Lecture Presentations prepared by Bradley W. Christian, McLennan Community College C H A P T E R PowerPoint Lecture Presentations prepared by Bradley W. Christian, McLennan Community College C H A P T E R 5 Microbial Metabolism Big Picture: Metabolism Metabolism is the buildup and breakdown of nutrients

More information

CHAPTER 16. Glycolysis

CHAPTER 16. Glycolysis CHAPTER 16 Glycolysis Net reaction of Glycolysis Converts: 1 Glucose Hexose stage 2 pyruvate - Two molecules of ATP are produced - Two molecules of NAD + are reduced to NADH Triose stage Glucose + 2 ADP

More information

Chapter 10 Enzymes. General Characteristics of Enzymes

Chapter 10 Enzymes. General Characteristics of Enzymes Chapter 10 Enzymes Chapter bjectives: Learn about the general characteristics of enzyme catalysts. Learn about catalytic efficiency, specificity and enzyme regulation. Learn how to name and classify enzymes.

More information

BIOL 158: BIOLOGICAL CHEMISTRY II

BIOL 158: BIOLOGICAL CHEMISTRY II BIOL 158: BIOLOGICAL CHEMISTRY II Lecture 5: Vitamins and Coenzymes Lecturer: Christopher Larbie, PhD Introduction Cofactors bind to the active site and assist in the reaction mechanism Apoenzyme is an

More information

Amino acids. Side chain. -Carbon atom. Carboxyl group. Amino group

Amino acids. Side chain. -Carbon atom. Carboxyl group. Amino group PROTEINS Amino acids Side chain -Carbon atom Amino group Carboxyl group Amino acids Primary structure Amino acid monomers Peptide bond Peptide bond Amino group Carboxyl group Peptide bond N-terminal (

More information

BY: RASAQ NURUDEEN OLAJIDE

BY: RASAQ NURUDEEN OLAJIDE BY: RASAQ NURUDEEN OLAJIDE LECTURE CONTENT INTRODUCTION MOST ENZYMES ARE PROTEINS ENZYME CLASSIFICATION AND NUMENCLATURE HOW ENZYMES WORK: ACTIVE SITE STRUCTURE OF THE ACTIVE SITE MODELS OF SUBSTRATE BINDING

More information

Tala Saleh. Ahmad Attari. Mamoun Ahram

Tala Saleh. Ahmad Attari. Mamoun Ahram 23 Tala Saleh Ahmad Attari Minna Mushtaha Mamoun Ahram In the previous lecture, we discussed the mechanisms of regulating enzymes through inhibitors. Now, we will start this lecture by discussing regulation

More information

Past Years Questions Chpater 6

Past Years Questions Chpater 6 Past Years Questions Chpater 6 **************************************** 1) Which of the following about enzymes is Incorrect? A) Most enzymes are proteins. B) Enzymes are biological catalysts. C) Enzymes

More information

Enzymes Part III: regulation II. Dr. Mamoun Ahram Summer, 2017

Enzymes Part III: regulation II. Dr. Mamoun Ahram Summer, 2017 Enzymes Part III: regulation II Dr. Mamoun Ahram Summer, 2017 Advantage This is a major mechanism for rapid and transient regulation of enzyme activity. A most common mechanism is enzyme phosphorylation

More information

Biochemistry. Enzymes are used all over your body! 3.1) Enzymes-I

Biochemistry. Enzymes are used all over your body! 3.1) Enzymes-I Biochemistry 3.1) Enzymes-I Introduction to enzyme structure and function, and factors involving their actions and pathways Prof. Dr. Klaus Heese Enzymes are used all over your body! 1 What is an enzyme?

More information

Microbial Metabolism

Microbial Metabolism PowerPoint Lecture Slides for MICROBIOLOGY ROBERT W. BAUMAN Chapter 5 Microbial Metabolism Microbial Metabolism The sum total of chemical reactions that take place within cells (of an organism) Metabolic

More information

Adenosine triphosphate (ATP)

Adenosine triphosphate (ATP) Adenosine triphosphate (ATP) 1 High energy bonds ATP adenosine triphosphate N NH 2 N -O O P O O P O- O- O O P O- O CH 2 H O H N N adenine phosphoanhydride bonds (~) H OH ribose H OH Phosphoanhydride bonds

More information

Lecture 13 (10/13/17)

Lecture 13 (10/13/17) Lecture 13 (10/13/17) Reading: Ch6; 187-189, 204-205 Problems: Ch4 (text); 2, 3 NXT (after xam 2) Reading: Ch6; 190-191, 194-195, 197-198 Problems: Ch6 (text); 5, 6, 7, 24 OUTLIN NZYMS: Binding & Catalysis

More information

BASIC ENZYMOLOGY 1.1

BASIC ENZYMOLOGY 1.1 BASIC ENZYMOLOGY 1.1 1.2 BASIC ENZYMOLOGY INTRODUCTION Enzymes are synthesized by all living organisms including man. These life essential substances accelerate the numerous metabolic reactions upon which

More information

Chem Lecture 8 Carbohydrate Metabolism Part I: Glycolysis

Chem Lecture 8 Carbohydrate Metabolism Part I: Glycolysis Chem 352 - Lecture 8 Carbohydrate Metabolism Part I: Glycolysis Introduction Carbohydrate metabolism involves a collection of pathways. Glycolysis Hexoses 3-Carbon molecules Gluconeogenesis 3-Carbon molecules

More information

3/1/2011. Enzymes. Enzymes and Activation Energy. Enzymes Enzyme Structure and Action. Chapter 4 Outline. Enzymes

3/1/2011. Enzymes. Enzymes and Activation Energy. Enzymes Enzyme Structure and Action. Chapter 4 Outline. Enzymes Free content 3/1/2011 Chapter 4 Outline Enzymes as catalysts Control of enzyme activity Bioenergetics Enzymes 4-2 4-3 Enzymes Enzymes - function as biological catalysts permit reactions to occur rapidly

More information

An Introduction to Enzyme and Coenzyme Chemistry, 2nd Ed. T. D. H. Bugg, Blackwell Science, Oxford, 2004

An Introduction to Enzyme and Coenzyme Chemistry, 2nd Ed. T. D. H. Bugg, Blackwell Science, Oxford, 2004 Combinatorial synthesis of linchpin β-turn mimic 1 2 DCC, BT 1 2 n -tbu 1 n -tbu 1) 2 FMC DCC, BT 2) piperidine 1 2 2 n -tbu 3 DCC, BT 1 2 n -tbu 3 1) Ph 3 P 2) cyclization 3) CF 3 C 2 2 1 n 3 2 Evaluated

More information

Aerobic Fate of Pyruvate. Chapter 16 Homework Assignment. Chapter 16 The Citric Acid Cycle

Aerobic Fate of Pyruvate. Chapter 16 Homework Assignment. Chapter 16 The Citric Acid Cycle Chapter 16 Homework Assignment The following problems will be due once we finish the chapter: 1, 3, 7, 10, 16, 19, 20 Additional Problem: Write out the eight reaction steps of the Citric Acid Cycle, using

More information

Exam 3 Fall 2015 Dr. Stone 8:00. V max = k cat x E t. ΔG = -RT lnk eq K m + [S]

Exam 3 Fall 2015 Dr. Stone 8:00. V max = k cat x E t. ΔG = -RT lnk eq K m + [S] Exam 3 Fall 2015 Dr. Stone 8:00 Name There are 106 possible points (6 bonus points) on this exam. There are 8 pages. v o = V max x [S] k cat = kt e - ΔG /RT V max = k cat x E t ΔG = -RT lnk eq K m + [S]

More information

Carbohydrate Metabolism I

Carbohydrate Metabolism I Carbohydrate Metabolism I Outline Glycolysis Stages of glycolysis Regulation of Glycolysis Carbohydrate Metabolism Overview Enzyme Classification Dehydrogenase - oxidizes substrate using cofactors as

More information

Chapter 11: Enzyme Catalysis

Chapter 11: Enzyme Catalysis Chapter 11: Enzyme Catalysis Matching A) high B) deprotonated C) protonated D) least resistance E) motion F) rate-determining G) leaving group H) short peptides I) amino acid J) low K) coenzymes L) concerted

More information

Microbiology AN INTRODUCTION

Microbiology AN INTRODUCTION TORTORA FUNKE CASE Microbiology AN INTRODUCTION EIGHTH EDITION B.E Pruitt & Jane J. Stein Chapter 5, part A Microbial Metabolism PowerPoint Lecture Slide Presentation prepared by Christine L. Case Microbial

More information

BIOCHEMISTRY AS A SUBJECT, ITS TASKS. ENZYMES: STRUCTURE, COMMON PROPERTIES, MECHANISM OF ACTION AND CLASSIFICATION

BIOCHEMISTRY AS A SUBJECT, ITS TASKS. ENZYMES: STRUCTURE, COMMON PROPERTIES, MECHANISM OF ACTION AND CLASSIFICATION THE MINISTRY OF PUBLIC HEALTH OF UKRAINE ZAPORIZHZHIA STATE MEDICAL UNIVERSITY BIOCHEMISTRY DEPARTMENT BIOCHEMISTRY AS A SUBJECT, ITS TASKS. ENZYMES: STRUCTURE, COMMON PROPERTIES, MECHANISM OF ACTION AND

More information

CHAPTER 2- ENZYMES PROTEINS B. AMINO ACID- 10/4/2016

CHAPTER 2- ENZYMES PROTEINS B. AMINO ACID- 10/4/2016 CHAPTER 2- ENZYMES BIOL. 1 AB KENNEDY PROTEINS A. DEFINITION- LARGE MACROMOLECULES MADE OF CARBON, HYDROGEN, NITROGEN, OXYGEN, AND SULFUR THEIR PRIMARY BUILDING BLOCK IS THE AMINO ACID THEY FUNCTION AS

More information

Chapter 8. Metabolism. Topics in lectures 15 and 16. Chemical foundations Catabolism Biosynthesis

Chapter 8. Metabolism. Topics in lectures 15 and 16. Chemical foundations Catabolism Biosynthesis Chapter 8 Topics in lectures 15 and 16 Metabolism Chemical foundations Catabolism Biosynthesis 1 Metabolism Chemical Foundations Enzymes REDOX Catabolism Pathways Anabolism Principles and pathways 2 Chemical

More information

Review of Energetics Intro

Review of Energetics Intro Review of Energetics Intro Learning Check The First Law of Thermodynamics states that energy can be Created Destroyed Converted All of the above Learning Check The second law of thermodynamics essentially

More information

BCH 4054 Chapter 19 Lecture Notes

BCH 4054 Chapter 19 Lecture Notes BCH 4054 Chapter 19 Lecture Notes 1 Chapter 19 Glycolysis 2 aka = also known as verview of Glycolysis aka The Embden-Meyerhoff Pathway First pathway discovered Common to almost all living cells ccurs in

More information

Module No. # 01 Lecture No. # 19 TCA Cycle

Module No. # 01 Lecture No. # 19 TCA Cycle Biochemical Engineering Prof. Dr. Rintu Banerjee Department of Agricultural and Food Engineering Asst. Prof. Dr. Saikat Chakraborty Department of Chemical Engineering Indian Institute of Technology, Kharagpur

More information

Ahmad Ulnar. Faisal Nimri ... Dr.Faisal

Ahmad Ulnar. Faisal Nimri ... Dr.Faisal 24 Ahmad Ulnar Faisal Nimri... Dr.Faisal Fatty Acid Synthesis - Occurs mainly in the Liver (to store excess carbohydrates as triacylglycerols(fat)) and in lactating mammary glands (for the production of

More information

Carbohydrate. Metabolism

Carbohydrate. Metabolism Carbohydrate Metabolism Dietary carbohydrates (starch, glycogen, sucrose, lactose Mouth salivary amylase Summary of Carbohydrate Utilization Utilization for energy (glycolysis) ligosaccharides and disaccharides

More information

Regulation of Enzyme Activity

Regulation of Enzyme Activity Regulation of Enzyme Activity Enzyme activity must be regulated so that the proper levels of products are produced at all times and places This control occurs in several ways: - biosynthesis at the genetic

More information

Citric Acid Cycle: Central Role in Catabolism. Entry of Pyruvate into the TCA cycle

Citric Acid Cycle: Central Role in Catabolism. Entry of Pyruvate into the TCA cycle Citric Acid Cycle: Central Role in Catabolism Stage II of catabolism involves the conversion of carbohydrates, fats and aminoacids into acetylcoa In aerobic organisms, citric acid cycle makes up the final

More information

Fatty acid breakdown

Fatty acid breakdown Fatty acids contain a long hydrocarbon chain and a terminal carboxylate group. Most contain between 14 and 24 carbon atoms. The chains may be saturated or contain double bonds. The complete oxidation of

More information

CHE 242 Exam 3 Practice Questions

CHE 242 Exam 3 Practice Questions CHE 242 Exam 3 Practice Questions Glucose metabolism 1. Below is depicted glucose catabolism. Indicate on the pathways the following: A) which reaction(s) of glycolysis are irreversible B) where energy

More information

ENZYMES. A protein with catalytic properties due to its power of specific activation Paul Billiet ODWS

ENZYMES. A protein with catalytic properties due to its power of specific activation Paul Billiet ODWS ENZYMES A protein with catalytic properties due to its power of specific activation Chemical reactions Chemical reactions need an initial input of energy = THE ACTIVATION ENERGY During this part of the

More information

Glycolysis Part 2. BCH 340 lecture 4

Glycolysis Part 2. BCH 340 lecture 4 Glycolysis Part 2 BCH 340 lecture 4 Regulation of Glycolysis There are three steps in glycolysis that have enzymes which regulate the flux of glycolysis These enzymes catalyzes irreversible reactions of

More information

6.5 Enzymes. Enzyme Active Site and Substrate Specificity

6.5 Enzymes. Enzyme Active Site and Substrate Specificity 180 Chapter 6 Metabolism 6.5 Enzymes By the end of this section, you will be able to: Describe the role of enzymes in metabolic pathways Explain how enzymes function as molecular catalysts Discuss enzyme

More information

Enzymes and Metabolism

Enzymes and Metabolism PowerPoint Lecture Slides prepared by Vince Austin, University of Kentucky Enzymes and Metabolism Human Anatomy & Physiology, Sixth Edition Elaine N. Marieb 1 Protein Macromolecules composed of combinations

More information

Physiology 12. Metabolism. Metabolism. Cellular metabolism. The synthesis and Breakdown of organic molecules required for cell structure and function

Physiology 12. Metabolism. Metabolism. Cellular metabolism. The synthesis and Breakdown of organic molecules required for cell structure and function Physiology 12 Cellular metabolism Germann Ch3 Metabolism The synthesis and Breakdown of organic molecules required for cell structure and function Metabolism Anabolism = Synthesis Catabolism = Breaking

More information

Enzymes what are they?

Enzymes what are they? Topic 11 (ch8) Microbial Metabolism Topics Metabolism Energy Pathways Biosynthesis 1 Catabolism Anabolism Enzymes Metabolism 2 Metabolic balancing act Catabolism Enzymes involved in breakdown of complex

More information

Name: Student Number

Name: Student Number UNIVERSITY OF GUELPH CHEM 454 ENZYMOLOGY Winter 2003 Quiz #1: February 13, 2003, 11:30 13:00 Instructor: Prof R. Merrill Instructions: Time allowed = 80 minutes. Total marks = 34. This quiz represents

More information

Chemical Mechanism of Enzymes

Chemical Mechanism of Enzymes Chemical Mechanism of Enzymes Enzyme Engineering 5.2 Definition of the mechanism 1. The sequence from substrate(s) to product(s) : Reaction steps 2. The rates at which the complex are interconverted 3.

More information

Nafith Abu Tarboush DDS, MSc, PhD

Nafith Abu Tarboush DDS, MSc, PhD Nafith Abu Tarboush DDS, MSc, PhD natarboush@ju.edu.jo www.facebook.com/natarboush Biochemical Kinetics: the science that studies rates of chemical reactions An example is the reaction (A P), The velocity,

More information

7/5/2014. Microbial. Metabolism. Basic Chemical Reactions Underlying. Metabolism. Metabolism: Overview

7/5/2014. Microbial. Metabolism. Basic Chemical Reactions Underlying. Metabolism. Metabolism: Overview PowerPoint Lecture Presentations prepared by Mindy Miller-Kittrell, North Carolina State University Basic Chemical Reactions Underlying Metabolism Metabolism C H A P T E R 5 Microbial Metabolism Collection

More information

Chapter 21 Lecture Outline

Chapter 21 Lecture Outline Chapter 21 Lecture Outline Amino Acids, Proteins, and Enzymes! Introduction! Proteins are biomolecules that contain many amide bonds, formed by joining amino acids. Prepared by Andrea D. Leonard University

More information

Use of enzymes as diagnostic markers. Evaluation of lactate dehydrogenase (LDH) isoenzymes by agarose gel electrophoresis

Use of enzymes as diagnostic markers. Evaluation of lactate dehydrogenase (LDH) isoenzymes by agarose gel electrophoresis Use of enzymes as diagnostic markers Evaluation of lactate dehydrogenase (LDH) isoenzymes by agarose gel electrophoresis Lactate dehydrogenase LDH tetramer M (gene LDHA, ch.11) H (gene LDHB, ch.12) LDH

More information

2/25/2013. The Mechanism of Enzymatic Action

2/25/2013. The Mechanism of Enzymatic Action 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 Chapter 5 Microbial Metabolism Catabolic and Anabolic Reactions Metabolism: The sum of the chemical reactions in an organism Catabolic and Anabolic Reactions Catabolism:

More information

AP Biology Summer Assignment Chapter 3 Quiz

AP Biology Summer Assignment Chapter 3 Quiz AP Biology Summer Assignment Chapter 3 Quiz 2016-17 Multiple Choice Identify the choice that best completes the statement or answers the question. 1. All of the following are found in a DNA nucleotide

More information

Metabolism. Topic 11&12 (ch8) Microbial Metabolism. Metabolic Balancing Act. Topics. Catabolism Anabolism Enzymes

Metabolism. Topic 11&12 (ch8) Microbial Metabolism. Metabolic Balancing Act. Topics. Catabolism Anabolism Enzymes Topic 11&12 (ch8) Microbial Metabolism Topics Metabolism Energy Pathways Biosynthesis 1 Catabolism Anabolism Enzymes Metabolism 2 Metabolic Balancing Act Catabolism Enzymes involved in breakdown of complex

More information

Comparison of catabolic and anabolic pathways

Comparison of catabolic and anabolic pathways Comparison of catabolic and anabolic pathways Three stages of catabolism Glucose Synthesis of compounds e.g. lactose glycolipids Glucose-6-P Pentosephosphate Pathway Glycolysis Glycogenesis Acetyl-CoA

More information

ENZYME INHIBITION. CHM333 LECTURES 16 & 17: 10/9 16/09 FALL 2009 Professor Christine Hrycyna

ENZYME INHIBITION. CHM333 LECTURES 16 & 17: 10/9 16/09 FALL 2009 Professor Christine Hrycyna ENZYME INHIBITION - INHIBITORS: Interfere with the action of an enzyme Decrease the rates of their catalysis Inhibitors are a great focus of many drug companies want to develop compounds to prevent/control

More information

Chapter 15 Homework Assignment

Chapter 15 Homework Assignment Chapter 15 Homework Assignment The following problems will be due once we finish the chapter: 3, 5, 6, 8, 9 Chapter 15 1 Regulation of Metabolic Pathways Dynamic Steady State Fuels, such as glucose, enter

More information

LECTURE 4: REACTION MECHANISM & INHIBITORS

LECTURE 4: REACTION MECHANISM & INHIBITORS LECTURE 4: REACTION MECHANISM & INHIBITORS Chymotrypsin 1 LECTURE OUTCOMES After mastering the present lecture materials, students will be able to 1. to explain reaction mechanisms of between enzyme and

More information

Enzymes: Regulation 2-3

Enzymes: Regulation 2-3 Enzymes: Regulation 2-3 Reversible covalent modification Association with regulatory proteins Irreversible covalent modification/proteolytic cleavage Reading: Berg, Tymoczko & Stryer, 6th ed., Chapter

More information

Properties of Allosteric Enzymes

Properties of Allosteric Enzymes Properties of Allosteric Enzymes (1) An allosteric enzyme possesses at least spatially distinct binding sites on the protein molecules the active or the catalytic site and the regulator or the allosteric

More information

Chapter 5 Microbial Metabolism: The Chemical Crossroads of Life

Chapter 5 Microbial Metabolism: The Chemical Crossroads of Life Chapter 5 Microbial Metabolism: The Chemical Crossroads of Life Copyright The McGraw-Hill Companies, Inc. Permission required for reproduction or display. The Metabolism of Microbes metabolism all chemical

More information

Unit 7 Part I: Introductions to Biochemistry

Unit 7 Part I: Introductions to Biochemistry Unit 7 Part I: Introductions to Biochemistry Chemical Reactions, Enzymes and ATP 19 March 2014 Averett 1 Reaction Graphs Every chemical reaction involves bond breaking and bond forming. In order for bonds

More information

Energy and catalysts. Enzymes. Contents. 1 Energy and catalysts 2 Enzymes

Energy and catalysts. Enzymes. Contents. 1 Energy and catalysts 2 Enzymes Contents 1 Energy and catalysts 2 Enzymes Energy and catalysts In Biological systems, energy is roughly defined as the capacity to do work. Molecules are held together by electrons. Breaking and building

More information

(de novo synthesis of glucose)

(de novo synthesis of glucose) Gluconeogenesis (de novo synthesis of glucose) Gluconeogenesis Gluconeogenesis is the biosynthesis of new glucose. The main purpose of gluconeogenesis is to maintain the constant blood Glc concentration.

More information

University of Palestine. Final Exam 2016/2017 Total Grade:

University of Palestine. Final Exam 2016/2017 Total Grade: Part 1 : Multiple Choice Questions (MCQs) 1)Which of the following statements about Michaelis-Menten kinetics is correct? a)k m, the Michaelis constant, is defined as the concentration of substrate required

More information

Terminology-Amino Acids

Terminology-Amino Acids Enzymes 1 2 Terminology-Amino Acids Primary Structure: is a polypeptide (large number of aminoacid residues bonded together in a chain) chain of amino acids linked with peptide bonds. Secondary Structure-

More information

CHM333 LECTURES 16 & 17: 2/22 25/13 SPRING 2013 Professor Christine Hrycyna

CHM333 LECTURES 16 & 17: 2/22 25/13 SPRING 2013 Professor Christine Hrycyna ENZYME INHIBITION - INHIBITORS: Interfere with the action of an enzyme Decrease the rates of their catalysis Inhibitors are a great focus of many drug companies want to develop compounds to prevent/control

More information

Assignment #1: Biological Molecules & the Chemistry of Life

Assignment #1: Biological Molecules & the Chemistry of Life Assignment #1: Biological Molecules & the Chemistry of Life A. Important Inorganic Molecules Water 1. Explain why water is considered a polar molecule. The partial negative charge of the oxygen and the

More information

Introductory Biochemistry

Introductory Biochemistry BCH3023 Introductory Biochemistry BCH3023 Introductory Biochemistry Course Description: This course surveys the fundamental components of biochemistry. In this course, students will learn concepts such

More information