Citrate Cycle Supplemental Reading

Size: px
Start display at page:

Download "Citrate Cycle Supplemental Reading"

Transcription

1 Citrate Cycle Supplemental Reading Key Concepts - The Citrate Cycle captures energy using redox reactions - Eight enzymatic reactions of the Citrate Cycle - Key control points in the citrate cycle regulate metabolic flux KEY CONCEPT QUESTIONS IN THE CITRATE CYCLE: What role does NADH and FADH 2 have in connecting the citrate cycle to ATP synthesis? Why is the citrate cycle considered the hub of metabolism? Biochemical Applications of the Citrate Cycle: Fluoroacetate is found in poisonous plants and it is the active ingredient in "compound 1080" which is used by ranchers to kill coyotes and foxes. Cells convert fluoracetate to fluorocitrate, a potent inhibitor of the citrate cycle enzyme mitochondrial aconitase. The Citrate Cycle Captures Energy Using Redox Reactions The citrate cycle is central to aerobic metabolism and ATP production because it contains four dehydrogenase reactions that generate NADH and FADH 2 that are reoxidized by the electron transport chain to generate large amounts of ATP by oxidative phosphorylation (lecture 30). The citrate cycle is considered the "hub" of cellular metabolism because it not only links the oxidation of metabolic fuels (carbohydrate, fatty acids and proteins) to ATP synthesis, but it also provides shared metabolites for numerous other metabolic pathways as shown in figure 1. Unlike glycolysis which occurs in the cytosol, all of the enzymes in the citrate cycle, electron transport chain and oxidative phosphorylation reside in the mitochondrial matrix where pyruvate is converted to acetyl-coa by the enzyme pyruvate dehydrogenase. As illustrated in figure 2, pyruvate can also be derived from amino acid catabolism, and acetyl-coa can be derived from both amino a acids and fatty acids. The primary function of the citrate cycle in terms of energy conversion reactions is to oxidize acetyl-coa, and in the process, transfer four pairs of electrons from citrate cycle intermediates to 3 moles of NADH and 1 mole of FADH 2 during each turn of the cycle. As shown in figure 3, the citrate cycle is a "metabolic Figure 1. engine" in which all eight of the cycle intermediates are continually replenished to maintain a smooth-running energy conversion process. The fuel for this metabolic engine is acetyl-coa, the exhaust is two molecules of CO 2, and the energy output is eight electrons (redox energy) and one GTP that is converted to ATP (phosphoryl transfer energy). The electron transport system and oxidative phosphorylation convert the available redox energy into ATP through a series of reactions that reoxidize NADH and FADH 2 in the presence of O 2. 1 of 9 pages

2 Figure 2, Figure 3. The "currency exchange" for redox energy and ATP synthesis in the mitochondria is such that for every 2 NADH molecules that are reoxidized in the electron transport chain, there is a production of ~5 molecules of ATP by oxidative phosphorylation (~2.5 ATP/ NADH). Oxidation of 2 FADH 2 molecules by the electron transport chain results in only ~3 molecules of ATP (~1.5 ATP/FADH 2 ) because of differences in where these two coenzymes enter the electron transport chain. Based on this ATP currency exchange ratio, and the one substrate level phosphorylation reaction, each turn of the cycle produces ~10 ATP for every acetyl-coa that is oxidized. Since regeneration of NAD + and FAD inside the mitochondrial matrix is required to maintain flux through the citrate cycle (four of the enzymes require NAD + or FAD as coenzymes), this metabolic engine is dependent on a constant supply of O 2 just like a combustion engine. The reliance on redox reactions in the electron transport chain to maintain metabolic flux in the citrate cycle is similar to the way that the glyceraldehyde-3-p dehydrogenase reaction in glycolysis requires the regeneration of NAD + by lactate dehydrogenase under anaerobic conditions. Hans Krebs, a biochemist who fled Nazi Germany for England in 1933, first described the citrate cycle in The citrate cycle is sometimes called the Krebs cycle or the tricarboxylic acid cycle (citrate is a tricarboxylate), although we will refer to it as the citrate cycle because citrate is the first product of the pathway and the unprotonated form of citric acid is the predominant species at physiological ph (the pk a values of the three carboxylate groups are 3.1, 4.7 and 6.4). Figure 4 shows the eight citrate cycle reactions. The citrate cycle is distinguished from linear metabolic pathways in that oxaloacetate is both the substrate for the first reaction (citrate synthase) and the product of the last reaction (malate dehydrogenase), which means that it must be regenerated from citrate after each turn of the cycle. 2 of 9 pages

3 Figure What does the citrate cycle accomplish for the cell? Transfers 8 electrons from acetyl-coa to the coenzymes NAD + and FAD to form 3 NADH and 1 FADH 2 which are then re-oxidized by the electron transport chain to produce ATP by the process of oxidative phosphorylation. Generates 2 CO 2 as waste products and uses substrate level phosphorylation to generate 1 GTP which is converted to ATP by nucleoside diphosphate kinase. Supplies metabolic intermediates for amino acid and porphyrin biosynthesis. 2. What is the overall net reaction of the citrate cycle? Acetyl-CoA + 3 NAD + + FAD + GDP + P i + 2 H 2 O CoA + 2 CO NADH + 2 H + + FADH 2 + GTP ΔGº = kj/mol 3 of 9 pages

4 3. What are the key enzymes in the citrate acid cycle? Pyruvate dehydrogenase not a citrate cycle enzyme but it is critical to flux of acetyl-coa through the cycle; this multisubunit enzyme complex requires five coenzymes, is activated by NAD +, CoA and Ca 2+ (in muscle cells), and inhibited by acetyl-coa, ATP and NADH. Citrate synthase catalyzes the first reaction in the pathway and can be inhibited by citrate, succinyl-coa, NADH and ATP; inhibition by ATP is reversed by ADP. Isocitrate dehydrogenase - catalyzes the oxidative decarboxylation of isocitrate by transferring two electrons to NAD + to form NADH, and in the process, releasing CO 2, it is activated by ADP and Ca 2+ and inhibited by NADH and ATP. α-ketoglutarate dehydrogenase - is functionally similar to pyruvate dehydrogenase in that it is a multisubunit complex, requires the same five coenzymes and catalyzes an oxidative decarboxylation reaction that produces CO 2, NADH and succinyl-coa; it is activated by Ca 2+ and AMP and it is inhibited by NADH, succinyl-coa and ATP. 4. What are examples of the citrate cycle in real life? Citrate is produced commercially by fermentation methods using the microorganism Aspergillus niger. Every year almost a half of million tonnes (5 x 10 8 kg) of citrate are produced worldwide by exploiting the citrate synthase reaction. Citrate is used as a flavor enhancer and food preservative. Eight Reactions Of The Citrate Cycle In the first four reactions, the two carbon acetate group of acetyl-coa is linked to the four carbon oxaloacetate substrate to form a six carbon citrate molecule. Citrate is then transformed to isocitrate to set up two decarboxylation reactions yielding two NADH and the high energy four carbon cycle intermediate succinyl-coa. In the second half of the cycle, oxaloacetate is regenerated from succinyl-coa by four successive reactions that lead to the formation of one GTP (ATP), one FADH 2 and one NADH. Reaction 1: Condensation of oxaloacetate and acetyl-coa by citrate synthase to form citrate The purpose of the first reaction in the citrate cycle is to commit the acetate unit of acetyl-coa to oxidative decarboxylation. The citrate synthase reaction follows an ordered mechanism in which oxaloacetate binds first, inducing a conformational change in the enzyme that facilitates acetyl- CoA binding. Formation of the transient intermediate, citryl-coa, is followed by a rapid hydrolysis reaction that releases CoA-SH and citrate as shown in figure 5. Figure 5. 4 of 9 pages

5 Reaction 2: Isomerization of citrate by aconitase to form isocitrate This reversible isomerization reaction involves a two step mechanism in which the intermediate, cis-aconitate, is formed by a dehydration reaction that requires the participation of an iron-sulfur cluster (4Fe-4S) in the enzyme active site. Next, water is added back to convert the double bond in cis-aconitate to a single bond with a hydroxyl group on the terminal carbon (figure 6). Figure 6. Aconitase is one of the targets of the toxic compound fluorocitrate which is derived from fluoroacetate, a naturally occurring poison found in native Australian and African plants (and compound 1080). Fluoroacetate-containing plants are so deadly that Australian sheep herders have reported finding sheep with their heads still in the bush they were feeding on when they died. Reaction 3: Oxidative decarboxylation of isocitrate by isocitrate dehydrogenase to form α- ketoglutarate, CO 2 and NADH Reaction 3 is the first of two decarboxylation steps in the citrate cycle, and also the first reaction to generate NADH which is used for energy conversion reactions in the electron transport system. Eukaryotic cells actually contain two isocitrate dehydrogenases, the mitochondrial NAD + - dependent enzyme that functions in the citrate cycle, and a second NADP + -dependent enzyme that is present in both the cytosol and mitochondria. As shown in figure 7, NAD + catalyzes an oxidation reaction that generates the transient intermediate oxalosuccinate. In the presence of the divalent cations Mg 2+ or Mn 2+, oxalosuccinate is decarboxylated to form α-ketoglutarate. Figure 7. Reaction 4: Oxidative decarboxylation of α-ketoglutarate by α-ketoglutarate dehydrogenase to form succinyl-coa, CO 2 and NADH In this second oxidative decarboxylation reaction, the α-ketoglutarate dehydrogenase complex utilizes essentially the same catalytic mechanism we have already described for the pyruvate dehydrogenase reaction. This includes the binding of substrate to an E1 subunit (α-ketoglutarate dehydrogenase), followed by decarboxylation and formation of a TPP-linked intermediate. Figure 8 on the next page summarizes the α-ketoglutarate dehydrogenase reaction, which not surprisingly, is similar to pyruvate dehydrogenase in that it has a large change in free energy (ΔGº' = kj/mol) and is allosterically-regulated by changes in the energy charge of the cell. 5 of 9 pages

6 Reaction 5: Conversion of succinyl-coa to succinate by succinyl-coa synthetase in a substrate level phosphorylation reaction that generates GTP The available free energy in the thioester bond of succinyl-coa Figure 8. Bioc Dr. Miesfeld Spring 2008 (ΔGº' = kj/mol) is used in the succinyl-coa synthetase reaction to carry out a phosphoryl transfer reaction (ΔGº' = kj/mol) that leads to the production of GTP (or ATP) and succinate (figure 9). The enzyme nucleoside diphosphate kinase interconverts GTP and ATP by a readily reversible phosphoryl transfer reaction: GTP + ADP <===> GDP + ATP (ΔGº' = 0 kj/mol). Figure 9. Reaction 6: Oxidation of succinate by succinate dehydrogenase to form fumarate This coupled redox reaction directly links the Figure 10. citrate cycle to the electron transport system through the redox conjugate pair FAD/FADH 2 which is covalently linked to the enzyme succinate dehydrogenase, an inner mitochondrial membrane protein. As shown in figure 10, oxidation of succinate results in the transfer of an electron pair to the FAD moiety, which in turn, passes the two electrons to the electron carrier coenzyme Q in complex II of the electron transport system. Reaction 7: Hydration of fumarate by fumarase to form malate Fumarase is a highly stereo-specific enzyme that catalyzes the hydration of the C=C double bond in fumarate to generate the L-isomer of malate. This reversible reaction is shown in figure 11. Figure 11. Reaction 8: Oxidation of malate by malate dehydrogenase to form oxaloacetate The final reaction in the citrate cycle involves the oxidation of the hydroxyl group of malate to form oxaloacetate in the presence of NAD + as shown in figure 12. This leads to the production of the last of 3 NADH molecules generated by the citrate cycle. The two carbon atoms Figure of 9 pages

7 Figure 13. Bioc Dr. Miesfeld Spring 2008 originating from acetyl- CoA in reaction 1 are incorporated into oxaloacetate and not lost as CO 2 until subsequent turns. While the change in standard free energy for this reaction is unfavorable (ΔGº' = kj/mol), the extremely low concentration of oxaloacetate inside the mitochondrial matrix ensures that the reaction is pulled to the right under physiological conditions (as a result of actual free energy ΔG). Now that we have looked at all eight citrate cycle reactions individually, let's review the bioenergetics of the pathway by summing up the ΔGº' values as shown above in figure 13. By combining the glycolytic pathway, the pyruvate dehydrogenase reaction and the citrate cycle into one complete circuit we obtain the following net reaction: Glucose + 2 H 2 O + 10 NAD FAD + 4 ADP + 4 P i ---> 6 CO NADH + 6 H FADH ATP The reducing power of the 10 NADH and 2 FADH 2 can be converted to ATP equivalents using the currency exchange ratios of ~2.5 ATP/NADH and ~1.5 ATP/FADH 2 to yield ~28 ATP, which when combined with the 4 ATP synthesized by substrate phosphorylation, generates a maximum of ~32 ATP as shown in figure 14 (~30 ATP in muscle cells). The complete oxidation of glucose by the pyruvate dehydrogenase complex and the citrate cycle leads to the production of 6 CO 2 molecules as waste. When Krebs first described the citrate cycle in 1937, it wasn't possible to follow the fate of individual carbon atoms throughout the cycle, and therefore it wasn't until techniques were developed using radioactively-labeled metabolic intermediates that it became clear exactly how each enzyme reaction functioned. Based on the results of these 14 C-labeling experiments, figure 15 shows how a game of "follow the bouncing carbon" can be played to see what Figure of 9 pages

8 happens to the two carbon atoms that enter the citrate cycle as acetyl-coa. In the first turn of the cycle, both carbons are incorporated into oxaloacetate, and it isn't until the second cycle that the first carbon is released as CO 2 by the isocitrate dehydrogenase reaction. The second carbon is not lost as CO 2 until the α-ketoglutarate reaction in the fourth turn of the cycle. This is a good way to demonstrate that intermediates must be continually regenerated in a cyclic pathway to maintain metabolic flux. Figure 15. Bioc Dr. Miesfeld Spring 2008 REGULATION OF THE CITRATE CYCLE The citrate cycle is quite different than glycolysis in that the end product of the pathway, oxaloacetate, is the substrate for the first reaction, meaning that flux through the pathway is continuously monitored by resetting the level of available substrate after each turn of the cycle. In addition to substrate availability, the two other regulatory mechanisms at play in the citrate cycle are product inhibition and feedback control of key enzymes. Figure 16 illustrates that the three main control points within the citrate cycle are regulation of citrate synthase, isocitrate dehydrogenase, and α-ketoglutarate dehydrogenase activities. Figure 16 also shows the factors that regulate pyruvate dehydrogenase and pyruvate carboxylase activity as these two enzymes control the rate of citrate cycle flux by providing acetyl CoA and Figure 16. oxaloacetate, respectively. Importantly, pyruvate carboxylase is allosterically activated by acetyl-coa to increase production of oxaloacetate and thereby maintain flux through the citrate cycle. Pyruvate carboxylase plays a key role in providing intermediates for the citrate cycle by being the "tag team partner" for pyruvate dehydrogenase by balancing the input of oxaloacetate with that of acetyl-coa. For example, when flux through the citrate cycle is decreased due to loss of cycle intermediates to anabolic pathways, acetyl-coa accumulates in the mitochondrial matrix and allosterically activates pyruvate carboxylase. 8 of 9 pages

9 ANSWERS TO KEY CONCEPT QUESTIONS IN THE CITRATE CYCLE: The coenzymes NADH and FADH 2 function as carrier molecules that transport electron pairs from redox reactions in the citrate cycle to the electron transport system where they are reoxidized to provide redox energy that can be harnessed for ATP synthesis. The primary role of the citrate cycle is to strip 4 electron pairs (8 e-) from the acetate group of acetyl-coa and transfer them to 3 NAD + and 1 FAD molecules to form 3 NADH and 1 FADH 2, respectively. Reoxidation of NADH and FADH 2 by the electron transport system generates a proton gradient across the inner mitochondrial membrane that drives ATP synthesis inside the mitochondrial matrix through a process called oxidative phosphorylation. The ATP currency exchange for reoxidation of NADH by the coupled electron transport system/oxidative phosphorylation reactions is ~2.5 ATP/NADH and ~1.5 ATP/FADH 2. Based on the yield of NADH and FADH 2 from the citrate cycle, and the ATP currency exchange, each turn of the citrate cycle produces ~10 ATP for every acetyl-coa that enters. Moreover, complete oxidation of glucose to 6 CO 2 and 6 H 2 O by the combined reactions of glycolysis, the pyruvate dehydrogenase complex, and the citrate cycle, results in the maximum production of ~32 ATP/glucose (only ~30 ATP are produced per glucose in muscle cells because of the glycerol-3p shuttle as described in lecture 30). The citrate cycle is considered the hub of metabolism because it provides the crucial link between oxidation of acetyl-coa and ATP synthesis, and in addition, provides metabolic precursors for the biosynthesis of amino acids, fatty acids, cholesterol, heme and glucose. The citrate cycle intermediates α-ketoglutarate and oxaloacetate provide carbon skeletons for amino acid biosynthesis, whereas, succinyl-coa combines with glycine to from δ-aminolevulinic acid, a precursor for heme biosynthesis. Citrate is transported out of the mitochondria and converted back to acetyl-coa and oxaloacetate in the cytosol by the enzyme citrate lyase. Cytosolic acetyl- CoA is used for fatty acid and cholesterol biosynthesis, and oxaloacetate can be converted to phosphoenolpyruvate by the enzyme phosphoenolpyruvate carboxykinase (PEPCK) for use in glucose synthesis. Another citrate cycle intermediate, malate, can also be used for gluconeogenesis following export to the cytosol where it is converted first to oxaloacetate by cytosolic malate dehydrogenase, and converted to phosphoenolypyruvate by the enzyme PEPCK. 9 of 9 pages

Citrate Cycle. Lecture 28. Key Concepts. The Citrate Cycle captures energy using redox reactions

Citrate Cycle. Lecture 28. Key Concepts. The Citrate Cycle captures energy using redox reactions Citrate Cycle Lecture 28 Key Concepts The Citrate Cycle captures energy using redox reactions Eight reactions of the Citrate Cycle Key control points in the Citrate Cycle regulate metabolic flux What role

More information

TCA CYCLE (Citric Acid Cycle)

TCA CYCLE (Citric Acid Cycle) TCA CYCLE (Citric Acid Cycle) TCA CYCLE The Citric Acid Cycle is also known as: Kreb s cycle Sir Hans Krebs Nobel prize, 1953 TCA (tricarboxylic acid) cycle The citric acid cycle requires aerobic conditions!!!!

More information

Citric Acid Cycle: Central Role in Catabolism. Entry of Pyruvate into the TCA cycle

Citric Acid Cycle: Central Role in Catabolism. Entry of Pyruvate into the TCA cycle Citric Acid Cycle: Central Role in Catabolism Stage II of catabolism involves the conversion of carbohydrates, fats and aminoacids into acetylcoa In aerobic organisms, citric acid cycle makes up the final

More information

Vocabulary. Chapter 19: The Citric Acid Cycle

Vocabulary. Chapter 19: The Citric Acid Cycle Vocabulary Amphibolic: able to be a part of both anabolism and catabolism Anaplerotic: referring to a reaction that ensures an adequate supply of an important metabolite Citrate Synthase: the enzyme that

More information

Aerobic Fate of Pyruvate. Chapter 16 Homework Assignment. Chapter 16 The Citric Acid Cycle

Aerobic Fate of Pyruvate. Chapter 16 Homework Assignment. Chapter 16 The Citric Acid Cycle Chapter 16 Homework Assignment The following problems will be due once we finish the chapter: 1, 3, 7, 10, 16, 19, 20 Additional Problem: Write out the eight reaction steps of the Citric Acid Cycle, using

More information

Module No. # 01 Lecture No. # 19 TCA Cycle

Module No. # 01 Lecture No. # 19 TCA Cycle Biochemical Engineering Prof. Dr. Rintu Banerjee Department of Agricultural and Food Engineering Asst. Prof. Dr. Saikat Chakraborty Department of Chemical Engineering Indian Institute of Technology, Kharagpur

More information

BY: RASAQ NURUDEEN OLAJIDE

BY: RASAQ NURUDEEN OLAJIDE BY: RASAQ NURUDEEN OLAJIDE LECTURE CONTENT INTRODUCTION CITRIC ACID CYCLE (T.C.A) PRODUCTION OF ACETYL CoA REACTIONS OF THE CITIRC ACID CYCLE THE AMPHIBOLIC NATURE OF THE T.C.A CYCLE THE GLYOXYLATE CYCLE

More information

Glycolysis Part 2. BCH 340 lecture 4

Glycolysis Part 2. BCH 340 lecture 4 Glycolysis Part 2 BCH 340 lecture 4 Regulation of Glycolysis There are three steps in glycolysis that have enzymes which regulate the flux of glycolysis These enzymes catalyzes irreversible reactions of

More information

Tutorial 27: Metabolism, Krebs Cycle and the Electron Transport Chain

Tutorial 27: Metabolism, Krebs Cycle and the Electron Transport Chain Tutorial 27: Metabolism, Krebs Cycle and the Electron Transport Chain Goals: To be able to describe the overall catabolic pathways for food molecules. To understand what bonds are hydrolyzed in the digestion

More information

Chemical Energy. Valencia College

Chemical Energy. Valencia College 9 Pathways that Harvest Chemical Energy Valencia College 9 Pathways that Harvest Chemical Energy Chapter objectives: How Does Glucose Oxidation Release Chemical Energy? What Are the Aerobic Pathways of

More information

Biochemistry: A Short Course

Biochemistry: A Short Course Tymoczko Berg Stryer Biochemistry: A Short Course First Edition CHAPTER 19 Harvesting Electrons from the Cycle 2013 W. H. Freeman and Company Chapter 19 Outline The citric acid cycle oxidizes the acetyl

More information

CITRIC ACID CYCLE ERT106 BIOCHEMISTRY SEM /19 BY: MOHAMAD FAHRURRAZI TOMPANG

CITRIC ACID CYCLE ERT106 BIOCHEMISTRY SEM /19 BY: MOHAMAD FAHRURRAZI TOMPANG CITRIC ACID CYCLE ERT106 BIOCHEMISTRY SEM 1 2018/19 BY: MOHAMAD FAHRURRAZI TOMPANG Chapter Outline (19-1) The central role of the citric acid cycle in metabolism (19-2) The overall pathway of the citric

More information

III. Metabolism The Citric Acid Cycle

III. Metabolism The Citric Acid Cycle Department of Chemistry and Biochemistry University of Lethbridge III. Metabolism The Citric Acid Cycle Slide 1 The Eight Steps of the Citric Acid Cycle Enzymes: 4 dehydrogenases (2 decarboxylation) 3

More information

Cellular Pathways That Harvest Chemical Energy. Cellular Pathways That Harvest Chemical Energy. Cellular Pathways In General

Cellular Pathways That Harvest Chemical Energy. Cellular Pathways That Harvest Chemical Energy. Cellular Pathways In General Cellular Pathways That Harvest Chemical Energy A. Obtaining Energy and Electrons from Glucose Lecture Series 12 Cellular Pathways That Harvest Chemical Energy B. An Overview: Releasing Energy from Glucose

More information

Biological oxidation II. The Cytric acid cycle

Biological oxidation II. The Cytric acid cycle Biological oxidation II The Cytric acid cycle Outline The Cytric acid cycle (TCA tricarboxylic acid) Central role of Acetyl-CoA Regulation of the TCA cycle Anaplerotic reactions The Glyoxylate cycle Localization

More information

Yield of energy from glucose

Yield of energy from glucose Paper : Module : 05 Yield of Energy from Glucose Principal Investigator, Paper Coordinator and Content Writer Prof. Ramesh Kothari, Professor Dept. of Biosciences, Saurashtra University, Rajkot - 360005

More information

Dr. Abir Alghanouchi Biochemistry department Sciences college

Dr. Abir Alghanouchi Biochemistry department Sciences college Dr. Abir Alghanouchi Biochemistry department Sciences college Under aerobic conditions, pyruvate(the product of glycolysis) passes by special pyruvatetransporter into mitochondria which proceeds as follows:

More information

NAME KEY ID # EXAM 3a BIOC 460. Wednesday April 10, Please include your name and ID# on each page. Limit your answers to the space provided!

NAME KEY ID # EXAM 3a BIOC 460. Wednesday April 10, Please include your name and ID# on each page. Limit your answers to the space provided! EXAM 3a BIOC 460 Wednesday April 10, 2002 Please include your name and ID# on each page. Limit your answers to the space provided! 1 1. (5 pts.) Define the term energy charge: Energy charge refers to the

More information

Sheet #13. #Citric acid cycle made by zaid al-ghnaneem corrected by amer Al-salamat date 11/8/2016. Here we go.. Record #18

Sheet #13. #Citric acid cycle made by zaid al-ghnaneem corrected by amer Al-salamat date 11/8/2016. Here we go.. Record #18 1 Sheet #13 #Citric acid cycle made by zaid al-ghnaneem corrected by amer Al-salamat date 11/8/2016 Here we go.. Record #18 2 Three processes play central role in aerobic metabolism: 1) The citric acid

More information

Krebs cycle Energy Petr Tůma Eva Samcová

Krebs cycle Energy Petr Tůma Eva Samcová Krebs cycle Energy - 215 Petr Tůma Eva Samcová Overview of Citric Acid Cycle Key Concepts The citric acid cycle (Krebs cycle) is a multistep catalytic process that converts acetyl groups derived from carbohydrates,

More information

Chapter 9 Overview. Aerobic Metabolism I: The Citric Acid Cycle. Live processes - series of oxidation-reduction reactions. Aerobic metabolism I

Chapter 9 Overview. Aerobic Metabolism I: The Citric Acid Cycle. Live processes - series of oxidation-reduction reactions. Aerobic metabolism I n n Chapter 9 Overview Aerobic Metabolism I: The Citric Acid Cycle Live processes - series of oxidation-reduction reactions Ingestion of proteins, carbohydrates, lipids Provide basic building blocks for

More information

BCH Graduate Survey of Biochemistry

BCH Graduate Survey of Biochemistry BCH 5045 Graduate Survey of Biochemistry Instructor: Charles Guy Producer: Ron Thomas Director: Glen Graham Lecture 50 Slide sets available at: http://hort.ifas.ufl.edu/teach/guyweb/bch5045/index.html

More information

III. 6. Test. Respiració cel lular

III. 6. Test. Respiració cel lular III. 6. Test. Respiració cel lular Chapter Questions 1) What is the term for metabolic pathways that release stored energy by breaking down complex molecules? A) anabolic pathways B) catabolic pathways

More information

Marah Bitar. Faisal Nimri ... Nafeth Abu Tarboosh

Marah Bitar. Faisal Nimri ... Nafeth Abu Tarboosh 8 Marah Bitar Faisal Nimri... Nafeth Abu Tarboosh Summary of the 8 steps of citric acid cycle Step 1. Acetyl CoA joins with a four-carbon molecule, oxaloacetate, releasing the CoA group and forming a six-carbon

More information

MULTIPLE CHOICE QUESTIONS

MULTIPLE CHOICE QUESTIONS MULTIPLE CHOICE QUESTIONS 1. Which of the following statements concerning anabolic reactions is FALSE? A. They are generally endergonic. B. They usually require ATP. C. They are part of metabolism. D.

More information

Cellular Respiration: Harvesting Chemical Energy

Cellular Respiration: Harvesting Chemical Energy Chapter 9 Cellular Respiration: Harvesting Chemical Energy You should be able to: 1. Explain how redox reactions are involved in energy exchanges. Name and describe the three stages of cellular respiration;

More information

7 Pathways That Harvest Chemical Energy

7 Pathways That Harvest Chemical Energy 7 Pathways That Harvest Chemical Energy Pathways That Harvest Chemical Energy How Does Glucose Oxidation Release Chemical Energy? What Are the Aerobic Pathways of Glucose Metabolism? How Is Energy Harvested

More information

Respiration. Organisms can be classified based on how they obtain energy: Autotrophs

Respiration. Organisms can be classified based on how they obtain energy: Autotrophs Respiration rganisms can be classified based on how they obtain energy: Autotrophs Able to produce their own organic molecules through photosynthesis Heterotrophs Live on organic compounds produced by

More information

Under aerobic conditions, pyruvate enters the mitochondria where it is converted into acetyl CoA.

Under aerobic conditions, pyruvate enters the mitochondria where it is converted into acetyl CoA. Under aerobic conditions, pyruvate enters the mitochondria where it is converted into acetyl CoA. Acetyl CoA is the fuel for the citric acid cycle, which processes the two carbon acetyl unit to two molecules

More information

Chapter 9. Cellular Respiration and Fermentation

Chapter 9. Cellular Respiration and Fermentation Chapter 9 Cellular Respiration and Fermentation Energy flows into an ecosystem as sunlight and leaves as heat Photosynthesis generates O 2 and organic molecules, which are used in cellular respiration

More information

Chapter 9. Cellular Respiration: Harvesting Chemical Energy

Chapter 9. Cellular Respiration: Harvesting Chemical Energy Chapter 9 Cellular Respiration: Harvesting Chemical Energy Living cells require energy from outside sources Energy flows into an ecosystem as sunlight and leaves as heat Photosynthesis generates O 2 and

More information

4. Which step shows a split of one molecule into two smaller molecules? a. 2. d. 5

4. Which step shows a split of one molecule into two smaller molecules? a. 2. d. 5 1. Which of the following statements about NAD + is false? a. NAD + is reduced to NADH during both glycolysis and the citric acid cycle. b. NAD + has more chemical energy than NADH. c. NAD + is reduced

More information

The citric acid cycle Sitruunahappokierto Citronsyracykeln

The citric acid cycle Sitruunahappokierto Citronsyracykeln The citric acid cycle Sitruunahappokierto Citronsyracykeln Ove Eriksson BLL/Biokemia ove.eriksson@helsinki.fi Metabolome: The complete set of small-molecule metabolites to be found in a cell or an organism.

More information

Ch. 9 Cell Respiration. Title: Oct 15 3:24 PM (1 of 53)

Ch. 9 Cell Respiration. Title: Oct 15 3:24 PM (1 of 53) Ch. 9 Cell Respiration Title: Oct 15 3:24 PM (1 of 53) Essential question: How do cells use stored chemical energy in organic molecules and to generate ATP? Title: Oct 15 3:28 PM (2 of 53) Title: Oct 19

More information

BIOLOGY - CLUTCH CH.9 - RESPIRATION.

BIOLOGY - CLUTCH CH.9 - RESPIRATION. !! www.clutchprep.com CONCEPT: REDOX REACTIONS Redox reaction a chemical reaction that involves the transfer of electrons from one atom to another Oxidation loss of electrons Reduction gain of electrons

More information

Chapter 13 - TCA Cycle

Chapter 13 - TCA Cycle Chapter 13 TCA Cycle The third fate of glucose/pyruvate is complete oxidation to C 2 + H 2 in the matrix of the mitochondrion. The 1 st step is the oxidation and decarboxylation of pyruvate to AcetylCoA,

More information

CELL BIOLOGY - CLUTCH CH AEROBIC RESPIRATION.

CELL BIOLOGY - CLUTCH CH AEROBIC RESPIRATION. !! www.clutchprep.com CONCEPT: OVERVIEW OF AEROBIC RESPIRATION Cellular respiration is a series of reactions involving electron transfers to breakdown molecules for (ATP) 1. Glycolytic pathway: Glycolysis

More information

Biology 638 Biochemistry II Exam-2

Biology 638 Biochemistry II Exam-2 Biology 638 Biochemistry II Exam-2 Biol 638, Exam-2 (Code-1) 1. Assume that 16 glucose molecules enter into a liver cell and are attached to a liner glycogen one by one. Later, this glycogen is broken-down

More information

OVERVIEW OF THE GLYCOLYTIC PATHWAY Glycolysis is considered one of the core metabolic pathways in nature for three primary reasons:

OVERVIEW OF THE GLYCOLYTIC PATHWAY Glycolysis is considered one of the core metabolic pathways in nature for three primary reasons: Glycolysis 1 Supplemental Reading Key Concepts - Overview of the Glycolytic Pathway Glycolysis generates a small amount of ATP Preview of the ten enzyme-catalyzed reactions of glycolysis - Stage 1: ATP

More information

Chapter 17 - Citric Acid Cycle

Chapter 17 - Citric Acid Cycle hapter 17 - itric Acid ycle I. Introduction - The citric acid cycle (A) was elucidated in the 1930's by ans Krebs, who first noticed that oxygen consumption in suspensions of pigeon breast muscle was greatly

More information

How Cells Harvest Energy. Chapter 7. Respiration

How Cells Harvest Energy. Chapter 7. Respiration How Cells Harvest Energy Chapter 7 Respiration Organisms classified on how they obtain energy: autotrophs: produce their own organic molecules through photosynthesis heterotrophs: live on organic compounds

More information

Chapter 9: Cellular Respiration Overview: Life Is Work. Living cells. Require transfusions of energy from outside sources to perform their many tasks

Chapter 9: Cellular Respiration Overview: Life Is Work. Living cells. Require transfusions of energy from outside sources to perform their many tasks Chapter 9: Cellular Respiration Overview: Life Is Work Living cells Require transfusions of energy from outside sources to perform their many tasks Biology, 7 th Edition Neil Campbell and Jane Reece The

More information

Chapter 13 Carbohydrate Metabolism

Chapter 13 Carbohydrate Metabolism Chapter 13 Carbohydrate Metabolism Metabolism of Foods Food is broken down into carbohydrates, lipids, and proteins and sent through catabolic pathways to produce energy. Glycolysis glucose 2 P i 2 ADP

More information

Campbell Biology 9. Chapter 9 Cellular Respiration and Fermentation. Chul-Su Yang, Ph.D., Lecture on General Biology 1

Campbell Biology 9. Chapter 9 Cellular Respiration and Fermentation. Chul-Su Yang, Ph.D., Lecture on General Biology 1 Lecture on General Biology 1 Campbell Biology 9 th edition Chapter 9 Cellular Respiration and Fermentation Chul-Su Yang, Ph.D., chulsuyang@hanyang.ac.kr Infection Biology Lab., Dept. of Molecular & Life

More information

Plant Respiration. Exchange of Gases in Plants:

Plant Respiration. Exchange of Gases in Plants: Plant Respiration Exchange of Gases in Plants: Plants do not have great demands for gaseous exchange. The rate of respiration in plants is much lower than in animals. Large amounts of gases are exchanged

More information

CHE 242 Exam 3 Practice Questions

CHE 242 Exam 3 Practice Questions CHE 242 Exam 3 Practice Questions Glucose metabolism 1. Below is depicted glucose catabolism. Indicate on the pathways the following: A) which reaction(s) of glycolysis are irreversible B) where energy

More information

Krebs Cycle. Color Index: Original slides. Important. 436 Notes 438 notes. Extra information Biochemistry team 438. Red boxes are IMPORTANT!

Krebs Cycle. Color Index: Original slides. Important. 436 Notes 438 notes. Extra information Biochemistry team 438. Red boxes are IMPORTANT! Red boxes are IMPORTANT! Krebs Cycle Color Index: Original slides. Important. 436 Notes 438 notes : ل ی د ع ت ل ا ط ب ا ر https://docs.google.com/document/d/1wvdec1atp7j- ZKWOUSukSLsEcosjZ0AqV4z2VcH2TA0/edit?usp=sharing

More information

The Krebs cycle is a central pathway for recovering energy from three major metabolites: carbohydrates, fatty acids, and amino acids.

The Krebs cycle is a central pathway for recovering energy from three major metabolites: carbohydrates, fatty acids, and amino acids. Chapter 16 - Citric Acid Cycle TCA (tricarboxylic acid cycle) Citric acid cycle and Krebs cycle. Named after Sir Hans Krebs, Nobel Laureate. He worked as an assistant professor for Otto Warburg (Nobel

More information

Metabolism Gluconeogenesis/Citric Acid Cycle

Metabolism Gluconeogenesis/Citric Acid Cycle Metabolism Gluconeogenesis/Citric Acid Cycle BIOB111 CHEMISTRY & BIOCHEMISTRY Session 21 Session Plan Gluconeogenesis Cori Cycle Common Metabolic Pathway The Citric Acid Cycle Stoker 2014, p859 Gluconeogenesis

More information

Cellular Respiration: Harvesting Chemical Energy Chapter 9

Cellular Respiration: Harvesting Chemical Energy Chapter 9 Cellular Respiration: Harvesting Chemical Energy Chapter 9 Assemble polymers, pump substances across membranes, move and reproduce The giant panda Obtains energy for its cells by eating plants which get

More information

Chapter-5 Respiration in Plants Very Short Answers Questions: 1. Different substrates get oxidized during respiration. How does respiratory quotient (RQ) indicate which type of substrate i.e. carbohydrate,

More information

Energy and life. Generation of Biochemical Energy Chapter 21. Energy. Energy and biochemical reactions: 4/5/09

Energy and life. Generation of Biochemical Energy Chapter 21. Energy. Energy and biochemical reactions: 4/5/09 Energy and life Generation of Biochemical Energy Chapter 21 1 Biological systems are powered by oxidation of biomolecules made mainly of C, H and O. The food biomolecules are mainly Lipids (fats) Carbohydrates

More information

The Citric acid cycle. The Citric Acid Cycle II 11/17/2009. Overview. Pyruvate dehydrogenase

The Citric acid cycle. The Citric Acid Cycle II 11/17/2009. Overview. Pyruvate dehydrogenase The itric acid cycle The itric Acid ycle II 11/17/2009 It is called the Krebs cycle or the tricarboxylic and is the hub of the metabolic system. It accounts for the majority of carbohydrate, fatty acid

More information

Chapter 9 Cellular Respiration Overview: Life Is Work Living cells require energy from outside sources

Chapter 9 Cellular Respiration Overview: Life Is Work Living cells require energy from outside sources Chapter 9 Cellular Respiration Overview: Life Is Work Living cells require energy from outside sources Some animals, such as the giant panda, obtain energy by eating plants, and some animals feed on other

More information

Reading Assignments. A. Energy and Energy Conversions. Lecture Series 9 Cellular Pathways That Harvest Chemical Energy. gasoline) or elevated mass.

Reading Assignments. A. Energy and Energy Conversions. Lecture Series 9 Cellular Pathways That Harvest Chemical Energy. gasoline) or elevated mass. Lecture Series 9 Cellular Pathways That Harvest Chemical Energy Reading Assignments Review Chapter 3 Energy, Catalysis, & Biosynthesis Read Chapter 13 How Cells obtain Energy from Food Read Chapter 14

More information

BIOLOGY. Cellular Respiration and Fermentation CAMPBELL. Reece Urry Cain Wasserman Minorsky Jackson

BIOLOGY. Cellular Respiration and Fermentation CAMPBELL. Reece Urry Cain Wasserman Minorsky Jackson CAMPBELL BIOLOGY TENTH EDITION Reece Urry Cain Wasserman Minorsky Jackson 9 Cellular Respiration and Fermentation Lecture Presentation by Nicole Tunbridge and Kathleen Fitzpatrick Figure 9.2 Light energy

More information

Cellular Respiration Stage 2 & 3. Glycolysis is only the start. Cellular respiration. Oxidation of Pyruvate Krebs Cycle.

Cellular Respiration Stage 2 & 3. Glycolysis is only the start. Cellular respiration. Oxidation of Pyruvate Krebs Cycle. Cellular Respiration Stage 2 & 3 Oxidation of Pyruvate Krebs Cycle AP 2006-2007 Biology Glycolysis is only the start Glycolysis glucose pyruvate 6C 2x 3C Pyruvate has more energy to yield 3 more C to strip

More information

The Citric Acid Cycle 19-1

The Citric Acid Cycle 19-1 The Citric Acid Cycle 19-1 The Citric Acid Cycle Three processes play central role in aerobic metabolism the citric acid cycle electron transport oxidative phosphorylation Metabolism consists of catabolism:

More information

Cellular Respiration: Harvesting Chemical Energy

Cellular Respiration: Harvesting Chemical Energy Chapter 9 Cellular Respiration: Harvesting Chemical Energy PowerPoint Lecture Presentations for Biology Eighth Edition Neil Campbell and Jane Reece Lectures by Chris Romero, updated by Erin Barley with

More information

Energetics of carbohydrate and lipid metabolism

Energetics of carbohydrate and lipid metabolism Energetics of carbohydrate and lipid metabolism 1 Metabolism: The sum of all the chemical transformations taking place in a cell or organism, occurs through a series of enzymecatalyzed reactions that constitute

More information

Respiration. Respiration. Respiration. How Cells Harvest Energy. Chapter 7

Respiration. Respiration. Respiration. How Cells Harvest Energy. Chapter 7 How Cells Harvest Energy Chapter 7 Organisms can be classified based on how they obtain energy: autotrophs: are able to produce their own organic molecules through photosynthesis heterotrophs: live on

More information

Cellular Respiration and Fermentation

Cellular Respiration and Fermentation CAMPBELL BIOLOGY IN FOCUS URRY CAIN WASSERMAN MINORSKY REECE 7 Cellular Respiration and Fermentation Lecture Presentations by Kathleen Fitzpatrick and Nicole Tunbridge, Simon Fraser University SECOND EDITION

More information

Cellular Respiration and Fermentation

Cellular Respiration and Fermentation CAMPBELL BIOLOGY IN FOCUS URRY CAIN WASSERMAN MINORSKY REECE 7 Cellular Respiration and Fermentation Lecture Presentations by Kathleen Fitzpatrick and Nicole Tunbridge, Simon Fraser University SECOND EDITION

More information

CH 7: Cell Respiration and Fermentation Overview. Concept 7.1: Catabolic pathways yield energy by oxidizing organic fuels

CH 7: Cell Respiration and Fermentation Overview. Concept 7.1: Catabolic pathways yield energy by oxidizing organic fuels CH 7: Cell Respiration and Fermentation Overview Living cells require energy from outside sources Some animals obtain energy by eating plants, and some animals feed on other organisms Energy flows into

More information

Cellular Respiration: Harvesting Chemical Energy

Cellular Respiration: Harvesting Chemical Energy Chapter 9 Cellular Respiration: Harvesting Chemical Energy Edited by Shawn Lester PowerPoint Lecture Presentations for Biology Eighth Edition Neil Campbell and Jane Reece Lectures by Chris Romero, updated

More information

Find this material useful? You can help our team to keep this site up and bring you even more content consider donating via the link on our site.

Find this material useful? You can help our team to keep this site up and bring you even more content consider donating via the link on our site. Find this material useful? You can help our team to keep this site up and bring you even more content consider donating via the link on our site. Still having trouble understanding the material? Check

More information

Citric acid cycle and respiratory chain. Pavla Balínová

Citric acid cycle and respiratory chain. Pavla Balínová Citric acid cycle and respiratory chain Pavla Balínová Mitochondria Structure of mitochondria: Outer membrane Inner membrane (folded) Matrix space (mtdna, ribosomes, enzymes of CAC, β-oxidation of FA,

More information

Aerobic Respiration. The four stages in the breakdown of glucose

Aerobic Respiration. The four stages in the breakdown of glucose Aerobic Respiration The four stages in the breakdown of glucose 1 I. Aerobic Respiration Why can t we break down Glucose in one step? (Flaming Gummy Bear) Enzymes gently lower the potential energy until

More information

Photosynthesis in chloroplasts. Cellular respiration in mitochondria ATP. ATP powers most cellular work

Photosynthesis in chloroplasts. Cellular respiration in mitochondria ATP. ATP powers most cellular work Light energy ECOSYSTEM CO + H O Photosynthesis in chloroplasts Cellular respiration in mitochondria Organic molecules + O powers most cellular work Heat energy 1 becomes oxidized (loses electron) becomes

More information

Gluconeogenesis. Gluconeogenesis / TCA 11/12/2009. Free energy changes in glycolysis 11/13/2009

Gluconeogenesis. Gluconeogenesis / TCA 11/12/2009. Free energy changes in glycolysis 11/13/2009 Gluconeogenesis Gluconeogenesis / TCA 11/12/2009 Gluconeogenesis is the process whereby precursors such as lactate, pyruvate, glycerol, and amino acids are converted to glucose. Fasting requires all the

More information

7 Cellular Respiration and Fermentation

7 Cellular Respiration and Fermentation CAMPBELL BIOLOGY IN FOCUS Urry Cain Wasserman Minorsky Jackson Reece 7 Cellular Respiration and Fermentation Lecture Presentations by Kathleen Fitzpatrick and Nicole Tunbridge Overview: Life Is Work Living

More information

MITOCHONDRIA LECTURES OVERVIEW

MITOCHONDRIA LECTURES OVERVIEW 1 MITOCHONDRIA LECTURES OVERVIEW A. MITOCHONDRIA LECTURES OVERVIEW Mitochondrial Structure The arrangement of membranes: distinct inner and outer membranes, The location of ATPase, DNA and ribosomes The

More information

Biochemistry Prof. S. Dasgupta Department of Chemistry Indian Institute of Technology Kharagpur. Lecture - 27 Metabolism III

Biochemistry Prof. S. Dasgupta Department of Chemistry Indian Institute of Technology Kharagpur. Lecture - 27 Metabolism III Biochemistry Prof. S. Dasgupta Department of Chemistry Indian Institute of Technology Kharagpur Lecture - 27 Metabolism III In the last step of our metabolism of carbohydrates we are going to consider

More information

BIOLOGY. Cellular Respiration and Fermentation CAMPBELL. Reece Urry Cain Wasserman Minorsky Jackson

BIOLOGY. Cellular Respiration and Fermentation CAMPBELL. Reece Urry Cain Wasserman Minorsky Jackson CAMPBELL BIOLOGY TENTH EDITION Reece Urry Cain Wasserman Minorsky Jackson 9 Cellular Respiration and Fermentation Lecture Presentation by Nicole Tunbridge and Kathleen Fitzpatrick Life Is Work Living cells

More information

7 Cellular Respiration and Fermentation

7 Cellular Respiration and Fermentation CAMPBELL BIOLOGY IN FOCUS URRY CAIN WASSERMAN MINORSKY REECE 7 Cellular Respiration and Fermentation Lecture Presentations by Kathleen Fitzpatrick and Nicole Tunbridge, Simon Fraser University SECOND EDITION

More information

Metabolism. Metabolic pathways. BIO 5099: Molecular Biology for Computer Scientists (et al) Lecture 11: Metabolic Pathways

Metabolism. Metabolic pathways. BIO 5099: Molecular Biology for Computer Scientists (et al) Lecture 11: Metabolic Pathways BIO 5099: Molecular Biology for Computer Scientists (et al) Lecture 11: Metabolic Pathways http://compbio.uchsc.edu/hunter/bio5099 Larry.Hunter@uchsc.edu Metabolism Metabolism is the chemical change of

More information

This is an example outline of 3 lectures in BSC (Thanks to Dr. Ellington for sharing this information.)

This is an example outline of 3 lectures in BSC (Thanks to Dr. Ellington for sharing this information.) This is an example outline of 3 lectures in BSC 2010. (Thanks to Dr. Ellington for sharing this information.) Topic 10: CELLULAR RESPIRATION (lectures 14-16) OBJECTIVES: 1. Know the basic reactions that

More information

7 Cellular Respiration and Fermentation

7 Cellular Respiration and Fermentation CAMPBELL BIOLOGY IN FOCUS Urry Cain Wasserman Minorsky Jackson Reece 7 Cellular Respiration and Fermentation Lecture Presentations by Kathleen Fitzpatrick and Nicole Tunbridge Overview: Life Is Work Living

More information

Metabolic Pathways and Energy Metabolism

Metabolic Pathways and Energy Metabolism Metabolic Pathways and Energy Metabolism Last Week Energy Metabolism - The first thing a living organism has got to be able to do is harness energy from the environment - Plants do it by absorbing sunlight

More information

Integration Of Metabolism

Integration Of Metabolism Integration Of Metabolism Metabolism Consist of Highly Interconnected Pathways The basic strategy of catabolic metabolism is to form ATP, NADPH, and building blocks for biosyntheses. 1. ATP is the universal

More information

Cellular Respiration and Fermentation

Cellular Respiration and Fermentation LECTURE PRESENTATIONS For CAMPBELL BIOLOGY, NINTH EDITION Jane B. Reece, Lisa A. Urry, Michael L. Cain, Steven A. Wasserman, Peter V. Minorsky, Robert B. Jackson Chapter 9 Cellular Respiration and Fermentation

More information

Comparison of catabolic and anabolic pathways

Comparison of catabolic and anabolic pathways Comparison of catabolic and anabolic pathways Three stages of catabolism Glucose Synthesis of compounds e.g. lactose glycolipids Glucose-6-P Pentosephosphate Pathway Glycolysis Glycogenesis Acetyl-CoA

More information

Cellular Respiration

Cellular Respiration Cellular Respiration C 6 H 12 O 6 + 6O 2 -----> 6CO 2 + 6H 2 0 + energy (heat and ATP) 1. Energy Capacity to move or change matter Forms of energy are important to life include Chemical, radiant (heat

More information

CELLULAR RESPIRATION SUMMARY EQUATION. C 6 H 12 O 6 + O 2 6CO2 + 6H 2 O + energy (ATP) STEPWISE REDOX REACTION

CELLULAR RESPIRATION SUMMARY EQUATION. C 6 H 12 O 6 + O 2 6CO2 + 6H 2 O + energy (ATP) STEPWISE REDOX REACTION CELLULAR RESPIRATION SUMMARY EQUATION C 6 H 12 O 6 + O 2 6CO2 + 6H 2 O + energy (ATP) STEPWISE REDOX REACTION Oxidation: partial or complete loss of electrons Reduction: partial or complete gain of electrons

More information

Citric acid cycle. Tomáš Kučera.

Citric acid cycle. Tomáš Kučera. itric acid cycle Tomáš Kučera tomas.kucera@lfmotol.cuni.cz Department of Medical hemistry and linical Biochemistry 2nd Faculty of Medicine, harles University in Prague and Motol University Hospital 2017

More information

In glycolysis, glucose is converted to pyruvate. If the pyruvate is reduced to lactate, the pathway does not require O 2 and is called anaerobic

In glycolysis, glucose is converted to pyruvate. If the pyruvate is reduced to lactate, the pathway does not require O 2 and is called anaerobic Glycolysis 1 In glycolysis, glucose is converted to pyruvate. If the pyruvate is reduced to lactate, the pathway does not require O 2 and is called anaerobic glycolysis. If this pyruvate is converted instead

More information

BIOLOGY. Cellular Respiration and Fermentation CAMPBELL. Photosynthesis in chloroplasts. Light energy ECOSYSTEM. Organic molecules CO 2 + H 2 O

BIOLOGY. Cellular Respiration and Fermentation CAMPBELL. Photosynthesis in chloroplasts. Light energy ECOSYSTEM. Organic molecules CO 2 + H 2 O 9 Cellular Respiration and Fermentation CAMPBELL BIOLOGY TENTH EDITION Reece Urry Cain Wasserman Minorsky Jackson Lecture Presentation by Nicole Tunbridge and Kathleen Fitzpatrick Figure 9.1 Figure 9.2

More information

Growth. Principles of Metabolism. Principles of Metabolism 1/18/2011. The role of ATP energy currency. Adenosine triphosphate

Growth. Principles of Metabolism. Principles of Metabolism 1/18/2011. The role of ATP energy currency. Adenosine triphosphate Metabolism: Fueling Cell Growth Principles of Metabolism Cells (including your own) must: Synthesize new components (anabolism/biosynthesis) Harvest energy and convert it to a usable form (catabolism)

More information

Chapter 16. The Citric Acid Cycle: CAC Kreb s Cycle Tricarboxylic Acid Cycle: TCA

Chapter 16. The Citric Acid Cycle: CAC Kreb s Cycle Tricarboxylic Acid Cycle: TCA Chapter 16 The Citric Acid Cycle: CAC Kreb s Cycle Tricarboxylic Acid Cycle: TCA The Citric Acid Cycle Key topics: To Know Also called Tricarboxylic Acid Cycle (TCA) or Krebs Cycle. Three names for the

More information

BIOLOGY. Cellular Respiration and Fermentation CAMPBELL. Reece Urry Cain Wasserman Minorsky Jackson

BIOLOGY. Cellular Respiration and Fermentation CAMPBELL. Reece Urry Cain Wasserman Minorsky Jackson CAMPBELL BIOLOGY TENTH EDITION Reece Urry Cain Wasserman Minorsky Jackson 9 Cellular Respiration and Fermentation Lecture Presentation by Nicole Tunbridge and Kathleen Fitzpatrick Life Is Work Living cells

More information

Cellular Respiration. Biochemistry Part II 4/28/2014 1

Cellular Respiration. Biochemistry Part II 4/28/2014 1 Cellular Respiration Biochemistry Part II 4/28/2014 1 4/28/2014 2 The Mitochondria The mitochondria is a double membrane organelle Two membranes Outer membrane Inter membrane space Inner membrane Location

More information

Tricarboxylic Acid Cycle. TCA Cycle; Krebs Cycle; Citric Acid Cycle

Tricarboxylic Acid Cycle. TCA Cycle; Krebs Cycle; Citric Acid Cycle Tricarboxylic Acid ycle TA ycle; Krebs ycle; itric Acid ycle The Bridging Step: Pyruvate D hase O H 3 - - pyruvate O O - NAD + oash O 2 NADH O H 3 - - S - oa acetyl oa Pyruvate D hase omplex Multienzyme

More information

Cellular Respiration and Fermentation

Cellular Respiration and Fermentation Chapter 9 LECTURE PRESENTATIONS For CAMPBELL BIOLOGY, NINTH EDITION Jane B. Reece, Lisa A. Urry, Michael L. Cain, Steven A. Wasserman, Peter V. Minorsky, Robert B. Jackson Cellular Respiration and Fermentation

More information

number Done by Corrected by Doctor Nafeth Abu Tarboush

number Done by Corrected by Doctor Nafeth Abu Tarboush number 7 Done by حسام أبو عوض Corrected by Shahd Alqudah Doctor Nafeth Abu Tarboush 1 P a g e As we have studied before, in the fourth reaction of the Krebs cycle, α- ketoglutarate is converted into Succinyl-CoA

More information

BIOLOGY. Cellular Respiration and Fermentation. Concept 9.1: Catabolic pathways yield energy by oxidizing organic fuels

BIOLOGY. Cellular Respiration and Fermentation. Concept 9.1: Catabolic pathways yield energy by oxidizing organic fuels 9 Cellular Respiration and Fermentation CAMPBELL BIOLOGY TENTH EDITION Reece Urry Cain Wasserman Minorsky Jackson Energy flows into an ecosystem as sunlight and leaves as heat Photosynthesis generates

More information

3.7 CELLULAR RESPIRATION. How are these two images related?

3.7 CELLULAR RESPIRATION. How are these two images related? 3.7 CELLULAR RESPIRATION How are these two images related? CELLULAR RESPIRATION Cellular respiration is the process whereby the body converts the energy that we get from food (glucose) into an energy form

More information

Chapter 5. Microbial Metabolism

Chapter 5. Microbial Metabolism Chapter 5 Microbial Metabolism Metabolism Collection of controlled biochemical reactions that take place within a microbe Ultimate function of metabolism is to reproduce the organism Metabolic Processes

More information

RESPIRATION Worksheet

RESPIRATION Worksheet A.P. Bio L.C. RESPIRATION Worksheet 1. In the conversion of glucose and oxygen to carbon dioxide and water a) which molecule becomes reduced? b) which molecule becomes oxidized? c) what happens to the

More information

7 Cellular Respiration and Fermentation

7 Cellular Respiration and Fermentation CAMPBELL BIOLOGY IN FOCUS Urry Cain Wasserman Minorsky Jackson Reece 7 Cellular Respiration and Fermentation Lecture Presentations by Kathleen Fitzpatrick and Nicole Tunbridge Overview: Life Is Work Living

More information