Review. Respiration. Glycolysis. Glycolysis is the decomposition (lysis) of glucose (glyco) to pyruvate (or pyruvic acid).

Save this PDF as:
 WORD  PNG  TXT  JPG

Size: px
Start display at page:

Download "Review. Respiration. Glycolysis. Glycolysis is the decomposition (lysis) of glucose (glyco) to pyruvate (or pyruvic acid)."

Transcription

1 Review Photosynthesis is the process of incorporating energy from light into energy-rich molecules like glucose. Respiration is the opposite process extracting that stored energy from glucose to form ATP (from ADP and Pi). The chemical equation describing this process is Respiration If you replace the energy with light and reverse the equation, it will describe photosynthesis. Glycolysis Glycolysis is the decomposition (lysis) of glucose (glyco) to pyruvate (or pyruvic acid). The steps are summarized as follows ATP are added. The first several steps require the input of energy. This changes glucose in preparation for subsequent steps NADH are produced. NADH (Nicotinamide adenine dinucleotide) is a coenzyme, accepting 2 electrons from the substrate molecule. Like NADPH in photosynthesis, it is an energy-rich molecule. (You can keep the two coenzymes NADH and NADPH associated with the correct processes by using the P in NADPH as a reminder of the P in photosynthesis. The P in NADPH, however, actually represents phosphorus.) 3. 4 ATP are produced pyruvate are formed. Nine intermediate products are formed, and, of course, each one is catalyzed by an enzyme. In six of the steps, magnesium ions (Mg 2+ ) are cofactors that promote enzyme activity

2 The Krebs Cycle The Krebs cycle details what happens to the pyruvate end product of glycolysis. In summary, glycolysis takes 1 glucose and turns it into 2 pyruvate, 2 NADH, and a net of 2 ATP (made 4 ATP, but used 2 ATP). The Krebs Cycle 1. Pyruvate to acetyl CoA. In a step leading up to the actual Krebs cycle, pyruvate combines with coenzyme A (CoA) to produce acetyl CoA. In that reaction 1 NADH and 1 CO 2 are also produced. 2. Krebs Cycle: 3 NADH, 1 FADH2, 1 ATP, CO2. The Krebs cycle begins when acetyl CoA combines with OAA (oxaloacetic acid) to form citric acid. There are 7 intermediate products. Along the way, 3 NADH and 1 FADH2 (Flavin adenine dinucleotide) are made and CO 2 is released. FADH2, like NADH, is a coenzyme, accepting electrons during a reaction. Because the first product made from acetyl CoA is the 3-carbon citric acid, the Krebs cycle is also known as the citric acid cycle or the tricarboxylic acid (TCA) cycle. The CO 2 produced by the Krebs cycle is the CO 2 animals exhale when they breathe. Although the Krebs cycle is described for 1 pyruvate, remember that glycolysis produces 2 pyruvate. In Figure 4-1, the 2 next to the pyruvate and the Krebs cycle is a reminder to multiply the products of this cycle by 2 to account for the products of a single glucose. The Krebs Cycle Oxidative Phosphorylation Oxidative phosphorylation is the process of extracting ATP from NADH and FADH2. There are 7 intermediate products. 2

3 Oxidative Phosphorylation The last electron acceptor at the end of the chain is oxygen. The 1 2O 2 accepts the two electrons and, together with 2 H +, forms water. NADH provides electrons that have enough energy to phosphorylate 3 ADP to 3 ATP. FADH2 produces 2 ATP. Oxidative Phosphorylation Electrons from NADH and FADH2 pass along an electron transport chain analogous to electron transport chains in photophosphorylation. These electrons pass from one carrier protein to another along the chain, losing energy at each step. Cytochromes and various other modified proteins participate as carrier proteins in this chain. One of these cytochromes, cytochrome c, is often compared among species to assess genetic relatedness. How Many ATP? How many ATP are made from the energy released from the breakdown of 1 glucose? Glycolysis produces 2 ATP and 2 NADH. When 2 pyruvate (from 1 glucose) are converted to 2 acetyl CoA, 2 more NADH are produced. From 2 acetyl CoA, the Krebs cycle produces 6 NADH, 2 FADH2, and 2 ATP. If each NADH produces 3 ATP during oxidative phosphorylation, and FADH2 produces 2 ATP, the total ATP count from 1 original glucose appears to be 38 (Table 4-1). How Many ATP? How many ATP are made from the energy released from the breakdown of 1 glucose? Glycolysis produces 2 ATP and 2 NADH. When 2 pyruvate (from 1 glucose) are converted to 2 acetyl CoA, 2 more NADH are produced. From 2 acetyl CoA, the Krebs cycle produces 6 NADH, 2 FADH2, and 2 ATP. If each NADH produces 3 ATP during oxidative phosphorylation, and FADH2 produces 2 ATP, the total ATP count from 1 original glucose appears to be 38 (Table 4-1). Mitochondria The Krebs cycle and the conversion of pyruvate to acetyl CoA occur in the mitochondrial matrix (the fluid part) (Figure 4-2). The electron transport chain proteins are embedded in the cristae (singular, crista). The cristae are internal convoluted membranes that separate the mitochondrion into an inner compartment that contains the matrix and an outer compartment between the cristae and the outer mitochondrial membrane. Note how the spatial arrangement of the respiratory processes in the mitochondrion is similar to the spatial arrangement of photosynthetic processes in the chloroplasts. In chloroplasts, the carrier proteins of electron transport chains are embedded in the inner membranes, the thylakoids, while the enzymes for the Calvin-Benson cycle are in the stroma. The actual number, however, is 36. This is because glycolysis occurs in the cytoplasm and each NADH produced there must be transported into the mitochondria for oxidative phosphorylation. The transport of NADH across the mitochondrial membrane reduces the yield of these NADH to only 2 ATP. Not 6 ATP 3

4 Chemiosmotic Theory Electrons from NADH and FADH2 lose energy as they pass along the electron transport chain in oxidative phosphorylation. That energy is used to phosphorylate ADP to ATP. Chemiosmotic theory describes how that phosphorylation occurs. The process is analogous to ATP generation in chloroplasts (Figure 4-3). In the cytoplasm, glycolysis produces 2 pyruvate, 2 NADH, and 2 ATP. In order for ATP to be extracted from the pyruvate and NADH, these molecules must be shipped across the mitochondrial membrane and into the matrix. Within the mitochondria, pyruvate (after conversion to acetyl CoA) enters the Krebs cycle. The 2 NADH begin oxidative phosphorylation with the electron transport chain in the cristae. These NADH, however, to produce a net of only 2 ATP each because 1 ATP is required to move each of them into the mitochondria. Chemiosmotic Theory 2. A ph and electrical gradient across the crista membrane is created. The accumulation of H+ in the outer compartment creates a proton gradient (equivalent to a ph gradient) and an electric charge (or voltage) gradient. These gradients are potential energy reserves in the same manner as water behind a dam is stored energy. 1. H+ accumulate in the outer compartment. The Krebs cycle produces NADH and FADH2 in the matrix. As these two molecules move through the electron transport chain, H+ (which is only a proton) are pumped from the matrix across the cristae and into the outer compartment (between the cristae and the mitochondrial outer membrane). Anaerobic Respiration What if oxygen is not present? If oxygen is not present, there is no electron acceptor to accept the electrons at the end of the electron transport chain. 3. ATP synthases generate ATP. Channel proteins (ATP synthases) in the cristae allow the protons in the outer compartment to flow back into the matrix. The protons moving through the channel generate the energy for these channel proteins to produce ATP. It is similar to how turbines in a dam generate electricity when water flows through them. If this occurs, then NADH accumulates. Once all the NAD+ has been converted to NADH, the Krebs cycle and glycolysis both stop (both need NAD+ to accept electrons). Once this happens, no new ATP is produced, and the cell soon dies. 4

5 Alcoholic Fermentation Alcoholic fermentation (or sometimes, just fermentation) occurs in plants, fungi (such as yeasts), and bacteria. The steps, illustrated in Figure 4-1, are as follows: 1. Pyruvate to acetaldehyde. For each pyruvate, 1 CO 2 and 1 acetaldehyde are produced. The CO 2 formed is the source of carbonation in fermented drinks like beer and champagne. 2. Acetaldehyde to ethanol. The important part of this step is that the energy in NADH is used to drive this reaction, releasing NAD+. For each acetaldehyde, 1 ethanol is made and 1 NAD+ is produced. The ethanol (ethyl alcohol) produced here is the source of alcohol in beer and wine. Anaerobic respiration is a method cells use to escape this fate. The pathways in plants and animals, alcoholic and lactate fermentation, respectively, are slightly different, but the objective of both processes is to replenish NAD+ so that glycolysis can proceed once again. Anaerobic respiration occurs in the cytoplasm alongside glycolysis. Lactate Fermentation There is only one step in lactate fermentation. A pyruvate is converted to lactate (or lactic acid) and in the process, NADH gives up its electrons to form NAD+. As in alcoholic fermentation, the NAD+ can now be used for glycolysis. When O2 again becomes available, lactate can be broken down and its store of energy can be retrieved. Because O2 is required to do this, lactate fermentation creates what is often called an oxygen debt. It is important that you recognize the objective of this pathway. At first glance, you should wonder why the energy in an energy-rich molecule like NADH is removed and put into the formation of ethanol, essentially a waste product that eventually kills the yeast (and other organisms) that produce it. The goal of this pathway, however, does not really concern ethanol, but the task of freeing NAD+ to allow glycolysis to continue. Recall that in the absence of O 2, all the NAD+ is bottled up in NADH. This is because oxidative phosphorylation cannot accept the electrons of NADH without oxygen. The purpose of the fermentation pathway, then, is to release some NAD+ for use by glycolysis. The reward for this effort is 2 ATP from glycolysis for each 2 converted pyruvate. This is not much, but it s better than the alternative 0 ATP. Why does it build up sooner in some people than in others? The condition of your heart is the determining factor. The job of your heart is to pump oxygenated blood and deliver it to your skeletal muscles. Most of us have plenty of lung capacity. Unless you suffer from a respiratory disease, we all have plenty of lung capacity to inhale and exhale enough air. But our heart is a muscle and some people have more powerful hearts than others. If the condition of your heart is bad, as in a weak heart, then there is a decreased ability in the delivery of oxygenated blood. Oxygen Debt الدین الا وكسجیني If all of us were to start running around our blocks, some people after 3 blocks would be slowing down. Some people would go for 12 blocks. For some people it might be 3 miles. What accounts for the difference? In part it is due to lactic acid. 5

6 Doctors mimic this through something known as a cardiac stress test to see what your heart can do. Doctors want to see how hard they could push you and make you run on a treadmill as hard as you can before you have to tell them to stop the treadmill. Once they stop the treadmill, you will continue to pant because your body needs to repay the oxygen debt that was created during exercise. The doctor will note how quickly your heart rate returns back to normal because it s a direct indication of the power and strength of your heart. When you re exercising and your skeletal muscles aren t getting enough oxygen, the body must tap into its anaerobic metabolism.this is where the body goes into a mix of aerobic and anaerobic energy production. Fermentation is an anaerobic respiration reaction that occurs when there is not enough oxygen to convert glucose into ATP so the glucose is temporarily converted to lactic acid. The accumulation of lactic acid in muscles contributes to muscle fatigue and muscle cramping. If you keep pushing yourself, and building up your oxygen deficit, your performance will deteriorate. Conversely, if your heart is really strong and powerful, then it s pumping lots of oxygenated blood, your muscles are getting plenty of oxygen and aerobic respiration is continuing in your cells and not forming as much lactic acid. The greater the accumulation of lactic acid, the more additional oxygen will be required by your body to breathe in so that all the lactic acid can be converted to useful energy through aerobic respiration This is known as oxygen debt following exercise. That is the reason why you are still panting after you ve already stopped. The stronger your heart is, the shorter that recovery time will be. 6

Chapter 9 Cellular Respiration. Copyright Pearson Prentice Hall

Chapter 9 Cellular Respiration. Copyright Pearson Prentice Hall Chapter 9 Cellular Respiration Copyright Pearson Prentice Hall 9-1 Chemical Pathways Both plant and animal cells carry out the final stages of cellular respiration in the mitochondria. Animal Cells Animal

More information

3.7.1 Define cell respiration [Cell respiration is the controlled release of energy from organic compounds in cells to form ATP]

3.7.1 Define cell respiration [Cell respiration is the controlled release of energy from organic compounds in cells to form ATP] 3.7 Cell respiration ( Chapter 9 in Campbell's book) 3.7.1 Define cell respiration [Cell respiration is the controlled release of energy from organic compounds in cells to form ATP] Organic compounds store

More information

Releasing Food Energy

Releasing Food Energy Releasing Food Energy All food is broken down by the body into small molecules through digestion. By the time food reaches your, bloodstream it has been broken down into nutrient rich molecules that can

More information

Releasing Chemical Energy

Releasing Chemical Energy Releasing Chemical Energy Ø Energy From Carbohydrates Ø Aerobic Respiration/ Stages Ø Fermentation Ø Food as a Source of Energy How Do Cells Access the Chemical Energy in Carbohydrayes? Aerobic Respiration

More information

Cellular Respiration

Cellular Respiration Cellular Respiration The breakdown of glucose for cellular energy. happens in all living cells. is exothermic H atoms and e are removed from glucose (oxidization) and added to oxygen (reduction) excess

More information

Cellular Metabolism. Biol 105 Lecture 6 Read Chapter 3 (pages 63 69)

Cellular Metabolism. Biol 105 Lecture 6 Read Chapter 3 (pages 63 69) Cellular Metabolism Biol 105 Lecture 6 Read Chapter 3 (pages 63 69) Metabolism Consists of all of the chemical reactions that take place in a cell Metabolism Animation Breaking Down Glucose For Energy

More information

KEY CONCEPT The overall process of cellular respiration converts sugar into ATP using oxygen.

KEY CONCEPT The overall process of cellular respiration converts sugar into ATP using oxygen. KEY CONCEPT The overall process of cellular respiration converts sugar into ATP using oxygen. ! Cellular respiration makes ATP by breaking down sugars. Cellular respiration is aerobic, or requires oxygen.

More information

Cell Respiration. Anaerobic & Aerobic Respiration

Cell Respiration. Anaerobic & Aerobic Respiration Cell Respiration Anaerobic & Aerobic Respiration Understandings/Objectives 2.8.U1: Cell respiration is the controlled release of energy from organic compounds to produce ATP. Define cell respiration State

More information

Lesson Overview. Cellular Respiration: An Overview. 9.2 process of cell respiration

Lesson Overview. Cellular Respiration: An Overview. 9.2 process of cell respiration 9.2 process of cell respiration Glycolysis During glycolysis, glucose is broken down into 2 molecules of the 3-carbon molecule pyruvic acid. Pyruvic acid is a reactant in the Krebs cycle. ATP and NADH

More information

Cellular Respiration: Harvesting Chemical Energy

Cellular Respiration: Harvesting Chemical Energy Chapter 9 Cellular Respiration: Harvesting Chemical Energy PowerPoint Lecture Presentations for Biology Eighth Edition Neil Campbell and Jane Reece Lectures by Chris Romero, updated by Erin Barley with

More information

CELLULAR RESPIRATION GETTING ENERGY TO MAKE ATP

CELLULAR RESPIRATION GETTING ENERGY TO MAKE ATP ELLULAR RESPIRATION GETTING ENERGY TO MAKE ATP ELLULAR RESPIRATION ellular process by which mitochondria releases energy by breaking down food molecules (glucose or other organic molecules) to produce

More information

How Cells Release Chemical Energy Cellular Respiration

How Cells Release Chemical Energy Cellular Respiration How Cells Release Chemical Energy Cellular Respiration Overview of Cellular Respiration HO double membrane outer membrane inner membrane CO matrix Produces molecules Requires oxygen Releases carbon dioxide

More information

9.2 The Process of Cellular Respiration

9.2 The Process of Cellular Respiration 9.2 The Process of Cellular Respiration Oxygen Carbon 2 2 Dioxide 34 Water Glycolysis Glycolysis is the first stage of cellular respiration. During glycolysis, glucose is broken down into 2 molecules of

More information

Concept 9.1: Catabolic pathways yield energy by oxidizing organic fuels Several processes are central to cellular respiration and related pathways

Concept 9.1: Catabolic pathways yield energy by oxidizing organic fuels Several processes are central to cellular respiration and related pathways Overview: Life Is Work Living cells require energy from outside sources Some animals, such as the chimpanzee, obtain energy by eating plants, and some animals feed on other organisms that eat plants Energy

More information

Unit 2: Metabolic Processes

Unit 2: Metabolic Processes How is energy obtained biologically? Recall: Red Ox Reactions Unit 2: Metabolic Processes Oxidation Is the chief mechanism by which chemical potential energy is released This energy comes from reduced

More information

How Cells Harvest Chemical Energy. Chapter 9

How Cells Harvest Chemical Energy. Chapter 9 How Cells Harvest Chemical Energy Chapter 9 Cellular Respiration Releasing energy (ATP) from glucose (chemical energy) in the presence of O 2 Energy flows Matter cycles True or False Plants only perform

More information

2. What are the products of cellular respiration? Include all forms of energy that are products.

2. What are the products of cellular respiration? Include all forms of energy that are products. Name Per Cellular Respiration An Overview Why Respire Anyhoo? Because bucko all cells need usable chemical energy to do work. The methods cells use to convert glucose into ATP vary depending on the availability

More information

Section 9 2 The Krebs Cycle and Electron Transport (pages )

Section 9 2 The Krebs Cycle and Electron Transport (pages ) Section 9 2 The Krebs Cycle and Electron Transport (pages 226 232) This section describes what happens during the second stage of cellular respiration, called the Krebs cycle. It also explains how high-energy

More information

4. Which step shows a split of one molecule into two smaller molecules? a. 2. d. 5

4. Which step shows a split of one molecule into two smaller molecules? a. 2. d. 5 1. Which of the following statements about NAD + is false? a. NAD + is reduced to NADH during both glycolysis and the citric acid cycle. b. NAD + has more chemical energy than NADH. c. NAD + is reduced

More information

Cellular Respiration Harvesting Chemical Energy ATP

Cellular Respiration Harvesting Chemical Energy ATP Cellular Respiration Harvesting Chemical Energy ATP 2006-2007 What s the point? The point is to make ATP! ATP 2006-2007 Harvesting stored energy Energy is stored in organic molecules carbohydrates, fats,

More information

Energy Production In A Cell (Chapter 25 Metabolism)

Energy Production In A Cell (Chapter 25 Metabolism) Energy Production In A Cell (Chapter 25 Metabolism) Large food molecules contain a lot of potential energy in the form of chemical bonds but it requires a lot of work to liberate the energy. Cells need

More information

Cellular Respiration: Harvesting Chemical Energy

Cellular Respiration: Harvesting Chemical Energy Chapter 9 Cellular Respiration: Harvesting Chemical Energy PowerPoint Lecture Presentations for Biology Eighth Edition Neil Campbell and Jane Reece Lectures by Chris Romero, updated by Erin Barley with

More information

3/28/17. Cellular Respiration. Chapter 9: Cellular Respiration & Fermentation. Chapter 9: Cellular Respiration & Fermentation

3/28/17. Cellular Respiration. Chapter 9: Cellular Respiration & Fermentation. Chapter 9: Cellular Respiration & Fermentation Chapter 9: Cellular Respiration & Fermentation SE C TION 1: C E LLULAR RE SP IRATION: AN OVERVIEW As we learned last chapter, energy from the sun is transformed into different forms. In this chapter you

More information

Ch. 9 Cellular Respiration Stage 2 & 3: Oxidation of Pyruvate Krebs Cycle

Ch. 9 Cellular Respiration Stage 2 & 3: Oxidation of Pyruvate Krebs Cycle Ch. 9 Cellular Respiration Stage 2 & 3: Oxidation of Pyruvate Krebs Cycle 2006-2007 Glycolysis is only the start Glycolysis glucose pyruvate 6C Pyruvate has more energy to yield 3 more C to strip off (to

More information

What s the point? The point is to make ATP! ATP

What s the point? The point is to make ATP! ATP ATP Chapter 8 What s the point? The point is to make ATP! ATP Flows into an ecosystem as sunlight and leaves as heat Energy is stored in organic compounds Carbohydrates, lipids, proteins Heterotrophs eat

More information

CHAPTER 6 CELLULAR RESPIRATION

CHAPTER 6 CELLULAR RESPIRATION CHAPTER 6 CELLULAR RESPIRATION Chemical Energy In Food Purpose of food: Source of raw materials used to make new molecules Source of energy calorie the amount of energy needed to raise the temperature

More information

Respiration 30/04/2013. Dr.M.R.Vaezi K., Hakim Sabzevari University

Respiration 30/04/2013. Dr.M.R.Vaezi K., Hakim Sabzevari University Respiration Metabolism - the sum of all the chemical reactions that occur in the body. It is comprised of: anabolism synthesis of molecules, requires input of energy catabolism break down of molecules,

More information

MULTIPLE CHOICE QUESTIONS

MULTIPLE CHOICE QUESTIONS MULTIPLE CHOICE QUESTIONS 1. Which of the following statements concerning anabolic reactions is FALSE? A. They are generally endergonic. B. They usually require ATP. C. They are part of metabolism. D.

More information

True or False: 1. Reactions are called endergonic if they occur spontaneously and release free energy.

True or False: 1. Reactions are called endergonic if they occur spontaneously and release free energy. True or False: 1. Reactions are called endergonic if they occur spontaneously and release free energy. 2. Enzymes catalyze chemical reactions by lowering the activation energy 3. Biochemical pathways are

More information

Cell Respiration Ch 7. Both autotrophs and heterotrophs use cellular respiration to make CO2 and water from

Cell Respiration Ch 7. Both autotrophs and heterotrophs use cellular respiration to make CO2 and water from Cell Respiration Ch 7 Objectives: Identify the 2 major steps of cellular respiration Describe the major events in glycolysis Compare lactic acid fermentation with alcoholic fermentation Calculate the efficiency

More information

Enzymes and Metabolism

Enzymes and Metabolism PowerPoint Lecture Slides prepared by Vince Austin, University of Kentucky Enzymes and Metabolism Human Anatomy & Physiology, Sixth Edition Elaine N. Marieb 1 Protein Macromolecules composed of combinations

More information

Cellular Respiration and Fermentation

Cellular Respiration and Fermentation LECTURE PRESENTATIONS For CAMPBELL BIOLOGY, NINTH EDITION Jane B. Reece, Lisa A. Urry, Michael L. Cain, Steven A. Wasserman, Peter V. Minorsky, Robert B. Jackson Chapter 9 Cellular Respiration and Fermentation

More information

Chapter 9. Cellular Respiration and Fermentation

Chapter 9. Cellular Respiration and Fermentation Chapter 9 Cellular Respiration and Fermentation Energy flows into an ecosystem as sunlight and leaves as heat Photosynthesis generates O 2 and organic molecules, which are used in cellular respiration

More information

g) Cellular Respiration Higher Human Biology

g) Cellular Respiration Higher Human Biology g) Cellular Respiration Higher Human Biology What can you remember about respiration? 1. What is respiration? 2. What are the raw materials? 3. What are the products? 4. Where does it occur? 5. Why does

More information

Chapter 9 Notes. Cellular Respiration and Fermentation

Chapter 9 Notes. Cellular Respiration and Fermentation Chapter 9 Notes Cellular Respiration and Fermentation Objectives Distinguish between fermentation and anaerobic respiration. Name the three stages of cellular respiration and state the region of the cell

More information

Copyrighted by Amy Brown Science Stuff. Cellular Respiration Let s get energized!

Copyrighted by Amy Brown Science Stuff. Cellular Respiration Let s get energized! Copyrighted by Amy Brown Science Stuff Cellular Respiration Let s get energized! A. Food provides living things with the: chemical building blocks they need to grow and reproduce. C. Food serves as a source

More information

Cellular Respiration: Harvesting Chemical Energy

Cellular Respiration: Harvesting Chemical Energy Chapter 9 Cellular Respiration: Harvesting Chemical Energy You should be able to: 1. Explain how redox reactions are involved in energy exchanges. Name and describe the three stages of cellular respiration;

More information

Cellular Respiration

Cellular Respiration Cellular Respiration 1. To perform cell work, cells require energy. a. A cell does three main kinds of work: i. Mechanical work, such as the beating of cilia, contraction of muscle cells, and movement

More information

Chapter 9 Cellular Respiration

Chapter 9 Cellular Respiration Chapter 9 Cellular Respiration Biology and Society: Marathoners versus Sprinters Sprinters do not usually compete at short and long distances. Natural differences in the muscles of these athletes favor

More information

ATP ATP. Cellular Respiration Harvesting Chemical Energy. The point is to make ATP!

ATP ATP. Cellular Respiration Harvesting Chemical Energy. The point is to make ATP! ellular Respiration Harvesting hemical Energy 1 The point is to make! 2 Harvesting stored energy Energy is stored in organic molecules carbohydrates, fats, proteins Heterotrophs eat these organic molecules

More information

Chapter 9: Cellular Respiration: Harvesting Chemical Energy

Chapter 9: Cellular Respiration: Harvesting Chemical Energy AP Biology Reading Guide Name: Date: Period Chapter 9: Cellular Respiration: Harvesting Chemical Energy Overview: Before getting involved with the details of cellular respiration and photosynthesis, take

More information

Complete breakdown of Glucose: + Light + 6 H 2 O = C 6 H 12 O 6 6 CO O 2. + Energy = 6 CO 2 C 6 H 12 O 6. What is Glucose Metabolism?

Complete breakdown of Glucose: + Light + 6 H 2 O = C 6 H 12 O 6 6 CO O 2. + Energy = 6 CO 2 C 6 H 12 O 6. What is Glucose Metabolism? Chapter 8: Harvesting Energy: Glycolysis and Cellular Respiration What is Metabolism? Answer: The breakdown of glucose to release energy from its chemical bonds Photosynthesis: 6 CO 2 Carbon Dioxide +

More information

Cellular Respiration Harvesting Chemical Energy ATP

Cellular Respiration Harvesting Chemical Energy ATP Cellular Respiration Harvesting Chemical Energy ATP 2006-2007 What s the point? The point is to make ATP! ATP 2006-2007 Harvesting stored energy Energy is stored in organic molecules carbohydrates, fats,

More information

1. Cyanide is introduced into a culture of cells and is observed binding to a mitochondrion, as shown in the diagram below.

1. Cyanide is introduced into a culture of cells and is observed binding to a mitochondrion, as shown in the diagram below. 1. Cyanide is introduced into a culture of cells and is observed binding to a mitochondrion, as shown in the diagram below. The following observations are made: Cyanide binds to and inhibits an enzyme

More information

Cellular Respiration. April 9, 2013 Mr. Alvarez

Cellular Respiration. April 9, 2013 Mr. Alvarez Cellular Respiration April 9, 2013 Mr. Alvarez Do Now: Answer on a sheet of Loose-leaf 1) What is the equation for Photosynthesis 2) Explain how plants (leaves) regulate water loss use term negative feedback

More information

How Cells Release Chemical Energy. Chapter 8

How Cells Release Chemical Energy. Chapter 8 How Cells Release Chemical Energy Chapter 8 Impacts, Issues: When Mitochondria Spin Their Wheels More than forty disorders related to defective mitochondria are known (such as Friedreich s ataxia); many

More information

MITOCHONDRIA LECTURES OVERVIEW

MITOCHONDRIA LECTURES OVERVIEW 1 MITOCHONDRIA LECTURES OVERVIEW A. MITOCHONDRIA LECTURES OVERVIEW Mitochondrial Structure The arrangement of membranes: distinct inner and outer membranes, The location of ATPase, DNA and ribosomes The

More information

Enzymes what are they?

Enzymes what are they? Topic 11 (ch8) Microbial Metabolism Topics Metabolism Energy Pathways Biosynthesis 1 Catabolism Anabolism Enzymes Metabolism 2 Metabolic balancing act Catabolism Enzymes involved in breakdown of complex

More information

Cellular Respiration: Harvesting Chemical Energy Chapter 9

Cellular Respiration: Harvesting Chemical Energy Chapter 9 Cellular Respiration: Harvesting Chemical Energy Chapter 9 Assemble polymers, pump substances across membranes, move and reproduce The giant panda Obtains energy for its cells by eating plants which get

More information

3.2 Aerobic Respiration

3.2 Aerobic Respiration 3.2 Aerobic Respiration Aerobic Cellular Respiration Catabolic pathways Breaks down energy-rich compounds to make ATP Requires oxygen Occurs in different parts of the cell C 6 H 12 O 6 (s) + 6O 2 (g) 6CO

More information

CELLULAR RESPIRATION. Xe - + Y X + Ye - CH 4 + 2O 2 CO 2 + H 2 O + energy. C 6 H 12 O 6 + 6O 2 6CO 2 + 6H 2 O + energy SUMMARY EQUATION

CELLULAR RESPIRATION. Xe - + Y X + Ye - CH 4 + 2O 2 CO 2 + H 2 O + energy. C 6 H 12 O 6 + 6O 2 6CO 2 + 6H 2 O + energy SUMMARY EQUATION AP BIOLOGY CELLULAR ENERGETICS ACTIVITY #2 NAME DATE HOUR CELLULAR RESPIRATION SUMMARY EQUATION STEPWISE REDOX REACTION Oxidation: Reduction: Xe - + Y X + Ye - CH 4 + 2O 2 CO 2 + H 2 O + energy C 6 H 12

More information

Microbial Metabolism. PowerPoint Lecture Presentations prepared by Bradley W. Christian, McLennan Community College C H A P T E R

Microbial Metabolism. PowerPoint Lecture Presentations prepared by Bradley W. Christian, McLennan Community College C H A P T E R PowerPoint Lecture Presentations prepared by Bradley W. Christian, McLennan Community College C H A P T E R 5 Microbial Metabolism Big Picture: Metabolism Metabolism is the buildup and breakdown of nutrients

More information

Glycolysis and Cellular Respiration

Glycolysis and Cellular Respiration Glycolysis and Cellular Respiration An Introduction to Essential Cellular Metabolic athways GLY e- Cytolplasm TS e- KC Matrix of Mitochondria Cytolplasm By Noel Ways Basic Metabolic athways: Glycolosis,

More information

CH 7: Cell Respiration and Fermentation Overview. Concept 7.1: Catabolic pathways yield energy by oxidizing organic fuels

CH 7: Cell Respiration and Fermentation Overview. Concept 7.1: Catabolic pathways yield energy by oxidizing organic fuels CH 7: Cell Respiration and Fermentation Overview Living cells require energy from outside sources Some animals obtain energy by eating plants, and some animals feed on other organisms Energy flows into

More information

Section B: The Process of Cellular Respiration

Section B: The Process of Cellular Respiration CHAPTER 9 CELLULAR RESPIRATION: HARVESTING CHEMICAL ENERGY Section B: The Process of Cellular Respiration 1. Respiration involves glycolysis, the Krebs cycle, and electron transport: an overview 2. Glycolysis

More information

CHAPTER 7 10/16/2012. How cells release Chemical Energy

CHAPTER 7 10/16/2012. How cells release Chemical Energy CHAPTER 7 10/16/2012 How cells release Chemical Energy 1 7.1 OVERVIEW OF CARBOHYDRATE BREAKDOWN PATHWAYS Organisms stay alive by taking in energy. Plants and all other photosynthetic autotrophs get energy

More information

Cellular Respiration

Cellular Respiration ellular Respiration 1 ellular Respiration A catabolic, exergonic, oxygen (O 2 ) requiring process that uses energy extracted from macromolecules (glucose) to produce energy (ATP) and water (H 2 O). 6 H

More information

Biology Ch 9 Cellular Respiration & Fermentation ( )

Biology Ch 9 Cellular Respiration & Fermentation ( ) Name Class Date Biology Ch 9 Cellular Respiration & Fermentation (9.1-9.2) For Questions 1 10, complete each statement by writing the correct word or words. 1. A calorie is a unit of. 2. The Calorie used

More information

Chapter 6. Respiration

Chapter 6. Respiration Chapter 6 Respiration All living cells, and therefore all living organisms, need energy in order to survive. Energy is required for many different purposes. Every living cell, for example, must be able

More information

Cellular Respiration Part V: Oxidative Phosphorylation

Cellular Respiration Part V: Oxidative Phosphorylation Cellular Respiration Part V: Oxidative Phosphorylation Figure 9.16 Electron shuttles span membrane 2 NADH or 2 FADH 2 MITOCHONDRION 2 NADH 2 NADH 6 NADH 2 FADH 2 Glucose Glycolysis 2 Pyruvate Pyruvate

More information

Chapter 6 Cellular Respiration: Obtaining Energy from Food Biology and Society: Marathoners versus Sprinters

Chapter 6 Cellular Respiration: Obtaining Energy from Food Biology and Society: Marathoners versus Sprinters Chapter 6 Cellular Respiration: Obtaining Energy from Food Biology and Society: Marathoners versus Sprinters Sprinters do not usually compete at short and long distances. Natural differences in the muscles

More information

Energy Metabolism. Topics

Energy Metabolism. Topics Energy Metabolism Nur Hidayat Topics TOPIC 1: OXIDATION, REDUCTION, AND NADH TOPIC 2: GLYCOLYSIS TOPIC 3: KREBS (CITRIC ACID) CYCLE TOPIC 4: ELECTRON TRANSPORT CHAIN AND OXIDATIVE PHOSPHORYLATION TOPIC

More information

Photosynthesis and Cellular Respiration: Cellular Respiration

Photosynthesis and Cellular Respiration: Cellular Respiration Photosynthesis and Cellular Respiration: Cellular Respiration Unit Objective I can compare the processes of photosynthesis and cellular respiration in terms of energy flow, reactants, and products. During

More information

4.5. Cellular Respiration in Detail. Teacher Notes and Answers. section. Instant Replay 1. 4ATP, 2NADH, and 2pyruvate should be circled.

4.5. Cellular Respiration in Detail. Teacher Notes and Answers. section. Instant Replay 1. 4ATP, 2NADH, and 2pyruvate should be circled. section 4.5 ellular Respiration in Detail Teacher Notes and Answers SETION 5 Instant Replay. 4ATP,, and pyruvate should be circled.. They are energy-carrying molecules that transfer energy to the electron

More information

Reading Assignment: Start reading Chapter 14: Energy Generation in Mitochondria and Cholorplasts See animation 14.

Reading Assignment: Start reading Chapter 14: Energy Generation in Mitochondria and Cholorplasts See animation 14. 5.19.06 Electron Transport and Oxidative Phosphorylation Reading Assignment: Start reading Chapter 14: Energy Generation in Mitochondria and Cholorplasts See animation 14.3 on your text CD ATPsynthase

More information

TCA CYCLE (Citric Acid Cycle)

TCA CYCLE (Citric Acid Cycle) TCA CYCLE (Citric Acid Cycle) TCA CYCLE The Citric Acid Cycle is also known as: Kreb s cycle Sir Hans Krebs Nobel prize, 1953 TCA (tricarboxylic acid) cycle The citric acid cycle requires aerobic conditions!!!!

More information

Energy Flow. Chapter 7. Cellular Respiration: Overview. Cellular Respiration. Cellular Respiration. Cellular Respiration occurs in three stages

Energy Flow. Chapter 7. Cellular Respiration: Overview. Cellular Respiration. Cellular Respiration. Cellular Respiration occurs in three stages Energy Flow Chapter 7 Cellular Respiration hotosynthesis uses solar energy to produce glucose and O from CO and H O Cellular respiration makes and consumes O during the oxidation of glucose to CO and H

More information

1 CH:14 RESPIRATION IN PLANTS https://biologyaipmt.com/

1 CH:14 RESPIRATION IN PLANTS https://biologyaipmt.com/ 1 CH:14 RESPIRATION IN PLANTS https://biologyaipmt.com/ CHAPTER 14 RESPIRATION IN PLANTS All the energy required for 'life' processes is obtained by oxidation of some macromolecules that we call 'food'.

More information

Energy Transformations. VCE Biology Unit 3

Energy Transformations. VCE Biology Unit 3 Energy Transformations VCE Biology Unit 3 Contents Energy Cellular Respiration Photosynthesis Storing Energy Energy Energy exists in many forms: light, heat, sound, mechanical, electrical, chemical and

More information

BY: RASAQ NURUDEEN OLAJIDE

BY: RASAQ NURUDEEN OLAJIDE BY: RASAQ NURUDEEN OLAJIDE LECTURE CONTENT INTRODUCTION CITRIC ACID CYCLE (T.C.A) PRODUCTION OF ACETYL CoA REACTIONS OF THE CITIRC ACID CYCLE THE AMPHIBOLIC NATURE OF THE T.C.A CYCLE THE GLYOXYLATE CYCLE

More information

1- Which of the following statements is TRUE in regards to eukaryotic and prokaryotic cells?

1- Which of the following statements is TRUE in regards to eukaryotic and prokaryotic cells? Name: NetID: Exam 3 - Version 1 October 23, 2017 Dr. A. Pimentel Each question has a value of 4 points and there are a total of 160 points in the exam. However, the maximum score of this exam will be capped

More information

Cellular Respiration and Fermentation

Cellular Respiration and Fermentation Chapter 9 LECTURE PRESENTATIONS For CAMPBELL BIOLOGY, NINTH EDITION Jane B. Reece, Lisa A. Urry, Michael L. Cain, Steven A. Wasserman, Peter V. Minorsky, Robert B. Jackson Cellular Respiration and Fermentation

More information

Describe the roles of calcium ions and ATP in the contraction of a myofibril

Describe the roles of calcium ions and ATP in the contraction of a myofibril Q1.(a) Describe the roles of calcium ions and ATP in the contraction of a myofibril............................... (Extra space)............... (5) ATP is an energy source used in many cell processes.

More information

Cellular Respiration: Harvesting Chemical Energy

Cellular Respiration: Harvesting Chemical Energy Chapter 9 Cellular Respiration: Harvesting Chemical Energy Edited by Shawn Lester PowerPoint Lecture Presentations for Biology Eighth Edition Neil Campbell and Jane Reece Lectures by Chris Romero, updated

More information

Cellular Respiration and Fermentation

Cellular Respiration and Fermentation LECTURE PRESENTATIONS For CAMPBELL BIOLOGY, NINTH EDITION Jane B. Reece, Lisa A. Urry, Michael L. Cain, Steven A. Wasserman, Peter V. Minorsky, Robert B. Jackson Chapter 9 Cellular Respiration and Fermentation

More information

CELLULAR RESPIRATION: HARVESTING CHEMICAL ENERGY. The Principles of Energy Harvest

CELLULAR RESPIRATION: HARVESTING CHEMICAL ENERGY. The Principles of Energy Harvest CELLULAR RESPIRATION: HARVESTING CHEMICAL ENERGY The Principles of Energy Harvest 1. Cellular respiration and fermentation are catabolic, energy-yielding pathways 2. Cells recycle the ATP they use for

More information

19 Oxidative Phosphorylation and Photophosphorylation W. H. Freeman and Company

19 Oxidative Phosphorylation and Photophosphorylation W. H. Freeman and Company 19 Oxidative Phosphorylation and Photophosphorylation 2013 W. H. Freeman and Company CHAPTER 19 Oxidative Phosphorylation and Photophosphorylation Key topics: Electron transport chain in mitochondria Capture

More information

Chapter 8 Mitochondria and Cellular Respiration

Chapter 8 Mitochondria and Cellular Respiration Chapter 8 Mitochondria and Cellular Respiration Cellular respiration is the process of oxidizing food molecules, like glucose, to carbon dioxide and water. The energy released is trapped in the form of

More information

Energy is stored in the form of ATP!! ADP after ATP is broken down

Energy is stored in the form of ATP!! ADP after ATP is broken down Cellular Respiration Cellular respiration is the process in which plants and animals convert FOOD into ENERGY (ATP!) in their cells. This occurs in the Mitochondria! Energy is stored in the form of ATP!!

More information

Metabolism. Metabolic pathways. BIO 5099: Molecular Biology for Computer Scientists (et al) Lecture 11: Metabolic Pathways

Metabolism. Metabolic pathways. BIO 5099: Molecular Biology for Computer Scientists (et al) Lecture 11: Metabolic Pathways BIO 5099: Molecular Biology for Computer Scientists (et al) Lecture 11: Metabolic Pathways http://compbio.uchsc.edu/hunter/bio5099 Larry.Hunter@uchsc.edu Metabolism Metabolism is the chemical change of

More information

Active Learning Exercise 5. Cellular Respiration

Active Learning Exercise 5. Cellular Respiration Name Biol 211 - Group Number Active Learning Exercise 5. Cellular Respiration Reference: Chapter 9 (Biology by Campbell/Reece, 8 th ed.) 1. Give the overall balanced chemical equation for aerobic cellular

More information

Oxidative Phosphorylation

Oxidative Phosphorylation Electron Transport Chain (overview) The NADH and FADH 2, formed during glycolysis, β- oxidation and the TCA cycle, give up their electrons to reduce molecular O 2 to H 2 O. Electron transfer occurs through

More information

Photosynthesis in chloroplasts CO2 + H2O. Cellular respiration in mitochondria ATP. powers most cellular work. Heat energy

Photosynthesis in chloroplasts CO2 + H2O. Cellular respiration in mitochondria ATP. powers most cellular work. Heat energy Figure 9-01 LE 9-2 Light energy ECOSYSTEM Photosynthesis in chloroplasts CO2 + H2O Cellular respiration in mitochondria Organic + O molecules 2 powers most cellular work Heat energy LE 9-UN161a becomes

More information

Photosynthesis in chloroplasts. Cellular respiration in mitochondria ATP. ATP powers most cellular work

Photosynthesis in chloroplasts. Cellular respiration in mitochondria ATP. ATP powers most cellular work Light energy ECOSYSTEM CO + H O Photosynthesis in chloroplasts Cellular respiration in mitochondria Organic molecules + O powers most cellular work Heat energy 1 becomes oxidized (loses electron) becomes

More information

NAME KEY ID # EXAM 3a BIOC 460. Wednesday April 10, Please include your name and ID# on each page. Limit your answers to the space provided!

NAME KEY ID # EXAM 3a BIOC 460. Wednesday April 10, Please include your name and ID# on each page. Limit your answers to the space provided! EXAM 3a BIOC 460 Wednesday April 10, 2002 Please include your name and ID# on each page. Limit your answers to the space provided! 1 1. (5 pts.) Define the term energy charge: Energy charge refers to the

More information

Page 2 of 51 WJEC/CBAC 2016 pdfcrowd.com

Page 2 of 51 WJEC/CBAC 2016 pdfcrowd.com 1. Page 2 of 51 WJEC/CBAC 2016 Page 3 of 51 WJEC/CBAC 2016 2. Page 4 of 51 WJEC/CBAC 2016 Page 5 of 51 WJEC/CBAC 2016 3. Page 6 of 51 WJEC/CBAC 2016 Page 7 of 51 WJEC/CBAC 2016 4. Page 8 of 51 WJEC/CBAC

More information

2: Describe glycolysis in general terms, including the molecules that exist at its start and end and some intermediates

2: Describe glycolysis in general terms, including the molecules that exist at its start and end and some intermediates 1 Life 20 - Glycolysis Raven & Johnson Chapter 9 (parts) Objectives 1: Know the location of glycolysis in a eukaryotic cell 2: Describe glycolysis in general terms, including the molecules that exist at

More information

Oxidative phosphorylation & Photophosphorylation

Oxidative phosphorylation & Photophosphorylation Oxidative phosphorylation & Photophosphorylation Oxidative phosphorylation is the last step in the formation of energy-yielding metabolism in aerobic organisms. All oxidative steps in the degradation of

More information

Electron Transport and oxidative phosphorylation (ATP Synthesis) Dr. Howaida Nounou Biochemistry department Sciences college

Electron Transport and oxidative phosphorylation (ATP Synthesis) Dr. Howaida Nounou Biochemistry department Sciences college Electron Transport and oxidative phosphorylation (ATP Synthesis) Dr. Howaida Nounou Biochemistry department Sciences college The Metabolic Pathway of Cellular Respiration All of the reactions involved

More information

sciencemusicvideos AP Bio Module 10: Cellular Respiration

sciencemusicvideos AP Bio Module 10: Cellular Respiration Name: Period: Date: sciencemusicvideos P io Module 0: Cellular Respiration. Work in pairs (share a computer).. If your instructor is tracking your performance on qwizcards.com, make sure that you log in

More information

Energy and life. Generation of Biochemical Energy Chapter 21. Energy. Energy and biochemical reactions: 4/5/09

Energy and life. Generation of Biochemical Energy Chapter 21. Energy. Energy and biochemical reactions: 4/5/09 Energy and life Generation of Biochemical Energy Chapter 21 1 Biological systems are powered by oxidation of biomolecules made mainly of C, H and O. The food biomolecules are mainly Lipids (fats) Carbohydrates

More information

CHAPTER 5 MICROBIAL METABOLISM

CHAPTER 5 MICROBIAL METABOLISM CHAPTER 5 MICROBIAL METABOLISM I. Catabolic and Anabolic Reactions A. Metabolism - The sum of all chemical reactions within a living cell either releasing or requiring energy. (Overhead) Fig 5.1 1. Catabolism

More information

LAB 6 Fermentation & Cellular Respiration

LAB 6 Fermentation & Cellular Respiration LAB 6 Fermentation & Cellular Respiration INTRODUCTION The cells of all living organisms require energy to keep themselves alive and fulfilling their roles. Where does this energy come from? The answer

More information

Cellular Respiration Stage 1: Glycolysis (Ch. 6)

Cellular Respiration Stage 1: Glycolysis (Ch. 6) Cellular Respiration Stage 1: Glycolysis (Ch. 6) What s the point? The point is to make! 2007-2008 Harvesting stored energy Energy is stored in organic molecules carbohydrates, fats, proteins Heterotrophs

More information

Cellular Respiration: Harvesting Chemical Energy

Cellular Respiration: Harvesting Chemical Energy Chapter 9 Cellular Respiration: Harvesting Chemical Energy Overview: Life Is Work Living cells require energy from outside sources Some animals, such as the giant panda, obtain energy by eating plants,

More information

Cellular Respiration. By C. Kohn Agricultural Sciences

Cellular Respiration. By C. Kohn Agricultural Sciences Cellular Respiration By C. Kohn Agricultural Sciences In a nutshell O Cellular Respiration is a series of chemical reactions in which hydrogen atoms on a glucose molecule are removed so that they can be

More information

HOW CELLS RELEASE CHEMICAL ENERGY

HOW CELLS RELEASE CHEMICAL ENERGY 8 HOW CELLS RELEASE CHEMICAL ENERGY INTRODUCTION Chapter 8 looks at the various ways that cells can extract energy from food. Both aerobic and anaerobic mechanisms are covered, but a major emphasis of

More information

Cellular Respiration Stage 1: (Glycolysis) AP Biology

Cellular Respiration Stage 1: (Glycolysis) AP Biology Cellular Respiration Stage 1: (Glycolysis) What s the point? The point is to make! Glycolysis: Breaking down glucose glyco lysis (splitting sugar) glucose pyruvate 6C 2x 3C In the cytosol? Why does that

More information

RESPIRATION: SYNTHESIS OF ATP. Clickers!

RESPIRATION: SYNTHESIS OF ATP. Clickers! RESPIRATION: SYNTHESIS OF ATP Clickers! Respiration is a series of coupled reactions Carbon (in glucose) is oxidized ATP is formed from ADP plus phosphate O 2 ADP + Pi CO 2 + H 2 O ATP Synthesis of ATP

More information

A) Choose the correct answer: 1) Reduction of a substance can mostly occur in the living cells by:

A) Choose the correct answer: 1) Reduction of a substance can mostly occur in the living cells by: Code: 1 1) Reduction of a substance can mostly occur in the living cells by: (a) Addition of oxygen (b) Removal of electrons (c) Addition of electrons (d) Addition of hydrogen 2) Starting with succinate

More information