BIOLOGY. Chapter 3 BIOLOGICAL MACROMOLECULES

Size: px
Start display at page:

Download "BIOLOGY. Chapter 3 BIOLOGICAL MACROMOLECULES"

Transcription

1 BIOLOGY Chapter 3 BIOLOGICAL MACROMOLECULES

2 Figure 5.1

3 Large Biological Molecule Terms 4 classes of bio. molecules Carbohydrates (sugars) Proteins Nucleic acids Lipids Monomers (subunits): single-part Building blocks for macromolecules Polymers: many-parts Composed of many monomers Covalently bonded Figure 3.1

4 Hydrolysis Dehydration synthesis Sugars Hydrolysis Add H 2 O Break bonds Catabolic Digestion Energy Energy Dehydration Synthesis Remove H 2 O Form bonds Polymer formation Anabolic animation Carbohydrate Figure 2.13

5 Figure 5.2 (a) Dehydration reaction: synthesizing a polymer Short polymer Unlinked monomer Dehydration removes a water molecule, forming a new bond Longer polymer (b) Hydrolysis: breaking down a polymer Hydrolysis adds a water molecule, breaking a bond

6 Figure 3.2, 3.3 (a) Dehydration reaction: synthesizing a polymer Short polymer Unlinked monomer Dehydration removes a water molecule, forming a new bond Longer polymer

7 Figure 5.2b (b) Hydrolysis: breaking down a polymer Hydrolysis adds a water molecule, breaking a bond

8 Figure 3.4 Carbohydrates Fuel Building material Monomers = Monosaccharides Aldoses (Aldehyde Sugars) Ketoses (Ketone Sugars) Trioses: 3-carbon sugars (C 3 H 6 O 3 ) Glyceraldehyde Dihydroxyacetone Pentoses: 5-carbon sugars (C 5 H 10 O 5 ) Ribose Ribulose Hexoses: 6-carbon sugars (C 6 H 12 O 6 ) Glucose Galactose Fructose

9 Figure 3.4 Functional Groups Aldose (Aldehyde Sugar) Ketose (Ketone Sugar) Trioses: 3-carbon sugars (C 3 H 6 O 3 ) Glyceraldehyde Dihydroxyacetone

10 Figure (a) Linear and ring forms (b) Abbreviated ring structure

11 Figure 3.7, 3.8 Carbohydrates Disaccharides 1 4 glycosidic 1 linkage 4 Glucose Glucose Maltose (a) Dehydration reaction in the synthesis of maltose 1 2 glycosidic 1 linkage 2 Glucose Fructose Sucrose (b) Dehydration reaction in the synthesis of sucrose

12 Figure 3.9 Chloroplast Starch granules Polysaccharides 1) Storage Forms Amylopectin 1 m (a) Starch (amylose/amylopectin): a plant polysaccharide Amylose Mitochondria Glycogen granules (b) Glycogen: 0.5 m an animal polysaccharide Glycogen Where stored? Relate this to negative feedback & low blood sugar.

13 Figure 5.7a Polysaccharides alpha vs beta glucose Glucose Glucose (a) and glucose ring structures

14 Figure 5.7b Polysaccharides alpha vs beta glucose arrangement 1 4 (b) Starch: 1 4 linkage of glucose monomers 1 4 (c) Cellulose: 1 4 linkage of glucose monomers

15 Figure 3.10 Cell wall Cellulose microfibrils in a plant cell wall Polysaccharides 2) Structural Forms Microfibril 10 m 0.5 m Cellulose molecules Glucose monomer insoluble fiber

16 Which polysaccharide has the greatest number of branches? a) cellulose b) chitin c) amylose d) amylopectin e) glycogen

17 Fig. 5-9

18 Why are human enzymes that digest starch unable to digest cellulose? a) Cellulose is made of amino-containing sugars that cannot be metabolized. b) Cellulose contains L-glucose instead of D-glucose; starchdigesting enzymes are specific for polymers of D-glucose. c) Cellulose has beta-glycosidic linkages; starch-digesting enzymes cleave only alpha-glycosidic linkages. d) Cellulose has beta-galactoside linkages that only bacterial beta-galactosidases can cleave. e) Cellulose fibers are covalently cross-linked; starch-digesting enzymes cannot cleave these cross-links.

19 Figure 3.11 Polysaccharides 2) Structural Forms The structure of the chitin monomer Chitin forms the exoskeleton of arthropods. Chitin is used to make a strong and flexible surgical thread that decomposes after the wound or incision heals.

20 Subunits If actively growing cells are fed 14 C-labeled glucose, what macromolecules will become radioactive first? a) proteins b) starch c) nucleic acids d) fatty acids

21 Figure 3.13 Lipids Fatty acid (in this case, palmitic acid) Glycerol (a) One of three dehydration reactions in the synthesis of a fat Ester linkage (b) Fat molecule (triacylglycerol)

22 Figure 5.10a Fatty acid (in this case, palmitic acid) Glycerol (a) One of three dehydration reactions in the synthesis of a fat

23 Figure 5.10b Ester linkage (b) Fat molecule (triacylglycerol)

24 Figure 3.14 Stearic acid is a common saturated fatty acid.

25 Figure 3.15 Oleic acid is a common unsaturated fatty acid.

26 Figure 3.16 Saturated fatty acids have hydrocarbon chains connected by single bonds only. Unsaturated fatty acids have one or more double bonds. Each double bond may be in a cis or trans configuration. In the cis configuration, both hydrogens are on the same side of the hydrocarbon chain. In the trans configuration, the hydrogens are on opposite sides. A cis double bond causes a kink in the chain.

27 Figure 3.17 Alpha-linolenic acid is an example of an omega-3 fatty acid. It has three cis double bonds and, as a result, a curved shape. For clarity, the carbons are not shown. Each singly bonded carbon has two hydrogens associated with it, also not shown.

28 Figure 5.11 (a) Saturated fat Saturated vs unsaturated fat comparison (b) Unsaturated fat Structural formula of a saturated fat molecule Space-filling model of stearic acid, a saturated fatty acid Structural formula of an unsaturated fat molecule Space-filling model of oleic acid, an unsaturated fatty acid Cis double bond causes bending.

29 Hydrophobic tails Hydrophilic head Figure 3.19 Choline Lipids phospholipid Phosphate Glycerol Fatty acids Hydrophilic head Hydrophobic tails (a) Structural formula (b) Space-filling model (c) Phospholipid symbol

30 Figure 3.20 The phospholipid bilayer is the major component of all cellular membranes.

31 Lipids Compared to tropical fish, arctic fish oils have a) more unsaturated fatty acids. b) more cholesterol. c) fewer unsaturated fatty acids. d) more trans-unsaturated fatty acids. e) more hydrogenated fatty acids.

32 Lipids Steroids cholesterol Figure 3.21

33 Lipid Functions Energy storage Insulation Cushioning organs Prevents water loss Chemical messengers Membranes

34 Lipids All lipids a) are made from glycerol and fatty acids. b) contain nitrogen. c) have low energy content. d) are acidic when mixed with water. e) do not dissolve well in water.

35 Proteins Monomers amino acids Figure 3.22

36 Figure 3.23

37 Dehydration Synthesis Condensation RXN Figure 3.24

38 Figure 5.17 Dehydration Synthesis Condensation RXN Peptide bond New peptide bond forming Side chains Backbone Amino end (N-terminus) Peptide bond Carboxyl end (C-terminus)

39 Figure 3.25 Protein structure Amino acids Primary structure DNA RNA Protein Amino end Primary structure of transthyretin Carboxyl end

40 Figure 3.28 Protein structure Secondary structure Tertiary structure Quaternary structure helix pleated sheet Hydrogen bond strand Hydrogen bond Transthyretin polypeptide Transthyretin protein

41 Figure 5.20c Secondary structure helix pleated sheet Hydrogen bond strand, shown as a flat arrow pointing toward the carboxyl end Hydrogen bond

42 Figure 5.20d Secondary Structure pleated sheet

43 Figure 5.20e Tertiary structure Transthyretin polypeptide

44 Figure 3.29 Tertiary structure Possible bonds 4) Disulfide bridge 1) Hydrogen bond 2) Hydrophobic interactions and 3) van der Waals interactions 5) Ionic bond Polypeptide backbone

45 Figure 5.20b Protein structure Secondary structure Tertiary structure Quaternary structure helix pleated sheet Hydrogen bond strand Hydrogen bond Transthyretin polypeptide Transthyretin protein

46 Quaternary structure Figure 5.20g Transthyretin protein (four identical polypeptides) Collagen Figure 5.20h

47 Quaternary structure Heme Iron subunit subunit subunit subunit Figure 5.20i Hemoglobin

48 Figure 5.19 Sickle-cell Normal Primary Structure Secondary and Tertiary Structures Quaternary Structure Function Red Blood Cell Shape Normal β subunit Normal hemoglobin β β α α Proteins do not associate with one another; each carries oxygen. 5 µm Sickle-cell β subunit Sickle-cell hemoglobin β β α α Proteins aggregate into a fiber; capacity to carry oxygen is reduced. 5 µm

49 Protein Structure The sickle-cell hemoglobin mutation alters what level(s) of protein structure? a) primary b) tertiary c) quarternary d) all of the above e) primary and tertiary structures only

50 Figure 5.22 Denature tu Normal protein Denatured protein Temperature heat ph [Ionic] Solvents

51 Macromolecular Structures and Bonds Ceviche is prepared by marinating fresh raw fish in citrus juice for several hours, until the flesh becomes opaque and firm, as if cooked. How does citrus juice render the seafood safe to eat? a) Acidic ph denatures (unfolds and inactivates) proteins by disrupting their hydrogen bonds. b) Citrus juice denatures proteins by disrupting their ionic bonds. c) Citrus juice contains enzymes that hydrolyze peptide bonds to break apart proteins. d) Citrus juice dissolves cell membranes by disrupting hydrophobic interactions.

52 Figure 5.23 Chaperonin or chaperone proteins Cap Polypeptide Correctly folded protein Hollow cylinder Chaperonin (fully assembled) Steps of Chaperonin Action: 1 An unfolded polypeptide enters the cylinder from one end. 2 The cap attaches, causing the cylinder to change shape in such a way that it creates a hydrophilic environment for the folding of the polypeptide. 3 The cap comes off, and the properly folded protein is released. Misfolded proteins Alzheimer s, Parkinson s, and mad cow disease

53 Figure 5.15a 8 generalized functions of proteins Protein function #1 Enzymatic proteins Function: Selective acceleration of chemical reactions Example: Digestive enzymes catalyze the hydrolysis of bonds in food molecules. Enzyme

54 Figure 5.15b Protein function #2 Storage proteins Function: Storage of amino acids Examples: Casein, the protein of milk, is the major source of amino acids for baby mammals. Plants have storage proteins in their seeds. Ovalbumin is the protein of egg white, used as an amino acid source for the developing embryo. Ovalbumin Amino acids for embryo

55 Figure 5.15c Protein function #3 Hormonal proteins Function: Coordination of an organism s activities Example: Insulin, a hormone secreted by the pancreas, causes other tissues to take up glucose, thus regulating blood sugar concentration High blood sugar Insulin secreted Normal blood sugar

56 Figure 5.15d Protein function #4 Contractile and motor proteins Function: Movement Examples: Motor proteins are responsible for the undulations of cilia and flagella. Actin and myosin proteins are responsible for the contraction of muscles. Actin Myosin Muscle tissue 100 m

57 Figure 5.15e Protein function #5 Defensive proteins Function: Protection against disease Example: Antibodies inactivate and help destroy viruses and bacteria. Antibodies Virus Bacterium

58 Figure 5.15f Protein function #6 Transport proteins Function: Transport of substances Examples: Hemoglobin, the iron-containing protein of vertebrate blood, transports oxygen from the lungs to other parts of the body. Other proteins transport molecules across cell membranes. Transport protein Cell membrane

59 Figure 5.15g Protein function #7 Receptor proteins Function: Response of cell to chemical stimuli Example: Receptors built into the membrane of a nerve cell detect signaling molecules released by other nerve cells. Signaling molecules Receptor protein

60 Figure 5.15h Protein function #8 Structural proteins Function: Support Examples: Keratin is the protein of hair, horns, feathers, and other skin appendages. Insects and spiders use silk fibers to make their cocoons and webs, respectively. Collagen and elastin proteins provide a fibrous framework in animal connective tissues. Collagen Connective tissue 60 m

61 8 Protein Functions 1. Structural 2. Storage 3. Transport 4. Hormonal 5. Receptor 6. Contractile 7. Defense 8. Enzymatic 1. Connective tissue (tendons, ligaments) 2. Albumin, casein 3. Hemoglobin, ion channels, etc 4. Insulin 5. Detects other signals (stimuli) 6. Movement 7. Immune system (antibodies) 8. Increase chemical reactions (Digestion, cellular respiration)

62 Figure 3.31

63 Figure 5.26a 5 end 5 C 3 C Sugar-phosphate backbone Nucleic Acids Nucleotide Nucleoside Nitrogenous base 5 C 1 C 5 C Phosphate group 3 C Sugar (pentose) 3 C (b) Nucleotide 3 end (a) Polynucleotide, or nucleic acid

64 Figure 5.26b Nitrogenous bases Pyrimidines Nitrogenous Bases Cytosine (C) Thymine (T, in DNA) Purines Uracil (U, in RNA) Sugars Adenine (A) Guanine (G) Deoxyribose (in DNA) Ribose (in RNA) (c) Nucleoside components

65 Nucleic Acids Store Genetic Information Structure of DNA (deoxyribonucleic acid) Double stranded (dbl helix) Nucleotides contain Deoxyribose (sugar) Nitrogenous bases» Adenine» Guanine» Cytosine» Thymine Pairing» Adenine - Thymine» Guanine - Cytosine Base pair Phosphate Sugar Nucleotide

66 Figure 5.27 Base pair rules 5 3 Sugar-phosphate backbones Hydrogen bonds Base pair joined by hydrogen bonding 3 (a) DNA 5 Base pair joined by hydrogen bonding (b) Transfer RNA

67 Nucleic Acids Store Genetic Information Structure of RNA (ribonucleic acid) Single stranded Nucleotides contain Ribose Nitrogenous bases» Adenine» Guanine» Cytosine» Uracil

68 RNA and DNA How does RNA differ from DNA? a) DNA encodes hereditary information; RNA does not. b) DNA forms duplexes; RNA does not. c) DNA contains thymine; RNA contains uracil. d) all of the above

69 Nucleic Acids Figure DNA Transcription DNA RNA 1 Synthesis of mrna mrna NUCLEUS CYTOPLASM Translation RNA Protein 2 Movement of mrna into cytoplasm mrna Ribosome 3 Synthesis of protein Polypeptide Amino acids

70 Nucleic acid functions? DNA: instructions for making proteins via RNA Information storage Information transfer RNA: instructions for making proteins Protein synthesis DNA RNA Proteins Proteins: direct most of life s processes Transfer of chemical energy

71 Figure 5.UN02

72 Figure 5.UN02a

73 Figure 5.UN02b

Short polymer. Dehydration removes a water molecule, forming a new bond. Longer polymer (a) Dehydration reaction in the synthesis of a polymer

Short polymer. Dehydration removes a water molecule, forming a new bond. Longer polymer (a) Dehydration reaction in the synthesis of a polymer HO 1 2 3 H HO H Short polymer Dehydration removes a water molecule, forming a new bond Unlinked monomer H 2 O HO 1 2 3 4 H Longer polymer (a) Dehydration reaction in the synthesis of a polymer HO 1 2 3

More information

The Structure and Function of Large Biological Molecules

The Structure and Function of Large Biological Molecules Chapter 5 1 The Structure and Function of Large Biological Molecules PowerPoint Lecture Presentations for Biology Eighth Edition Neil Campbell and Jane Reece Lectures by Chris Romero, updated by Erin Barley

More information

A. Lipids: Water-Insoluble Molecules

A. Lipids: Water-Insoluble Molecules Biological Substances found in Living Tissues Lecture Series 3 Macromolecules: Their Structure and Function A. Lipids: Water-Insoluble Lipids can form large biological molecules, but these aggregations

More information

Lecture Series 2 Macromolecules: Their Structure and Function

Lecture Series 2 Macromolecules: Their Structure and Function Lecture Series 2 Macromolecules: Their Structure and Function Reading Assignments Read Chapter 4 (Protein structure & Function) Biological Substances found in Living Tissues The big four in terms of macromolecules

More information

Lecture Series 2 Macromolecules: Their Structure and Function

Lecture Series 2 Macromolecules: Their Structure and Function Lecture Series 2 Macromolecules: Their Structure and Function Reading Assignments Read Chapter 4 (Protein structure & Function) Biological Substances found in Living Tissues The big four in terms of macromolecules

More information

Biology 5A Fall 2010 Macromolecules Chapter 5

Biology 5A Fall 2010 Macromolecules Chapter 5 Learning Outcomes: Macromolecules List and describe the four major classes of molecules Describe the formation of a glycosidic linkage and distinguish between monosaccharides, disaccharides, and polysaccharides

More information

Chiral molecules. Carbon: The framework of biological molecules- Primary functional chemical groups. Chemical vs. structural formulas

Chiral molecules. Carbon: The framework of biological molecules- Primary functional chemical groups. Chemical vs. structural formulas The chemical building blocks of life Carbon: The framework of biological molecules- Biological molecules consist primarily of Carbon atoms bound to carbon atoms Carbon bound to other molecules Molecules

More information

Lecture Series 2 Macromolecules: Their Structure and Function

Lecture Series 2 Macromolecules: Their Structure and Function Lecture Series 2 Macromolecules: Their Structure and Function Reading Assignments Read Chapter 4 (Protein structure & Function) Biological Substances found in Living Tissues The big four in terms of macromolecules

More information

INTRODUCTION TO ORGANIC COMPOUNDS. Copyright 2009 Pearson Education, Inc.

INTRODUCTION TO ORGANIC COMPOUNDS. Copyright 2009 Pearson Education, Inc. INTRODUCTION TO ORGANIC COMPOUNDS 3.1 I can explain why carbon is unparalleled in its ability to form large, diverse molecules. Diverse molecules found in cells are composed of carbon bonded to other elements

More information

Four Classes of Biological Macromolecules. Biological Macromolecules. Lipids

Four Classes of Biological Macromolecules. Biological Macromolecules. Lipids Biological Macromolecules Much larger than other par4cles found in cells Made up of smaller subunits Found in all cells Great diversity of func4ons Four Classes of Biological Macromolecules Lipids Polysaccharides

More information

Biology Chapter 5. Biological macromolecules

Biology Chapter 5. Biological macromolecules Biology Chapter 5 Biological macromolecules Small molecules (like water and NaCl) have certain properties that arise from the bonds which hold atoms together in a particular arrangement. Many of the molecules

More information

Biology Kevin Dees. Biology Chapter 5. Biological macromolecules

Biology Kevin Dees. Biology Chapter 5. Biological macromolecules Biology Chapter 5 Biological macromolecules Small molecules (like water and NaCl) have certain properties that arise from the bonds which hold atoms together in a particular arrangement. Many of the molecules

More information

Macro molecule = is all the reactions that take place in cells, the sum of all chemical reactions that occur within a living organism Anabolism:

Macro molecule = is all the reactions that take place in cells, the sum of all chemical reactions that occur within a living organism Anabolism: Macromolecule Macro molecule = molecule that is built up from smaller units The smaller single subunits that make up macromolecules are known as Joining two or more single units together form a M is all

More information

What are the molecules of life?

What are the molecules of life? Molecules of Life What are the molecules of life? Organic Compounds Complex Carbohydrates Lipids Proteins Nucleic Acids Organic Compounds Carbon- hydrogen based molecules From Structure to Function Ø Carbon

More information

The Structure and Function of Large Biological Molecules

The Structure and Function of Large Biological Molecules Chapter 5 The Structure and Function of Large Biological Molecules PowerPoint Lecture Presentations for Biology Eighth Edition Neil Campbell and Jane Reece Lectures by Chris Romero, updated by Erin Barley

More information

The Structure and Function of Large Biological Molecules Part 4: Proteins Chapter 5

The Structure and Function of Large Biological Molecules Part 4: Proteins Chapter 5 Key Concepts: The Structure and Function of Large Biological Molecules Part 4: Proteins Chapter 5 Proteins include a diversity of structures, resulting in a wide range of functions Proteins Enzymatic s

More information

Biological Molecules. Carbohydrates, Proteins, Lipids, and Nucleic Acids

Biological Molecules. Carbohydrates, Proteins, Lipids, and Nucleic Acids Biological Molecules Carbohydrates, Proteins, Lipids, and Nucleic Acids Organic Molecules Always contain Carbon (C) and Hydrogen (H) Carbon is missing four electrons Capable of forming 4 covalent bonds

More information

The Structure and Function of Large Biological Molecules. Chapter 5

The Structure and Function of Large Biological Molecules. Chapter 5 The Structure and Function of Large Biological Molecules Chapter 5 The Molecules of Life Living things made up of 4 classes of large biological molecules (macromolecules) : 1. Carbohydrates 2. Lipids 3.

More information

Chapter 5 The Structure and Function of Macromolecules

Chapter 5 The Structure and Function of Macromolecules Chapter 5 The Structure and Function of Macromolecules Title: Sep 3 4:37 PM (1 of 65) macromolecules = smaller organic molecules that are joined together to make larger molecules four major classes: proteins

More information

Chapter 3- Organic Molecules

Chapter 3- Organic Molecules Chapter 3- Organic Molecules CHNOPS Six of the most abundant elements of life (make up 95% of the weight of all living things)! What are they used for? Structures, enzymes, energy, hormones, DNA How do

More information

Chapter 5 THE STRUCTURE AND FUNCTION OF LARGE BIOLOGICAL MOLECULES

Chapter 5 THE STRUCTURE AND FUNCTION OF LARGE BIOLOGICAL MOLECULES Chapter 5 THE STRUCTURE AND FUNCTION OF LARGE BIOLOGICAL MOLECULES You Must Know The role of dehydration synthesis in the formation of organic compounds and hydrolysis in the digestion of organic compounds.

More information

The Structure and Function of Large Biological Molecules

The Structure and Function of Large Biological Molecules Overview: The Molecules of Life The Structure and Function of Large Biological Molecules CHAPTER 5 All living things are made up of four classes of large biological molecules: carbohydrates, lipids, proteins,

More information

Chapter 5: Structure and Function of Macromolecules AP Biology 2011

Chapter 5: Structure and Function of Macromolecules AP Biology 2011 Chapter 5: Structure and Function of Macromolecules AP Biology 2011 1 Macromolecules Fig. 5.1 Carbohydrates Lipids Proteins Nucleic Acids Polymer - large molecule consisting of many similar building blocks

More information

Slide 1. Slide 2. Slide 3. So far... All living things are primarily made up of four classes of Macromolecules

Slide 1. Slide 2. Slide 3. So far... All living things are primarily made up of four classes of Macromolecules Slide 1 So far... 1. Biology is the study of life - All life is based on the cell - The Earth, organisms, cells are all aqueous 2. Water s uniqueness stems from its internal polarity - Solvent, Co/Adhesion,

More information

The Structure and Function of Macromolecules (Chapter Five)

The Structure and Function of Macromolecules (Chapter Five) 1 Most Macromolecules are Polymers The Structure and Function of Macromolecules (Chapter Five) POLYMER PRINCIPLES The four main classes of macromolecules are carbohydrates, lipids, proteins and nucleic

More information

The Structure and Function of Large Biological Molecules

The Structure and Function of Large Biological Molecules Chapter 5 LECTURE PRESENTATIONS For CAMPBELL BIOLOGY, NINTH EDITION Jane B. Reece, Lisa A. Urry, Michael L. Cain, Steven A. Wasserman, Peter V. Minorsky, Robert B. Jackson The Structure and Function of

More information

Carbon. Isomers. The Chemical Building Blocks of Life

Carbon. Isomers. The Chemical Building Blocks of Life The Chemical Building Blocks of Life Carbon Chapter 3 Framework of biological molecules consists primarily of carbon bonded to Carbon O, N, S, P or H Can form up to 4 covalent bonds Hydrocarbons molecule

More information

Macromolecules. Note: If you have not taken Chemistry 11 (or if you ve forgotten some of it), read the Chemistry Review Notes on your own.

Macromolecules. Note: If you have not taken Chemistry 11 (or if you ve forgotten some of it), read the Chemistry Review Notes on your own. Macromolecules Note: If you have not taken Chemistry 11 (or if you ve forgotten some of it), read the Chemistry Review Notes on your own. Macromolecules are giant molecules made up of thousands or hundreds

More information

Macromolecules. Ch. 5 Macromolecules BIOL 222. Overview: The Molecules of Life. Macromolecules

Macromolecules. Ch. 5 Macromolecules BIOL 222. Overview: The Molecules of Life. Macromolecules Ch. 5 Macromolecules BIOL 222 Overview: The Molecules of Life Macromolecules large molecules composed of thousands of covalently connected atoms Built from carbon backbone Also contain large numbers of

More information

Honors Biology Chapter 3: Macromolecules PPT Notes

Honors Biology Chapter 3: Macromolecules PPT Notes Honors Biology Chapter 3: Macromolecules PPT Notes 3.1 I can explain why carbon is unparalleled in its ability to form large, diverse molecules. Diverse molecules found in cells are composed of carbon

More information

Macromolecules Structure and Function

Macromolecules Structure and Function Macromolecules Structure and Function Within cells, small organic molecules (monomers) are joined together to form larger molecules (polymers). Macromolecules are large molecules composed of thousands

More information

Most life processes are a series of chemical reactions influenced by environmental and genetic factors.

Most life processes are a series of chemical reactions influenced by environmental and genetic factors. Biochemistry II Most life processes are a series of chemical reactions influenced by environmental and genetic factors. Metabolism the sum of all biochemical processes 2 Metabolic Processes Anabolism-

More information

Macromolecules. Polymer Overview: The 4 major classes of macromolecules also called are: 1) 2) 3) 4)

Macromolecules. Polymer Overview: The 4 major classes of macromolecules also called are: 1) 2) 3) 4) Macromolecules Polymer Overview: The 4 major classes of macromolecules also called are: 1) 2) 3) 4) Q: Which of the above are polymers? (put a star by them). Polymer literally means. Polymers are long

More information

The Structure and Function of Large Biological Molecules

The Structure and Function of Large Biological Molecules LECTURE PRESENTATIONS For CAMPBELL BIOLOGY, NINTH EDITION Jane B. Reece, Lisa A. Urry, Michael L. Cain, Steven A. Wasserman, Peter V. Minorsky, Robert B. Jackson Chapter 5 The Structure and Function of

More information

Composed of long chains of smaller molecules Macromolecules are formed through the process of polymerization

Composed of long chains of smaller molecules Macromolecules are formed through the process of polymerization Chapter 5, Campbell Composed of long chains of smaller molecules Macromolecules are formed through the process of polymerization. Polymerization = large compounds are built by joining smaller ones together

More information

The Structure and Function of Large Biological Molecules

The Structure and Function of Large Biological Molecules Chapter 5 LECTURE PRESENTATIONS For CAMPBELL BIOLOGY, NINTH EDITION Jane B. Reece, Lisa A. Urry, Michael L. Cain, Steven A. Wasserman, Peter V. Minorsky, Robert B. Jackson The Structure and Function of

More information

Chapter 5 Structure and Function Of Large Biomolecules

Chapter 5 Structure and Function Of Large Biomolecules Formation of Macromolecules Monomers Polymers Macromolecules Smaller larger Chapter 5 Structure and Function Of Large Biomolecules monomer: single unit dimer: two monomers polymer: three or more monomers

More information

Macromolecules (Learning Objectives)

Macromolecules (Learning Objectives) Macromolecules (Learning Objectives) Recognize the role of water in synthesis and breakdown of polymers Name &recognize the monomer and the chemical bond that holds the polymeric structure of all biomolecules

More information

Ch. 5 Macromolecules. Overview: The Molecules of Life. Macromolecules BIOL 222. Macromolecules

Ch. 5 Macromolecules. Overview: The Molecules of Life. Macromolecules BIOL 222. Macromolecules Ch. 5 Macromolecules BIOL 222 Overview: The Molecules of Life Macromolecules large molecules composed of thousands of covalently connected atoms Built from carbon backbone Also contain large numbers of

More information

Lesson 2. Biological Molecules. Introduction to Life Processes - SCI 102 1

Lesson 2. Biological Molecules. Introduction to Life Processes - SCI 102 1 Lesson 2 Biological Molecules Introduction to Life Processes - SCI 102 1 Carbon in Biological Molecules Organic molecules contain carbon (C) and hydrogen (H) Example: glucose (C 6 H 12 O 6 ) Inorganic

More information

The Structure and Function of Large Biological Molecules

The Structure and Function of Large Biological Molecules LECTURE PRESENTATIONS For CAMPBELL BIOLOGY, NINTH EDITION Jane B. Reece, Lisa A. Urry, Michael L. Cain, Steven A. Wasserman, Peter V. Minorsky, Robert B. Jackson Chapter 5 The Structure and Function of

More information

Macromolecules. copyright cmassengale

Macromolecules. copyright cmassengale Macromolecules 1 Organic Compounds Compounds that contain CARBON are called organic. Macromolecules are large organic molecules. 2 Carbon (C) Carbon has 4 electrons in outer shell. Carbon can form covalent

More information

Organic Compounds. Compounds that contain CARBON are called organic. Macromolecules are large organic molecules.

Organic Compounds. Compounds that contain CARBON are called organic. Macromolecules are large organic molecules. Macromolecules Organic Compounds Compounds that contain CARBON are called organic. Macromolecules are large organic molecules. Carbon (C) Carbon has 4 electrons in outer shell. Carbon can form covalent

More information

The Structure and Function of Large Biological Molecules

The Structure and Function of Large Biological Molecules Chapter 5 The Structure and Function of Large Biological Molecules PowerPoint Lecture Presentations for Biology Eighth Edition Neil Campbell and Jane Reece Lectures by Chris Romero, updated by Erin Barley

More information

CARBOHYDRATES. Produce energy for living things Atoms? Monomer Examples? Carbon, hydrogen, and oxygen in 1:2:1 ratio.

CARBOHYDRATES. Produce energy for living things Atoms? Monomer Examples? Carbon, hydrogen, and oxygen in 1:2:1 ratio. CARBOHYDRATES Produce energy for living things Atoms? Carbon, hydrogen, and oxygen in 1:2:1 ratio Monomer Examples? Sugars, starches MONOSACCHARIDES--- main source of energy for cells Glucose Know formula?

More information

Macromolecules. Macromolecules. Polymers. How to build a polymer 9/11/2015. Building Blocks of Life

Macromolecules. Macromolecules. Polymers. How to build a polymer 9/11/2015. Building Blocks of Life Macromolecules Macromolecules Building Blocks of Life Smaller organic molecules join together to form larger molecules macromolecules 4 major classes of macromolecules: carbohydrates lipids proteins nucleic

More information

The Structure and Function of Large Biological Molecules

The Structure and Function of Large Biological Molecules LECTURE PRESENTATIONS For CAMPBELL BIOLOGY, NINTH EDITION Jane B. Reece, Lisa A. Urry, Michael L. Cain, Steven A. Wasserman, Peter V. Minorsky, Robert B. Jackson Chapter 5 The Structure and Function of

More information

The Chemical Building Blocks of Life. Chapter 3

The Chemical Building Blocks of Life. Chapter 3 The Chemical Building Blocks of Life Chapter 3 Biological Molecules Biological molecules consist primarily of -carbon bonded to carbon, or -carbon bonded to other molecules. Carbon can form up to 4 covalent

More information

Biological Molecules

Biological Molecules The Chemical Building Blocks of Life Chapter 3 Biological molecules consist primarily of -carbon bonded to carbon, or -carbon bonded to other molecules. Carbon can form up to 4 covalent bonds. Carbon may

More information

CHAPTER 3. Carbon & the Molecular Diversity of Life

CHAPTER 3. Carbon & the Molecular Diversity of Life CHAPTER 3 Carbon & the Molecular Diversity of Life Carbon: The Organic Element Compounds that are synthesized by cells and contain carbon are organic So what is inorganic? Why are carbon compounds so prevalent?

More information

The Star of The Show (Ch. 3)

The Star of The Show (Ch. 3) The Star of The Show (Ch. 3) Why study Carbon? All of life is built on carbon Cells ~72% 2 O ~25% carbon compounds carbohydrates lipids proteins nucleic acids ~3% salts Na, Cl, K Chemistry of Life Organic

More information

Chapter 5: The Structure and Function of Large Biological Molecules

Chapter 5: The Structure and Function of Large Biological Molecules Chapter 5: The Structure and Function of Large Biological Molecules 1. Name the four main classes of organic molecules found in all living things. Which of the four are classified as macromolecules. Define

More information

3.1 Carbon is Central to the Living World

3.1 Carbon is Central to the Living World BIOL 100 Ch. 3 1 3.1 Carbon is Central to the Living World Carbon Central element to life Most biological molecules are built on a carbon framework. Organic molecules Humans 18.5% Carbon Why is Carbon

More information

Organic Compounds. Compounds that contain CARBON are called organic. Macromolecules are large organic molecules.

Organic Compounds. Compounds that contain CARBON are called organic. Macromolecules are large organic molecules. Macromolecules 1 Organic Compounds Compounds that contain CARBON are called organic. Macromolecules are large organic molecules. 2 Carbon (C) Carbon has 4 electrons in outer shell. Carbon can form covalent

More information

BIOCHEMISTRY. How Are Macromolecules Formed? Dehydration Synthesis or condensation reaction Polymers formed by combining monomers and removing water.

BIOCHEMISTRY. How Are Macromolecules Formed? Dehydration Synthesis or condensation reaction Polymers formed by combining monomers and removing water. BIOCHEMISTRY Organic compounds Compounds that contain carbon are called organic. Inorganic compounds do not contain carbon. Carbon has 4 electrons in outer shell. Carbon can form covalent bonds with as

More information

Chapter 2. Chemical Composition of the Body

Chapter 2. Chemical Composition of the Body Chapter 2 Chemical Composition of the Body Carbohydrates Organic molecules that contain carbon, hydrogen and oxygen General formula C n H 2n O n -ose denotes a sugar molecule Supply energy Glucose Complex

More information

AP BIOLOGY: READING ASSIGNMENT FOR CHAPTER 5

AP BIOLOGY: READING ASSIGNMENT FOR CHAPTER 5 1) Complete the following table: Class Monomer Functions Carbohydrates 1. 3. Lipids 1. 3. Proteins 1. 3. 4. 5. 6. Nucleic Acids 1. 2) Circle the atoms of these two glucose molecules that will be removed

More information

Campbell's Biology, 9e (Reece et al.) Chapter 5 The Structure and Function of Large Biological Molecules

Campbell's Biology, 9e (Reece et al.) Chapter 5 The Structure and Function of Large Biological Molecules Campbell's Biology, 9e (Reece et al.) Chapter 5 The Structure and Function of Large Biological Molecules In Chapter 5, the principles of chemistry covered in earlier chapters are applied to the understanding

More information

The Structure and Function of Large Biological Molecules

The Structure and Function of Large Biological Molecules Chapter 5 The Structure and Function of Large Biological Molecules PowerPoint Lecture Presentations for Biology Eighth Edition Neil Campbell and Jane Reece Lectures by Chris Romero, updated by Erin Barley

More information

Macromolecules. 3. There are several levels of protein structure, the most complex of which is A) primary B) secondary C) tertiary D) quaternary

Macromolecules. 3. There are several levels of protein structure, the most complex of which is A) primary B) secondary C) tertiary D) quaternary Macromolecules 1. If you remove all of the functional groups from an organic molecule so that it has only carbon and hydrogen atoms, the molecule become a molecule. A) carbohydrate B) carbonyl C) carboxyl

More information

Biological molecules

Biological molecules Biological molecules 04-04-16 Announcements Your lab report 1 is due now Quiz 1 is on Wednesday at the beginning of class, so don t be late Review Macromolecues are large molecules necessary for life made

More information

The Structure and Function of Large Biological Molecules

The Structure and Function of Large Biological Molecules NAME DATE Chapter 5 - The Structure and Function of Large Biological Molecules Guided Reading Concept 5.1: Macromolecules are polymers, built from monomers 1. The large molecules of all living things fall

More information

Macromolecules. You are what you eat! Chapter 5. AP Biology

Macromolecules. You are what you eat! Chapter 5. AP Biology Macromolecules You are what you eat! Chapter 5 AP Biology Organic Compounds Contain bonds between CARBON glycosidic bond AP Biology Carbohydrates Structure / monomer u monosaccharide Function u energy

More information

Macromolecules. Molecules of Life

Macromolecules. Molecules of Life Macromolecules Molecules of Life Learning Objectives know the difference between a dehydration synthesis reaction and a hydrolysis reaction know the different types of biological macromolecules be able

More information

The Structure and Function of Large Biological Molecules

The Structure and Function of Large Biological Molecules Chapter 5 The Structure and Function of Large Biological Molecules PowerPoint Lecture Presentations for Biology Eighth Edition Neil Campbell and Jane Reece Lectures by Chris Romero, updated by Erin Barley

More information

The Building blocks of life. Macromolecules

The Building blocks of life. Macromolecules The Building blocks of life Macromolecules 1 copyright cmassengale 2 Organic Compounds Compounds that contain CARBON are called organic. Macromolecules are large organic molecules. 3 LIFE ON EARTH IS CARBON-BASED

More information

The Structure and Function of Large Biological Molecules

The Structure and Function of Large Biological Molecules Chapter 5 The Structure and Function of Large Biological Molecules PowerPoint Lecture Presentations for Biology Eighth Edition Neil Campbell and Jane Reece Lectures by Chris Romero, updated by Erin Barley

More information

The Structure and Function of Large Biological Molecules

The Structure and Function of Large Biological Molecules Chapter 5 The Structure and Function of Large Biological Molecules PowerPoint Lecture Presentations for Biology Eighth Edition Neil Campbell and Jane Reece Lectures by Chris Romero, updated by Erin Barley

More information

The Structure and Function of Macromolecules

The Structure and Function of Macromolecules The Structure and Function of Macromolecules I. Polymers What is a polymer? Poly = many; mer = part. A polymer is a large molecule consisting of many smaller sub-units bonded together. What is a monomer?

More information

Macromolecules. Honors Biology

Macromolecules. Honors Biology Macromolecules onors Biology 1 The building materials of the body are known as macromolecules because they can be very large There are four types of macromolecules: 1. Proteins 2. Nucleic acids 3. arbohydrates

More information

the nature and importance of biomacromolecules in the chemistry of the cell: synthesis of biomacromolecules through the condensation reaction lipids

the nature and importance of biomacromolecules in the chemistry of the cell: synthesis of biomacromolecules through the condensation reaction lipids the nature and importance of biomacromolecules in the chemistry of the cell: synthesis of biomacromolecules through the condensation reaction lipids and their sub-units; the role of lipids in the plasma

More information

Chapter 5: The Structure and Function of Large Biological Molecules

Chapter 5: The Structure and Function of Large Biological Molecules Name Period Concept 5.1 Macromolecules are polymers, built from monomers 1. The large molecules of all living things fall into just four main classes. Name them. 2. Circle the three classes that are called

More information

Structure and Function of Macromolecules Chapter 5 Macromolecules Macromolecules Multiple Units Synthesis of Dimers and Polymers

Structure and Function of Macromolecules Chapter 5 Macromolecules Macromolecules Multiple Units Synthesis of Dimers and Polymers Structure and Function of Macromolecules Chapter 5 Macromolecules Giant molecules weighing over 100,000 daltons Emergent properties not found in component parts Macromolecules Multiple Units meris = one

More information

The Structure and Function of Macromolecules

The Structure and Function of Macromolecules The Structure and Function of Macromolecules Macromolecules are polymers Polymer long molecule consisting of many similar building blocks. Monomer the small building block molecules. Carbohydrates, proteins

More information

6/15/2015. Biological Molecules. Outline. Organic Compounds. Organic Compounds - definition Functional Groups Biological Molecules. What is organic?

6/15/2015. Biological Molecules. Outline. Organic Compounds. Organic Compounds - definition Functional Groups Biological Molecules. What is organic? Biological Molecules Biology 105 Lecture 3 Reading: Chapter 2 (pages 29 39) Outline Organic Compounds - definition Functional Groups Biological Molecules Carbohydrates Lipids Amino Acids and Proteins Nucleotides

More information

The Structure and Function of Large Biological Molecules

The Structure and Function of Large Biological Molecules Chapter 5 The Structure and Function of Large Biological Molecules PowerPoint Lecture Presentations for Biology Eighth Edition Neil Campbell and Jane Reece Lectures by Chris Romero, updated by Erin Barley

More information

Biochemistry Macromolecules and Enzymes. Unit 02

Biochemistry Macromolecules and Enzymes. Unit 02 Biochemistry Macromolecules and Enzymes Unit 02 Organic Compounds Compounds that contain CARBON are called organic. What is Carbon? Carbon has 4 electrons in outer shell. Carbon can form covalent bonds

More information

Chapter 2 pt 2. Atoms, Molecules, and Life. Gregory Ahearn. John Crocker. Including the lecture Materials of

Chapter 2 pt 2. Atoms, Molecules, and Life. Gregory Ahearn. John Crocker. Including the lecture Materials of Chapter 2 pt 2 Atoms, Molecules, and Life Including the lecture Materials of Gregory Ahearn University of North Florida with amendments and additions by John Crocker Copyright 2009 Pearson Education, Inc..

More information

Unit #2: Biochemistry

Unit #2: Biochemistry Unit #2: Biochemistry STRUCTURE & FUNCTION OF FOUR MACROMOLECULES What are the four main biomolecules? How is each biomolecule structured? What are their roles in life? Where do we find them in our body?

More information

Learning Objectives. Learning Objectives (cont.) Chapter 3: Organic Chemistry 1. Lectures by Tariq Alalwan, Ph.D.

Learning Objectives. Learning Objectives (cont.) Chapter 3: Organic Chemistry 1. Lectures by Tariq Alalwan, Ph.D. Biology, 10e Sylvia Mader Lectures by Tariq Alalwan, Ph.D. Learning Objectives List the features of carbon that result in the diversity of organic molecules. Describe how macromolecules are assembled and

More information

All living things are mostly composed of 4 elements: H, O, N, C honk Compounds are broken down into 2 general categories: Inorganic Compounds:

All living things are mostly composed of 4 elements: H, O, N, C honk Compounds are broken down into 2 general categories: Inorganic Compounds: Biochemistry Organic Chemistry All living things are mostly composed of 4 elements: H, O, N, C honk Compounds are broken down into 2 general categories: Inorganic Compounds: Do not contain carbon Organic

More information

Campbell Biology in Focus (Urry) Chapter 3 Carbon and the Molecular Diversity of Life. 3.1 Multiple-Choice Questions

Campbell Biology in Focus (Urry) Chapter 3 Carbon and the Molecular Diversity of Life. 3.1 Multiple-Choice Questions Test Bank for Campbell Biology in Focus 1st Edition by Urry Full Download: https://downloadlink.org/p/test-bank-for-campbell-biology-in-focus-1st-edition-by-urry/ Campbell Biology in Focus (Urry) Chapter

More information

Biological Molecules

Biological Molecules Chemical Building Blocks of Life Chapter 3 Biological Molecules Biological molecules consist primarily of -carbon bonded to carbon, or -carbon bonded to other molecules. Carbon can form up to 4 covalent

More information

Chapter 3 The Molecules of Cells

Chapter 3 The Molecules of Cells Chapter 3 The Molecules of Cells PowerPoint Lectures for Campbell Biology: Concepts & Connections, Seventh Edition Reece, Taylor, Simon, and Dickey Lecture by Edward J. Zalisko Introduction Most of the

More information

Structure & Function of Large Biological Molecules (Ch. 5)

Structure & Function of Large Biological Molecules (Ch. 5) Structure & Function of Large Biological Molecules (Ch. 5) Macromolecules Smaller organic molecules join together to form larger molecules macromolecules 4 major classes of macromolecules: carbohydrates

More information

Chemistry of Carbon. All living things rely on one particular type of molecule: carbon

Chemistry of Carbon. All living things rely on one particular type of molecule: carbon Ach Chemistry of Carbon All living things rely on one particular type of molecule: carbon Carbon atom with an outer shell of four electrons can form covalent bonds with four atoms. In organic molecules,

More information

Macromolecules. Chapter 4. How to build a polymer. Polymers. How to break down a polymer. Carbohydrates 8/30/2012

Macromolecules. Chapter 4. How to build a polymer. Polymers. How to break down a polymer. Carbohydrates 8/30/2012 Macromolecules Chapter 4 Macromolecules Smaller organic molecules join together to form larger molecules Macromolecules 4 major classes of macromolecules Carbohydrates Lipids Proteins Nucleic acids Polymers

More information

Chapter 3 The Molecules of Life

Chapter 3 The Molecules of Life Chapter 3 The Molecules of Life State Standards Standard 1.h. Standard 5.a. Standard 4.e. Organic Molecules A cell is mostly water. The rest of the cell consists mostly of carbon based molecules organic

More information

Carbon: The Backbone of Life

Carbon: The Backbone of Life Organic Chemistry Carbon: The Backbone of Life Living organisms consist mostly of carbon-based compounds due to its ability to form large, complex, and diverse molecules Proteins, DNA, carbohydrates, and

More information

Biology: Life on Earth Chapter 3 Molecules of life

Biology: Life on Earth Chapter 3 Molecules of life Biology: Life on Earth Chapter 3 Molecules of life Chapter 3 Outline 3.1 Why Is Carbon So Important in Biological Molecules? p. 38 3.2 How Are Organic Molecules Synthesized? p. 38 3.3 What Are Carbohydrates?

More information

Chp 2 (cont.) Organic Molecules. Spider s web and close up of capture strand - spider silk protein

Chp 2 (cont.) Organic Molecules. Spider s web and close up of capture strand - spider silk protein Chp 2 (cont.) Organic Molecules Spider s web and close up of capture strand - spider silk protein 1! Molecular Diversity is Based on Carbon An organic molecule contains both carbon and hydrogen. Ex: Methane

More information

Biomolecules. Biomolecules. Carbohydrates. Biol 219 Lec 3 Fall Polysaccharides. Function: Glucose storage Fig. 2.2

Biomolecules. Biomolecules. Carbohydrates. Biol 219 Lec 3 Fall Polysaccharides. Function: Glucose storage Fig. 2.2 Biomolecules Biomolecules Monomers Polymers Carbohydrates monosaccharides polysaccharides fatty acids triglycerides Proteins amino acids polypeptides Nucleic Acids nucleotides DNA, RNA Carbohydrates Carbohydrates

More information

Study Guide Chapter 5 MULTIPLE CHOICE. Choose the one alternative that best completes the statement or answers the question

Study Guide Chapter 5 MULTIPLE CHOICE. Choose the one alternative that best completes the statement or answers the question Study Guide Chapter 5 MULTIPLE CHOICE. Choose the one alternative that best completes the statement or answers the question 1) What type of covalent bond between amino acid side chains (R groups) functions

More information

Chapter 3. The Molecules of Cells. Lecture by Richard L. Myers

Chapter 3. The Molecules of Cells. Lecture by Richard L. Myers Chapter 3 The Molecules of Cells PowerPoint Lectures for Biology: Concepts & Connections, Sixth Edition Campbell, Reece, Taylor, Simon, and Dickey Copyright 2009 Pearson Education, Inc. Lecture by Richard

More information

Before studying chapter 5.. please back to chapter 3 and correct this information

Before studying chapter 5.. please back to chapter 3 and correct this information Before studying chapter 5.. please back to chapter 3 and correct this information in chapter 3 > page 11 > The solvent of life > the 2 points before the last.. we wrote : Anion surrounded by O molecules

More information

INTRODUCTION TO ORGANIC COMPOUNDS. Introduction: Got Lactose? The Molecules of Cells. Most of the world s population cannot digest milkbased

INTRODUCTION TO ORGANIC COMPOUNDS. Introduction: Got Lactose? The Molecules of Cells. Most of the world s population cannot digest milkbased Chapter 3 The Molecules of Cells Introduction: Got Lactose? Most of the world s population cannot digest milkbased foods They are lactose intolerant, because they lack the enzyme lactase This illustrates

More information

3. Hydrogen bonds form between which atoms? Between an electropositive hydrogen and an electronegative N, O or F.

3. Hydrogen bonds form between which atoms? Between an electropositive hydrogen and an electronegative N, O or F. Chemistry of Life Answers 1. Differentiate between an ionic and covalent bond. Provide an example for each. Ionic: occurs between metals and non-metals, e.g., NaCl Covalent: occurs between two non-metals;

More information

Biological Molecules Ch 2: Chemistry Comes to Life

Biological Molecules Ch 2: Chemistry Comes to Life Outline Biological Molecules Ch 2: Chemistry Comes to Life Biol 105 Lecture 3 Reading Chapter 2 (pages 31 39) Biological Molecules Carbohydrates Lipids Amino acids and Proteins Nucleotides and Nucleic

More information

9.A compare the structures and functions of different types of biomolecules, including carbohydrates, lipids, proteins, and nucleic acids

9.A compare the structures and functions of different types of biomolecules, including carbohydrates, lipids, proteins, and nucleic acids 9.A compare the structures and functions of different types of biomolecules, including carbohydrates, lipids, proteins, and nucleic acids o o o Food is a good source of one or more of the following: protein,

More information