Synthesis and degradation of fatty acids Martina Srbová

Size: px
Start display at page:

Download "Synthesis and degradation of fatty acids Martina Srbová"

Transcription

1 Synthesis and degradation of fatty acids Martina Srbová

2 Fatty acids (FA) mostly an even number of carbon atoms and linear chain in esterified form as component of lipids in unesterified form in plasma binding to albumin Groups of FA: according to the chain length <C 6 C 6 C 12 C 14 C 20 >C 20 according to the number of double bonds no double bond one double bond more double bonds short-chain FA (SCFA) medium-chain FA (MCFA) long-chain FA (LCFA) very-long-chain FA (VLCFA) saturated FA (SAFA) monounsaturated FA (MUFA) polyunsaturated FA (PUFA)

3 Overview of FA

4 FA biosynthesis mainly in the liver, adipose tissue, mammary gland during lactation (always in excess calories) localization: cell cytoplasm (up to C 16 ) endoplasmic reticulum, mitochondrion (elongation = chain extension) enzymes: acetyl-coa-carboxylase (HCO source of CO 2, biotin, ATP) fatty acid synthase (NADPH + H +, pantothenic acid) primary substrate: acetyl-coa final product: palmitate

5 Precursors for FA biosynthesis 1. Acetyl-CoA source: oxidative decarboxylation of pyruvate (the main source of glucose) degradation of FA, ketones, ketogenic amino acids transport across the inner mitochondrial membrane as citrate 2. NADPH source: pentose phosphate pathway (the main source) the conversion of malate to pyruvate (NADP + -dependent malate dehydrogenase - malic enzyme ) the conversion of isocitrate to α-ketoglutarate (isocitrate dehydrogenase)

6 Precursors for FA biosynthesis Acetyl-CoA + HSCoA OAA - oxaloacetate

7 FA biosynthesis Formation of malonyl-coa catalysed by acetyl-coa-carboxylase (ACC) HCO ATP ADP + P i enzyme-biotin enzyme-biotin-coo - 1 carboxylation of biotin 2 transfer of carboxyl group to acetyl-coa acetyl-coa formation of malonyl-coa + enzyme-biotin enzyme acetyl-coa-carboxylase malonyl-coa

8 FA biosynthesis on the multienzyme complex FA synthase repeated extension of FA by two carbons in each cycle to the chain length C 16 (palmitate) ACP acyl carrier protein

9 FA biosynthesis The course of FA biosynthesis acetyl-coa malonyl-coa CoASH CoASH acetyltransacylase malonyltransacylase transacylation acyl(acetyl)-malonyl- -enzyme complex

10 FA biosynthesis The course of FA biosynthesis 3-ketoacyl-synthase CO 2 condensation acyl(acetyl)-malonyl-enzyme complex 3-ketoacyl-enzyme complex (acetacetyl-enzyme complex)

11 FA biosynthesis The course of FA biosynthesis NADPH + H + NADP + NADPH + H + NADP + 3-ketoacyl-reductase H 2 O 3-hydroxyacyldehydrase enoylreductase first reduction dehydration second reduction 3-ketoacyl-enzyme complex (acetoacetyl-enzyme complex) 3-hydroxyacyl-enzyme complex 2,3-unsaturated acyl-enzyme complex acyl-enzyme complex

12 FA biosynthesis Repetition of the cycle malonyl-coa CoASH acyl-enzyme complex (palmitoyl-enzyme complex)

13 FA biosynthesis The release of palmitate thioesterase H 2 O + palmitate palmitoyl-enzyme complex

14 FA biosynthesis The fate of palmitate after FA biosynthesis acylglycerols ATP + CoA AMP + PP i esterification cholesterol esters palmitate acyl-coa-synthetase palmitoyl-coa elongation desaturation acyl-coa

15 FA biosynthesis FA elongation 1. microsomal elongation system in the endoplasmic reticulum malonyl-coa the donor of the C 2 units NADPH + H + the donor of the reducing equivalents extension of saturated and unsaturated FA FA > C16 elongases (chain elongation) palmitic acid (C16) fatty acid synthase 2. mitochondrial elongation system in mitochondria acetyl-coa the donor of the C 2 unit

16 FA biosynthesis FA desaturation in the endoplasmic reticulum enzymes: desaturase, NADH-cyt b5-reductase process requiring O 2, NADH, cytochrome b 5 4 desaturases: double bonds at position 4,5,6,9 linoleic, linolenic essential FA stearoyl-coa + NADH + H + + O 2 oleoyl-coa + NAD + + 2H 2 O

17 FA biosynthesis - summary Formation of malonyl-coa Acetyl-CoA-carboxylase FA synthesis Palmitic acid FA Synthase cytosol Saturated fatty acids(>c16) Elongation systems- mitochondria, ER Unsaturated fatty acids Desaturation system - ER -

18 FA degradation function: major energy source (especially between meals, at night, in increased demand for energy intake exercise) release of FA from triacylglycerols in adipose tissue into the bloodstream binding of FA to albumin in the bloodstream transport to tissues 1 2 entry of FA into target cells activation to acyl-coa 3 transfer of acyl-coa via carnitine system into mitochondria 4 β-oxidation 5 In the liver, acetyl CoA is converted to ketone bodies

19 FA degradation -carbon β-carbon -carbon -oxidation C10, C12 β-oxidation -oxidation Branched FA VLCFA

20 FA degradation β-oxidation mainly in muscles localization: mitochondrial matrix peroxisome (VLCFA) enzymes: acyl CoA synthetase carnitine palmitoyl transferase I, II; carnitine acylcarnitine translocase dehydrogenase (FAD, NAD + ), hydratase, thiolase substrate: acyl-coa final products: acetyl-coa propionyl-coa

21 FA degradation β-oxidation repeated shortening of FA by two carbons in each cycle cleavage of two carbon atoms in the form of acetyl-coa oxidation of acetyl-coa to CO 2 and H 2 O in the citric acid cycle complete oxidation of FA generation of 8 molecules of acetyl-coa from 1 molecule of palmitoyl-coa production of NADH, FADH 2 reoxidation in the respiratory chain to form ATP PRODUCTION OF LARGE QUANTITY OF ATP

22 FA degradation Activation of FA fatty acid ATP acyl-coa-synthetase acyl adenylate pyrophosphate (PP i ) acyl-coa-synthetase pyrophosphatase 2P i acyl-coa AMP fatty acid+ ATP + CoASH PP i + H 2 O acyl-coa + AMP + PP i 2P i

23 FA degradation The role of carnitine in the transport of LCFA into mitochondrion FA transfer across the inner mitochondrial membrane by carnitine and three enzymes: carnitine palmitoyl transferase I (CPT I) acyl transfer to carnitine carnitine acylcarnitine translocase acylcarnitine transfer across the inner mitochondrial membrane carnitine palmitoyl transferase II (CPT II) acyl transfer from acylcarnitine back to CoA in the mitochondrial matrix

24 FA degradation 3-hydroxy-4-N-trimethylaminobutyrate Carnitine Sources: Exogenous: meat, dairy products Endogenous: synthesis from lysine and methionine Transported into the cell by specific transporter Deficiency: Decreased transport of acyl-coa into mitochondria lipids accumulation myocardial damage muscle weakness Increased utilization of Glc hypoglycemia Similar symptoms are the genetically determined deficiency carnitinpalmitoyltransferase I or II

25 FA degradation β-oxidation Steps of cycle: acyl-coa dehydrogenation acyl-coa-dehydrogenase oxidation by FAD creation of unsaturated acid trans-δ 2 -enoyl-coa hydration enoyl-coa-hydratase addition of water on the β-carbon atom creation of β-hydroxyacid L-β-hydroxyacyl-CoA dehydrogenation L-β-hydroxyacyl-CoA- -dehydrogenase oxidation by NAD + creation of β-oxoacid β-ketoacyl-coa cleavage at the presence of CoA β-ketoacyl-coa-thiolase formation of acetyl-coa formation of acyl-coa (two carbons shorter) acyl-coa acetyl-coa

26 FA degradation Oxidation of unsaturated FA the most common unsaturated FA in the diet: oleic acid, linoleic acid β-oxidation of oleic acids degradation of unsaturated FA by β-oxidation to a double bond Unsaturated FA are cis isomers - aren t substrate for enoyl-coa hydratase conversion of cis-isomer of FA by specific isomerase to trans-isomer intramolecular transfer of double bond from β- to - β position continuation of β-oxidation 3 rounds of β-oxidation Normal intermediates of β-oxidation

27 FA degradation Oxidation of odd-chain FA shortening of FA to C 5 stopping of β-oxidation propionyl-coa HCO ATP formation of acetyl-coa and propionyl-coa propionyl-coa carboxylase (biotin) ADP + P i carboxylation of propionyl-coa methylmalonyl-coa intramolecular rearrangement to form succinyl-coa methylmalonyl-coa mutase (B 12 ) entry of succinyl-coa into the citric acid cycle succinyl-coa

28 FA degradation Peroxisomal oxidation of VLCFA Very-long-chain FA (VLCFA, > C 20 ) transport of acyl-coa into the peroxisome without carnitine Differences between β-oxidation in the mitochondrion and peroxisome: 1. step dehydrogenation by FAD mitochondrion: electrons from FADH 2 are delivered to the respiratory chain where they are transferred to O 2 to form H 2 O and ATP peroxisome: electrons from FADH 2 are delivered to O 2 to form H 2 O 2, which is degraded by catalase to H 2 O and O 2 3. step dehydrogenation by NAD + mitochondrion: reoxidation of NADH in the respiratory chain peroxisome: reoxidation of NADH is not possible, export to the cytosol or the mitochondrion

29 FA degradation Peroxisomal oxidation of VLCFA Differences between β-oxidation in the mitochondrion and peroxisome: 4. step cleavage at the presence of CoA acetyl-coa mitochondrion: metabolization in the citric acid cycle peroxisome: export to the cytosol, to the mitochondrion (oxidation) a precursor for the synthesis of cholesterol and bile acids a precursor for the synthesis of fatty acids of phospholipids In peroxisome shortened FA bind to carnitine transfer acylcarnitine into mitochondrion acylcarnitine β-oxidation

30 FA degradation - oxidation Oxidation carbon ER liver, kidney mixed function oxidase Substrates C10 a C12 FA Products: dicarboxylic acids Excreted in the urine

31 Comparison of FA biosynthesis and FA degradation

32 Ketone bodies Ketogenesis increased ketogenesis: lipolysis starvation prolonged exercise diabetes mellitus high-fat diet low-carbohydrate diet utilization of ketone bodies as an energy source (skeletal muscle, intestinal mucose, adipocytes, brain, heart etc.) to spare of glucose and muscle proteins FA in plasma β-oxidation excess of acetyl-coa ketogenesis

33 Ketone bodies Ketogenesis in the liver localization: mitochondrial matrix substrate: acetyl-coa products: acetone acetoacetate D-β-hydroxybutyrate medium strength acids - ketoacidosis conditions: in excess of acetyl-coa function: energy substrates for extrahepatic tissues

34 Ketone bodies Ketogenesis

35 Ketone bodies Ketogenesis acetoacetate spontaneous decarboxylation to acetone conversion to D-β-hydroxybutyrate by D-β-hydroxybutyrate dehydrogenase waste product (lung, urine) energy substrates for extrahepatic tissues

36 Ketone bodies Utilization of ketone bodies water-soluble FA equivalents energy source for extrahepatic tissues (especially heart and skeletal muscle) in starvation - the main source of energy for the brain citric acid cycle energy production

37 Bibliography and sources Devlin, T. M. Textbook of biochemistry: with clinical correlations. 6th edition. Wiley-Liss, Marks, A.; Lieberman, M. Marks' basic medical biochemistry: a clinical approach. 3rd edition. Lippincott Williams & Wilkins, Matouš a kol. Základy lékařské chemie a biochemie. Galén, Meisenberg, G.; Simmons, W. H. Principles of medical biochemistry. 2nd edition. Elsevier, Murray et al. Harper's Biochemistry. 25th edition. Appleton & Lange,

Lipid metabolism. Degradation and biosynthesis of fatty acids Ketone bodies

Lipid metabolism. Degradation and biosynthesis of fatty acids Ketone bodies Lipid metabolism Degradation and biosynthesis of fatty acids Ketone bodies Fatty acids (FA) primary fuel molecules in the fat category main use is for long-term energy storage high level of energy storage:

More information

OVERVIEW M ET AB OL IS M OF FR EE FA TT Y AC ID S

OVERVIEW M ET AB OL IS M OF FR EE FA TT Y AC ID S LIPOLYSIS LIPOLYSIS OVERVIEW CATABOLISM OF FREE FATTY ACIDS Nonesterified fatty acids Source:- (a) breakdown of TAG in adipose tissue (b) action of Lipoprotein lipase on plasma TAG Combined with Albumin

More information

Fatty acid breakdown

Fatty acid breakdown Fatty acids contain a long hydrocarbon chain and a terminal carboxylate group. Most contain between 14 and 24 carbon atoms. The chains may be saturated or contain double bonds. The complete oxidation of

More information

6. How Are Fatty Acids Produced? 7. How Are Acylglycerols and Compound Lipids Produced? 8. How Is Cholesterol Produced?

6. How Are Fatty Acids Produced? 7. How Are Acylglycerols and Compound Lipids Produced? 8. How Is Cholesterol Produced? Lipid Metabolism Learning bjectives 1 How Are Lipids Involved in the Generationand Storage of Energy? 2 How Are Lipids Catabolized? 3 What Is the Energy Yield from the xidation of Fatty Acids? 4 How Are

More information

Fatty Acid and Triacylglycerol Metabolism 1

Fatty Acid and Triacylglycerol Metabolism 1 Fatty Acid and Triacylglycerol Metabolism 1 Mobilization of stored fats and oxidation of fatty acids Lippincott s Chapter 16 What is the first lecture about What is triacylglycerol Fatty acids structure

More information

Roles of Lipids. principal form of stored energy major constituents of cell membranes vitamins messengers intra and extracellular

Roles of Lipids. principal form of stored energy major constituents of cell membranes vitamins messengers intra and extracellular Roles of Lipids principal form of stored energy major constituents of cell membranes vitamins messengers intra and extracellular = Oxidation of fatty acids Central energy-yielding pathway in animals. O

More information

Fatty acid oxidation. doc. Ing. Zenóbia Chavková, CSc.

Fatty acid oxidation. doc. Ing. Zenóbia Chavková, CSc. Fatty acid oxidation doc. Ing. Zenóbia Chavková, CSc. Physiological functions of fatty acids 1. Structural components of cell membranes (phospholipids and sphingolipids) 2. Energy storage (triacylglycerols)

More information

Energy storage in cells

Energy storage in cells Energy storage in cells Josef Fontana EC - 58 Overview of the lecture Introduction to the storage substances of human body Overview of storage compounds in the body Glycogen metabolism Structure of glycogen

More information

LIPID METABOLISM. Sri Widia A Jusman Department of Biochemistry & Molecular Biology FMUI

LIPID METABOLISM. Sri Widia A Jusman Department of Biochemistry & Molecular Biology FMUI LIPID METABOLISM Sri Widia A Jusman Department of Biochemistry & Molecular Biology FMUI Lipid metabolism is concerned mainly with fatty acids cholesterol Source of fatty acids from dietary fat de novo

More information

GENERAL FEATURES OF FATTY ACIDS BIOSYNTHESIS

GENERAL FEATURES OF FATTY ACIDS BIOSYNTHESIS 1 GENERAL FEATURES OF FATTY ACIDS BIOSYNTHESIS 1. Fatty acids may be synthesized from dietary glucose via pyruvate. 2. Fatty acids are the preferred fuel source for the heart and the primary form in which

More information

Synthesis of Fatty Acids and Triacylglycerol

Synthesis of Fatty Acids and Triacylglycerol Synthesis of Fatty Acids and Triacylglycerol Lippincott s Chapter 16 Fatty Acid Synthesis Mainly in the Liver Requires Carbon Source: Acetyl CoA Reducing Power: NADPH 8 CH 3 COO C 15 H 33 COO Energy Input:

More information

LIPID METABOLISM

LIPID METABOLISM LIPID METABOLISM LIPOGENESIS LIPOGENESIS LIPOGENESIS FATTY ACID SYNTHESIS DE NOVO FFA in the blood come from :- (a) Dietary fat (b) Dietary carbohydrate/protein in excess of need FA TAG Site of synthesis:-

More information

Tala Saleh. Razi Kittaneh ... Nayef Karadsheh

Tala Saleh. Razi Kittaneh ... Nayef Karadsheh Tala Saleh Razi Kittaneh... Nayef Karadsheh β-oxidation of Fatty Acids The oxidation of fatty acids occurs in 3 steps: Step 1: Activation of the Fatty acid FA + HS-CoA + ATP FA-CoA + AMP + PPi - The fatty

More information

Oxidation of Long Chain Fatty Acids

Oxidation of Long Chain Fatty Acids Oxidation of Long Chain Fatty Acids Dr NC Bird Oxidation of long chain fatty acids is the primary source of energy supply in man and animals. Hibernating animals utilise fat stores to maintain body heat,

More information

Biosynthesis of Fatty Acids. By Dr.QUTAIBA A. QASIM

Biosynthesis of Fatty Acids. By Dr.QUTAIBA A. QASIM Biosynthesis of Fatty Acids By Dr.QUTAIBA A. QASIM Fatty Acids Definition Fatty acids are comprised of hydrocarbon chains terminating with carboxylic acid groups. Fatty acids and their associated derivatives

More information

Fatty acid synthesis. Dr. Nalini Ganesan M.Sc., Ph.D Associate Professor Department of Biochemistry SRMC & RI (DU) Porur, Chennai - 116

Fatty acid synthesis. Dr. Nalini Ganesan M.Sc., Ph.D Associate Professor Department of Biochemistry SRMC & RI (DU) Porur, Chennai - 116 Fatty acid synthesis Dr. Nalini Ganesan M.Sc., Ph.D Associate Professor Department of Biochemistry SRMC & RI (DU) Porur, Chennai 116 Harper s biochemistry 24 th ed, Pg 218 Fatty acid Synthesis Known as

More information

Summary of fatty acid synthesis

Summary of fatty acid synthesis Lipid Metabolism, part 2 1 Summary of fatty acid synthesis 8 acetyl CoA + 14 NADPH + 14 H+ + 7 ATP palmitic acid (16:0) + 8 CoA + 14 NADP + + 7 ADP + 7 Pi + 7 H20 1. The major suppliers of NADPH for fatty

More information

Fatty acids synthesis

Fatty acids synthesis Fatty acids synthesis The synthesis start from Acetyl COA the first step requires ATP + reducing power NADPH! even though the oxidation and synthesis are different pathways but from chemical part of view

More information

Ahmad Ulnar. Faisal Nimri ... Dr.Faisal

Ahmad Ulnar. Faisal Nimri ... Dr.Faisal 24 Ahmad Ulnar Faisal Nimri... Dr.Faisal Fatty Acid Synthesis - Occurs mainly in the Liver (to store excess carbohydrates as triacylglycerols(fat)) and in lactating mammary glands (for the production of

More information

Biochemistry: A Short Course

Biochemistry: A Short Course Tymoczko Berg Stryer Biochemistry: A Short Course Second Edition CHAPTER 28 Fatty Acid Synthesis 2013 W. H. Freeman and Company Chapter 28 Outline 1. The first stage of fatty acid synthesis is transfer

More information

Biochemistry: A Short Course

Biochemistry: A Short Course Tymoczko Berg Stryer Biochemistry: A Short Course Second Edition CHAPTER 27 Fatty Acid Degradation Dietary Lipid (Triacylglycerol) Metabolism - In the small intestine, fat particles are coated with bile

More information

number Done by Corrected by Doctor Faisal Al-Khatib

number Done by Corrected by Doctor Faisal Al-Khatib number 22 Done by Baraa Ayed Corrected by Yaseen Fatayer Doctor Faisal Al-Khatib 1 P a g e Today we are going to cover these concepts: Oxidation of odd number fatty acids Oxidation of very long fatty acids

More information

2-more complex molecules (fatty acyl esters) as triacylglycerols.

2-more complex molecules (fatty acyl esters) as triacylglycerols. ** Fatty acids exist in two forms:- 1-free fatty acids (unesterified) 2-more complex molecules (fatty acyl esters) as triacylglycerols. ** most tissues might use fatty acids as source of energy during

More information

Lecture: 26 OXIDATION OF FATTY ACIDS

Lecture: 26 OXIDATION OF FATTY ACIDS Lecture: 26 OXIDATION OF FATTY ACIDS Fatty acids obtained by hydrolysis of fats undergo different oxidative pathways designated as alpha ( ), beta ( ) and omega ( ) pathways. -oxidation -Oxidation of fatty

More information

Part III => METABOLISM and ENERGY. 3.4 Lipid Catabolism 3.4a Fatty Acid Degradation 3.4b Ketone Bodies

Part III => METABOLISM and ENERGY. 3.4 Lipid Catabolism 3.4a Fatty Acid Degradation 3.4b Ketone Bodies Part III => METABOLISM and ENERGY 3.4 Lipid Catabolism 3.4a Fatty Acid Degradation 3.4b Ketone Bodies Section 3.4a: Fatty Acid Degradation Synopsis 3.4a - Triglycerides (or fats) in the diet or adipose

More information

CHY2026: General Biochemistry. Lipid Metabolism

CHY2026: General Biochemistry. Lipid Metabolism CHY2026: General Biochemistry Lipid Metabolism Lipid Digestion Lipid Metabolism Fats (triglycerides) are high metabolic energy molecules Fats yield 9.3 kcal of energy (carbohydrates and proteins 4.1 kcal)

More information

ANSC/NUTR 618 Lipids & Lipid Metabolism

ANSC/NUTR 618 Lipids & Lipid Metabolism I. Overall concepts A. Definitions ANC/NUTR 618 Lipids & Lipid Metabolism 1. De novo synthesis = synthesis from non-fatty acid precursors a. Carbohydrate precursors (glucose, lactate, and pyruvate) b.

More information

Synthesis of Fatty Acids and Triacylglycerol

Synthesis of Fatty Acids and Triacylglycerol Fatty Acid Synthesis Synthesis of Fatty Acids and Triacylglycerol Requires Carbon Source: Reducing Power: NADPH Energy Input: ATP Why Energy? Why Energy? Fatty Acid Fatty Acid + n(atp) ΔG o : -ve Fatty

More information

ANSC/NUTR 618 LIPIDS & LIPID METABOLISM. Fatty Acid Elongation and Desaturation

ANSC/NUTR 618 LIPIDS & LIPID METABOLISM. Fatty Acid Elongation and Desaturation ANSC/NUTR 618 LIPIDS & LIPID METABOLISM I. Fatty acid elongation A. General 1. At least 60% of fatty acids in triacylglycerols are C18. 2. Free palmitic acid (16:0) synthesized in cytoplasm is elongated

More information

23.1 Lipid Metabolism in Animals. Chapter 23. Micelles Lipid Metabolism in. Animals. Overview of Digestion Lipid Metabolism in

23.1 Lipid Metabolism in Animals. Chapter 23. Micelles Lipid Metabolism in. Animals. Overview of Digestion Lipid Metabolism in Denniston Topping Caret Copyright! The McGraw-Hill Companies, Inc. Permission required for reproduction or display. Chapter 23 Fatty Acid Metabolism Triglycerides (Tgl) are emulsified into fat droplets

More information

Lecture 36. Key Concepts. Overview of lipid metabolism. Reactions of fatty acid oxidation. Energy yield from fatty acid oxidation

Lecture 36. Key Concepts. Overview of lipid metabolism. Reactions of fatty acid oxidation. Energy yield from fatty acid oxidation Lecture 36 Lipid Metabolism 1 Fatty Acid Oxidation Ketone Bodies Key Concepts Overview of lipid metabolism Reactions of fatty acid oxidation Energy yield from fatty acid oxidation Formation of ketone bodies

More information

number Done by Corrected by Doctor F. Al-Khateeb

number Done by Corrected by Doctor F. Al-Khateeb number 23 Done by A. Rawajbeh Corrected by Doctor F. Al-Khateeb Ketone bodies Ketone bodies are used by the peripheral tissues like the skeletal and cardiac muscles, where they are the preferred source

More information

number Done by Corrected by Doctor Faisal Al-Khatibe

number Done by Corrected by Doctor Faisal Al-Khatibe number 24 Done by Mohammed tarabieh Corrected by Doctor Faisal Al-Khatibe 1 P a g e *Please look over the previous sheet about fatty acid synthesis **Oxidation(degradation) of fatty acids, occurs in the

More information

BIOSYNTHESIS OF FATTY ACIDS. doc. Ing. Zenóbia Chavková, CSc.

BIOSYNTHESIS OF FATTY ACIDS. doc. Ing. Zenóbia Chavková, CSc. BIOSYNTHESIS OF FATTY ACIDS doc. Ing. Zenóbia Chavková, CSc. The pathway for the of FAs is not the reversal of the oxidation pathway Both pathways are separated within different cellular compartments In

More information

Dietary Lipid Metabolism

Dietary Lipid Metabolism Dietary Lipid Metabolism Presented by Dr. Mohammad Saadeh The requirements for the Pharmaceutical Biochemistry II Philadelphia University Faculty of pharmacy OVERVIEW Lipids are a heterogeneous group.

More information

Lehninger 5 th ed. Chapter 17

Lehninger 5 th ed. Chapter 17 Lehninger 5 th ed. Chapter 17 December 26, 2010 Prof. Shimon Schuldiner Email: Shimon.Schuldiner@huji.ac.il Phone: 6585992 CHAPTER 17 Fatty Acid Catabolism Key topics: How fats are digested in animals

More information

Lipid Metabolism. Remember fats?? Triacylglycerols - major form of energy storage in animals

Lipid Metabolism. Remember fats?? Triacylglycerols - major form of energy storage in animals Remember fats?? Triacylglycerols - major form of energy storage in animals Your energy reserves: ~0.5% carbs (glycogen + glucose) ~15% protein (muscle, last resort) ~85% fat Why use fat for energy? 1 gram

More information

Biochemistry Sheet 27 Fatty Acid Synthesis Dr. Faisal Khatib

Biochemistry Sheet 27 Fatty Acid Synthesis Dr. Faisal Khatib Page1 بسم رلاهللا On Thursday, we discussed the synthesis of fatty acids and its regulation. We also went on to talk about the synthesis of Triacylglycerol (TAG). Last time, we started talking about the

More information

Fatty Acid and Triacylglycerol Metabolism 1

Fatty Acid and Triacylglycerol Metabolism 1 Fatty Acid and Triacylglycerol Metabolism 1 Mobilization of stored fats and oxidation of fatty acids Lippincott s Chapter 16 What is the first lecture about What is triacylglycerol Fatty acids structure

More information

Lipid Metabolism. Catabolism Overview

Lipid Metabolism. Catabolism Overview Lipid Metabolism Pratt & Cornely, Chapter 17 Catabolism Overview Lipids as a fuel source from diet Beta oxidation Mechanism ATP production Ketone bodies as fuel 1 High energy More reduced Little water

More information

BCM 221 LECTURES OJEMEKELE O.

BCM 221 LECTURES OJEMEKELE O. BCM 221 LECTURES BY OJEMEKELE O. OUTLINE INTRODUCTION TO LIPID CHEMISTRY STORAGE OF ENERGY IN ADIPOCYTES MOBILIZATION OF ENERGY STORES IN ADIPOCYTES KETONE BODIES AND KETOSIS PYRUVATE DEHYDROGENASE COMPLEX

More information

BCH 4054 Spring 2001 Chapter 24 Lecture Notes

BCH 4054 Spring 2001 Chapter 24 Lecture Notes BCH 4054 Spring 2001 Chapter 24 Lecture Notes 1 Chapter 24 Fatty Acid Catabolism 2 Fatty Acids as Energy Source Triglycerides yield 37 kj/g dry weight Protein 17 kj/g Glycogen 16 kj/g (even less wet weight)

More information

Objectives By the end of lecture the student should:

Objectives By the end of lecture the student should: Objectives By the end of lecture the student should: Discuss β oxidation of fatty acids. Illustrate α oxidation of fatty acids. Understand ω oxidation of fatty acids. List sources and fates of active acetate.

More information

the fates of acetyl coa which produced by B oixidation :

the fates of acetyl coa which produced by B oixidation : Ketone bodies the fates of acetyl coa which produced by B oixidation : 1) oxidized at the TCA cycle 2)synthesis of ketone bodies Ketone bodies : 1)acetoacetate 2) acetone 3) 3_hydroxybutyrate Naming acetonacetone:

More information

number Done by Corrected by Doctor Faisal Al- Khateeb

number Done by Corrected by Doctor Faisal Al- Khateeb number 21 Done by Omar Sami Corrected by حسام أبو عوض Doctor Faisal Al- Khateeb 1 P a g e (Only one or two marks are allocated for this sheetin the exam). Through this lecture we are going to cover the

More information

Biosynthesis of Fatty Acids

Biosynthesis of Fatty Acids Biosynthesis of Fatty Acids Fatty acid biosynthesis takes place in the cytosol rather than the mitochondria and requires a different activation mechanism and different enzymes and coenzymes than fatty

More information

Biochemistry - I SPRING Mondays and Wednesdays 9:30-10:45 AM (MR-1307) Lectures Based on Profs. Kevin Gardner & Reza Khayat

Biochemistry - I SPRING Mondays and Wednesdays 9:30-10:45 AM (MR-1307) Lectures Based on Profs. Kevin Gardner & Reza Khayat Biochemistry - I Mondays and Wednesdays 9:30-10:45 AM (MR-1307) SPRING 2017 Lectures 21-22 Based on Profs. Kevin Gardner & Reza Khayat 1 Outline Vertebrate processing of dietary lipids Mobilization of

More information

Chapter 22, Fatty Acid Metabolism CH 3 (CH 2 ) 14 CO 2 R C C O2 CH 2 OH O R. Lipase + 3 H 2 O

Chapter 22, Fatty Acid Metabolism CH 3 (CH 2 ) 14 CO 2 R C C O2 CH 2 OH O R. Lipase + 3 H 2 O hapter 22, Fatty Acid Metabolism Pages: 603-613 I. Introduction - Fatty acids have 4 major physiological roles: - omponents of phospholipids and glycolipids (membranes) - Attachment to Proteins targets

More information

#16 made by Nour omar corrected by laith sorour date 17/11

#16 made by Nour omar corrected by laith sorour date 17/11 Lipid metabolism 2 #16 made by Nour omar corrected by laith sorour date 17/11 Keton Bodies Ketone bodies: acetone, -hydroxybutyrate, and acetoacetate formed principally in the liver mitochondria. can be

More information

Biology 638 Biochemistry II Exam-3. (Note that you are not allowed to use any calculator)

Biology 638 Biochemistry II Exam-3. (Note that you are not allowed to use any calculator) Biology 638 Biochemistry II Exam-3 (Note that you are not allowed to use any calculator) 1. In the non-cyclic pathway, electron pathway is. Select the most accurate one. a. PSII PC Cyt b 6 f PC PSI Fd-NADP

More information

Integrative Metabolism: Significance

Integrative Metabolism: Significance Integrative Metabolism: Significance Energy Containing Nutrients Carbohydrates Fats Proteins Catabolism Energy Depleted End Products H 2 O NH 3 ADP + Pi NAD + NADP + FAD + Pi NADH+H + NADPH+H + FADH2 Cell

More information

Biochemistry. 5.3) Fat Metabolism

Biochemistry. 5.3) Fat Metabolism Biochemistry 5. Bio-Energetics & ATP 5.3) Fat Metabolism Prof. Dr. Klaus Heese Lipids Metabolism Introduction basic physiological background info 1 Definition of Lipids Substances in dairy foods Known

More information

Metabolism (degradation) of triacylglycerols and fatty acids

Metabolism (degradation) of triacylglycerols and fatty acids Metabolism (degradation) of triacylglycerols and fatty acids Jiří Jonák and Lenka Fialová Institute of Medical Biochemistry, 1st Medical Faculty of the Charles University, Prague Triacylglycerols (TAGs)

More information

Citric acid cycle and respiratory chain. Pavla Balínová

Citric acid cycle and respiratory chain. Pavla Balínová Citric acid cycle and respiratory chain Pavla Balínová Mitochondria Structure of mitochondria: Outer membrane Inner membrane (folded) Matrix space (mtdna, ribosomes, enzymes of CAC, β-oxidation of FA,

More information

MILK BIOSYNTHESIS PART 3: FAT

MILK BIOSYNTHESIS PART 3: FAT MILK BIOSYNTHESIS PART 3: FAT KEY ENZYMES (FROM ALL BIOSYNTHESIS LECTURES) FDPase = fructose diphosphatase Citrate lyase Isocitrate dehydrogenase Fatty acid synthetase Acetyl CoA carboxylase Fatty acyl

More information

Biosynthesis of Triacylglycerides (TG) in liver. Mobilization of stored fat and oxidation of fatty acids

Biosynthesis of Triacylglycerides (TG) in liver. Mobilization of stored fat and oxidation of fatty acids Biosynthesis of Triacylglycerides (TG) in liver Mobilization of stored fat and oxidation of fatty acids Activation of hormone sensitive lipase This enzyme is activated when phosphorylated (3,5 cyclic AMPdependent

More information

FAD FADH2. glycerol-3- phosphate. dehydrogenase. This DHAP is metabolically no different from that produced in glycolysis.

FAD FADH2. glycerol-3- phosphate. dehydrogenase. This DHAP is metabolically no different from that produced in glycolysis. 1 Lipid Metabolism: ow that we are aware of the types of lipids in our bodies, it is important to see how we make them or break them. We will start our discussion with triacylglyceride degradation, and

More information

Voet Biochemistry 3e John Wiley & Sons, Inc.

Voet Biochemistry 3e John Wiley & Sons, Inc. * * Voet Biochemistry 3e Lipid Metabolism Part I: (Chap. 25, sec.1-3) Glucose C 6 H 12 O 6 + 6 O 2 6 CO 2 + 6 H 2 O G o = -2823 kj/mol Fats (palmitic acid) C 16 H 32 O 2 + 23 O 2 16 CO 2 + 16 H 2 O G o

More information

Points 1. Following is the overall reaction catalyzed by the Calvin-Benson cycle:

Points 1. Following is the overall reaction catalyzed by the Calvin-Benson cycle: BCH 4054 February 22, 2002 HOUR TEST 2 NAME_ Points 1. Following is the overall reaction catalyzed by the Calvin-Benson cycle: CO 2 + 3ATP + 2NADPH 1/3 glyceraldehyde-3-p + 3ADP + 2NADP + Give the structures

More information

CITRIC ACID CYCLE ERT106 BIOCHEMISTRY SEM /19 BY: MOHAMAD FAHRURRAZI TOMPANG

CITRIC ACID CYCLE ERT106 BIOCHEMISTRY SEM /19 BY: MOHAMAD FAHRURRAZI TOMPANG CITRIC ACID CYCLE ERT106 BIOCHEMISTRY SEM 1 2018/19 BY: MOHAMAD FAHRURRAZI TOMPANG Chapter Outline (19-1) The central role of the citric acid cycle in metabolism (19-2) The overall pathway of the citric

More information

Lecture 16. Finish lipid metabolism (Triglycerides, Isoprenoids/Steroids, Glyoxylate cycle) Amino acid metabolism (Urea cycle) Google Man III

Lecture 16. Finish lipid metabolism (Triglycerides, Isoprenoids/Steroids, Glyoxylate cycle) Amino acid metabolism (Urea cycle) Google Man III Lecture 16 Finish lipid metabolism (Triglycerides, Isoprenoids/Steroids, Glyoxylate cycle) Amino acid metabolism (Urea cycle) Google Man III The Powertrain of Human Metabolism (verview) CARBHYDRATES PRTEINS

More information

Glycolysis Part 2. BCH 340 lecture 4

Glycolysis Part 2. BCH 340 lecture 4 Glycolysis Part 2 BCH 340 lecture 4 Regulation of Glycolysis There are three steps in glycolysis that have enzymes which regulate the flux of glycolysis These enzymes catalyzes irreversible reactions of

More information

Citric Acid Cycle: Central Role in Catabolism. Entry of Pyruvate into the TCA cycle

Citric Acid Cycle: Central Role in Catabolism. Entry of Pyruvate into the TCA cycle Citric Acid Cycle: Central Role in Catabolism Stage II of catabolism involves the conversion of carbohydrates, fats and aminoacids into acetylcoa In aerobic organisms, citric acid cycle makes up the final

More information

Lipid metabolism I Triacylglycerols

Lipid metabolism I Triacylglycerols Lipid metabolism I Triacylglycerols Biochemistry I Lecture 8 2008 (J.S.) Major classes of lipids Simple lipids Triacylglycerols serve as energy-providing nutrients, the turnover about 100 g per day in

More information

ANSC/NUTR 618 LIPIDS & LIPID METABOLISM. Triacylglycerol and Fatty Acid Metabolism

ANSC/NUTR 618 LIPIDS & LIPID METABOLISM. Triacylglycerol and Fatty Acid Metabolism ANSC/NUTR 618 LIPIDS & LIPID METABOLISM II. Triacylglycerol synthesis A. Overall pathway Glycerol-3-phosphate + 3 Fatty acyl-coa à Triacylglycerol + 3 CoASH B. Enzymes 1. Acyl-CoA synthase 2. Glycerol-phosphate

More information

BIOL2171 ANU TCA CYCLE

BIOL2171 ANU TCA CYCLE TCA CYCLE IMPORTANCE: Oxidation of 2C Acetyl Co-A 2CO 2 + 3NADH + FADH 2 (8e-s donated to O 2 in the ETC) + GTP (energy) + Heat OVERVIEW: Occurs In the mitochondrion matrix. 1. the acetyl portion of acetyl-coa

More information

Anabolism of Fatty acids (Anabolic Lynen spiral) Glycerol and Triglycerides

Anabolism of Fatty acids (Anabolic Lynen spiral) Glycerol and Triglycerides Anabolism of Fatty acids (Anabolic Lynen spiral) Glycerol and Triglycerides Anabolism of fatty acids Fatty acids are not stored in the body free. They are a source of energy in the form of triglycerides

More information

Integration Of Metabolism

Integration Of Metabolism Integration Of Metabolism Metabolism Consist of Highly Interconnected Pathways The basic strategy of catabolic metabolism is to form ATP, NADPH, and building blocks for biosyntheses. 1. ATP is the universal

More information

Chemistry 3503 Final exam April 17, Student s name:

Chemistry 3503 Final exam April 17, Student s name: Chemistry 3503 Final exam April 17, 2008 Student s name: THIS EXAM IS FOR STUDENTS IN D. CRAIG S SECTION. IF YOU ARE IN M. EZE S SECTION THIS EXAM IS NOT FOR YOU. Part I /40 Part II Question 1 /4 Question

More information

Krebs cycle Energy Petr Tůma Eva Samcová

Krebs cycle Energy Petr Tůma Eva Samcová Krebs cycle Energy - 215 Petr Tůma Eva Samcová Overview of Citric Acid Cycle Key Concepts The citric acid cycle (Krebs cycle) is a multistep catalytic process that converts acetyl groups derived from carbohydrates,

More information

Lecture 16. Finish lipid metabolism (Triglycerides, Isoprenoids/Steroids, Glyoxylate cycle) Amino acid metabolism (Urea cycle) Google Man III

Lecture 16. Finish lipid metabolism (Triglycerides, Isoprenoids/Steroids, Glyoxylate cycle) Amino acid metabolism (Urea cycle) Google Man III Lecture 16 Finish lipid metabolism (Triglycerides, Isoprenoids/Steroids, Glyoxylate cycle) Amino acid metabolism (Urea cycle) Google Man III The Powertrain of Human Metabolism (verview) CARBHYDRATES PRTEINS

More information

CH395G FINAL (3 rd ) EXAM Kitto/Hackert - Fall 2003

CH395G FINAL (3 rd ) EXAM Kitto/Hackert - Fall 2003 CH395G FINAL (3 rd ) EXAM Kitto/Hackert - Fall 2003 1. A cell in an active, catabolic state has a. a high (ATP/ADP) and a high (NADH/NAD + ) ratio b. a high (ATP/ADP) and a low (NADH/NAD + ) ratio c. a

More information

Marah Bitar. Faisal Nimri ... Nafeth Abu Tarboosh

Marah Bitar. Faisal Nimri ... Nafeth Abu Tarboosh 8 Marah Bitar Faisal Nimri... Nafeth Abu Tarboosh Summary of the 8 steps of citric acid cycle Step 1. Acetyl CoA joins with a four-carbon molecule, oxaloacetate, releasing the CoA group and forming a six-carbon

More information

Physiology Unit 1 METABOLISM OF LIPIDS AND PROTEINS

Physiology Unit 1 METABOLISM OF LIPIDS AND PROTEINS Physiology Unit 1 METABOLISM OF LIPIDS AND PROTEINS Alternate Fuel Sources When glucose levels are low Proteins and Triglycerides will be metabolized Tissues will use different fuel sources depending on:

More information

number Done by Corrected by Doctor Nayef Karadsheh

number Done by Corrected by Doctor Nayef Karadsheh number 13 Done by Asma Karameh Corrected by Saad hayek Doctor Nayef Karadsheh Gluconeogenesis This lecture covers gluconeogenesis with aspects of: 1) Introduction to glucose distribution through tissues.

More information

Chapter 24 Lecture Outline

Chapter 24 Lecture Outline Chapter 24 Lecture Outline Carbohydrate Lipid and Protein! Metabolism! In the catabolism of carbohydrates, glycolysis converts glucose into pyruvate, which is then metabolized into acetyl CoA. Prepared

More information

TCA CYCLE (Citric Acid Cycle)

TCA CYCLE (Citric Acid Cycle) TCA CYCLE (Citric Acid Cycle) TCA CYCLE The Citric Acid Cycle is also known as: Kreb s cycle Sir Hans Krebs Nobel prize, 1953 TCA (tricarboxylic acid) cycle The citric acid cycle requires aerobic conditions!!!!

More information

Fatty Acid Degradation. Catabolism Overview. TAG and FA 11/11/2015. Chapter 27, Stryer Short Course. Lipids as a fuel source diet Beta oxidation

Fatty Acid Degradation. Catabolism Overview. TAG and FA 11/11/2015. Chapter 27, Stryer Short Course. Lipids as a fuel source diet Beta oxidation Fatty Acid Degradation Chapter 27, Stryer Short Course Catabolism verview Lipids as a fuel source diet Beta oxidation saturated Unsaturated dd chain Ketone bodies as fuel Physiology High energy More reduced

More information

Dr. Abir Alghanouchi Biochemistry department Sciences college

Dr. Abir Alghanouchi Biochemistry department Sciences college Dr. Abir Alghanouchi Biochemistry department Sciences college Under aerobic conditions, pyruvate(the product of glycolysis) passes by special pyruvatetransporter into mitochondria which proceeds as follows:

More information

Leen Alsahele. Razan Al-zoubi ... Faisal

Leen Alsahele. Razan Al-zoubi ... Faisal 25 Leen Alsahele Razan Al-zoubi... Faisal last time we started talking about regulation of fatty acid synthesis and degradation *regulation of fatty acid synthesis by: 1- regulation of acetyl CoA carboxylase

More information

CHE 242 Exam 3 Practice Questions

CHE 242 Exam 3 Practice Questions CHE 242 Exam 3 Practice Questions Glucose metabolism 1. Below is depicted glucose catabolism. Indicate on the pathways the following: A) which reaction(s) of glycolysis are irreversible B) where energy

More information

INTRODUCTORY BIOCHEMISTRY. BI 28 Second Midterm Examination April 3, 2007

INTRODUCTORY BIOCHEMISTRY. BI 28 Second Midterm Examination April 3, 2007 INTRODUCTORY BIOCHEMISTRY BI 28 Second Midterm Examination April 3, 2007 Name SIS # Make sure that your name or SIS # is on every page. This is the only way we have of matching you with your exam after

More information

MBG304 Biochemistry Lecture 8- Metabolism: Lipid metabolism. Hikmet Geçkil, Professor Department of Molecular Biology and Genetics Inonu University

MBG304 Biochemistry Lecture 8- Metabolism: Lipid metabolism. Hikmet Geçkil, Professor Department of Molecular Biology and Genetics Inonu University MBG304 Biochemistry Lecture 8- Metabolism: Lipid metabolism Hikmet Geçkil, Professor Department of Molecular Biology and Genetics Inonu University In the past few lectures we have seen how energy can be

More information

Biological oxidation II. The Cytric acid cycle

Biological oxidation II. The Cytric acid cycle Biological oxidation II The Cytric acid cycle Outline The Cytric acid cycle (TCA tricarboxylic acid) Central role of Acetyl-CoA Regulation of the TCA cycle Anaplerotic reactions The Glyoxylate cycle Localization

More information

Lipid Metabolism * OpenStax

Lipid Metabolism * OpenStax OpenStax-CNX module: m46462 1 Lipid Metabolism * OpenStax This work is produced by OpenStax-CNX and licensed under the Creative Commons Attribution License 3.0 By the end of this section, you will be able

More information

Companion to Biosynthesis of Ketones & Cholesterols, Regulation of Lipid Metabolism Lecture Notes

Companion to Biosynthesis of Ketones & Cholesterols, Regulation of Lipid Metabolism Lecture Notes Companion to Biosynthesis of Ketones & Cholesterols, Regulation of Lipid Metabolism Lecture Notes The major site of acetoacetate and 3-hydorxybutyrate production is in the liver. 3-hydorxybutyrate is the

More information

Oxidative Phosphorylation

Oxidative Phosphorylation Oxidative Phosphorylation Oxidative Phosphorylation - In Glycolysis and the citric acid cycle, we ve made a lot of reduced cofactors NADH and FADH 2 - In oxidative phosphorylation, we use the energy generated

More information

Chapter 9 Overview. Aerobic Metabolism I: The Citric Acid Cycle. Live processes - series of oxidation-reduction reactions. Aerobic metabolism I

Chapter 9 Overview. Aerobic Metabolism I: The Citric Acid Cycle. Live processes - series of oxidation-reduction reactions. Aerobic metabolism I n n Chapter 9 Overview Aerobic Metabolism I: The Citric Acid Cycle Live processes - series of oxidation-reduction reactions Ingestion of proteins, carbohydrates, lipids Provide basic building blocks for

More information

Citrate Cycle. Lecture 28. Key Concepts. The Citrate Cycle captures energy using redox reactions

Citrate Cycle. Lecture 28. Key Concepts. The Citrate Cycle captures energy using redox reactions Citrate Cycle Lecture 28 Key Concepts The Citrate Cycle captures energy using redox reactions Eight reactions of the Citrate Cycle Key control points in the Citrate Cycle regulate metabolic flux What role

More information

Chapter 16 - Lipid Metabolism

Chapter 16 - Lipid Metabolism Chapter 16 - Lipid Metabolism Fatty acids have four major physiologic roles in the cell: Building blocks of phospholipids and glycolipids Added onto proteins to create lipoproteins, which targets them

More information

Chemistry B11 Chapter 17 Metabolic pathways & Energy production

Chemistry B11 Chapter 17 Metabolic pathways & Energy production Chapter 17 Metabolic pathways & Energy production Metabolism: all the chemical reactions that take place in living cells to break down or build molecules are known as metabolism. The term metabolism refers

More information

MULTIPLE CHOICE QUESTIONS

MULTIPLE CHOICE QUESTIONS MULTIPLE CHOICE QUESTIONS 1. Which of the following statements concerning anabolic reactions is FALSE? A. They are generally endergonic. B. They usually require ATP. C. They are part of metabolism. D.

More information

THE GLUCOSE-FATTY ACID-KETONE BODY CYCLE Role of ketone bodies as respiratory substrates and metabolic signals

THE GLUCOSE-FATTY ACID-KETONE BODY CYCLE Role of ketone bodies as respiratory substrates and metabolic signals Br. J. Anaesth. (1981), 53, 131 THE GLUCOSE-FATTY ACID-KETONE BODY CYCLE Role of ketone bodies as respiratory substrates and metabolic signals J. C. STANLEY In this paper, the glucose-fatty acid cycle

More information

BCMB 3100 Fall 2013 Exam III

BCMB 3100 Fall 2013 Exam III BCMB 3100 Fall 2013 Exam III 1. (10 pts.) (a.) Briefly describe the purpose of the glycerol dehydrogenase phosphate shuttle. (b.) How many ATPs can be made when electrons enter the electron transport chain

More information

Energetics of carbohydrate and lipid metabolism

Energetics of carbohydrate and lipid metabolism Energetics of carbohydrate and lipid metabolism 1 Metabolism: The sum of all the chemical transformations taking place in a cell or organism, occurs through a series of enzymecatalyzed reactions that constitute

More information

2013 W. H. Freeman and Company. 21 Lipid Biosynthesis

2013 W. H. Freeman and Company. 21 Lipid Biosynthesis 2013 W. H. Freeman and Company 21 Lipid Biosynthesis CHAPTER 21 Lipid Biosynthesis Key topics: Biosynthesis of fatty acids and eicosanoids Assembly of fatty acids and glycerol into triacylglycerols Biosynthesis

More information

Metabolism Lecture 10 AMINO ACID DEGRADATION Restricted for students enrolled in MCB102, UC Berkeley, Spring 2008 ONLY

Metabolism Lecture 10 AMINO ACID DEGRADATION Restricted for students enrolled in MCB102, UC Berkeley, Spring 2008 ONLY Bryan Krantz: University of California, Berkeley MCB 102, Spring 2008, Metabolism Lecture 10 Reading: Ch. 18 of Principles of Biochemistry, Amino Acid Oxidation and the Production of Urea. Syllabus Adjustment.

More information

Aerobic Respiration. The four stages in the breakdown of glucose

Aerobic Respiration. The four stages in the breakdown of glucose Aerobic Respiration The four stages in the breakdown of glucose 1 I. Aerobic Respiration Why can t we break down Glucose in one step? (Flaming Gummy Bear) Enzymes gently lower the potential energy until

More information