A Tour of the Cell. Chapter 6. Biology Eighth Edition Neil Campbell and Jane Reece. PowerPoint Lecture Presentations for

Size: px
Start display at page:

Download "A Tour of the Cell. Chapter 6. Biology Eighth Edition Neil Campbell and Jane Reece. PowerPoint Lecture Presentations for"

Transcription

1 Chapter 6 1 A Tour of the Cell PowerPoint Lecture Presentations for Biology Eighth Edition Neil Campbell and Jane Reece Lectures by Chris Romero, updated by Erin Barley with contributions from Joan Sharp

2 Overview: The Fundamental Units of Life 2 All organisms are made of cells The cell is the simplest collection of matter that can live Cell structure is correlated to cellular function All cells are related by their descent from earlier cells

3 Microscopy 3 In a light microscope (LM), visible light passes through a specimen and then through glass lenses, which magnify the image The quality of an image depends on Magnification, the ratio of an object s image size to its real size Resolution, the measure of the clarity of the image, or the minimum distance of two distinguishable points Contrast, visible differences in parts of the sample

4 Electron microscope Light microscope Unaided eye LMs can magnify effectively to about 1,000 times the size of the actual specimen 10 m 1 m 0.1 m 1 cm 1 mm 100 µm 10 µm Human height Length of some nerve and muscle cells Chicken egg Frog egg Most plant and animal cells Nucleus 4 Most bacteria 1 µm Mitochondrion 100 nm Smallest bacteria Viruses 10 nm Ribosomes Proteins 1 nm Lipids Small molecules 0.1 nm Atoms

5 50 m Figure 6.3 Light Microscopy (LM) Brightfield (unstained specimen) Confocal Electron Microscopy (EM) Longitudinal section of cilium 5 Cross section of cilium Cilia Brightfield (stained specimen) 2 m Phase-contrast 1 m 10 m 50 m Deconvolution Scanning electron microscopy (SEM) 2 m Transmission electron microscopy (TEM) Differential-interferencecontrast (Nomarski) Super-resolution Fluorescence 10 m

6 6 Two basic types of electron microscopes (EMs) are used to study subcellular structures Scanning electron microscopes (SEMs) focus a beam of electrons onto the surface of a specimen, providing images that look 3-D Transmission electron microscopes (TEMs) focus a beam of electrons through a specimen and are used mainly to study the internal structure of cells

7 TECHNIQUE (a) Scanning electron microscopy (SEM) RESULTS Cilia 1 µm 7 (b) Transmission electron microscopy (TEM) Longitudinal section of cilium Cross section of cilium 1 µm

8 Comparing Prokaryotic and Eukaryotic Cells 8 Basic features of all cells: Plasma membrane Semifluid substance called cytosol Chromosomes (carry genes) Ribosomes (make proteins)

9 9 Prokaryotic cells are characterized by having No nucleus DNA in an unbound region called the nucleoid No membrane-bound organelles Cytoplasm bound by the plasma membrane

10 10 Fimbriae Nucleoid Ribosomes Plasma membrane Bacterial chromosome (a) A typical rod-shaped bacterium Cell wall Capsule Flagella 0.5 µm (b) A thin section through the bacterium Bacillus coagulans (TEM) A prokaryotic cell

11 11 Eukaryotic cells are characterized by having DNA in a nucleus that is bounded by a membranous nuclear envelope Membrane-bound organelles Eukaryotic cells are generally much larger than prokaryotic cells

12 12 The plasma membrane is a selective barrier that allows sufficient passage of oxygen, nutrients, and waste to service the volume of every cell The general structure of a biological membrane is a double layer of phospholipids

13 Outside of cell (a) TEM of a plasma membrane 13 Inside of cell 0.1 µm Carbohydrate side chain Hydrophilic region Hydrophobic region Hydrophilic region Phospholipid Proteins (b) Structure of the plasma membrane

14 14 The logistics of carrying out cellular metabolism sets limits on the size of cells The surface area to volume ratio of a cell is critical As the surface area increases by a factor of n 2, the volume increases by a factor of n 3 Small cells have a greater surface area relative to volume

15 Surface area increases while total volume remains constant Total surface area [Sum of the surface areas (height width) of all boxes sides number of boxes] Total volume [height width length number of boxes] Surface-to-volume (S-to-V) ratio [surface area volume]

16 Surface area increases while total volume remains constant Total surface area [Sum of the surface areas (height width) of all boxes sides number of boxes] Total volume [height width length number of boxes] Surface-to-volume (S-to-V) ratio [surface area volume] 6 1.2

17 A Panoramic View of the Eukaryotic Cell A eukaryotic cell has internal membranes that partition the cell into organelles 17 Plant and animal cells have most of the same organelles The nucleus contains most of the DNA in a eukaryotic cell Ribosomes use the information from the DNA to make proteins BioFlix: Tour Of An Animal Cell BioFlix: Tour Of A Plant Cell

18 Fig. 6-9a ENDOPLASMIC RETICULUM (ER) Rough ER Smooth ER Flagellum Nuclear envelope Nucleolus Chromatin NUCLEUS 18 Centrosome Plasma membrane CYTOSKELETON: Microfilaments Intermediate filaments Microtubules Ribosomes Microvilli Peroxisome Golgi apparatus Mitochondrion Lysosome Animal cell

19 Fig. 6-9b NUCLEUS Nuclear envelope Nucleolus Chromatin Rough endoplasmic reticulum Smooth endoplasmic reticulum 19 Ribosomes Golgi apparatus Central vacuole Microfilaments Intermediate filaments Microtubules CYTO- SKELETON Mitochondrion Peroxisome Plasma membrane Cell wall Wall of adjacent cell Plasmodesmata Chloroplast Plant cell

20 The Nucleus: Information Central 20 The nucleus contains most of the cell s genes and is usually the most conspicuous organelle The nuclear envelope encloses the nucleus, separating it from the cytoplasm The nuclear membrane is a double membrane; each membrane consists of a lipid bilayer

21 1 µm Nuclear envelope: Inner membrane Outer membrane Nucleolus Chromatin 21 Nucleus Nuclear pore Pore complex Surface of nuclear envelope 0.25 µm Ribosome Rough ER 1 µm Pore complexes (TEM) Close-up of nuclear envelope The nucleus and its envelope Nuclear lamina (TEM)

22 22 In the nucleus, DNA and proteins form genetic material called chromatin Chromatin condenses to form discrete chromosomes The nucleolus is located within the nucleus and is the site of ribosomal RNA (rrna) synthesis

23 Ribosomes: Protein Factories 23 Ribosomes are particles made of ribosomal RNA and protein Ribosomes carry out protein synthesis in two locations: In the cytosol (free ribosomes) On the outside of the endoplasmic reticulum or the nuclear envelope (bound ribosomes)

24 Cytosol 24 Endoplasmic reticulum (ER) Free ribosomes Bound ribosomes Large subunit 0.5 µm TEM showing ER and ribosomes Small subunit Diagram of a ribosome

25 The endomembrane system regulates protein traffic and performs metabolic functions in the cell Components of the endomembrane system: Nuclear envelope Endoplasmic reticulum Golgi apparatus Lysosomes Vacuoles Plasma membrane These components are either continuous or connected via transfer by vesicles

26 The Endoplasmic Reticulum: Biosynthetic Factory 26 The endoplasmic reticulum (ER) accounts for more than half of the total membrane in many eukaryotic cells The ER membrane is continuous with the nuclear envelope There are two distinct regions of ER: Smooth ER, which lacks ribosomes Rough ER, with ribosomes studding its surface

27 Smooth ER Rough ER Nuclear envelope 27 ER lumen Cisternae Ribosomes Transport vesicle Smooth ER Rough ER Transitional ER 200 nm

28 Functions of Smooth ER 28 The smooth ER Synthesizes lipids Metabolizes carbohydrates Detoxifies poison Stores calcium

29 Functions of Rough ER 29 The rough ER Has bound ribosomes, which secrete glycoproteins (proteins covalently bonded to carbohydrates) Distributes transport vesicles, proteins surrounded by membranes Is a membrane factory for the cell

30 The Golgi Apparatus: Shipping and Receiving Center 30 The Golgi apparatus consists of flattened membranous sacs called cisternae Functions of the Golgi apparatus: Modifies products of the ER Manufactures certain macromolecules Sorts and packages materials into transport vesicles

31 31 cis face ( receiving side of Golgi apparatus) Cisternae 0.1 µm trans face ( shipping side of Golgi apparatus) TEM of Golgi apparatus

32 Lysosomes: Digestive Compartments A lysosome is a membranous sac of hydrolytic enzymes that can digest 32 macromolecules Animation: Lysosome Formation Lysosomal enzymes can hydrolyze proteins, fats, polysaccharides, and nucleic acids Some types of cell can engulf another cell by phagocytosis; this forms a food vacuole A lysosome fuses with the food vacuole and digests the molecules Lysosomes also use enzymes to recycle the cell s own organelles and macromolecules, a process called autophagy

33 Fig Lysosomes 33 Nucleus 1 µm Vesicle containing two damaged organelles 1 µm Mitochondrion fragment Lysosome Peroxisome fragment Lysosome Digestive enzymes Lysosome Plasma membrane Digestion Peroxisome Food vacuole Vesicle Mitochondrion Digestion (a) Phagocytosis (b) Autophagy

34 Vacuoles: Diverse Maintenance Compartments 34 A plant cell or fungal cell may have one or several vacuoles Food vacuoles are formed by phagocytosis Contractile vacuoles, found in many freshwater protists, pump excess water out of cells Central vacuoles, found in many mature plant cells, hold organic compounds and water

35 35 Central vacuole Cytosol Nucleus Central vacuole Cell wall Chloroplast 5 µm

36 Nucleus 36 Rough ER Smooth ER cis Golgi Review: relationships among organelles of the endomembrane system trans Golgi Plasma membrane

37 Mitochondria and chloroplasts change energy from one form to another 37 Mitochondria are the sites of cellular respiration, a metabolic process that generates ATP Chloroplasts, found in plants and algae, are the sites of photosynthesis Peroxisomes are oxidative organelles

38 Mitochondria and chloroplasts 38 Are not part of the endomembrane system Have a double membrane Have proteins made by free ribosomes Contain their own DNA

39 Figure 6.16 Endoplasmic reticulum Nucleus 39 Engulfing of oxygen- Nuclear using nonphotosynthetic envelope prokaryote, which becomes a mitochondrion Mitochondrion Ancestor of eukaryotic cells (host cell) Nonphotosynthetic eukaryote At least one cell Engulfing of photosynthetic prokaryote Chloroplast Mitochondrion Photosynthetic eukaryote

40 Mitochondria: Chemical Energy Conversion 40 Mitochondria are in nearly all eukaryotic cells They have a smooth outer membrane and an inner membrane folded into cristae The inner membrane creates two compartments: intermembrane space and mitochondrial matrix Cristae present a large surface area for enzymes that synthesize ATP

41 Fig Intermembrane space Outer membrane Free ribosomes in the mitochondrial matrix Inner membrane Cristae Matrix 0.1 µm

42 Chloroplasts: Capture of Light Energy 42 The chloroplast is a member of a family of organelles called plastids Chloroplasts contain the green pigment chlorophyll, as well as enzymes and other molecules that function in photosynthesis Chloroplasts are found in leaves and other green organs of plants and in algae

43 Chloroplast structure includes: Thylakoids, membranous sacs, stacked to form a granum 43 Stroma, the internal fluid Ribosomes Stroma Inner and outer membranes Granum Thylakoid 1 µm

44 Figure 6.18b m Chloroplasts (red) (b) Chloroplasts in an algal cell

45 Peroxisomes: Oxidation 45 Peroxisomes are specialized metabolic compartments bounded by a single membrane Peroxisomes produce hydrogen peroxide (H 2 O 2 ) and convert it to water 2H 2 + O 2 2H 2 O explosion! Oxygen is used to break down different types of molecules

46 The cytoskeleton is a network of fibers that organizes structures and activities in the cell The cytoskeleton is a network of fibers extending throughout the cytoplasm It organizes the cell s structures and activities, anchoring many organelles It is composed of three types of molecular structures: Microtubules Microfilaments Intermediate filaments

47 10 m Figure 6.20 The cytoskeleton 47

48 Components of the Cytoskeleton 48 Microtubules are the thickest of the three components of the cytoskeleton Microfilaments, also called actin filaments, are the thinnest components Intermediate filaments are fibers with diameters in a middle range Microtubule 0.25 µm Microfilaments

49 Roles of the Cytoskeleton: Support, Motility, and 49 Regulation The cytoskeleton helps to support the cell and maintain its shape It interacts with motor proteins to produce motility Inside the cell, vesicles can travel along monorails provided by the cytoskeleton

50 ATP Vesicle Receptor for motor protein 50 (a) Motor protein (ATP powered) Microtubule of cytoskeleton Microtubule Vesicles 0.25 µm (b)

51 Table m 10 m 5 m Column of tubulin dimers 25 nm Actin subunit Keratin proteins Fibrous subunit (keratins coiled together) Tubulin dimer 7 nm 8 12 nm

52 Microtubules 52 Functions of microtubules: Shaping the cell Guiding movement of organelles Separating chromosomes during cell division

53 53 Centrosomes and Centrioles In many cells, microtubules grow out from a centrosome near the nucleus The centrosome is a microtubule-organizing center In animal cells, the centrosome has a pair of centrioles, each with nine triplets of microtubules arranged in a ring

54 Fig Centrosome 54 Microtubule Centrioles 0.25 µm Longitudinal section of one centriole Microtubules Cross section of the other centriole

55 55 Cilia and Flagella Microtubules control the beating of cilia and flagella, locomotor appendages of some cells Cilia and flagella differ in their beating patterns Video: Chlamydomonas Video: Paramecium Cilia

56 Fig Direction of swimming 56 (a) Motion of flagella Direction of organism s movement 5 µm A comparison of the beating of flagella and cilia motion of flagella Power stroke Recovery stroke (b) Motion of cilia 15 µm

57 Cilia and flagella share a common 57 ultrastructure: A core of microtubules sheathed by the plasma membrane A basal body that anchors the cilium or flagellum A motor protein called dynein, which drives the bending movements of a cilium or flagellum Animation: Cilia and Flagella

58 58 Animation: Cilia and Flagella Right-click slide / select Play 2011 Pearson Education, Inc.

59 Fig µm Outer microtubule doublet Dynein proteins 59 Plasma membrane Central microtubule Radial spoke Microtubules Plasma membrane (b) Cross section of cilium Protein crosslinking outer doublets Basal body 0.5 µm (a) Longitudinal section of cilium 0.1 µm Triplet (c) Cross section of basal body

60 Microfilaments (Actin Filaments) 60 Microfilaments are solid rods about 7 nm in diameter, built as a twisted double chain of actin subunits The structural role of microfilaments is to bear tension, resisting pulling forces within the cell They form a 3-D network called the cortex just inside the plasma membrane to help support the cell s shape

61 61 Microfilaments that function in cellular motility contain the protein myosin in addition to actin In muscle cells, thousands of actin filaments are arranged parallel to one another Thicker filaments composed of myosin interdigitate with the thinner actin fibers

62 62 Actin filament Muscle cell Myosin filament Myosin arm (a) Myosin motors in muscle cell contraction

63 63 Localized contraction brought about by actin and myosin also drives amoeboid movement, performed by pseudopodia (cellular extensions) Cytoplasmic streaming is a circular flow of cytoplasm within cells This streaming speeds distribution of materials within the cell In plant cells, actin-myosin interactions and sol-gel transformations drive cytoplasmic streaming Video: Cytoplasmic Streaming

64 Figure 6.27 Muscle cell Actin filament Myosin filament Myosin head (a) Myosin motors in muscle cell contraction 0.5 m 64 Cortex (outer cytoplasm): gel with actin network Inner cytoplasm: sol with actin subunits 100 m Extending pseudopodium (b) Amoeboid movement Chloroplast (c) Cytoplasmic streaming in plant cells 30 m

65 Intermediate Filaments 65 Intermediate filaments range in diameter from 8 12 nanometers, larger than microfilaments but smaller than microtubules They support cell shape and fix organelles in place Intermediate filaments are more permanent cytoskeleton fixtures than the other two classes

66 Extracellular components and connections between cells help coordinate cellular activities Most cells synthesize and secrete materials that are external to the plasma membrane These extracellular structures include: Cell walls of plants The extracellular matrix (ECM) of animal cells Intercellular junctions

67 Cell Walls of Plants 67 The cell wall is an extracellular structure that distinguishes plant cells from animal cells Prokaryotes, fungi, and some protists also have cell walls The cell wall protects the plant cell, maintains its shape, and prevents excessive uptake of water Plant cell walls are made of cellulose fibers embedded in other polysaccharides and protein

68 Animal cells lack cell walls but are covered by an elaborate extracellular matrix (ECM) The ECM is made up of glycoproteins such as collagen, proteoglycans, and fibronectin Extracellular matrix (ECM) of an animal 68 cell Collagen EXTRACELLULAR FLUID Proteoglycan complex Polysaccharide molecule Carbohydrates Fibronectin Core protein Integrins Plasma membrane Proteoglycan molecule Proteoglycan complex Microfilaments CYTOPLASM

69 69 Functions of the ECM: Support Adhesion Movement Regulation

70 Intercellular Junctions 70 Neighboring cells in tissues, organs, or organ systems often adhere, interact, and communicate through direct physical contact Intercellular junctions facilitate this contact There are several types of intercellular junctions Plasmodesmata Tight junctions Desmosomes Gap junctions In animal cells

71 Plasmodesmata are channels that perforate plant cell walls Through plasmodesmata, water and small solutes (and sometimes proteins and RNA) can pass from cell to cell Interior of cell Cell walls 71 Interior of cell 0.5 µm Plasmodesmata Plasma membranes Plasmodesmata between plant cells

72 Tight Junctions, Desmosomes, and Gap Junctions 72 in Animal Cells At tight junctions, membranes of neighboring cells are pressed together, preventing leakage of extracellular fluid Desmosomes (anchoring junctions) fasten cells together into strong sheets Gap junctions (communicating junctions) provide cytoplasmic channels between adjacent cells Animation: Tight Junctions Animation: Desmosomes Animation: Gap Junctions

73 73 Tight junctions prevent fluid from moving across a layer of cells Tight junction 0.5 µm Tight junction Intermediate filaments Desmosome Gap junctions Desmosome 1 µm Space between cells Plasma membranes of adjacent cells Extracellular matrix Gap junction 0.1 µm

74 Figure 6.UN01 Nucleus 74 (ER) (Nuclear envelope)

75 ??? 75????

A Tour of the Cell. Chapter 6. Biology. Edited by Shawn Lester. Inner Life of Cell. Eighth Edition Neil Campbell and Jane Reece

A Tour of the Cell. Chapter 6. Biology. Edited by Shawn Lester. Inner Life of Cell. Eighth Edition Neil Campbell and Jane Reece Chapter 6 A Tour of the Cell Inner Life of Cell Edited by Shawn Lester PowerPoint Lecture Presentations for Biology Eighth Edition Neil Campbell and Jane Reece Lectures by Chris Romero, updated by Erin

More information

Human height. Length of some nerve and muscle cells. Chicken egg. Frog egg. Most plant and animal cells Nucleus Most bacteria Mitochondrion

Human height. Length of some nerve and muscle cells. Chicken egg. Frog egg. Most plant and animal cells Nucleus Most bacteria Mitochondrion 10 m 1 m 0.1 m 1 cm Human height Length of some nerve and muscle cells Chicken egg Unaided eye 1 mm Frog egg 100 µm 10 µm 1 µm 100 nm 10 nm Most plant and animal cells Nucleus Most bacteria Mitochondrion

More information

A Tour of the Cell. Chapter 6. Biology Eighth Edition Neil Campbell and Jane Reece. PowerPoint Lecture Presentations for

A Tour of the Cell. Chapter 6. Biology Eighth Edition Neil Campbell and Jane Reece. PowerPoint Lecture Presentations for Chapter 6 A Tour of the Cell PowerPoint Lecture Presentations for Biology Eighth Edition Neil Campbell and Jane Reece Lectures by Chris Romero, updated by Erin Barley with contributions from Joan Sharp

More information

A Tour of the Cell. Chapter 6. Biology Eighth Edition Neil Campbell and Jane Reece. PowerPoint Lecture Presentations for

A Tour of the Cell. Chapter 6. Biology Eighth Edition Neil Campbell and Jane Reece. PowerPoint Lecture Presentations for Chapter 6 1 A Tour of the Cell PowerPoint Lecture Presentations for Biology Eighth Edition Neil Campbell and Jane Reece Lectures by Chris Romero, updated by Erin Barley with contributions from Joan Sharp

More information

4 A Tour of the Cell CAMPBELL BIOLOGY IN FOCUS. Urry Cain Wasserman Minorsky Jackson Reece

4 A Tour of the Cell CAMPBELL BIOLOGY IN FOCUS. Urry Cain Wasserman Minorsky Jackson Reece CAMPBELL BIOLOGY IN FOCUS Urry Cain Wasserman Minorsky Jackson Reece 4 A Tour of the Cell Lecture Presentations by Kathleen Fitzpatrick and Nicole Tunbridge Overview: The Fundamental Units of Life All

More information

(a) TEM of a plasma. Fimbriae. Nucleoid. Ribosomes. Plasma membrane. Cell wall Capsule. Bacterial chromosome

(a) TEM of a plasma. Fimbriae. Nucleoid. Ribosomes. Plasma membrane. Cell wall Capsule. Bacterial chromosome 0 m m 0. m cm mm 00 µm 0 µm 00 nm 0 nm Human height Length of some nerve and muscle cells Chicken egg Frog egg Most plant and animal cells Most bacteria Smallest bacteria Viruses Proteins Unaided eye Light

More information

A Tour of the Cell 4/10/12. Chapter 6. Overview: The Fundamental Units of Life

A Tour of the Cell 4/10/12. Chapter 6. Overview: The Fundamental Units of Life Chapter 6 LECTURE PRESENTATIONS For CAMPBELL BIOLOGY, NINTH EDITION Jane B. Reece, Lisa A. Urry, Michael L. Cain, Steven A. Wasserman, Peter V. Minorsky, Robert B. Jackson A Tour of the Cell Lectures by

More information

Lectures by Erin Barley Kathleen Fitzpatrick Pearson Education, Inc Pearson Education, Inc. Figure 6.5. Bacterial chromosome

Lectures by Erin Barley Kathleen Fitzpatrick Pearson Education, Inc Pearson Education, Inc. Figure 6.5. Bacterial chromosome Chapter 6 LECTURE PRESENTATIONS For CAMPBELL BIOLOGY, NINTH EDITION Jane B. Reece, Lisa A. Urry, Michael L. Cain, Steven A. Wasserman, Peter V. Minorsky, Robert B. Jackson A Tour of the Cell Overview:

More information

A Tour of the Cell. Chapter 6. Slide 1. Slide 2. Slide 3. Overview: The Fundamental Units of Life

A Tour of the Cell. Chapter 6. Slide 1. Slide 2. Slide 3. Overview: The Fundamental Units of Life Slide 1 Chapter 6 A Tour of the Cell PowerPoint Lecture Presentations for Biology Eighth Edition Neil Campbell and Jane Reece Lectures by Chris Romero, updated by Erin Barley with contributions from Joan

More information

A Tour of the Cell. Chapter 6. PowerPoint Lecture Presentations for Biology Eighth Edition Neil Campbell and Jane Reece

A Tour of the Cell. Chapter 6. PowerPoint Lecture Presentations for Biology Eighth Edition Neil Campbell and Jane Reece Chapter 6 A Tour of the Cell PowerPoint Lecture Presentations for Biology Eighth Edition Neil Campbell and Jane Reece Lectures by Chris Romero, updated by Erin Barley with contributions from Joan Sharp

More information

LECTURE PRESENTATIONS

LECTURE PRESENTATIONS LECTURE PRESENTATIONS For CAMPBELL BIOLOGY, NINTH EDITION Jane B. Reece, Lisa A. Urry, Michael L. Cain, Steven A. Wasserman, Peter V. Minorsky, Robert B. Jackson Chapter 6 A Tour of the Cell Lectures by

More information

Lecture 5- A Tour of the Cell

Lecture 5- A Tour of the Cell Lecture 5- A Tour of the Cell 1 In this lecture Prokaryotes vs. eukaryotes The organelles of the eukaryotic cell The cytoskeleton Extracellular components 2 What are cells? Cells are the fundamental unit

More information

LECTURE PRESENTATIONS

LECTURE PRESENTATIONS LECTURE PRESENTATIONS For CAMPBELL BIOLOGY, NINTH EDITION Jane B. Reece, Lisa A. Urry, Michael L. Cain, Steven A. Wasserman, Peter V. Minorsky, Robert B. Jackson Chapter 6 A Tour of the Cell Lectures by

More information

A TOUR OF THE CELL 10/1/2012

A TOUR OF THE CELL 10/1/2012 A TOUR OF THE CELL Chapter 6 KEY CONCEPTS: Eukaryotic cells have internal membranes that compartmentalize their functions The eukaryotic cell s genetic instructions are housed in the nucleus and carried

More information

LECTURE PRESENTATIONS

LECTURE PRESENTATIONS LECTURE PRESENTATIONS For CAMPBELL BIOLOGY, NINTH EDITION Jane B. Reece, Lisa A. Urry, Michael L. Cain, Steven A. Wasserman, Peter V. Minorsky, Robert B. Jackson Chapter 6 A Tour of the Cell Lectures by

More information

A Tour of the Cell. Chapter 6. Biology Eighth Edition Neil Campbell and Jane Reece. PowerPoint Lecture Presentations for

A Tour of the Cell. Chapter 6. Biology Eighth Edition Neil Campbell and Jane Reece. PowerPoint Lecture Presentations for Chapter 6 A Tour of the Cell PowerPoint Lecture Presentations for Biology Eighth Edition Neil Campbell and Jane Reece Lectures by Chris Romero, updated by Erin Barley with contributions from Joan Sharp

More information

CH 4: A tour of the cell Overview: The Fundamental Units of Life. Concept 4.1: Biologists use microscopes and the tools of biochemistry to study cells

CH 4: A tour of the cell Overview: The Fundamental Units of Life. Concept 4.1: Biologists use microscopes and the tools of biochemistry to study cells CH 4: A tour of the cell Overview: The Fundamental Units of Life All organisms are made of cells The cell is the simplest collection of matter that is alive All cells are related by descent from earlier

More information

General Biology. The Fundamental Unit of Life The Cell. All organisms are made of cells The cell is the simplest collection of matter that can live

General Biology. The Fundamental Unit of Life The Cell. All organisms are made of cells The cell is the simplest collection of matter that can live General Biology Course No: BNG2003 Credits: 3.00 3. A Tour of the Cell Prof. Dr. Klaus Heese The Fundamental Unit of Life The Cell All organisms are made of cells The cell is the simplest collection of

More information

A Tour of the Cell. Chapter 7

A Tour of the Cell. Chapter 7 A Tour of the Cell Chapter 7 Cytology: Study of Cells Light Microscopes uses light & a set of lenses Magnification ratio of object s image size to its real size Resolution measures the clarity of the image

More information

BIOLOGY. A Tour of the Cell CAMPBELL. Reece Urry Cain Wasserman Minorsky Jackson. Lecture Presentation by Nicole Tunbridge and Kathleen Fitzpatrick

BIOLOGY. A Tour of the Cell CAMPBELL. Reece Urry Cain Wasserman Minorsky Jackson. Lecture Presentation by Nicole Tunbridge and Kathleen Fitzpatrick CAMPBELL BIOLOGY TENTH EDITION Reece Urry Cain Wasserman Minorsky Jackson 6 A Tour of the Cell Lecture Presentation by Nicole Tunbridge and Kathleen Fitzpatrick Concept 6.2: Eukaryotic cells have internal

More information

Bell Work: What is the fundamental unit of life? 2014 Pearson Education, Inc.

Bell Work: What is the fundamental unit of life? 2014 Pearson Education, Inc. Bell Work: What is the fundamental unit of life? All organisms are made of cells The cell is the simplest collection of matter that can be alive All cells are related by their descent from earlier cells

More information

Ch. 6 Tour of the Cell

Ch. 6 Tour of the Cell Ch. 6 Tour of the Cell 2007-2008 Microscopy Scientists use microscopes to visualize cells too small to see with the naked eye In a light microscope (LM), visible light is passed through a specimen and

More information

CHAPTER 6: A TOUR OF THE CELL AP BIOLOGY 2011

CHAPTER 6: A TOUR OF THE CELL AP BIOLOGY 2011 CHAPTER 6: A TOUR OF THE CELL AP BIOLOGY 2011 1 IMPORTANCE OF CELLS ALL ORGANISMS ARE MADE OF CELLS CELLS ARE THE SMALLEST LIVING UNIT STRUCTURE IS CORRELATED TO FUNCTION ALL CELLS ARE RELATED BY THEIR

More information

A Tour of the Cell CAMPBELL BIOLOGY IN FOCUS URRY CAIN WASSERMAN MINORSKY REECE. Overview: The Fundamental Units of Life

A Tour of the Cell CAMPBELL BIOLOGY IN FOCUS URRY CAIN WASSERMAN MINORSKY REECE. Overview: The Fundamental Units of Life 4 A Tour of the Cell CAMPBELL BIOLOGY IN FOCUS URRY CAIN WASSERMAN MINORSKY REECE Lecture Presentations by Kathleen Fitzpatrick and Nicole Tunbridge, Simon Fraser University SECOND EDITION Overview: The

More information

Cell Theory. Chapter 6. cell. fundamental unit of structure and function for all living organisms. arise only from previously existing cell

Cell Theory. Chapter 6. cell. fundamental unit of structure and function for all living organisms. arise only from previously existing cell Chapter 6 cell Cell Theory fundamental unit of structure and function for all living organisms arise only from previously existing cell Figure 5.4 The size range of cells WHY are your brain cells the same

More information

A Tour of the Cell. Chapter 6. Biology Eighth Edition Neil Campbell and Jane Reece. PowerPoint Lecture Presentations for

A Tour of the Cell. Chapter 6. Biology Eighth Edition Neil Campbell and Jane Reece. PowerPoint Lecture Presentations for Chapter 6 A Tour of the Cell PowerPoint Lecture Presentations for Biology Eighth Edition Neil Campbell and Jane Reece Lectures by Chris Romero, updated by Erin Barley with contributions from Joan Sharp

More information

The Golgi Apparatus: Shipping and Receiving Center. The Golgi apparatus. Functions of the Golgi apparatus. Lysosomes: Digestive Compartments

The Golgi Apparatus: Shipping and Receiving Center. The Golgi apparatus. Functions of the Golgi apparatus. Lysosomes: Digestive Compartments The Golgi Apparatus: Shipping and Receiving Center The Golgi apparatus Receives (on the cis-side) many of the transport vesicles produced in the rough ER Consists of flattened membranous sacs called cisternae

More information

Microfilaments. myosin. In muscle cells. Microfilaments. Microfilaments. Video: Cytoplasmic Streaming. amoeboid movement. Pseudopodia.

Microfilaments. myosin. In muscle cells. Microfilaments. Microfilaments. Video: Cytoplasmic Streaming. amoeboid movement. Pseudopodia. Microfilaments Fig, 6-27a myosin Microfilaments protein func3ons in cellular mo3lity in addi3on to ac3n In muscle cells Thousands of ac3n filaments are arranged parallel to one another Thicker myosin filaments

More information

CHAPTER 6 A TOUR OF THE CELL

CHAPTER 6 A TOUR OF THE CELL Electron microscope Light microscope Unaided eye Overview: The Fundamental Units of Life All organisms are made of cells The cell is the simplest collection of matter that can live Cell structure is correlated

More information

AP Biology Summer Assignment

AP Biology Summer Assignment AP Biology Summer Assignment 2018-2019 AP Biology is a rigorous course and due to the large amount of material that needs to be covered during the school year, a summer assignment is essential. The first

More information

All organisms are made of cells (cells are the basic units of life) Cell structure is highly correlated to cellular function

All organisms are made of cells (cells are the basic units of life) Cell structure is highly correlated to cellular function CELLS CHAPTER 6 I. CELL THEORY - All organisms are made of cells (cells are the basic units of life) Cell structure is highly correlated to cellular function All cells are related by their descent from

More information

A. Major parts 1. Nucleus 2. Cytoplasm a. Contain organelles (see below) 3. Plasma membrane (To be discussed in Cellular Transport Lecture)

A. Major parts 1. Nucleus 2. Cytoplasm a. Contain organelles (see below) 3. Plasma membrane (To be discussed in Cellular Transport Lecture) Lecture 5: Cellular Biology I. Cell Theory Concepts: 1. Cells are the functional and structural units of living organisms 2. The activity of an organism is dependent on both the individual and collective

More information

Early scientists who observed cells made detailed sketches of what they saw.

Early scientists who observed cells made detailed sketches of what they saw. Early scientists who observed cells made detailed sketches of what they saw. Early scientists who observed cells made detailed sketches of what they saw. CORK Early scientists who observed cells made detailed

More information

The Fundamental Unit of Life The Cell. General Biology. All organisms are made of cells. The cell is the simplest collection of matter that can live

The Fundamental Unit of Life The Cell. General Biology. All organisms are made of cells. The cell is the simplest collection of matter that can live Course No: BNG2003 Credits: 3.00 3. A Tour of the Cell General Biology The Fundamental Unit of Life The Cell All organisms are made of cells The cell is the simplest collection of matter that can live

More information

Chapter 6: A Tour of the Cell. 1. Studying Cells 2. Intracellular Structures 3. The Cytoskeleton 4. Extracellular Structures

Chapter 6: A Tour of the Cell. 1. Studying Cells 2. Intracellular Structures 3. The Cytoskeleton 4. Extracellular Structures Chapter 6: A Tour of the Cell 1. Studying Cells 2. Intracellular Structures 3. The Cytoskeleton 4. Extracellular Structures 1. Studying Cells Concepts of Microscopy MAGNIFICATION factor by which the image

More information

1. Studying Cells. Concepts of Microscopy 11/7/2016. Chapter 6: A Tour of the Cell

1. Studying Cells. Concepts of Microscopy 11/7/2016. Chapter 6: A Tour of the Cell Electron microscope Light microscope Unaided eye 11/7/2016 Chapter 6: A Tour of the Cell 1. Studying Cells 2. Intracellular Structures 3. The Cytoskeleton 4. Extracellular Structures 1. Studying Cells

More information

A Tour of the Cell. Chapter 4. Most cells are microscopic. Cells vary in size and shape

A Tour of the Cell. Chapter 4. Most cells are microscopic. Cells vary in size and shape Chapter 4 A Tour of the Cell Most cells are microscopic Cells vary in size and shape 10 m Human height 1 m Length of some nerve and muscle cells 100 mm (10 cm) 10 mm (1 cm) Chicken egg Unaided eye 1 mm

More information

NOTES: CH 6 A Tour of the Cell

NOTES: CH 6 A Tour of the Cell NOTES: CH 6 A Tour of the Cell Overview: The Importance of Cells All organisms are made of cells The cell is the simplest collection of matter that can live Cell structure is correlated to cellular function

More information

Review from Biology A

Review from Biology A Chapter 4 Review from Biology A The Cell Theory All organisms are made of cells Cells come from pre-existing cells The cell is the simplest collection of matter that can live Scientists whose work you

More information

Nucleic acids. Nucleic acids are information-rich polymers of nucleotides

Nucleic acids. Nucleic acids are information-rich polymers of nucleotides Nucleic acids Nucleic acids are information-rich polymers of nucleotides DNA and RNA Serve as the blueprints for proteins and thus control the life of a cell RNA and DNA are made up of very similar nucleotides.

More information

Cytology. Light microscopy resolving power Electron microscopy TEM SEM Cell fractionation Ultracentrifuges

Cytology. Light microscopy resolving power Electron microscopy TEM SEM Cell fractionation Ultracentrifuges Chapter 7: A Tour of the Cell Cytology Light microscopy resolving power Electron microscopy TEM SEM Cell fractionation Ultracentrifuges Prokaryotic cells Nucleoid No organelles with membranes Ribosomes

More information

Chapter 4. A Tour of the Cell. Lecture by Richard L. Myers

Chapter 4. A Tour of the Cell. Lecture by Richard L. Myers Chapter 4 A Tour of the Cell PowerPoint Lectures for Biology: Concepts & Connections, Sixth Edition Campbell, Reece, Taylor, Simon, and Dickey Lecture by Richard L. Myers Introduction: Cells on the Move

More information

Cells. Variation and Function of Cells

Cells. Variation and Function of Cells Cells Variation and Function of Cells Cell Theory states that: 1. All living things are made of cells 2. Cells are the basic unit of structure and function in living things 3. New cells are produced from

More information

Cytosol the fluid Cytoplasm cell interior, everything outside the nucleus but within the cell membrane, includes the organelles, cytosol, and

Cytosol the fluid Cytoplasm cell interior, everything outside the nucleus but within the cell membrane, includes the organelles, cytosol, and Cell Organelles Plasma Membrane comprised of a phospholipid bilayer and embedded proteins Outer surface has oligosaccharides separates the cells s contents from its surroundings Cytosol the fluid Cytoplasm

More information

Ch. 6 A Tour of the Cell BIOL 222

Ch. 6 A Tour of the Cell BIOL 222 Ch. 6 A Tour of the Cell BIOL 222 Overview: The Fundamental Units of Life All organisms are made of cells The cell is the simplest collec=on of ma>er that can live Cell structure is correlated to cellular

More information

CHAPTER 4 A TOUR OF THE CELL

CHAPTER 4 A TOUR OF THE CELL CHAPTER 4 A TOUR OF THE CELL Microscopes Con. 4.1 magnification: size resolution: clarity contrast: differences in parts Light Microscopy Techniques (p.68) a. Brightfield unstained b. Brightfield stained

More information

A Tour of the Cell. Ch. 7

A Tour of the Cell. Ch. 7 A Tour of the Cell Ch. 7 Cell Theory O All organisms are composed of one or more cells. O The cell is the basic unit of structure and organization of organisms. O All cells come from preexisting cells.

More information

Chapter 4. A Tour of the Cell. Lectures by Edward J. Zalisko

Chapter 4. A Tour of the Cell. Lectures by Edward J. Zalisko Chapter 4 A Tour of the Cell PowerPoint Lectures for Campbell Essential Biology, Fifth Edition, and Campbell Essential Biology with Physiology, Fourth Edition Eric J. Simon, Jean L. Dickey, and Jane B.

More information

Chapter 4. A Tour of the Cell. Lecture by Richard L. Myers

Chapter 4. A Tour of the Cell. Lecture by Richard L. Myers Chapter 4 A Tour of the Cell PowerPoint Lectures for Biology: Concepts & Connections, Sixth Edition Campbell, Reece, Taylor, Simon, and Dickey Lecture by Richard L. Myers Introduction: Cells on the Move

More information

Chapter 6. A Tour of the Cell. Concept 6.1 Biologists use microscopes and the tools of biochemistry to study cells

Chapter 6. A Tour of the Cell. Concept 6.1 Biologists use microscopes and the tools of biochemistry to study cells Chapter 6 A Tour of the Cell Chapter Outline Concept 6.1 Biologists use microscopes and the tools of biochemistry to study cells In a light microscope (LM), visible light passes through the specimen and

More information

10 m Human height 1 m Length of some nerve and muscle cells eye 100 mm (10 cm) Chicken egg aid n 10 mm

10 m Human height 1 m Length of some nerve and muscle cells eye 100 mm (10 cm) Chicken egg aid n 10 mm Biology 112 Unit Three Chapter Four 1 Cell Sizes Smallest Bacteria Largest Bird egg Longest Giraffe s Nerve Cell Most Cells Diameter of 0.7µm to 105 µm 2 10 m 1 m 100 mm (10 cm) 10 mm (1 cm) Human height

More information

ORGANELLES OF THE ENDOMEMBRANE SYSTEM

ORGANELLES OF THE ENDOMEMBRANE SYSTEM Membranes compartmentalize the interior of the cell and facilitate a variety of metabolic activities. Chloroplasts and a rigid cell wall are what distinguish a plant cell from an animal cell. A typical

More information

Chapter 6. A Tour of the Cell

Chapter 6. A Tour of the Cell Chapter 6 A Tour of the Cell PowerPoint lectures are originally from Campbell / Reece Media Manager and Instructor Resources for BIOLOGY, 7 th & 8 th Edition by N. A. Campbell & J. B. Reece Copyright 2005

More information

Chapter 7. (7-1 and 7-2) A Tour of the Cell

Chapter 7. (7-1 and 7-2) A Tour of the Cell Chapter 7 (7-1 and 7-2) A Tour of the Cell Microscopes as Windows to the World of Cells Cells were first described in 1665 by Robert Hooke. By the mid-1800s, the accumulation of scientific evidence led

More information

Eukaryotic cell. Premedical IV Biology

Eukaryotic cell. Premedical IV Biology Eukaryotic cell Premedical IV Biology The size range of organisms Light microscopes visible light is passed through the specimen and glass lenses the resolution is limited by the wavelength of the visible

More information

Lysosomes. Vacuoles. Phagocytosis. One cell engulfing another. forms a food vacuole. fuses with lysosome. Autophagy. Lysosomes use enzymes

Lysosomes. Vacuoles. Phagocytosis. One cell engulfing another. forms a food vacuole. fuses with lysosome. Autophagy. Lysosomes use enzymes Lysosomes Phagocytosis One cell engulfing another forms a food vacuole fuses with lysosome Autophagy Lysosomes use enzymes to recycle the cell s own organelles and macromolecules Fig. 6-14 Nucleus 1 µm

More information

Chapter 4 A Tour of the Cell

Chapter 4 A Tour of the Cell Chapter 4 A Tour of the Cell PowerPoint Lectures Campbell Biology: Concepts & Connections, Eighth Edition REECE TAYLOR SIMON DICKEY HOGAN Lecture by Edward J. Zalisko Introduction Cells have a cytoskeleton

More information

Plasma Membrane. comprised of a phospholipid bilayer and embedded proteins separates the cells s contents from its surroundings

Plasma Membrane. comprised of a phospholipid bilayer and embedded proteins separates the cells s contents from its surroundings Cell Organelles Plasma Membrane comprised of a phospholipid bilayer and embedded proteins separates the cells s contents from its surroundings Cytosol the fluid Cytoplasm cell interior, everything outside

More information

CELL PARTS TYPICAL ANIMAL CELL

CELL PARTS TYPICAL ANIMAL CELL AP BIOLOGY CText Reference, Campbell v.8, Chapter 6 ACTIVITY1.12 NAME DATE HOUR CELL PARTS TYPICAL ANIMAL CELL ENDOMEMBRANE SYSTEM TYPICAL PLANT CELL QUESTIONS: 1. Write the name of the cell part in the

More information

BIOLOGY. A Tour of the Cell CAMPBELL. Robert Hooke (1665) Antoni van Leeuwenhoek (1674) Reece Urry Cain Wasserman Minorsky Jackson

BIOLOGY. A Tour of the Cell CAMPBELL. Robert Hooke (1665) Antoni van Leeuwenhoek (1674) Reece Urry Cain Wasserman Minorsky Jackson 6 A Tour of the Cell CAMPBELL BIOLOGY TENTH EDITION Reece Urry Cain Wasserman Minorsky Jackson Lecture Presentation by Nicole Tunbridge and Kathleen Fitzpatrick Robert Hooke (1665) Figure 1.1 The structure

More information

4/12/17. Cells. Cell Structure. Ch. 2 Cell Structure and Func.on. Range of Cell Sizes BIOL 100

4/12/17. Cells. Cell Structure. Ch. 2 Cell Structure and Func.on. Range of Cell Sizes BIOL 100 Ch. 2 Cell Structure and Func.on BIOL 100 Cells Fundamental units of life Cell theory All living things are composed of one or more cells. The cell is the most basic unit of life. All cells come from pre-existing

More information

Chapter 4 A Tour of the Cell

Chapter 4 A Tour of the Cell Chapter 4 A Tour of the Cell PowerPoint Lectures for Campbell Biology: Concepts & Connections, Seventh Edition Reece, Taylor, Simon, and Dickey Lecture by Edward J. Zalisko The image The Introduction Cells

More information

Unit A: Cells. Ch. 4 A Tour of the Cell

Unit A: Cells. Ch. 4 A Tour of the Cell Unit A: Cells Ch. 4 A Tour of the Cell Standards By the end of this unit you should be able to: Recognize and explain the function of each organelle Look at micrographs/diagrams/pictures and correctly

More information

A Tour of the Cell Chapter 4. Outline. Early contributors to Understanding Cells. Cell Theory. Cell Size s Matt Schleiden & Ted Schann

A Tour of the Cell Chapter 4. Outline. Early contributors to Understanding Cells. Cell Theory. Cell Size s Matt Schleiden & Ted Schann A Tour of the Cell Chapter 4 Outline History of the science behind cells Cell theory & its importance Why are cells small? Microscopes Cell structure and function Prokaryotic cells Eukaryotic cells Early

More information

2011 Pearson Education, Inc.

2011 Pearson Education, Inc. Overview: The Fundamental Units of Life All organisms are made of cells The cell is the simplest collec=on of ma>er that can be alive Cell structure is correlated to cellular func=on All cells are related

More information

Thursday, October 16 th

Thursday, October 16 th Thursday, October 16 th Good morning. Those of you needing to take the Enzymes and Energy Quiz will start very soon. Students who took the quiz Wednesday: Please QUIETLY work on the chapter 6 reading guide.

More information

2011 Pearson Education, Inc.

2011 Pearson Education, Inc. Overview: The Fundamental Units of Life All organisms are made of cells The cell is the simplest collec=on of ma>er that can be alive Cell structure is correlated to cellular func=on All cells are related

More information

Cytology = the study of cells. Chapter 4 CELL STRUCTURE

Cytology = the study of cells. Chapter 4 CELL STRUCTURE Cytology = the study of cells Chapter 4 CELL STRUCTURE Cellular basis of life: Basic unit of life Lowest level with all attributes of life Organisms composed of one or more cells Cell structure correlated

More information

10/13/11. Cell Theory. Cell Structure

10/13/11. Cell Theory. Cell Structure Cell Structure Grade 12 Biology Cell Theory All organisms are composed of one or more cells. Cells are the smallest living units of all living organisms. Cells arise only by division of a previously existing

More information

Chapter 4. A Tour of the Cell. Lectures by Edward J. Zalisko

Chapter 4. A Tour of the Cell. Lectures by Edward J. Zalisko Chapter 4 A Tour of the Cell PowerPoint Lectures for Campbell Essential Biology, Fifth Edition, and Campbell Essential Biology with Physiology, Fourth Edition Eric J. Simon, Jean L. Dickey, and Jane B.

More information

Chapter 4. A Tour of the Cell. Lectures by Chris C. Romero, updated by Edward J. Zalisko

Chapter 4. A Tour of the Cell. Lectures by Chris C. Romero, updated by Edward J. Zalisko Chapter 4 A Tour of the Cell Lectures by Chris C. Romero, updated by Edward J. Zalisko PowerPoint Lectures for Campbell Essential Biology, Fourth Edition Eric Simon, Jane Reece, and Jean Dickey Campbell

More information

Ch. 7 Inside the Cell BIOL 222

Ch. 7 Inside the Cell BIOL 222 Ch. 7 Inside the Cell BIOL 222 Overview: The Fundamental Units of Life All organisms are made of cells The cell is the simplest collec=on of ma>er that can live Cell structure is correlated to cellular

More information

AP Biology Book Notes Chapter 4: Cells v Cell theory implications Ø Studying cell biology is in some sense the same as studying life Ø Life is

AP Biology Book Notes Chapter 4: Cells v Cell theory implications Ø Studying cell biology is in some sense the same as studying life Ø Life is AP Biology Book Notes Chapter 4: Cells v Cell theory implications Ø Studying cell biology is in some sense the same as studying life Ø Life is continuous v Small cell size is becoming more necessary as

More information

A Tour of the Cell. reference: Chapter 6. Reference: Chapter 2

A Tour of the Cell. reference: Chapter 6. Reference: Chapter 2 A Tour of the Cell reference: Chapter 6 Reference: Chapter 2 Monkey Fibroblast Cells stained with fluorescent dyes to show the nucleus (blue) and cytoskeleton (yellow and red fibers), image courtesy of

More information

Chapter 4. A Tour of the Cell. RPTSE Biology Fall 2015, Dr. Jong B. Lee 1. Biology and Society: Antibiotics: Drugs that Target Bacterial Cells

Chapter 4. A Tour of the Cell. RPTSE Biology Fall 2015, Dr. Jong B. Lee 1. Biology and Society: Antibiotics: Drugs that Target Bacterial Cells Chapter 4 A Tour of the Cell Biology and Society: Antibiotics: Drugs that Target Bacterial Cells Antibiotics were first isolated from mold in 1928. The widespread use of antibiotics drastically decreased

More information

BIOSC 041. v Today s lecture. v Today s lab. v Note- Monday is a holiday good time to do some reading!

BIOSC 041. v Today s lecture. v Today s lab. v Note- Monday is a holiday good time to do some reading! BIOSC 041 v Today s lecture Review questions Chapter 6, Cells More review questions v Today s lab Quick review of lab safety The Scientific Method start thinking about which environments you might want

More information

A Tour of the Cell Lecture 2, Part 1 Fall 2008

A Tour of the Cell Lecture 2, Part 1 Fall 2008 Cell Theory 1 A Tour of the Cell Lecture 2, Part 1 Fall 2008 Cells are the basic unit of structure and function The lowest level of structure that can perform all activities required for life Reproduction

More information

Chapter 4. A Tour of the Cell. Lectures by Edward J. Zalisko

Chapter 4. A Tour of the Cell. Lectures by Edward J. Zalisko Chapter 4 A Tour of the Cell PowerPoint Lectures for Campbell Essential Biology, Fifth Edition, and Campbell Essential Biology with Physiology, Fourth Edition Eric J. Simon, Jean L. Dickey, and Jane B.

More information

Organelles. copyright cmassengale 1

Organelles. copyright cmassengale 1 Organelles copyright cmassengale 1 Organelles Very small (Microscopic) Perform various functions for a cell Found in the cytoplasm May or may not be membrane-bound 2 Animal Cell Organelles Nucleolus Nucleus

More information

BIOLOGY. A Tour of the Cell. Outline. Cell Theory. Cells. Cell Size. Cell Theory

BIOLOGY. A Tour of the Cell. Outline. Cell Theory. Cells. Cell Size. Cell Theory 6 A Tour of the Cell CAMPBELL BIOLOGY TENTH EDITION Reece Urry Cain Wasserman Minorsky Jackson Outline I. Cell Theory II. Studying cells III. Prokaryotic vs Eukaryotic IV. Eukaryotic A. Animal cells B.

More information

Organelles of the Cell & How They Work Together. Packet #7

Organelles of the Cell & How They Work Together. Packet #7 Organelles of the Cell & How They Work Together Packet #7 Introduction Introduction Organization of cells is basically similar in all cells. Additionally, most cells are tiny Ranging from 1 1000 cubic

More information

Cell Structure & Function. Source:

Cell Structure & Function. Source: Cell Structure & Function Source: http://koning.ecsu.ctstateu.edu/cell/cell.html Definition of Cell A cell is the smallest unit that is capable of performing life functions. http://web.jjay.cuny.edu/~acarpi/nsc/images/cell.gif

More information

Cell Structure and Function

Cell Structure and Function Cell Theory Cell Structure and Function Chapter 6 Pg. 94-124 What is a cell? The basic functional unit of all living things. The Cell Theory states All organisms are made of one or more cells. Cells are

More information

11/1/2014. accumulate in brain.

11/1/2014. accumulate in brain. EU 4.A: Interactions within biological systems lead to complex properties. EU 4.B: Competition and cooperation are important aspects of biological systems. EU 4.C: Naturally occurring diversity among and

More information

A Tour of the cell. 2- Eukaryotic cells have internal membranes that compartmentalize their functions

A Tour of the cell. 2- Eukaryotic cells have internal membranes that compartmentalize their functions A Tour of the cell 1- To study cells, biologists use microscopes and the tools of biochemistry 2- Eukaryotic cells have internal membranes that compartmentalize their functions 3- The eukaryotic cell s

More information

Name 4 A Tour of the Cell Test Date Study Guide You must know: The difference between prokaryotic and eukaryotic cells. The structure and function of

Name 4 A Tour of the Cell Test Date Study Guide You must know: The difference between prokaryotic and eukaryotic cells. The structure and function of Name _ 4 A Tour of the Cell Test Date Study Guide You must know: The difference between prokaryotic and eukaryotic cells. The structure and function of organelles common to plant and animal cells. The

More information

Chapter 4: Cell Structure and Function

Chapter 4: Cell Structure and Function Chapter 4: Cell Structure and Function Robert Hooke Fig. 4-2, p.51 The Cell Smallest unit of life Can survive on its own or has potential to do so Is highly organized for metabolism Senses and responds

More information

Cytology II Study of Cells

Cytology II Study of Cells Cytology II Study of Cells Biology 20 Cellular Basis of Life 1. Basic unit of Life 2. Composed of one or more cells 3. Arises from pre-existing cells Asexual (Mitosis)/Sexual (Meiosis) 4. Surrounded by

More information

Bio10 Cell Structure SRJC

Bio10 Cell Structure SRJC 3.) Cell Structure and Function Structure of Cell Membranes Fluid mosaic model Mixed composition: Phospholipid bilayer Glycolipids Sterols Proteins Fluid Mosaic Model Phospholipids are not packed tightly

More information

Organelles of the Cell & How They Work Together. Packet #5

Organelles of the Cell & How They Work Together. Packet #5 Organelles of the Cell & How They Work Together Packet #5 Developed by Mr. Barrow 2018 1 Introduction Organization of cells is basically similar in all cells. Additionally, most cells are tiny Ranging

More information

Fungal cell walls are rigid with less flexibility due to a combination of more sugar (more chitin) and protein flexibility.

Fungal cell walls are rigid with less flexibility due to a combination of more sugar (more chitin) and protein flexibility. Cell Structure Assignment Score. Name Sec.. Date. Working by yourself or in a group, answer the following questions about the Cell Structure material. This assignment is worth 40 points with the possible

More information

Cell Structure. Cells. Why are cells so small? 9/15/2016. Schleiden and Schwann proposed Cell Theory in

Cell Structure. Cells. Why are cells so small? 9/15/2016. Schleiden and Schwann proposed Cell Theory in Cell Structure Cells Cells are sacs of fluid that are reinforced by proteins and surrounded by membranes. Inside the fluid float organelles. Organelles: structures inside the cell that are used for metabolic

More information

Organelles of the Cell & How They Work Together. Packet #5

Organelles of the Cell & How They Work Together. Packet #5 Organelles of the Cell & How They Work Together Packet #5 Developed by Mr. Barrow 2018 1 Introduction Organization of cells is basically similar in all cells. Additionally, most cells are tiny Ranging

More information

Eukaryotic cells contain organelles that allow the specializations and the separation of functions within the cell.

Eukaryotic cells contain organelles that allow the specializations and the separation of functions within the cell. Section 3: Eukaryotic cells contain organelles that allow the specializations and the separation of functions within the cell. K What I Know W What I Want to Find Out L What I Learned Essential Questions

More information

2. scanning electron microscope vs. transmission electron microscope. nucleus, nuclear envelope, nucleolus, ribosomes

2. scanning electron microscope vs. transmission electron microscope. nucleus, nuclear envelope, nucleolus, ribosomes Honors Biology Unit 2 Chapter 4 A TOUR OF THE CELL 1. light microscope 2. scanning electron microscope vs. transmission electron microscope 3. surface area to volume ratio 4. prokaryotic cell vs. animal

More information

First to View Cells. copyright cmassengale

First to View Cells. copyright cmassengale CELL THEORY All living things are made of cells Cells are the basic unit of structure and function in an organism (basic unit of life) Cells come from the reproduction of existing cells (cell division)

More information

Unit 2:The Cell. Section 3: Organelle Structure and Function Mrs. McNamara Biology

Unit 2:The Cell. Section 3: Organelle Structure and Function Mrs. McNamara Biology Unit 2:The Cell Section 3: Organelle Structure and Function Mrs. McNamara Biology Organelle-cell part that performs a specific function for the cell Most are surrounded by a membrane Each helps to maintain

More information

Ch. 6: A Tour of the Cell

Ch. 6: A Tour of the Cell Ch. 6: A Tour of the Cell 1. Compare the 2 Types of Cells PROKARYOTES BOTH EUKARYOTES Domain: Domain: Relative Size & Complexity: Relative Size & Complexity: No DNA in No Examples: Has Has Examples: 2.

More information

Eukaryotic Cell Structures

Eukaryotic Cell Structures Comparing the Cell to a Factory Eukaryotic Cell Structures Structures within a eukaryotic cell that perform important cellular functions are known as organelles. Cell biologists divide the eukaryotic cell

More information

NOTES: Chapter 6 STRUCTURE OF THE CELL

NOTES: Chapter 6 STRUCTURE OF THE CELL Biology 120 Section 10 J. Greg Doheny NOTES: Chapter 6 STRUCTURE OF THE CELL NOTES Relative sizes of cells: If a Eukaryotic cell was the size of Columbia College, a prokaryotic cell (like a bacterium)

More information