LECTURE PRESENTATIONS

Size: px
Start display at page:

Download "LECTURE PRESENTATIONS"

Transcription

1 LECTURE PRESENTATIONS For CAMPBELL BIOLOGY, NINTH EDITION Jane B. Reece, Lisa A. Urry, Michael L. Cain, Steven A. Wasserman, Peter V. Minorsky, Robert B. Jackson Chapter 11 Cell Communication Lectures by Erin Barley Kathleen Fitzpatrick 2011 Pearson Education, Inc.

2 Overview: Cellular Messaging Cell-to-cell communication is essential for both multicellular and unicellular organisms Biologists have discovered some universal mechanisms of cellular regulation Cells most often communicate with each other via chemical signals For example, the fight-or-flight response is triggered by a signaling molecule called epinephrine 2011 Pearson Education, Inc.

3 Figure 11.1 What are some physiological functions that are part of the fight-or-flight response?

4 Concept 11.1: External signals are converted to responses within the cell Biologists have discovered some universal mechanisms of cellular regulation Microbes (microorganisms) provide a glimpse of the role of cell signaling in the evolution of life 2011 Pearson Education, Inc.

5 Concept 11.1: External signals are converted to responses within the cell 1. The external signal released 2. How does the cell respond to the signal

6 Evolution of Cell Signaling Sex for example The yeast, Saccharomyces cerevisiae, have two mating types, a and Cells of different mating types locate each other via secreted factors specific to each type A signal transduction pathway is a series of steps by which a signal on a cell s surface is converted into a specific cellular response Signal transduction pathways convert signals on a cell s surface into cellular responses Signals Cellular responses 2011 Pearson Education, Inc.

7 Figure 11.2 Receptor factor 1 Exchange of mating factors a Yeast cell, mating type a a factor Yeast cell, mating type 2 Mating Binding of the factors to the receptors induces changes that lead to their fusion a 3 New a/ cell The nucleus of the fused cell includes all the genes from the a and the ɑ cells a/

8 Pathway similarities suggest that ancestral signaling molecules evolved in prokaryotes and were modified later in eukaryotes The concentration of signaling molecules allows bacteria to sense local population density quorum sensing Allows bacterial populations to coordinate their behaviors so they can carry out activities that are only productive when performed by a given number of cells in synchrony. Biofilm aggregation of bacterial cells adhered to a surface. Examples?? 2011 Pearson Education, Inc.

9 Local and Long-Distance Signaling Cells in a multicellular organism communicate by chemical messengers Animal and plant cells have cell junctions (pores) that directly connect the cytoplasm of adjacent cells In local signaling, animal cells may communicate by direct contact, or cell-cell recognition 2011 Pearson Education, Inc.

10 Figure 11.4 Plasma membranes animal cells plant cells (a) Cell junctions (b) Cell-cell recognition

11 In many other cases, animal cells communicate using local regulators, messenger molecules that travel only short distances In long-distance signaling, plants and animals use chemicals called hormones The ability of a cell to respond to a signal depends on whether or not it has a receptor specific to that signal 2011 Pearson Education, Inc.

12 Figure 11.5 Local signaling Long-distance signaling Target cell Electrical signal along nerve cell triggers release of neurotransmitter. Endocrine cell Blood vessel Secreting cell Secretory vesicle Neurotransmitter diffuses across synapse. Hormone travels in bloodstream. Local regulator diffuses through extracellular fluid. (a) Paracrine signaling Target cell is stimulated. (b) Synaptic signaling Target cell specifically binds hormone. (c) Endocrine (hormonal) signaling

13 The Three Stages of Cell Signaling: A Preview Earl W. Sutherland discovered how the hormone epinephrine (adrenaline) acts on cells Stimulates the breakdown of glycogen in liver/muscle cells produces products that can be used in glycolysis for energy production. Or it can be dephosphorylated and released from the liver cell into the blood as glucose, which fuels cells throughout the body Mobilization of fuel reserve, which can be used by the animal to defend itself (fight) or escape from whatever elicited the scare (flight) 2011 Pearson Education, Inc.

14 The Three Stages of Cell Signaling: A Preview Sutherland suggested that cells receiving signals went through three processes Reception Transduction Response 2011 Pearson Education, Inc.

15 2011 Pearson Education, Inc. Animation: Overview of Cell Signaling Right-click slide / select Play

16 Figure EXTRACELLULAR FLUID Plasma membrane CYTOPLASM 1 Reception Receptor Signaling molecule

17 Figure EXTRACELLULAR FLUID Plasma membrane CYTOPLASM 1 Reception 2 Transduction Receptor Relay molecules in a signal transduction pathway Signaling molecule

18 Figure EXTRACELLULAR FLUID Plasma membrane CYTOPLASM 1 Reception 2 Transduction 3 Response Receptor Relay molecules in a signal transduction pathway Activation of cellular response Signaling molecule

19 Concept 11.2: Reception: A signaling molecule binds to a receptor protein, causing it to change shape The binding between a signal molecule (ligand) and receptor is highly specific A shape change in a receptor is often the initial transduction of the signal Most signal receptors are plasma membrane proteins 2011 Pearson Education, Inc.

20 Receptors in the Plasma Membrane Most water-soluble signal molecules bind to specific sites on receptor proteins that span the plasma membrane There are three main types of membrane receptors G protein-coupled receptors Receptor tyrosine kinases Ion channel receptors 2011 Pearson Education, Inc.

21 G-protein-coupled receptor (GPCRs) are the largest family of cell-surface receptors A GPCR is a plasma membrane receptor that works with the help of a G protein The G protein acts as an on/off switch: If GDP is bound to the G protein, the G protein is inactive 2011 Pearson Education, Inc.

22 Figure 11.7a Signaling molecule binding site Segment that interacts with G proteins G protein-coupled receptor

23 Figure 11.7b G protein-coupled receptor Plasma membrane Activated receptor Signaling molecule Inactive enzyme CYTOPLASM 1 GDP G protein (inactive) Enzyme 2 GDP GTP GDP GTP Activated enzyme GTP GDP P i 3 Cellular response 4 1. The g protein functions as a molecular switch that is either on or off depending on which of the two guanine nucleotides are attached [GTP (tri phosphate) or GDP (di phosphate)]. GDP bound= G protein is inactive (shown above) GTP bound= G protein is active

24 Figure 11.7b G protein-coupled receptor Plasma membrane Activated receptor Signaling molecule Inactive enzyme CYTOPLASM 1 GDP G protein (inactive) Enzyme 2 GDP GTP GDP GTP Activated enzyme GTP GDP P i 3 Cellular response 4 2. The receptor and G proteins work with other proteins (usually enzymes). When a specific signaling molecule binds to the receptor on the extracellular side, the receptor is activated and changes shape. Its cytoplasmic side then binds to an inactive G protein, causing a GTP to replace GDP. This activates the G protein.

25 Figure 11.7b G protein-coupled receptor Plasma membrane Activated receptor Signaling molecule Inactive enzyme CYTOPLASM 1 GDP G protein (inactive) Enzyme 2 GDP GTP GDP GTP Activated enzyme GTP GDP P i 3 Cellular response 4 3. The activated g protein leaves the receptor, then binds to an enzyme. The binding changes the enzymes shape and activity. Once activated, the enzyme can trigger the next stop leading to a cellular response.

26 Figure 11.7b G protein-coupled receptor Plasma membrane Activated receptor Signaling molecule Inactive enzyme CYTOPLASM 1 GDP G protein (inactive) Enzyme 2 GDP GTP GDP GTP Activated enzyme GTP GDP P i 3 Cellular response 4 4. The changes in the enzyme and G protein are only temporary because the G protein also functions as an enzyme. It can change GTP to GDP. Now it is inactive again, the G protein leaves the enzyme, which returns to original state. The G protein is available for reuse.

27 Figure adrenergic receptors Molecule resembling ligand Plasma membrane Cholesterol β 2 -adrenergic agonists, are a class of drugs that act on the beta 2 -adrenergic receptor cause smooth muscle relaxation, resulting in dilation of bronchial passages, vasodilation in muscle and liver, relaxation of uterine muscle, and release of insulin. They are primarily used to treat asthma and other pulmonary disorders.

28 Receptor tyrosine kinases (RTKs) are membrane receptors that attach phosphates to tyrosines A receptor tyrosine kinase can trigger multiple signal transduction pathways at once Abnormal functioning of RTKs is associated with many types of cancers 2011 Pearson Education, Inc.

29 Signaling molecule (ligand) helix in the membrane Ligand-binding site Signaling molecule osines CYTOPLASM Receptor tyrosine 1 kinase proteins (inactive monomers) 2 Activated relay proteins Dimer 6 ATP 6 ADP P P P P P P Activated tyrosine Fully activated kinase regions receptor tyrosine (unphosphorylated kinase 3 dimer) 4 (phosphorylated dimer) P P P P P P Inactive relay proteins Cellular response 1 Cellular response 2 1.Before the signaling molecule binds, the are individual units called monomers. Have an extracellular binding site. helix spanning the membrane Intracellular tail with many tyrosines

30 Signaling molecule (ligand) helix in the membrane Ligand-binding site Signaling molecule osines CYTOPLASM Receptor tyrosine 1 kinase proteins (inactive monomers) 2 Activated relay proteins Dimer 6 ATP 6 ADP P P P P P P Activated tyrosine Fully activated kinase regions receptor tyrosine (unphosphorylated kinase 3 dimer) 4 (phosphorylated dimer) P P P P P P Inactive relay proteins Cellular response 1 Cellular response 2 2. The binding of a signaling molecules causes 2 monomers to come together to form a dimer.

31 Signaling molecule (ligand) helix in the membrane Ligand-binding site Signaling molecule osines CYTOPLASM Receptor tyrosine 1 kinase proteins (inactive monomers) 2 Activated relay proteins Dimer 6 ATP 6 ADP P P P P P P Activated tyrosine Fully activated kinase regions receptor tyrosine (unphosphorylated kinase 3 dimer) 4 (phosphorylated dimer) P P P P P P Inactive relay proteins Cellular response 1 Cellular response 2 3. Dimerization activates the tyrosine kinase region of each monomer Each tyrosine kinase adds a phosphate from an ATP molecule to a tyrosine on the tail of the mother monomer.

32 Signaling molecule (ligand) helix in the membrane Ligand-binding site Signaling molecule osines CYTOPLASM Receptor tyrosine 1 kinase proteins (inactive monomers) 2 Activated relay proteins Dimer 6 ATP 6 ADP P P P P P P Activated tyrosine Fully activated kinase regions receptor tyrosine (unphosphorylated kinase 3 dimer) 4 (phosphorylated dimer) P P P P P P Inactive relay proteins Cellular response 1 Cellular response 2 4. Now that the receptor is fully activated, it is recognized by specific relay proteins inside the cell. Each such protein binds to a specific phosphorylated tyrosine undergoing a shape change that activates the bound protein. Each activated protein triggers a transduction pathway leading to a cellular response.

33 A ligand-gated ion channel receptor acts as a gate when the receptor changes shape When a signal molecule binds as a ligand to the receptor, the gate allows specific ions, such as Na + or Ca 2+, through a channel in the receptor 2011 Pearson Education, Inc.

34 Figure 11.7d Signaling molecule (ligand) Gate closed Ions Gate open Gate closed Ligand-gated ion channel receptor Plasma membrane Cellular response

35 Intracellular Receptors Intracellular receptor proteins are found in the cytosol or nucleus of target cells Small or hydrophobic chemical messengers can readily cross the membrane and activate receptors Examples of hydrophobic messengers are the steroid and thyroid hormones of animals An activated hormone-receptor complex can act as a transcription factor, turning on specific genes 2011 Pearson Education, Inc.

36 Figure Hormone (testosterone) EXTRACELLULAR FLUID Receptor protein Plasma membrane DNA NUCLEUS CYTOPLASM

37 Figure Hormone (testosterone) EXTRACELLULAR FLUID Receptor protein Plasma membrane Hormonereceptor complex DNA NUCLEUS CYTOPLASM

38 Figure Hormone (testosterone) EXTRACELLULAR FLUID Receptor protein Plasma membrane Hormonereceptor complex DNA NUCLEUS CYTOPLASM

39 Figure Hormone (testosterone) Receptor protein mrna EXTRACELLULAR FLUID DNA Plasma membrane Hormonereceptor complex The hormonereceptor complex enters the nucleus and binds to specific genes. NUCLEUS CYTOPLASM

40 Figure Hormone (testosterone) Receptor protein EXTRACELLULAR FLUID Plasma membrane Hormonereceptor complex The bound protein acts as a transcription factor, stimulating the transcription of the gene into RNA protein mrna DNA NUCLEUS New protein CYTOPLASM

41 Concept 11.3: Transduction: Cascades of molecular interactions relay signals from receptors to target molecules in the cell Signal transduction usually involves multiple steps Multistep pathways can amplify a signal: A few molecules can produce a large cellular response Multistep pathways provide more opportunities for coordination and regulation of the cellular response 2011 Pearson Education, Inc.

42 Signal Transduction Pathways The molecules that relay a signal from receptor to response are mostly proteins Like falling dominoes, the receptor activates another protein, which activates another, and so on, until the protein producing the response is activated At each step, the signal is transduced into a different form, usually a shape change in a protein SHAPE DICTATES FUNCTION!!!! 2011 Pearson Education, Inc.

43 Protein Phosphorylation and Dephosphorylation In many pathways, the signal is transmitted by a cascade of protein phosphorylations (adding Phosphate groups P Protein kinases transfer phosphates from ATP to protein, a process called phosphorylation 2011 Pearson Education, Inc.

44 Protein phosphatases remove the phosphates from proteins, a process called dephosphorylation This phosphorylation and dephosphorylation system acts as a molecular switch, turning activities on and off or up or down, as required 2011 Pearson Education, Inc.

45 Figure Signaling molecule Receptor Activated relay molecule Inactive protein kinase 1 Active protein kinase 1 Active protein kinase 1 transfers a phosphate from ATP to an inactive molecule of kinase 2, thus activating this second kinase. Inactive protein kinase 2 P i ATP PP ADP Active protein kinase 2 P PP=phosphatases Inactive protein kinase 3 P i ATP PP ADP Active protein kinase 3 P Finally, active protein kinase 3 phosphorylates a protein (pink) that brins about the cell s response to the signal. Inactive protein P i ATP PP ADP Active protein P Cellular response

46 Small Molecules and Ions as Second Messengers The extracellular signal molecule (ligand) that binds to the receptor is a pathway s first messenger Second messengers are small, nonprotein, watersoluble molecules or ions that spread throughout a cell by diffusion Second messengers participate in pathways initiated by GPCRs and RTKs Cyclic AMP and calcium ions are common second messengers 2011 Pearson Education, Inc.

47 Cyclic AMP Cyclic AMP (camp) is one of the most widely used second messengers Adenylyl cyclase, an enzyme in the plasma membrane, converts ATP to camp in response to an extracellular signal 2011 Pearson Education, Inc.

48 Many signal molecules trigger formation of camp Other components of camp pathways are G proteins, G protein-coupled receptors, and protein kinases camp usually activates protein kinase A, which phosphorylates various other proteins Further regulation of cell metabolism is provided by G-protein systems that inhibit adenylyl cyclase 2011 Pearson Education, Inc.

49 Figure First messenger (signaling molecule such as epinephrine) G protein Adenylyl cyclase G protein-coupled receptor GTP G protein is activated (GTP bound) ATP camp Second messenger Adenylyl cyclase converts ATP to camp camp usually activates protein kinase A, which phosphorylates various other proteins cellular response Protein kinase A Cellular responses

50 Calcium Ions and Inositol Triphosphate (IP 3 ) Calcium ions (Ca 2+ ) act as a second messenger in many pathways Calcium is an important second messenger because cells can regulate its concentration 2011 Pearson Education, Inc.

51 EXTRACELLULAR FLUID Plasma membrane Key CYTOSOL ATP ATP High [Ca 2 ] Ca 2 pump Mitochondrion Nucleus Ca 2 pump Low [Ca 2 ] Ca 2 pump Endoplasmic reticulum (ER) The calcium concentration in the cytosol is usually much lower than the extracellular side and ER. Protein pumps in the plasma membrane and the ER (driven by ATP) move calcium from the cytosol into the extracellular fluid and into the inside of the ER. Mitochondrial pumps, driven by chemiosmosis, move calcium into the mitochondria when the calcium level in the cytosol rises significantly.

52 A signal relayed by a signal transduction pathway may trigger an increase in calcium in the cytosol Pathways leading to the release of calcium involve inositol triphosphate (IP 3 ) and diacylglycerol (DAG) as additional second messengers 2011 Pearson Education, Inc.

53 2011 Pearson Education, Inc. Animation: Signal Transduction Pathways Right-click slide / select Play

54 Figure EXTRA- CELLULAR FLUID Signaling molecule (first messenger) G protein G protein-coupled receptor GTP IP 3 -gated calcium channel Phospholipase C PIP 2 DAG IP 3 (second messenger) 1. A signaling molecule binds to a receptor, leading to activation of phospholipase C (PLC) 2. PLC cuts PIP2 into DAG and IP3. Endoplasmic reticulum (ER) Ca 2 CYTOSOL

55 Figure EXTRA- CELLULAR FLUID Signaling molecule (first messenger) G protein G protein-coupled receptor GTP Phospholipase C PIP 2 DAG IP 3 (second messenger) IP 3 -gated calcium channel Endoplasmic reticulum (ER) CYTOSOL Ca 2 Ca 2 (second messenger) 3. DAG functions as a second messenger. 4. IP3 binds to IP3 receptor (calcium channel) in the ER causing it to open. 5. Calcium flows out of the ER, raising the calcium level in the cytosol.

56 Figure EXTRA- CELLULAR FLUID Signaling molecule (first messenger) G protein G protein-coupled receptor GTP Phospholipase C PIP 2 DAG IP 3 (second messenger) IP 3 -gated calcium channel Endoplasmic reticulum (ER) CYTOSOL Ca 2 Ca 2 (second messenger) Various proteins activated Cellular responses 6. The calcium ions activate the next protein in one or more signaling pathways.

57 Concept 11.4: Response: Cell signaling leads to regulation of transcription or cytoplasmic activities The cell s response to an extracellular signal is sometimes called the output response What is the nature of the final step in a signaling pathway? 2011 Pearson Education, Inc.

58 Nuclear and Cytoplasmic Responses Ultimately, a signal transduction pathway leads to regulation of one or more cellular activities The response may occur in the cytoplasm or in the nucleus Many signaling pathways regulate the synthesis of enzymes or other proteins, usually by turning genes on or off in the nucleus The final activated molecule in the signaling pathway may function as a transcription factor 2011 Pearson Education, Inc.

59 Figure Growth factor Receptor Reception Phosphorylation cascade Transduction CYTOPLASM Inactive transcription factor DNA Active transcription factor P Response Gene NUCLEUS mrna

60 Other pathways regulate the activity of enzymes rather than their synthesis 2011 Pearson Education, Inc.

61 Figure Reception Binding of epinephrine to G protein-coupled receptor (1 molecule) Transduction Inactive G protein Active G protein (10 2 molecules) Inactive adenylyl cyclase Active adenylyl cyclase (10 2 ) ATP Cyclic AMP (10 4 ) Inactive protein kinase A Active protein kinase A (10 4 ) Inactive phosphorylase kinase Active phosphorylase kinase (10 5 ) Inactive glycogen phosphorylase Active glycogen phosphorylase (10 6 ) Response Glycogen Glucose 1-phosphate (10 8 molecules)

62 Signaling pathways can also affect the overall behavior of a cell, for example, changes in cell shape 2011 Pearson Education, Inc.

63 Figure RESULTS CONCLUSION 1 Mating factor activates receptor. Wild type (with shmoos) Fus3 formin Mating factor G protein-coupled receptor Shmoo projection forming P Formin GDP 2 G protein binds GTP and becomes activated. 3 GTP Fus3 Phosphorylation cascade Fus3 P Phosphorylation cascade activates Fus3, which moves to plasma membrane. P Fus3 Formin Formin P 4 Fus3 phosphorylates formin, Microfilament activating it. 5 Actin subunit Formin initiates growth of microfilaments that form the shmoo projections.

64 Fine-Tuning of the Response There are four aspects of fine-tuning to consider Amplifying the signal (and thus the response) Specificity of the response Overall efficiency of response, enhanced by scaffolding proteins Termination of the signal 2011 Pearson Education, Inc.

65 Signal Amplification Enzyme cascades amplify the cell s response At each step, the number of activated products is much greater than in the preceding step 2011 Pearson Education, Inc.

66 The Specificity of Cell Signaling and Coordination of the Response Different kinds of cells have different collections of proteins These different proteins allow cells to detect and respond to different signals Even the same signal can have different effects in cells with different proteins and pathways Pathway branching and cross-talk further help the cell coordinate incoming signals 2011 Pearson Education, Inc.

67 Figure Signaling molecule Receptor Relay molecules Activation or inhibition Response 1 Response 2 Response 3 Response 4 Response 5 Cell A. Pathway leads to a single response. Cell B. Pathway branches, leading to two responses. Cell C. Cross-talk occurs between two pathways. Cell D. Different receptor leads to a different response.

68 Signaling Efficiency: Scaffolding Proteins and Signaling Complexes Scaffolding proteins are large relay proteins to which other relay proteins are attached Scaffolding proteins can increase the signal transduction efficiency by grouping together different proteins involved in the same pathway In some cases, scaffolding proteins may also help activate some of the relay proteins 2011 Pearson Education, Inc.

69 Figure Signaling molecule Plasma membrane Receptor Scaffolding protein Three different protein kinases

70 Termination of the Signal Inactivation mechanisms are an essential aspect of cell signaling If ligand concentration falls, fewer receptors will be bound Unbound receptors revert to an inactive state 2011 Pearson Education, Inc.

71 Concept 11.5: Apoptosis integrates multiple cell-signaling pathways Apoptosis is programmed or controlled cell suicide Components of the cell are chopped up and packaged into vesicles that are digested by scavenger cells Apoptosis prevents enzymes from leaking out of a dying cell and damaging neighboring cells!!!! 2011 Pearson Education, Inc.

72 Figure m

73 Apoptosis in the Soil Worm Caenorhabditis elegans Apoptosis is important in shaping an organism during embryonic development The role of apoptosis in embryonic development was studied in Caenorhabditis elegans In C. elegans, apoptosis results when proteins that accelerate apoptosis override those that put the brakes on apoptosis 2011 Pearson Education, Inc.

74 Figure Ced-9 protein (active) inhibits Ced-4 activity Mitochondrion Deathsignaling molecule Ced-9 (inactive) Cell forms blebs Active Ced-4 Active Ced-3 Other proteases Receptor for deathsignaling molecule Ced-4 Ced-3 Inactive proteins Activation cascade Nucleases (a) No death signal (b) Death signal

75 Apoptotic Pathways and the Signals That Trigger Them Caspases are the main proteases (enzymes that cut up proteins) that carry out apoptosis Apoptosis can be triggered by An extracellular death-signaling ligand DNA damage in the nucleus Protein misfolding in the endoplasmic reticulum 2011 Pearson Education, Inc.

76 Apoptosis evolved early in animal evolution and is essential for the development and maintenance of all animals Apoptosis may be involved in some diseases (for example, Parkinson s and Alzheimer s); interference with apoptosis may contribute to some cancers Why??? 2011 Pearson Education, Inc.

77 Figure Interdigital tissue Cells undergoing apoptosis 1 mm Space between digits

Cell Communication. Biology Eighth Edition Neil Campbell and Jane Reece. PowerPoint Lecture Presentations for

Cell Communication. Biology Eighth Edition Neil Campbell and Jane Reece. PowerPoint Lecture Presentations for Chapter 11 Cell Communication PowerPoint Lecture Presentations for Biology Eighth Edition Neil Campbell and Jane Reece Lectures by Chris Romero, updated by Erin Barley with contributions from Joan Sharp

More information

Cell Communication. Chapter 11. Biology Eighth Edition Neil Campbell and Jane Reece. PowerPoint Lecture Presentations for

Cell Communication. Chapter 11. Biology Eighth Edition Neil Campbell and Jane Reece. PowerPoint Lecture Presentations for Chapter 11 Cell Communication PowerPoint Lecture Presentations for Biology Eighth Edition Neil Campbell and Jane Reece Lectures by Chris Romero, updated by Erin Barley with contributions from Joan Sharp

More information

Cell Communication. Chapter 11. Biology Eighth Edition Neil Campbell and Jane Reece. PowerPoint Lecture Presentations for

Cell Communication. Chapter 11. Biology Eighth Edition Neil Campbell and Jane Reece. PowerPoint Lecture Presentations for Chapter 11 Cell Communication PowerPoint Lecture Presentations for Biology Eighth Edition Neil Campbell and Jane Reece Lectures by Chris Romero, updated by Erin Barley with contributions from Joan Sharp

More information

Cell Communication. Chapter 11. Biology Eighth Edition Neil Campbell and Jane Reece. PowerPoint Lecture Presentations for

Cell Communication. Chapter 11. Biology Eighth Edition Neil Campbell and Jane Reece. PowerPoint Lecture Presentations for Chapter 11 Cell Communication PowerPoint Lecture Presentations for Biology Eighth Edition Neil Campbell and Jane Reece Lectures by Chris Romero, updated by Erin Barley with contributions from Joan Sharp

More information

Cell Communication. Chapter 11. Overview: The Cellular Internet

Cell Communication. Chapter 11. Overview: The Cellular Internet Chapter 11 Cell Communication Overview: The Cellular Internet Cell-to-cell communication is essential for multicellular organisms Biologists have discovered some universal mechanisms of cellular regulation

More information

Cell Communication. Chapter 11. Biology. Eighth Edition Neil Campbell and Jane Reece. PowerPoint Lecture Presentations for

Cell Communication. Chapter 11. Biology. Eighth Edition Neil Campbell and Jane Reece. PowerPoint Lecture Presentations for Chapter 11 Cell Communication PowerPoint Lecture Presentations for Biology Eighth Edition Neil Campbell and Jane Reece Lectures by Chris Romero, updated by Erin Barley with contributions from Joan Sharp

More information

Cell Communication. Chapter 11. Biology. Eighth Edition Neil Campbell and Jane Reece. PowerPoint Lecture Presentations for

Cell Communication. Chapter 11. Biology. Eighth Edition Neil Campbell and Jane Reece. PowerPoint Lecture Presentations for Chapter 11 Cell Communication PowerPoint Lecture Presentations for Biology Eighth Edition Neil Campbell and Jane Reece Lectures by Chris Romero, updated by Erin Barley with contributions from Joan Sharp

More information

BIOLOGY. Cell Communication CAMPBELL. Reece Urry Cain Wasserman Minorsky Jackson. Lecture Presentation by Nicole Tunbridge and Kathleen Fitzpatrick

BIOLOGY. Cell Communication CAMPBELL. Reece Urry Cain Wasserman Minorsky Jackson. Lecture Presentation by Nicole Tunbridge and Kathleen Fitzpatrick CAMPBELL BIOLOGY TENTH EDITION Reece Urry Cain Wasserman Minorsky Jackson 11 Cell Communication Lecture Presentation by Nicole Tunbridge and Kathleen Fitzpatrick Cellular Messaging Cells can signal to

More information

Cell Communication. Chapter 11. PowerPoint Lectures for Biology, Seventh Edition. Lectures by Chris Romero. Neil Campbell and Jane Reece

Cell Communication. Chapter 11. PowerPoint Lectures for Biology, Seventh Edition. Lectures by Chris Romero. Neil Campbell and Jane Reece Chapter 11 Cell Communication PowerPoint Lectures for Biology, Seventh Edition Neil Campbell and Jane Reece Lectures by Chris Romero Overview: The Cellular Internet Cell-to-cell communication Is absolutely

More information

BIOLOGY. Cell Communication CAMPBELL. Reece Urry Cain Wasserman Minorsky Jackson. Lecture Presentation by Nicole Tunbridge and Kathleen Fitzpatrick

BIOLOGY. Cell Communication CAMPBELL. Reece Urry Cain Wasserman Minorsky Jackson. Lecture Presentation by Nicole Tunbridge and Kathleen Fitzpatrick CAMPBELL BIOLOGY TENTH EDITION Reece Urry Cain Wasserman Minorsky Jackson 11 Cell Communication Lecture Presentation by Nicole Tunbridge and Kathleen Fitzpatrick Cellular Messaging Cells can signal to

More information

Cell Communication. Local and Long Distance Signaling

Cell Communication. Local and Long Distance Signaling Cell Communication Cell to cell communication is essential for multicellular organisms Some universal mechanisms of cellular regulation providing more evidence for the evolutionary relatedness of all life

More information

Chapter 11. Cell Communication

Chapter 11. Cell Communication Chapter 11 Cell Communication Overview: The Cellular Internet Cell-to-cell communication Is absolutely essential for multicellular organisms Concept 11.1: External signals are converted into responses

More information

Cell Communication. Chapter 11. Key Concepts in Chapter 11. Cellular Messaging. Cell-to-cell communication is essential for multicellular organisms

Cell Communication. Chapter 11. Key Concepts in Chapter 11. Cellular Messaging. Cell-to-cell communication is essential for multicellular organisms Chapter 11 Cell Communication Dr. Wendy Sera Houston Community College Biology 1406 Key Concepts in Chapter 11 1. External signals are converted to responses within the cell. 2. Reception: A signaling

More information

Plasma membranes. Plasmodesmata between plant cells. Gap junctions between animal cells Cell junctions. Cell-cell recognition

Plasma membranes. Plasmodesmata between plant cells. Gap junctions between animal cells Cell junctions. Cell-cell recognition Cell Communication Cell Signaling Cell-to-cell communication is essential for multicellular organisms Communicate by chemical messengers Animal and plant cells have cell junctions that directly connect

More information

Cell Communication. Chapter 11. Biology Eighth Edition Neil Campbell and Jane Reece. PowerPoint Lecture Presentations for

Cell Communication. Chapter 11. Biology Eighth Edition Neil Campbell and Jane Reece. PowerPoint Lecture Presentations for Chapter 11 Cell Communication PowerPoint Lecture Presentations for Biology Eighth Edition Neil Campbell and Jane Reece Lectures by Chris Romero, updated by Erin Barley with contributions from Joan Sharp

More information

Chapter 9. Cellular Signaling

Chapter 9. Cellular Signaling Chapter 9 Cellular Signaling Cellular Messaging Page 215 Cells can signal to each other and interpret the signals they receive from other cells and the environment Signals are most often chemicals The

More information

10/15/2011. Chapter 11 Cell Communication. Outline. Overview: Cellular Messaging. Evolution. Evolution of Signaling

10/15/2011. Chapter 11 Cell Communication. Outline. Overview: Cellular Messaging. Evolution. Evolution of Signaling Chapter 11 Cell Communication Outline I. Cell Signaling II. Forms of cell signaling III. Quick review of cell membrane IV. Cell Surface s I. G- Coupled s II. osine Kinase s III. Ligand-Gated Ion Channels

More information

Resp & Cell Comm Review

Resp & Cell Comm Review Resp & Cell Comm Review Two main catabolic processes: fermentation: partial degradation of sugars in the absence of oxygen. cellular respiration: uses oxygen to complete the breakdown of many organic molecules.

More information

BIOLOGY. Cell Communication. Outline. Evolution of Signaling. Overview: Cellular Messaging. Local and Long-Distance Signaling

BIOLOGY. Cell Communication. Outline. Evolution of Signaling. Overview: Cellular Messaging. Local and Long-Distance Signaling 11 CAMBELL BIOLOGY TENTH EDITION Reece Urry Cain Wasserman Minorsky Jackson Cell Communication Lecture resentation by Dr Burns NVC Biol 120 Outline I. Cell Signaling II. Forms of cell signaling III. Quick

More information

Cellular Communication

Cellular Communication Cellular Communication But before we get into that What have we learned about so far? Energy and Matter Why do living things need energy? Grow Reproduce Maintain homeostasis Cellular signaling Cells communicate

More information

The plasma membrane plays a key role in most cell signaling

The plasma membrane plays a key role in most cell signaling CONCEPT 5.6 The plasma membrane plays a key role in most cell signaling In a multicellular organism, whether a human being or an oak tree, it is cell-to-cell communication that allows the trillions of

More information

Relay molecules in a signal transduction pathway

Relay molecules in a signal transduction pathway Cell Signaling Figure 11.6-3 EXTRACELLULAR FLUID Plasma membrane CYTOPLASM 1 Reception 2 Transduction 3 Response Receptor Relay molecules in a signal transduction pathway Activation of cellular response

More information

Chapter 11 Cell Communication

Chapter 11 Cell Communication Chapter 11 Cell Communication Lecture Outline Overview: Cellular Messaging Cell-to-cell communication allows the trillions of cells in a multicellular organism to communicate to coordinate their activities.

More information

Chapter 11. Cell Communication. Signal Transduction Pathways

Chapter 11. Cell Communication. Signal Transduction Pathways Chapter 11 Cell Communication Signal Transduction Pathways Signal-Transduction Pathway Signal on a cell s surface is converted into a specific cellular response Local signaling (short distance) - Paracrine

More information

Chapter 11 Cell Communication Guided Reading. 3. How do intercellular connections function in cell to cell communication?

Chapter 11 Cell Communication Guided Reading. 3. How do intercellular connections function in cell to cell communication? AP Biology TEXT: Biology, Campbell and Reece 7 th Edition Name Chapter 11 Cell Communication Guided Reading This chapter is often considered difficult as you have not covered it in an introductory biology

More information

Cell Communication CHAPTER 11

Cell Communication CHAPTER 11 Cell Communication CHAPTER 11 What you should know: The 3 stages of cell communication: reception, transduction, and response. How a receptor protein recognizes signal molecules and starts transduction.

More information

Cell Communication. Cell Communication. Communication between cells requires: ligand: the signaling molecule

Cell Communication. Cell Communication. Communication between cells requires: ligand: the signaling molecule Cell Communication Cell Communication Communication between cells requires: ligand: the signaling molecule receptor protein: the molecule to which the ligand binds (may be on the plasma membrane or within

More information

Warm-Up. Warm-Up. Warm-Up. Cell Communication. Cell Signaling 03/06/2018. Do bacteria communicate?

Warm-Up. Warm-Up. Warm-Up. Cell Communication. Cell Signaling 03/06/2018. Do bacteria communicate? Warm-Up 1. Why do you communicate? 2. How do you communicate? 3. How do you think cells communicate? 4. Do you think bacteria can communicate? Explain. Warm-Up 1. Why are scientists studying how bacteria

More information

Cell Communication and Cell Signaling

Cell Communication and Cell Signaling Cell Communication and Cell Signaling Why is cell signaling important? Why is cell signaling important? Allows cells to communicate and coordinate functions/activities of the organism Usually involves

More information

BCOR 011 Lecture 19 Oct 12, 2005 I. Cell Communication Signal Transduction Chapter 11

BCOR 011 Lecture 19 Oct 12, 2005 I. Cell Communication Signal Transduction Chapter 11 BCOR 011 Lecture 19 Oct 12, 2005 I. Cell Communication Signal Transduction Chapter 11 External signal is received and converted to another form to elicit a response 1 Lecture Outline 1. Types of intercellular

More information

Lecture 9: Cell Communication I

Lecture 9: Cell Communication I 02.05.10 Lecture 9: Cell Communication I Multicellular organisms need to coordinate cellular functions in different tissues Cell-to-cell communication is also used by single celled organisms to signal

More information

Cell Signaling part 2

Cell Signaling part 2 15 Cell Signaling part 2 Functions of Cell Surface Receptors Other cell surface receptors are directly linked to intracellular enzymes. The largest family of these is the receptor protein tyrosine kinases,

More information

Cell Communication. Cell Communication. Cell Communication. Cell Communication. Cell Communication. Chapter 9. Communication between cells requires:

Cell Communication. Cell Communication. Cell Communication. Cell Communication. Cell Communication. Chapter 9. Communication between cells requires: Chapter 9 Communication between cells requires: ligand: the signaling molecule receptor protein: the molecule to which the receptor binds -may be on the plasma membrane or within the cell 2 There are four

More information

Lipids and Membranes

Lipids and Membranes Lipids and Membranes Presented by Dr. Mohammad Saadeh The requirements for the Pharmaceutical Biochemistry I Philadelphia University Faculty of pharmacy Membrane transport D. Endocytosis and Exocytosis

More information

Chapter 11: Cell Communication

Chapter 11: Cell Communication Name Period Chapter 11: Cell Communication The special challenge in Chapter 11 is not that the material is so difficult, but that most of the material will be completely new to you. Cell communication

More information

Bio 111 Study Guide Chapter 11 Cell Communication

Bio 111 Study Guide Chapter 11 Cell Communication Bio 111 Study Guide Chapter 11 Cell Communication BEFORE CLASS: Reading: Read the introduction on p. 210, and for Concept 11.1, read from the first full paragraph on p. 212. Read all of Concept 11.2. Pay

More information

Cell Signaling and Communication - 1

Cell Signaling and Communication - 1 Cell Signaling and Communication - 1 Just as we communicate with other humans in a number of different ways, cells communicate with other cells and with their external environment with a set of cell signal

More information

General Principles of Endocrine Physiology

General Principles of Endocrine Physiology General Principles of Endocrine Physiology By Dr. Isabel S.S. Hwang Department of Physiology Faculty of Medicine University of Hong Kong The major human endocrine glands Endocrine glands and hormones

More information

Cell Communication - 1

Cell Communication - 1 Cell Communication - 1 Just as we communicate with other humans (a number of different ways), cells communicate with other cells, to interact with the external environment and to make appropriate responses

More information

CONCEPT 5.1: Cellular membranes are fluid mosaics of lipids and proteins

CONCEPT 5.1: Cellular membranes are fluid mosaics of lipids and proteins Ch 5 Membrane Transport and Signaling Overview The plasma separates the living cell from its surroundings The plasma exhibits selective permeability, allowing some substances to cross it more easily than

More information

Chapter 20. Cell - Cell Signaling: Hormones and Receptors. Three general types of extracellular signaling. endocrine signaling. paracrine signaling

Chapter 20. Cell - Cell Signaling: Hormones and Receptors. Three general types of extracellular signaling. endocrine signaling. paracrine signaling Chapter 20 Cell - Cell Signaling: Hormones and Receptors Three general types of extracellular signaling endocrine signaling paracrine signaling autocrine signaling Endocrine Signaling - signaling molecules

More information

5 Membrane Transport and Cell Signaling

5 Membrane Transport and Cell Signaling CAMPBELL BIOLOGY IN FOCUS Urry Cain Wasserman Minorsky Jackson Reece 5 Membrane Transport and Cell Signaling Lecture Presentations by Kathleen Fitzpatrick and Nicole Tunbridge Overview: Life at the Edge

More information

ANATOMY & PHYSIOLOGY - CLUTCH CH. 6 - CELL COMMUNICATION.

ANATOMY & PHYSIOLOGY - CLUTCH CH. 6 - CELL COMMUNICATION. !! www.clutchprep.com CONCEPT: CELL-TO-CELL CONNECTIONS AND SIGNALING Gap and Tight Junctions: Adjacent cells communicate and hold on to each other via junctions. Two important kinds: Gap Junctions are

More information

Membrane Transport and Cell Signaling

Membrane Transport and Cell Signaling CAMPBELL BIOLOGY IN FOCUS URRY CAIN WASSERMAN MINORSKY REECE 5 Membrane Transport and Cell Signaling Lecture Presentations by Kathleen Fitzpatrick and Nicole Tunbridge, Simon Fraser University SECOND EDITION

More information

Chapter 15: Signal transduction

Chapter 15: Signal transduction Chapter 15: Signal transduction Know the terminology: Enzyme-linked receptor, G-protein linked receptor, nuclear hormone receptor, G-protein, adaptor protein, scaffolding protein, SH2 domain, MAPK, Ras,

More information

3.D- Cell Communication

3.D- Cell Communication 3.D- Cell Communication Big Idea 3: Living systems store, retrieve, transmit and respond to information essential to life processes. EU 3.A: Heritable information provides for continuity of life. EU 3.B:

More information

Cell Communication External signals are converted to responses within the cell

Cell Communication External signals are converted to responses within the cell 11 Cell Communication KEY COCETS Figure 11.1 How does cell signaling trigger the desperate flight of this gazelle? 11.1 External signals are converted to responses within the cell 11.2 Reception: A signaling

More information

Propagation of the Signal

Propagation of the Signal OpenStax-CNX module: m44452 1 Propagation of the Signal OpenStax College This work is produced by OpenStax-CNX and licensed under the Creative Commons Attribution License 3.0 By the end of this section,

More information

Reading Packet 2- Cells Unit. Chapter 6: A Tour of the Cell 1. What is resolving power?

Reading Packet 2- Cells Unit. Chapter 6: A Tour of the Cell 1. What is resolving power? AP Biology Reading Packet 2- Cells Unit Name Chapter 6: A Tour of the Cell 1. What is resolving power? 2. How is an electron microscope different from a light microscope and what is the difference between

More information

Chapter 11 Guided Reading: Cell Communication

Chapter 11 Guided Reading: Cell Communication Name Chapter 11 Guided Reading: Cell Communication The special challenge in Chapter 11 is not that the material is so difficult, but that most of the material will be completely new to you. Cell communication

More information

Cellular Signaling Pathways. Signaling Overview

Cellular Signaling Pathways. Signaling Overview Cellular Signaling Pathways Signaling Overview Signaling steps Synthesis and release of signaling molecules (ligands) by the signaling cell. Transport of the signal to the target cell Detection of the

More information

Lecture 15. Signal Transduction Pathways - Introduction

Lecture 15. Signal Transduction Pathways - Introduction Lecture 15 Signal Transduction Pathways - Introduction So far.. Regulation of mrna synthesis Regulation of rrna synthesis Regulation of trna & 5S rrna synthesis Regulation of gene expression by signals

More information

Cell Biology Lecture 9 Notes Basic Principles of cell signaling and GPCR system

Cell Biology Lecture 9 Notes Basic Principles of cell signaling and GPCR system Cell Biology Lecture 9 Notes Basic Principles of cell signaling and GPCR system Basic Elements of cell signaling: Signal or signaling molecule (ligand, first messenger) o Small molecules (epinephrine,

More information

Signal Transduction Pathways. Part 2

Signal Transduction Pathways. Part 2 Signal Transduction Pathways Part 2 GPCRs G-protein coupled receptors > 700 GPCRs in humans Mediate responses to senses taste, smell, sight ~ 1000 GPCRs mediate sense of smell in mouse Half of all known

More information

Physiology Unit 1 CELL SIGNALING: CHEMICAL MESSENGERS AND SIGNAL TRANSDUCTION PATHWAYS

Physiology Unit 1 CELL SIGNALING: CHEMICAL MESSENGERS AND SIGNAL TRANSDUCTION PATHWAYS Physiology Unit 1 CELL SIGNALING: CHEMICAL MESSENGERS AND SIGNAL TRANSDUCTION PATHWAYS In Physiology Today Cell Communication Homeostatic mechanisms maintain a normal balance of the body s internal environment

More information

BCM 226 LECTURE SALEMCITY, A.J

BCM 226 LECTURE SALEMCITY, A.J BCM 226 LECTURE SALEMCITY, A.J BIOLOGICAL MEMBRANE Biological membranes are composed of proteins associated with a lipid bilayer matrix. They are the molecular gateway to the cell. Viewed under electron

More information

Mechanisms of Hormone Action

Mechanisms of Hormone Action Mechanisms of Hormone Action General principles: 1. Signals act over different ranges. 2. Signals have different chemical natures. 3. The same signal can induce a different response in different cells.

More information

Cellular Communication

Cellular Communication (a) Communicating cell junctions. by direct cell-cell contact lasma membranes 1. Direct cell contact. Vesicle-mediated 3. Chemical messengers (b) Cell-cell recognition. Gap junctions between animal cells

More information

Comprehensive and Easy Course Notes for BIOL1040 Exams and Assessment

Comprehensive and Easy Course Notes for BIOL1040 Exams and Assessment Comprehensive and Easy Course Notes for BIOL1040 Exams and Assessment MODULE 1: PRINCIPLES OF CELL FUNCTION Membrane Structure & Function Cellular membranes are fluid mosaics of lipids and proteins Phospholipids

More information

target effector enzyme is Phospholipase C A. target protein adenylate cyclase camp-> PKA B. target protein phospholipase C two 2nd Messengers:

target effector enzyme is Phospholipase C A. target protein adenylate cyclase camp-> PKA B. target protein phospholipase C two 2nd Messengers: COR 011 Cell Communication II Lect 19 Lecture Outline Signal molecule Activated Ras-GT A G-rotein And they tell friends And they tell friends And they tell friends 1. Finish Trimeric G-rotein: hospholipase

More information

Introduction! Introduction! Introduction! Chem Lecture 10 Signal Transduction & Sensory Systems Part 2

Introduction! Introduction! Introduction! Chem Lecture 10 Signal Transduction & Sensory Systems Part 2 Chem 452 - Lecture 10 Signal Transduction & Sensory Systems Part 2 Questions of the Day: How does the hormone insulin trigger the uptake of glucose in the cells that it targets. Introduction! Signal transduction

More information

Receptor mediated Signal Transduction

Receptor mediated Signal Transduction Receptor mediated Signal Transduction G-protein-linked receptors adenylyl cyclase camp PKA Organization of receptor protein-tyrosine kinases From G.M. Cooper, The Cell. A molecular approach, 2004, third

More information

Sarah Jaar Marah Al-Darawsheh

Sarah Jaar Marah Al-Darawsheh 22 Sarah Jaar Marah Al-Darawsheh Faisal Mohammad Receptors can be membrane proteins (for water-soluble hormones/ligands) or intracellular (found in the cytosol or nucleus and bind to DNA, for lipid-soluble

More information

Lecture: CHAPTER 13 Signal Transduction Pathways

Lecture: CHAPTER 13 Signal Transduction Pathways Lecture: 10 17 2016 CHAPTER 13 Signal Transduction Pathways Chapter 13 Outline Signal transduction cascades have many components in common: 1. Release of a primary message as a response to a physiological

More information

Receptors and Drug Action. Dr. Subasini Pharmacology Department Ishik University, Erbil

Receptors and Drug Action. Dr. Subasini Pharmacology Department Ishik University, Erbil Receptors and Drug Action Dr. Subasini Pharmacology Department Ishik University, Erbil Receptors and Drug Action Receptor Receptor is defined as a macromolecule or binding site located on the surface or

More information

G-Protein Signaling. Introduction to intracellular signaling. Dr. SARRAY Sameh, Ph.D

G-Protein Signaling. Introduction to intracellular signaling. Dr. SARRAY Sameh, Ph.D G-Protein Signaling Introduction to intracellular signaling Dr. SARRAY Sameh, Ph.D Cell signaling Cells communicate via extracellular signaling molecules (Hormones, growth factors and neurotransmitters

More information

Cellular Messengers. Intracellular Communication

Cellular Messengers. Intracellular Communication Cellular Messengers Intracellular Communication Most common cellular communication is done through extracellular chemical messengers: Ligands Specific in function 1. Paracrines Local messengers (neighboring

More information

Molecular Cell Biology - Problem Drill 19: Cell Signaling Pathways and Gene Expression

Molecular Cell Biology - Problem Drill 19: Cell Signaling Pathways and Gene Expression Molecular Cell Biology - Problem Drill 19: Cell Signaling Pathways and Gene Expression Question No. 1 of 10 1. Which statement about cell signaling is correct? Question #1 (A) Cell signaling involves receiving

More information

Chem Lecture 10 Signal Transduction

Chem Lecture 10 Signal Transduction Chem 452 - Lecture 10 Signal Transduction 111130 Here we look at the movement of a signal from the outside of a cell to its inside, where it elicits changes within the cell. These changes are usually mediated

More information

Receptors Families. Assistant Prof. Dr. Najlaa Saadi PhD Pharmacology Faculty of Pharmacy University of Philadelphia

Receptors Families. Assistant Prof. Dr. Najlaa Saadi PhD Pharmacology Faculty of Pharmacy University of Philadelphia Receptors Families Assistant Prof. Dr. Najlaa Saadi PhD Pharmacology Faculty of Pharmacy University of Philadelphia Receptor Families 1. Ligand-gated ion channels 2. G protein coupled receptors 3. Enzyme-linked

More information

2013 W. H. Freeman and Company. 12 Signal Transduction

2013 W. H. Freeman and Company. 12 Signal Transduction 2013 W. H. Freeman and Company 12 Signal Transduction CHAPTER 12 Signal Transduction Key topics: General features of signal transduction Structure and function of G protein coupled receptors Structure

More information

Cell responses to environment-- Signals

Cell responses to environment-- Signals Cell responses to environment-- Signals Signal transduction can coordinate: Development Formation of tissues Timing of cell division Direction of cell enlargement Size and shape of organs Responses to

More information

Cell Signaling (part 1)

Cell Signaling (part 1) 15 Cell Signaling (part 1) Introduction Bacteria and unicellular eukaryotes respond to environmental signals and to signaling molecules secreted by other cells for mating and other communication. In multicellular

More information

Signal Transduction: G-Protein Coupled Receptors

Signal Transduction: G-Protein Coupled Receptors Signal Transduction: G-Protein Coupled Receptors Federle, M. (2017). Lectures 4-5: Signal Transduction parts 1&2: nuclear receptors and GPCRs. Lecture presented at PHAR 423 Lecture in UIC College of Pharmacy,

More information

AP Biology Cells: Chapters 4 & 5

AP Biology Cells: Chapters 4 & 5 AP Biology Cells: Chapters 4 & 5 Multiple Choice Identify the choice that best completes the statement or answers the question. 1. The was the first unifying principle of biology. a. spontaneous generation

More information

Lab Results: 1. Document the initial and final egg masses. 2. Calculate the percent change

Lab Results: 1. Document the initial and final egg masses. 2. Calculate the percent change Lab Results: 1. Document the initial and final egg masses. 2. Calculate the percent change 3. Draw an arrow showing which way water traveled (in or out of the egg) on your post lab. CHI- SQUARE: What if

More information

GENERAL CHARACTERISTICS OF THE ENDOCRINE SYSTEM FIGURE 17.1

GENERAL CHARACTERISTICS OF THE ENDOCRINE SYSTEM FIGURE 17.1 GENERAL CHARACTERISTICS OF THE ENDOCRINE SYSTEM FIGURE 17.1 1. The endocrine system consists of glands that secrete chemical signals, called hormones, into the blood. In addition, other organs and cells

More information

LQB383 Testbank. Week 8 Cell Communication and Signaling Mechanisms

LQB383 Testbank. Week 8 Cell Communication and Signaling Mechanisms LQB383 Testbank Week 8 Cell Communication and Signaling Mechanisms Terms to learn match the terms to the definitions --------------------------------------------------------------------------------------------------------------------------

More information

Receptors Functions and Signal Transduction- L4- L5

Receptors Functions and Signal Transduction- L4- L5 Receptors Functions and Signal Transduction- L4- L5 Faisal I. Mohammed, MD, PhD University of Jordan 1 PKC Phosphorylates many substrates, can activate kinase pathway, gene regulation PLC- signaling pathway

More information

Organization of lectures: Cell Signaling I: Sex, Drugs and Violence. Cell signaling is central to modern medicine. Forms of Cell Signaling

Organization of lectures: Cell Signaling I: Sex, Drugs and Violence. Cell signaling is central to modern medicine. Forms of Cell Signaling Cell Signaling I: Sex, Drugs and Violence Joe W. Ramos jramos@crch.hawaii.edu www.crch.org/profiles/jramos Organization of lectures: General Principles of signaling cascades Hormone Signaling Signaling

More information

Chapter 5 Control of Cells by Chemical Messengers

Chapter 5 Control of Cells by Chemical Messengers Chapter 5 Control of Cells by Chemical Messengers = How hormones and other signals work Intercellular Communication = Intercellular Signal Transmission Chemical communication Electrical communication Intercellular

More information

By the name of Allah

By the name of Allah By the name of Allah Receptors function and signal transduction ( Hormones and receptors Types) We were talking about receptors of the neurotransmitters; we have 2 types of receptors: 1- Ionotropic receptors

More information

Signal Transduction Cascades

Signal Transduction Cascades Signal Transduction Cascades Contents of this page: Kinases & phosphatases Protein Kinase A (camp-dependent protein kinase) G-protein signal cascade Structure of G-proteins Small GTP-binding proteins,

More information

Lecture Outline. Hormones & Chemical Signaling. Communication Basics: Overview. Communication Basics: Methods. Four methods of cell communication

Lecture Outline. Hormones & Chemical Signaling. Communication Basics: Overview. Communication Basics: Methods. Four methods of cell communication Lecture Outline Hormones & Chemical Signaling Communication Basics Communication Overview Communication Methods Signal pathways Regulation (modulation) of signal pathways Homeostasis... again Endocrine

More information

Hormones and Signal Transduction. Dr. Kevin Ahern

Hormones and Signal Transduction. Dr. Kevin Ahern Dr. Kevin Ahern Signaling Outline Signaling Outline Background Signaling Outline Background Membranes Signaling Outline Background Membranes Hormones & Receptors Signaling Outline Background Membranes

More information

Name: Class: Date: Unit 1 Test: Cells. Multiple Choice Identify the choice that best completes the statement or answers the question.

Name: Class: Date: Unit 1 Test: Cells. Multiple Choice Identify the choice that best completes the statement or answers the question. Class: _ Date: _ Unit 1 Test: Cells Multiple Choice Identify the choice that best completes the statement or answers the question. 1) Which of the following is true of integral membrane proteins? A) They

More information

Signal Transduction Pathways

Signal Transduction Pathways Signal Transduction Pathways If it helps, think of signal transduction pathways like what happens when you get a text message: Reception = Your phone vibrates or dings. Transduction = You unlock the phone

More information

CHAPTER 7: CELL CELL INTERACTIONS

CHAPTER 7: CELL CELL INTERACTIONS CHAPTER 7: CELL CELL INTERACTIONS CHAPTER SYNOPSIS Cells of multicellular organisms must communicate with one another so that they behave as a coordinated group of cells rather than just a bunch of independent

More information

Membrane associated receptor transfers the information. Second messengers relay information

Membrane associated receptor transfers the information. Second messengers relay information Membrane associated receptor transfers the information Most signals are polar and large Few of the signals are nonpolar Receptors are intrinsic membrane proteins Extracellular and intracellular domains

More information

BIOL1040 Study Guide Sample

BIOL1040 Study Guide Sample BIOL1040 Study Guide Sample Introduction: BIOL1040 is perhaps one of the hardest first year subjects due to both the 85% final exam and the amount of content involved. However it is conquerable and these

More information

Three stages of the Signal- Transduction Pathway

Three stages of the Signal- Transduction Pathway Typical Signal Transduction Pathway Typical Signal Transduction Pathway Endocrine & Cell Communication Part III: Hormonal Communication Enduring Understanding 3.D Cells communicate by generating, transmitting

More information

Ayman Mesleh & Leen Alnemrawi. Bayan Abusheikha. Faisal

Ayman Mesleh & Leen Alnemrawi. Bayan Abusheikha. Faisal 24 Ayman Mesleh & Leen Alnemrawi Bayan Abusheikha Faisal We were talking last time about receptors for lipid soluble hormones.the general mechanism of receptors for lipid soluble hormones: 1. Receptors

More information

Regulation of cell function by intracellular signaling

Regulation of cell function by intracellular signaling Regulation of cell function by intracellular signaling Objectives: Regulation principle Allosteric and covalent mechanisms, Popular second messengers, Protein kinases, Kinase cascade and interaction. regulation

More information

UNIT 3: Signal transduction. Prof K Syed Department of Biochemistry & Microbiology University of Zululand Room no. 247

UNIT 3: Signal transduction. Prof K Syed Department of Biochemistry & Microbiology University of Zululand Room no. 247 UNIT 3: Signal transduction Prof K Syed Department of Biochemistry & Microbiology University of Zululand Room no. 247 SyedK@unizulu.ac.za Topics Signal transduction Terminology G-protein signaling pathway

More information

The Tissue Engineer s Toolkit

The Tissue Engineer s Toolkit The Tissue Engineer s Toolkit Stimuli Detection and Response Ken Webb, Ph. D. Assistant Professor Dept. of Bioengineering Clemson University Environmental Stimulus-Cellular Response Environmental Stimuli

More information

Cell communication. S Cellbiosystems Olli-Pekka Koistinen

Cell communication. S Cellbiosystems Olli-Pekka Koistinen Cell communication S-114.2500 Cellbiosystems Olli-Pekka Koistinen 28.11.2007 Cell communication Cellbiosystems? What does it mean? Large groups of cells interacting with each other? Complex cell communication

More information

Goals and Challenges of Communication. Communication and Signal Transduction. How Do Cells Communicate?

Goals and Challenges of Communication. Communication and Signal Transduction. How Do Cells Communicate? Goals and Challenges of Communication Reaching (only) the correct recipient(s) Imparting correct information Timeliness Causing the desired effect Effective termination Communication and Signal Transduction

More information

HORMONES AND CELL SIGNALLING

HORMONES AND CELL SIGNALLING HORMONES AND CELL SIGNALLING TYPES OF CELL JUNCTIONS CHEMICAL SIGNALS AND MODES OF ACTION Endocrine system produces chemical messages = hormones that are transported from endocrine gland to target cell

More information

Signal Transduction: Information Metabolism. Chem 454: Regulatory Mechanisms in Biochemistry University of Wisconsin-Eau Claire

Signal Transduction: Information Metabolism. Chem 454: Regulatory Mechanisms in Biochemistry University of Wisconsin-Eau Claire Signal Transduction: Information Metabolism Chem 454: Regulatory Mechanisms in Biochemistry University of Wisconsin-Eau Claire Introduction Information Metabolism How cells receive, process and respond

More information

GPCR. General Principles of Cell Signaling G-protein-Coupled Receptors Enzyme-Coupled Receptors Other Signaling Pathways. G-protein-Coupled Receptors

GPCR. General Principles of Cell Signaling G-protein-Coupled Receptors Enzyme-Coupled Receptors Other Signaling Pathways. G-protein-Coupled Receptors G-protein-Coupled Receptors General Principles of Cell Signaling G-protein-Coupled Receptors Enzyme-Coupled Receptors Other Signaling Pathways GPCR G-protein-coupled receptors Figure 15-30 Molecular Biology

More information