Paper 9: ORGANIC CHEMISTRY-III (Reaction Mechanism-2) Module17: Reduction by Metal hydrides Part-II CHEMISTRY

Size: px
Start display at page:

Download "Paper 9: ORGANIC CHEMISTRY-III (Reaction Mechanism-2) Module17: Reduction by Metal hydrides Part-II CHEMISTRY"

Transcription

1 Subject Chemistry Paper No and Title Module No and Title Module Tag 9: ORGANIC -III (Reaction Mechanism-2) 17: Reduction by Metal hydrides Part-1I CHE_P9_M17

2 Table of Contents 1. Learning Outcomes 2. Introduction 3. Reduction of unsaturated carbonyl compounds 3.1 Relook on conjugation 3.2 Reduction with NaBH4 3.3 Reduction with DIBAL-H: 4. Reduction of carboxylic acids 4.1 Reductions of carboxylic acids to alcohols 4.2 Reductions of carboxylic acids to aldehydes 5. Reduction of Carboxylic acids derivatives 5.1 Reduction of carboxylic Esters to alcohols 5.2 Conversion of carboxylic acid derivatives to aldehydes 5.3 Reduction of acid amides to amines 6. Reduction of unsaturated carboxylic acids and esters 7. The reduction of Nitriles 7.1 Reduction of Nitriles to Amines 7.2 Reduction of Nitriles to Aldehydes 8. Reduction of unsaturated nitriles 9. Summary

3 1. Learning Outcomes After studying this module, you shall be able to Understand the hydride reduction on conjugated carbonyl compounds Comprehend the hydride reduction of carboxylic acids and derivatives Understand the hydride reduction of nitriles and unsaturated nitriles Apply the reduction using different hydrides on combinations of functional groups present in same compound. 2. Introduction Reduction is an invaluable process and can be used to remove functionality from a molecule and also for introducing stereocenters. In the previous module, we have studied that the reduction of carbonyl compounds to alcohols by metal hydrides involves the nucleophilic addition of hydride ion to the carbonyl group. The most common metal hydrides are lithium aluminium hydride (LiAlH4) and sodium borohydride (NaBH4). Unsaturation brings more chemistry to life. Conjugated double bonds have different properties from isolated double bonds, both physically and chemically. What will happen if there is unsaturation in the molecules bearing the carbon-hetero atom multiple bond? Will the reduction happen similarly or take some different course? In this module, we shall continue the study of reduction by hydrides on other groups like carboxylic acids and derivatives and nitriles and also see how the presence of conjugated double bonds affect the reduction. 3. Reduction of Unsaturated carbonyl compounds 3.1 Relook on conjugation You are already aware that the stability of conjugated dienes is higher than the nonconjugated dienes due to delocalization of charge through resonance. Let us understand how the presence of conjugation changes the reactivity of carbonyl compounds towards reduction by metal hydrides.

4 A carbonyl group shows nucleophilic addition reactions at carbonyl carbon. But look at the following examples A and B, they are the products of addition, not to the carbonyl group, but to the C=C bond. This is known as conjugate addition. Conjugate addition or direct addition to the carbonyl group? When do nucleophiles undergo conjugate addition (also called 1,4-addition ) and when do they add directly to the carbonyl group ( 1,2-addition )? This depends on the following factors: conditions of the reaction nature of the α,β-unsaturated carbonyl compound type of the nucleophile Reduction of α,β-unsaturated carbonyl derivatives poses a potential problem due to possibilities of 1,2 as well as 1,4 addition. Reduction with LiAlH4: Reduction of benzalacetone (10) can lead to either the allylic alcohol (11) via normal 1,2-addition of hydride to the carbonyl, or to the saturated alcohol (12) via 1,4-reduction (delivery of hydride to the alkenyl carbon). 3.2 Reduction with NaBH4: Sodium borohydride reduces α,β -unsaturated aldehydes and ketones to saturated alcohols.

5 The borohydride has reduced not only the carbonyl group but the double bond as well. In fact, the double bond is reduced first in a conjugate addition, followed by addition to the carbonyl group. 3.3 Reduction with DIBAL-H: Conjugated carbonyl compounds are reduced to allylic alcohols in the presence of diisobutylaluminum hydride (DIBAL-H) or sodium borohydride and cerium chloride. 4. Reduction of carboxylic Acids 4.1 Reduction of Carboxylic Acids to alcohols Carboxylic acids are easily reduced to primary alcohols by LiAlH4. The reaction goes via the intermediate stage of aldehyde, but does not stop at the aldehyde stage. The conditions required are particularly mild and the reduction proceeds quite well at normal temperature.

6 Example: NaBH4 and catalytic hydrogenation (i.e.h2/pt or H2/Ni) are ineffective for the reduction of carboxylic acid. The NaBH4 being a weak nucleophilic reagent, cannot attack the carbon of carboxylic groups as compared to the carbonyl group. Other hydrides have also been used to reduce carboxylic acid to alcohol: A combination of NaBH4 and an arylboronic acid have been used. E.g., Benzyltriethylammoniumborohydride in dichloromethane converts carboxylic acids to the alcohol. Borane is mainly good for carboxyl groups and allows selective reduction of carboxylic group in the presence of other groups (the reaction with double bonds takes place at about the same rate in ether solvents). Borane also reduces carboxylic acid salts. 4.2 Reduction of Carboxylic Acids to aldehydes Reduction of carboxylic acids to aldehyde stage is difficult because aldehydes are more reactive than carboxylic acids towards most reducing agents. Almost any reagent which converts acids to aldehydes also reduces aldehydes to primary alcohols. This can be achieved if we take weak reducing agent, e.g., lithium aluminium-tri(tbutoxy)hydride ( LiAl[OC(CH3)3]3H). It is weaker reducing agent as compared to lithium aluminium hydride. Acid chlorides are strong activators for the nucleophilic addition (due to I effect of Cl). Hence, it converts acid chlorides to aldehydes without further

7 reduction to alcohol. In these conditions, the aldehyde reduces more slowly and can be easily isolated. Mechanism Acid reduction to an aldehyde is a two-step process. Let us understand this with the help of following example: The first step is the conversion of the acid to the acid chloride The second step is the reduction of acid chloride using lithium aluminium-tri(tbutoxy)hydride into the corresponding aldehyde. 5. Reduction of carboxylic acid derivatives LiAlH4 reduces all type of carbonyl groups viz., in aldehyde, ketones, esters, carboxylic acids and amides. Each of these reductions gives an alcohol as the product, except the reduction of amide with LiAlH4, which gives an amine. The decreasing order of reactivity is as follows:

8 Note that the carboxylic acid and acid derivatives are not reduced by NaBH4. This is because the acid and acid derivatives are less electron deficient at the electrophilic carbon due to electron donating +M effect of the OR or NR2 or OH groups. 5.1 Reduction of Carboxylic Esters to Alcohols Lithium aluminum hydride reduces carboxylic esters to give two equivalents of alcohol. The reaction is of wide scope and has been used to reduce many esters. For example, Lactones yield diols. Among the reagents lithium triethylborohydride, LiAlH(Ot-Bu)3, and BH3-SMe2 in refluxing THF give the same product. Phenolic esters containing electron-withdrawing groups are reduced by NaBH4, but the reaction with other esters is slow therefore NaBH4 cannot be used as reagent for such reactions. Carboxylic esters can also be reduced to alcohols by hydrogenation over copper chromite catalysts, although high pressures and temperatures are required. Ester functions generally survive low-pressure catalytic hydrogenations. Before the LiAlH4 was discovered as the reducing agent for esters, the reaction was done using sodium in ethanol, a method known as the Bouveault Blanc procedure. This procedure is still sometimes used where selectivity is necessary.

9 5.2 Conversion of carboxylic acid derivatives to aldehydes There are few methods for reduction of carboxylic acid derivatives to form aldehydes; these methods are useful to change the properties of LAH such as reactivity and stability to allow partial reductions. For example, alkoxy or alkyl groups can be attached to aluminum in order to modifies the reactivity of the reagent as a hydride donor and also increases its solubility in nonpolar solvents. Two such reagents are Lithium tri-tertbutoxyaluminohydride (LtBAH), LiAl[OC(CH3)3]3H : Soluble in THF, diglyme & ether; Diisobutylaluminum hydride (DIBAH), [(CH3)2CHCH2]2AlH : Soluble in organic solvents such as toluene, THF & ether. Each of them has one equivalent of hydride only. Of these, Di-isobutyl aluminium hydride (i-bu2alh)2 (DIBAL-H or DIBAL ) is most commonly used for reducing carboxylic acid esters to aldehydes. This on the contrary, cannot be done using lithium aluminumhydride which give rise to alcohols. This is because, DIBAL is a weaker reducing agent and hence the reaction stops at aldehyde stage and no further reduction to alcohol take place. Example: Another example: Examples of reduction of acid chloride and acid amides to aldehydes:

10 5.3 Reduction of acid amides to Amines Acid amides do not give alcohols on hydride reduction, in contrast to other acid derivatives. Reaction of an amide with LiAlH4 initially gives an intermediate iminium salt, which is further reduced to an amine as the final product. Oxygen is completely removed from the molecule. For example, 6. Reduction of unsaturated Carboxylic Acids and esters For unsaturated esters, conjugate addition occurs. There is also a significant role of steric hindrance. If the β carbon of a carbonyl compound is more hindered, the nucleophile is less likely to attack there. But there are a number of nucleophiles that can undergo conjugate addition even at such highly substituted carbon atoms.. When lithium aluminium hydride is used as the source of H to attack as nucleophile on esters, the esters get reduced to alcohols. The reduction of α, β-unsaturated esters with DIBAL in polar solvents result in formation of allylic alcohols. E.g.,

11 7. The Reduction of Nitriles 7.1 Reduction of Nitriles to Amines LiAlH4 is a very strong reducing agent and is used to reduce nitrile. In the case of nitriles, the carbon of the carbon nitrogen triple bond acts as electrophilic center where the hydride is attached because the nitrogen being electronegative, the carbon is made electron deficient. Here, the hydride adds twice to the nitrile due to the triple bond. During the reaction, the aluminum complex basically acts as a giant proton i.e. a Lewis acid.

12 7.2 Reduction of Nitriles to aldehydes Diisobutylaluminium Hydride (DIBAL-H or DIBAL) can be used to reduce only one "oxidation state" i.e., from carbon nitrogen triple bond (-CN) to carbon-nitrogen double bond (-CH=N-). The later on hydrolysis leads to aldehyde formation. Hence DIBAL reduces nitriles to aldehydes. Notice that The mechanism for this is different because it is a Lewis acid. Hence it is required to coordinate with a Lewis base first before activating, followed by which the hydride is intramolecularly delivered. Unlike the other metal hydrides it is an electrophilic reagent. Another example: 8. Reduction of unsaturated nitriles Lithium aluminum hydride reduces nitriles to primary amines without affecting the alkene double bond in the unsaturated or conjugated nitriles. E.g.,

13 (I) (II) (III) (IV) Here, electrophilic nitrile carbon in (I) when attacked by hydride generates intermediate salt of an imine (II). Subsequently, the second hydride attacks the carbon via shift from aluminium to form metal amine salt (III). This metal amine salt on hydrolysis produces primary amine (IV). In reduction of carboxylic acid derivatives, sodium borohydride reacts with acyl chlorides and anhydrides in the presence of hydroxylic solvents such as water and alcohols. But at low temperatures they are sparingly soluble in nonpolar solvents. Also, sodium borohydride (NaBH4) is less reactive than LiAlH4, it cannot reduce amides and acids and slowly reduces esters. 9. Comparison Comparison of efficiency of various reducing agents to reduce the different functional groups

14 10. Summary LiAlH4 is a versatile reducing agent and reduces carbonyl compounds such as aldehydes and ketones, carboxylic acids, acid chlorides, acid anhydrides, esters, amides and nitriles. Reduction of α,β-unsaturated carbonyl derivatives poses a potential problem due to possibilities of 1,2 as well as 1,4 addition. Reduction of carboxylic acids and derivatives to alcohols can be achieved very easily by using LiAlH4, but for stopping at aldehyde stage other milder hydride reagent like DIBAL-H is used. Amides and nitriles on reduction with LiAlH4 produce amines.

Alehydes, Ketones and Carboxylic Acid

Alehydes, Ketones and Carboxylic Acid Alehydes, Ketones and Carboxylic Acid Aldehydes and Ketones: Introduction Aldedydes and ketones are organic compounds that contain carbon-oxygen doule bonds. The general formula for aldehydes is O C R

More information

Carboxylic Acid Derivatives Reading Study Problems Key Concepts and Skills Lecture Topics: Structures and reactivity of carboxylic acid derivatives

Carboxylic Acid Derivatives Reading Study Problems Key Concepts and Skills Lecture Topics: Structures and reactivity of carboxylic acid derivatives Carboxylic Acid Derivatives Reading: Wade chapter 21, sections 21-1- 21-16 Study Problems: 21-45, 21-46, 21-48, 21-49, 21-50, 21-53, 21-56, 21-58, 21-63 Key Concepts and Skills: Interpret the spectra of

More information

Chapter 10. Carboxylic Acids and Derivatives. Naming Carboxylic Acids and Derivatives. Carboxylic Acids: RCOOH (RCO 2 H)

Chapter 10. Carboxylic Acids and Derivatives. Naming Carboxylic Acids and Derivatives. Carboxylic Acids: RCOOH (RCO 2 H) Chapter 10 Carboxylic Acids and Derivatives Naming Carboxylic Acids and Derivatives Carboxylic Acids: RCH (RC 2 H) The functional group of a carboxylic acid is a carboxyl group (carbonyl & hydroxyl group)

More information

Esters of Carboxylic Acids These are derivatives of carboxylic acids where the hydroxyl group is replaced by an alkoxy group.

Esters of Carboxylic Acids These are derivatives of carboxylic acids where the hydroxyl group is replaced by an alkoxy group. Carboxylic acid Derivatives Carboxylic acid derivatives are described as compounds that can be converted to carboxylic acids via simple acidic or basic hydrolysis. The most important acid derivatives are

More information

Carboxylic Acids and their Derivatives I

Carboxylic Acids and their Derivatives I 2302272 Org Chem II Part I Lecture 5 Carboxylic Acids and their Derivatives I Instructor: Dr. Tanatorn Khotavivattana E-mail: tanatorn.k@chula.ac.th Recommended Textbook: Chapter 20 in Organic Chemistry,

More information

Loudon Chapter 21 Review: Carboxylic Acid Derivatives Jacquie Richardson, CU Boulder Last updated 3/20/2018

Loudon Chapter 21 Review: Carboxylic Acid Derivatives Jacquie Richardson, CU Boulder Last updated 3/20/2018 Loudon Chapter 21 eview: Carboxylic Acid Derivatives Jacquie ichardson, CU Boulder Last updated 3/20/2018 We learned how to make a lot of carboxylic acid derivatives from acids in Ch. 20, but now we ll

More information

Lecture 20. Herman Emil Fischer Nobel Prize 1902 Sugars, Esters and Purines. April 4, Chemistry 328N

Lecture 20. Herman Emil Fischer Nobel Prize 1902 Sugars, Esters and Purines. April 4, Chemistry 328N Lecture 20 April 4, 2019 Herman Emil Fischer 1852-1919 Nobel Prize 1902 Sugars, Esters and Purines Acid-catalyzed Esterification (also called Fischer esterification) CH CH 3 H H H 2 CCH 3 Please study

More information

Fundamentals of Organic Chemistry CHEM 109 For Students of Health Colleges Credit hrs.: (2+1)

Fundamentals of Organic Chemistry CHEM 109 For Students of Health Colleges Credit hrs.: (2+1) Fundamentals of Organic Chemistry CHEM 109 For Students of Health Colleges Credit hrs.: (2+1) King Saud University College of Science, Chemistry Department CHEM 109 CHAPTER 7. CARBOXYLIC ACIDS AND THEIR

More information

Chapter 20: Carboxylic Acids and Nitriles شیمی آلی 2

Chapter 20: Carboxylic Acids and Nitriles شیمی آلی 2 Chapter 20: Carboxylic Acids and Nitriles شیمی آلی 2 Dr M. Mehrdad University of Guilan, Department of Chemistry, Rasht, Iran m-mehrdad@guilan.ac.ir Based on McMurry s Organic Chemistry, 7 th edition The

More information

Carboxylic Acids. The Importance of Carboxylic Acids (RCO 2 H)

Carboxylic Acids. The Importance of Carboxylic Acids (RCO 2 H) Carboxylic Acids The Importance of Carboxylic Acids (RCO 2 H) Starting materials for acyl derivatives (esters, amides, and acid chlorides) Abundant in nature from oxidation of aldehydes and alcohols in

More information

10. CARBOXYLIC ACIDS AND THEIR DERIVATIVES 10.1 Nomenclature of Carboxylic Acids 10.2 Physical Properties of Carboxylic Acids 10.

10. CARBOXYLIC ACIDS AND THEIR DERIVATIVES 10.1 Nomenclature of Carboxylic Acids 10.2 Physical Properties of Carboxylic Acids 10. BOOKS 1) Organic Chemistry Structure and Function, K. Peter C. Vollhardt, Neil Schore, 6th Edition 2) Organic Chemistry, T. W. Graham Solomons, Craig B. Fryhle 3) Organic Chemistry: A Short Course, H.

More information

CARBOXYLIC ACIDS AND THEIR DERIVATIVES: NUCLEOPHILIC ADDITION-ELIMINATION AT THE ACYL CARBON

CARBOXYLIC ACIDS AND THEIR DERIVATIVES: NUCLEOPHILIC ADDITION-ELIMINATION AT THE ACYL CARBON CARBOXYLIC ACIDS AND THEIR DERIVATIVES: NUCLEOPHILIC ADDITION-ELIMINATION AT THE ACYL CARBON RED ANT WAS SOURCE OF FORMIC ACID (RCOOH) Lecture 8 ORGANIC CHEMISTRY 2 Introduction The carboxyl group (-CO

More information

Ch 21 Carboxylic Acid Derivatives and Nu Acyl Subst n

Ch 21 Carboxylic Acid Derivatives and Nu Acyl Subst n Ch 21 Carboxylic Acid Derivatives and Nu Acyl Subst n Acid Derivatives and their Names - Acid Halides have a Cl or Br instead of OH. Replace ic acid with yl halide, such as propionyl chloride (a common

More information

Chapter 19: Carboxylic Acid Derivatives: Nucleophilic Acyl Substitution 19.1: Nomenclature of Carboxylic Acid Derivatives (please read)

Chapter 19: Carboxylic Acid Derivatives: Nucleophilic Acyl Substitution 19.1: Nomenclature of Carboxylic Acid Derivatives (please read) problem 18.33b - = 128.7 123.9 179.7 146.8 147.4 45.3 18.0 161 hapter 19: arboxylic Acid Derivatives: ucleophilic Acyl Substitution 19.1: omenclature of arboxylic Acid Derivatives (please read) carboxylic

More information

Chapter 18. Carboxylic Acids and Their Derivatives. Nucleophilic Addition-Elimination at the Acyl Carbon

Chapter 18. Carboxylic Acids and Their Derivatives. Nucleophilic Addition-Elimination at the Acyl Carbon Chapter 18 Carboxylic Acids and Their Derivatives. Nucleophilic Addition-Elimination at the Acyl Carbon Carboxylic Acids Organic compounds characterized by their acidity Contains COOH group (must be at

More information

Chapter 20 Carboxylic Acids. Introduction

Chapter 20 Carboxylic Acids. Introduction hapter 20 arboxylic Acids Introduction arbonyl (-=) and hydroxyl (-H) on the same carbon is carboxyl group. arboxyl group is usually written -H or 2 H. Aliphatic acids have an alkyl group bonded to -H.

More information

Identifying Functional Groups. (Chapter 2 in the Klein text)

Identifying Functional Groups. (Chapter 2 in the Klein text) Identifying Functional Groups (Chapter 2 in the Klein text) Basic Ideas A functional group is a substructure within a molecule that will have the potential to undergo chemical change, i.e. the group has

More information

Carboxylic Acids and Nitriles. Chapters 20, 21 Organic Chemistry, 8th Edition John McMurry

Carboxylic Acids and Nitriles. Chapters 20, 21 Organic Chemistry, 8th Edition John McMurry Carboxylic Acids and Nitriles Chapters 20, 21 Organic Chemistry, 8th Edition John McMurry 1 Carboxylic Acid Derivatives 2 Carboxylic Acid Derivatives nitrile R = CH 3 acetonitrile 3 Structure and Bonding

More information

Chapter 18 Carboxylic Acids and Their Derivatives. Nucleophilic Addition- Elimination at the Acyl Carbon

Chapter 18 Carboxylic Acids and Their Derivatives. Nucleophilic Addition- Elimination at the Acyl Carbon Chapter 18 Carboxylic Acids and Their Derivatives. Nucleophilic Addition- Elimination at the Acyl Carbon Introduction The carboxyl group (-CO 2 H) is the parent group of a family of compounds called acyl

More information

Functional Derivatives of Carboxylic Acids

Functional Derivatives of Carboxylic Acids Functional Derivatives of Carboxylic Acids Derivatives of Carboxylic Acids are compounds in which the OH of a carboxyl group has been replaced by CI, OOCR, NH2, or OR'to convert acid chlorides,anhydrides,

More information

1/3/2011. Chapter 17 Carboxylic Acids and Their Derivatives. Nucleophilic Addition- Elimination at the Acyl Carbon

1/3/2011. Chapter 17 Carboxylic Acids and Their Derivatives. Nucleophilic Addition- Elimination at the Acyl Carbon Introduction The carboxyl group (-CO 2 H) is the parent group of a family of compounds called acyl compounds or carboxylic acid derivatives Chapter 17 Carboxylic Acids and Their Derivatives. Nucleophilic

More information

Carboxylic Acid Derivatives: Nucleophilic Acyl Substitution

Carboxylic Acid Derivatives: Nucleophilic Acyl Substitution Carboxylic Acid Derivatives: Nucleophilic Acyl Substitution Carboxylic Acid Derivatives Carboxylic acid derivatives. Acyl chloride Acid anhydride Ester Amide Nucleophilic acyl substitution 19.1 Nomenclature

More information

Physical properties: C L = L. Cl, NH 2, OCH 3, OH, OCR O O O NH 2 CH 3 N(CH 3 ) 2. Sol. in H 2 O

Physical properties: C L = L. Cl, NH 2, OCH 3, OH, OCR O O O NH 2 CH 3 N(CH 3 ) 2. Sol. in H 2 O Lecture Notes hem 51 S. King hapter 22 arboxylic Acids and their Derivatives: Nucleophilic Acyl Substitution I. Structure and Physical Properties: Type 2 carbonyl compounds (carboxylic acids and derivatives)

More information

Carboxylic Acids and Carboxylic Acid Deriva3ves. Nucleophilic Acyl Subs0tu0on (Addi0on- Elimina0on)

Carboxylic Acids and Carboxylic Acid Deriva3ves. Nucleophilic Acyl Subs0tu0on (Addi0on- Elimina0on) Carboxylic Acids and Carboxylic Acid Deriva3ves Nucleophilic Acyl Subs0tu0on (Addi0on- Elimina0on) 1 Carboxylic Compounds Acyl group bonded to X, an electronega3ve atom or leaving group Includes: X = halide

More information

13. Carboxylic Acids (text )

13. Carboxylic Acids (text ) 2009, Department of Chemistry, The University of Western ntario 13.1 13. Carboxylic Acids (text 14.1 14.9) A. Structure and Nomenclature The carboxylic acid functional group results from the connection

More information

Carboxylic Acid Derivatives: Nucleophilic Acyl Substitution Reactions

Carboxylic Acid Derivatives: Nucleophilic Acyl Substitution Reactions Carboxylic Acid Derivatives: Nucleophilic Acyl Substitution Reactions Dr. Ayad Kareem Department of Pharmaceutical Chemistry, Collage of Pharmacy Al-Mustansiriyah University (2017-2018). Closely related

More information

Chem 263 Nov 26, 2013 O R' alkyl. acid. ethyl. acetic acid. ethyl acetate ethyl ethanoate

Chem 263 Nov 26, 2013 O R' alkyl. acid. ethyl. acetic acid. ethyl acetate ethyl ethanoate hem 263 ov 26, 2013 arboxylic Acids and Derivatives omenclature Esters Systematic names for esters are derived by first giving the name of the alkyl group attached to the oxygen, and then identifying the

More information

Chapter 20: Carboxylic Acid Derivatives: Nucleophilic Acyl Substitution

Chapter 20: Carboxylic Acid Derivatives: Nucleophilic Acyl Substitution hapter 20: arboxylic Acid Derivatives: ucleophilic Acyl Substitution 20.1: omenclature of arboxylic Acid Derivatives (please read) carboxylic acid -oic acid ' ester -oate ' lactone cyclic ester l acid

More information

Chapters 13/14: Carboxylic Acids and Carboxylic Acid Derivatives

Chapters 13/14: Carboxylic Acids and Carboxylic Acid Derivatives CHM 201 (Elements of Organic Chemistry) Dr. Virgil Lee Cal Poly Pomona Chapters 13/14: Carboxylic Acids and Carboxylic Acid Derivatives resonance stabilized OH group donates electron density to carbonyl

More information

R O R' Acid anhydride. Acid halide. Carboxylic acid. Ester O O O O. Nitrile Acyl phosphate Thioester. Amide

R O R' Acid anhydride. Acid halide. Carboxylic acid. Ester O O O O. Nitrile Acyl phosphate Thioester. Amide Chapter 10. Carboxylic Acids and Derivatives Carboxylic acid X Acid halide ' Acid anhydride Ester ' P N 2 C N S' Amide Nitrile Acyl phosphate Thioester The common structural feature of all these compounds

More information

Carboxylic Acids and Their Derivatives. Chapter 17. Carboxylic Acids and Their Derivatives

Carboxylic Acids and Their Derivatives. Chapter 17. Carboxylic Acids and Their Derivatives Chapter 17 Carboxylic Acids and Their Derivatives Chapter 17 suggested problems: 36, 38, 40, 42, 44, 52, 54, 56, 62, 64, 66, 70 Class Notes I. Carboxylic acids (organic acids) and their derivatives A.

More information

REACTIONS OF CARBOXYLIC ACID DERIVATIVES WITH NUCLEOPHILES A. Reactions of Acid Chlorides with Nucleophiles

REACTIONS OF CARBOXYLIC ACID DERIVATIVES WITH NUCLEOPHILES A. Reactions of Acid Chlorides with Nucleophiles 1016 CHAPTER 1 THE CHEMITRY F CARBXYLIC ACID DERIVATIVE 1.8 REACTI F CARBXYLIC ACID DERIVATIVE WITH UCLEPHILE ection 1.7 showed that all carboxylic acid derivatives hydrolyze to carboxylic acids. Water

More information

3/27/2011. Chapter 8 Reactions of Alkenes and Alkynes. Alkene Addition Reactions. 8.1 Preparing Alkenes: A Preview of Elimination Reactions

3/27/2011. Chapter 8 Reactions of Alkenes and Alkynes. Alkene Addition Reactions. 8.1 Preparing Alkenes: A Preview of Elimination Reactions John E. McMurry http://www.cengage.com/chemistry/mcmurry Chapter 8 Reactions of Alkenes and Alkynes Richard Morrison University of Georgia, Athens Alkene Addition Reactions Alkene addition reactions Addition

More information

Chapter 15 Alcohols, Diols, and Thiols

Chapter 15 Alcohols, Diols, and Thiols Chapter 15 Alcohols, Diols, and Thiols 15.1 Sources of Alcohols Methanol Methanol is an industrial chemical end uses: solvent, antifreeze, fuel principal use: preparation of formaldehyde Methanol Methanol

More information

DERIVATIVES OF CARBOXYLIC ACIDS

DERIVATIVES OF CARBOXYLIC ACIDS 13 Rl RH RNH 2 RR RR DERIVATIVES F ARBXYLI AIDS HAPTER SUMMARY 13.1 Structure and Nomenclature of arboxylic Acid Derivatives A. Structure arboxylic acids and their derivatives can be expressed as variations

More information

Chapter 21 The Chemistry of Carboxylic Acid Deriva7ves

Chapter 21 The Chemistry of Carboxylic Acid Deriva7ves Organic Chemistry, 5th ed. Marc Loudon Chapter 21 The Chemistry of Carboxylic Acid Deriva7ves Eric J. Kantorowski California Polytechnic State University San Luis Obispo, CA Chapter 21 Overview 21.1 Nomenclature

More information

Carboxylic Acid Derivatives

Carboxylic Acid Derivatives arboxylic Acid Derivatives The most important derivatives of carboxylic acids are l " ' ' acid halide acid anhydride an ester an amide Although not direct derivatives, nitriles, -, are related to carboxylic

More information

Chapter 15. Alcohols, Diols, and Thiols. B. Sources: there are two principal sources of simple aliphatic alcohols

Chapter 15. Alcohols, Diols, and Thiols. B. Sources: there are two principal sources of simple aliphatic alcohols Chapter 15 Alcohols, Diols, and Thiols Chapter 15 suggested problems: 17, 19, 24, 28, 37, 39 I. Introduction A. The relevance of alcohols (from M&B: 497): "If an organic chemist were allowed to choose

More information

This is an addition reaction. (Other types of reaction have been substitution and elimination). Addition reactions are typically exothermic.

This is an addition reaction. (Other types of reaction have been substitution and elimination). Addition reactions are typically exothermic. Reactions of Alkenes Since bonds are stronger than bonds, double bonds tend to react to convert the double bond into bonds + X-Y X Y This is an addition reaction. (Other types of reaction have been substitution

More information

ORGANIC SYNTHESIS VIA ENOLATES

ORGANIC SYNTHESIS VIA ENOLATES 1 ORGANIC SYNTHESIS VIA ENOLATES Aldehydes and ketones undergo nucleophilic addition reaction at the carbonyl group. Further, α-hydrogen containing compounds are acidic in nature. In addition to carbonyl

More information

Diverse Reactions of Alkenes

Diverse Reactions of Alkenes Chapter 8- Alkenes: Reactions and Synthesis Ashley Piekarski, Ph.D. Diverse Reactions of Alkenes Alkenes react with many electrophiles to give useful products by addiaon (ocen through special reagents)

More information

Carboxylic Acids and Esters

Carboxylic Acids and Esters arboxylic Acids and Esters N Goalby hemrevise.org - absorption IR Spectrum for arboxylic acids Butanoic acid 1 Solubility in Water The smaller carboxylic (up to 4) acids dissolve in water in all proportions

More information

H O. rapidly reduces. They dissolve. because they can hydrogen bond to the water molecules.

H O. rapidly reduces. They dissolve. because they can hydrogen bond to the water molecules. 3.9 arboxylic Acids and Derivatives Naming arboxylic acids These have the ending oic acid but no number is necessary for the acid group as it must always be at the end of the chain. The numbering always

More information

Esterification. Preparation of β-d-glucose pentaacetate. Dr. Zerong Wang at UHCL. Table of contents

Esterification. Preparation of β-d-glucose pentaacetate. Dr. Zerong Wang at UHCL. Table of contents Esterification Preparation of β-d-glucose pentaacetate Table of contents Ester eaction with carboxylic acids eaction with esters: transesterification eaction with acid anhydrides eaction with acid halides

More information

Lecture Notes Chemistry Mukund P. Sibi Lecture 31 Reactions at the Alpha-Carbon of Carbonyl Compounds

Lecture Notes Chemistry Mukund P. Sibi Lecture 31 Reactions at the Alpha-Carbon of Carbonyl Compounds Lecture Notes hemistry 342-2008 Mukund P. Sibi eactions at the Alpha-arbon of arbonyl ompounds Enolates are nucleophilic and undergo reaction with electrophiles. For example, one can do halogenation under

More information

Oregon State University

Oregon State University H 223 Worksheet 9 Notes Oregon State University 1. Draw a primary alcohol and name it. OH 1-propanol Note: A primary alcohol has the form RH 2 OH; a secondary alcohol has the form R 2 H OH; and a tertiary

More information

Carboxylic Acids, Esters and Acyl Chlorides

Carboxylic Acids, Esters and Acyl Chlorides R hemistry A 432 arboxylic Acids, Esters and Acyl hlorides arboxylic Acids, Esters and Acyl hlorides arboxylic acids contain the functional group, attached to an alkyl stem. They are widely found in nature,

More information

EXPERIMENT 8 (Organic Chemistry II) Carboxylic Acids Reactions and Derivatives

EXPERIMENT 8 (Organic Chemistry II) Carboxylic Acids Reactions and Derivatives EXPERIMENT 8 (rganic Chemistry II) Carboxylic Acids Reactions and Derivatives Pahlavan/Cherif Materials Medium test tubes (6) Test tube rack Beakers (50, 150, 400 ml) Ice Hot plate Graduated cylinders

More information

Ch. 21: CARBOXYLIC ACID DERIVATIVES AND NUCLEOPHILIC ACYL SUBSTITUTION REACTIONS Nomenclature of Carboxylic Acid Derivatives:

Ch. 21: CARBOXYLIC ACID DERIVATIVES AND NUCLEOPHILIC ACYL SUBSTITUTION REACTIONS Nomenclature of Carboxylic Acid Derivatives: h. 21: ABXYLI AID DEIVATIVES AND NULEPILI AYL SUBSTITUTIN EATINS Nomenclature of arboxylic Acid Derivatives: arboxylic acids "-oic acid" Examples: 3 2 Propanoic acid yclohexanecarboxylic acid 1 arboxylate

More information

Carboxylic Acids and Their Derivatives

Carboxylic Acids and Their Derivatives arboxylic Acids and Their Derivatives Families ontaining the arbonyl Group Family Y Z Y Z aldehyde or ketone carboxylic acid or -- ester or -- acid halide or -F,-l,-Br,-I acid anhydride or amide or -N

More information

Organic Chemistry. Chapter 23. Hill, Petrucci, McCreary & Perry 4 th. Ed. Alkane to Substituent Group methane CH 4 methyl CH 3

Organic Chemistry. Chapter 23. Hill, Petrucci, McCreary & Perry 4 th. Ed. Alkane to Substituent Group methane CH 4 methyl CH 3 hapter 23 rganic hemistry ill, Petrucci, Mcreary & Perry 4 th Ed. Alkane to Substituent Group methane 4 methyl 3 ethane 3 3 ethyl 3 2 propane 3 2 3 propyl 3 2 2 isopropyl ( 3 ) 2 or 3 3 butyl 3 2 2 2 butane

More information

Carboxylic acid derivatives

Carboxylic acid derivatives Carboxylic acid derivatives Nucleophilic acyl substitution reaction Among the most important reactions of carboxylic acids are those that convert the carboxyl group into other acid derivatives by a nucleophilic

More information

Chemistry 1120 Exam 1 Study Guide

Chemistry 1120 Exam 1 Study Guide Chemistry 1120 Exam 1 Study Guide Chapter 3 3.1 a) Know that alcohols contain a hydroxy (-OH) group. Determine the IUPAC name for a given structure by determining the longest chain. b) Determine the number

More information

Alkenes are very useful in syntheses -they allow us to convert into many of the other types of functional groups.

Alkenes are very useful in syntheses -they allow us to convert into many of the other types of functional groups. Chapter 7: Alkenes: reactions and synthesis Alkenes are very useful in syntheses -they allow us to convert into many of the other types of functional groups. 7.1 Preparation of alkenes: preview Addition

More information

Chap 7: Alcohols, Phenols, & Thiols

Chap 7: Alcohols, Phenols, & Thiols Chap 7: Alcohols, Phenols, & Thiols Objectives: Chap 7: Alcohols, Phenols, & Thiols (Chapter 7 and pages 283-285 & 296-297, A-1 & A-2 in lab manual) 1. Identify molecules as an alcohol, phenol, glycol,

More information

Alcohol aldehydes cetones and carboxylic acids

Alcohol aldehydes cetones and carboxylic acids Alcohol aldehydes cetones and carboxylic acids 1 Classes of organic compounds 2 Alcohols Alcohols are organic compounds containing hydroxyl (-OH) group attached to C atom. In an alcohol, -OH group replaces

More information

Chem 263 B6 Notes March 30, 2006 Demo-In-Class: O

Chem 263 B6 Notes March 30, 2006 Demo-In-Class: O hem 263 B6 otes March 30, 2006 Demo-In-lass: + 2 carbon dioxide carbonic acid arbon dioxide ( 2 ) is a solid at -78. It is dry ice. When it is added to water, we made carbonated water (as in soda pop).

More information

Infrared Spectroscopy

Infrared Spectroscopy Carbonyl Compounds Cl H H N 2 1810 cm -1 (band 1) 1800 cm -1 1760 cm -1 both present (band 2) 1735 cm -1 1725 cm -1 1715 cm -1 1710 cm -1 1690 cm -1 Inductive Effects esonance Effects stronger bond W W

More information

Alcohols and Ethers. Alcohols

Alcohols and Ethers. Alcohols Alcohols and Ethers A patient does not experience pain during surgery when given a general anesthetic. The earliest anesthetics, used during the Civil War, belonged to a class of chemical compounds called

More information

Nu: - Addition or Nu: - Acyl Substitution?

Nu: - Addition or Nu: - Acyl Substitution? 12. Apply nucleophilic addition and elimination concepts to nucleophilic acyl substution reactions of acids and derivatives (focus on esters and amides) In Class problems: 1. The reactive site of aldehydes,

More information

Name the ester produced when methanol and pentanoic acid react. methyl pentanoate. Name the type of reaction used to make an ester

Name the ester produced when methanol and pentanoic acid react. methyl pentanoate. Name the type of reaction used to make an ester 1 Name the ester produced when methanol and pentanoic acid react methyl pentanoate 2 Name the type of reaction used to make an ester condensation reaction 3 Name the by-product of the reaction used to

More information

Carboxylic Acids. Carboxylic acid groups are always terminal groups with a carbonyl carbon also bound to a hydroxyl For example:

Carboxylic Acids. Carboxylic acid groups are always terminal groups with a carbonyl carbon also bound to a hydroxyl For example: Carboxylic Acids The functional group of carboxylic acids consists of a C=O with -OH bonded to the same carbon. Structure of Carboxyl Carbon is sp 2 hybridized. Bond angles are close to 120. O-H eclipsed

More information

Lecture 19. Nucleophilic Acyl Substitution Y - + X - Y X R C X. April 2, Chemistry 328N

Lecture 19. Nucleophilic Acyl Substitution Y - + X - Y X R C X. April 2, Chemistry 328N Lecture 19 Nucleophilic Acyl Substitution X Y - - Y X X - Y April 2, 2019 hemistry 328N Acid-catalyzed Esterification (also called Fischer esterification) H H 3 H H H 2 H 3 Please study the mechanism hemistry

More information

where R doesn t have to equal R or R

where R doesn t have to equal R or R hem 263 Nov 24, 2016 arboxylic Acids and Derivatives arboxylic acids are very important compounds in nature and serve as building blocks for preparing related derivatives such as esters and amides. The

More information

Prelab 6: Carboxylic Acids

Prelab 6: Carboxylic Acids The Structure of Carboxylic Acids Prelab 6: Carboxylic Acids Carboxylic acids contain a carboxyl functional group attached to a hydrocarbon (alkyl group) part. Carboxyl groups contain both a carbonyl group,

More information

Chapter 21. Carboxylic Acid Derivatives. and Nucleophilic Acyl Substitution. Reactions. - many carboxylic acid derivatives are known:

Chapter 21. Carboxylic Acid Derivatives. and Nucleophilic Acyl Substitution. Reactions. - many carboxylic acid derivatives are known: hapter 21 arboxylic Acid Derivatives and ucleophilic Acyl Substitution eactions - many carboxylic acid derivatives are known: X ' carboxylic acid acid halide (X = F, l, Br, I) acid anhydride ' 2 ester

More information

ESTERS AND RELATED CARBOXYLIC ACID DERIVATIVES. Jack DeRuiter

ESTERS AND RELATED CARBOXYLIC ACID DERIVATIVES. Jack DeRuiter ESTES AD ELATED ABYLI AID DEIVATIVES I. Structure and Preparation Jack Deuiter Esters are derivatives of carboxylic acids that arise via replacement of the hydroxyl () portion of the acid function with

More information

Bio 100 Serine Proteases 9/26/11

Bio 100 Serine Proteases 9/26/11 Assigned Reading: 4th ed. 6.4.1 The Chymotrypsin Mechanism Involves Acylation And Deacylation Of A Ser Residue p. 213 BOX 20-1 Penicillin and β-lactamase p. 779 6.5.7 Some Enzymes Are Regulated By Proteolytic

More information

IR Spectroscopy Part II

IR Spectroscopy Part II IR Spectroscopy Part II Carbonyl - compounds For simple aldehydes and ketones, the stretching vibration of the carbonyl group is a strong infrared absorption beetwen 1710 and 1740 cm -1. Alkyl substituents

More information

Carbon s unique bonding pattern arises from the hybridization of the electrons.

Carbon s unique bonding pattern arises from the hybridization of the electrons. Unit 8 Neptune, the 8 th planet of our solar system Organic Chemistry Organic: compound containing carbon, excluding oxides and carbonates Carbon is an allotrope, meaning it has different bonding patterns.

More information

1-To know what is protein 2-To identify Types of protein 3- To Know amino acids 4- To be differentiate between essential and nonessential amino acids

1-To know what is protein 2-To identify Types of protein 3- To Know amino acids 4- To be differentiate between essential and nonessential amino acids Amino acids 1-To know what is protein 2-To identify Types of protein 3- To Know amino acids 4- To be differentiate between essential and nonessential amino acids 5-To understand amino acids synthesis Amino

More information

PAPER No. : 16 Bioorganic and biophysical chemistry MODULE No. : 25 Coenzyme-I Coenzyme A, TPP, B12 and biotin

PAPER No. : 16 Bioorganic and biophysical chemistry MODULE No. : 25 Coenzyme-I Coenzyme A, TPP, B12 and biotin Subject Paper No and Title Module No and Title Module Tag 16, Bio organic and Bio physical chemistry 25, Coenzyme-I : Coenzyme A, TPP, B12 and CHE_P16_M25 TABLE OF CONTENTS 1. Learning Outcomes 2. Introduction

More information

6/9/2015. Unit 15: Organic Chemistry Lesson 15.2: Substituted Hydrocarbons & Functional Groups

6/9/2015. Unit 15: Organic Chemistry Lesson 15.2: Substituted Hydrocarbons & Functional Groups 1-chloropropane 2-methylpropane 1-iodobutane Ethanoic Acid Unit 15: Organic Chemistry Lesson 15.2: Substituted Hydrocarbons & Functional Groups 43 It Ain t Just Hydrocarbons There are all sorts of organic

More information

Chapter 16 and GHW#6 Questions. Carboxylic Acids, Esters, and Other Acid Derivatives

Chapter 16 and GHW#6 Questions. Carboxylic Acids, Esters, and Other Acid Derivatives Chapter 16 and GHW#6 Questions Carboxylic Acids, Esters, and Other Acid Derivatives Bonding Characteristics of Carboxylic Acids A carboxylic acid has functional a carboxyl group. A carboxyl group is a

More information

Lecture'11:'February'21,'2013 Reac&ons*of*Deriva&ves*( )

Lecture'11:'February'21,'2013 Reac&ons*of*Deriva&ves*( ) CM'224' 'rganic'chemistry'ii Spring'2013,'Des'Plaines' 'Prof.'Chad'Landrie Vegetable il (C 2 ) 7 (C 2 ) 7 (C 2 ) 7 LL (a triacylglyceride in soybean oil) (1) transesterification ac 3 Biodiesel 3 C 3 C

More information

Carbonyl Chemistry VI + C O C. 1pm In Geology Room 112. Exam is Monday 11am-1pm. Chemistry /06/02

Carbonyl Chemistry VI + C O C. 1pm In Geology Room 112. Exam is Monday 11am-1pm. Chemistry /06/02 arbonyl hemistry VI Ō - + hemistry 391 11/06/02 Exam is Monday 11am-1pm 1pm In Geology Room 112 The Dibasic Acids h - My - Such - hemistry 391 11/06/02 Good- Apple- Pie- Fischer Esterification Esters can

More information

General Chemistry. Ch. 10

General Chemistry. Ch. 10 General Chemistry Ch. 10 Essentials of Organic Chemistry Most biological important molecules are composed of organic compounds. These are mostly produced by biological systems. Organic molecules contain

More information

Radicals. Structure and Stability of Radicals. Radicals are formed from covalent bonds by adding energy in the form of heat (Δ) or light (hν).

Radicals. Structure and Stability of Radicals. Radicals are formed from covalent bonds by adding energy in the form of heat (Δ) or light (hν). Radicals Chapter 15 A small but significant group of reactions involve radical intermediates. A radical is a reactive intermediate with a single unpaired electron, formed by homolysis of a covalent bond.

More information

Topic 4.5 COMPOUNDS CONTAINING THE CARBONYL GROUP. Aldehydes and Ketones Carboxylic Acids and their Salts Esters Acyl Chlorides and Acid Anhydrides

Topic 4.5 COMPOUNDS CONTAINING THE CARBONYL GROUP. Aldehydes and Ketones Carboxylic Acids and their Salts Esters Acyl Chlorides and Acid Anhydrides Topic 4.5 MPUNDS NTAINING TE ARBNYL GRUP Aldehydes and Ketones arboxylic Acids and their Salts Esters Acyl hlorides and Acid Anhydrides ALDEYDES AND KETNES 1. Introduction Aldehydes and ketones are collectively

More information

Polar bodies are either introduced or unmasked, which results in more polar metabolites Phase I reactions can lead either to activation or

Polar bodies are either introduced or unmasked, which results in more polar metabolites Phase I reactions can lead either to activation or Polar bodies are either introduced or unmasked, which results in more polar metabolites Phase I reactions can lead either to activation or inactivation of the drug (i.e. therapeutic effects or toxicity)

More information

For example, monosaccharides such as glucose are polar and soluble in water, whereas lipids are nonpolar and insoluble in water.

For example, monosaccharides such as glucose are polar and soluble in water, whereas lipids are nonpolar and insoluble in water. Biology 4A Laboratory Biologically Important Molecules Objectives Perform tests to detect the presence of carbohydrates, lipids, proteins, and nucleic acids Recognize the importance of a control in a biochemical

More information

Chapter 8 Lecture Reactions of Alkenes

Chapter 8 Lecture Reactions of Alkenes Organic Chemistry, 9 th Edition L. G. Wade, Jr. Chapter 8 Lecture Reactions of Alkenes 2017 Pearson Education, Inc. Catalytic Hydrogenation of Alkenes Hydrogen (H 2 ) can be added across the double bond

More information

MITOCW watch?v=xms9dyhqhi0

MITOCW watch?v=xms9dyhqhi0 MITOCW watch?v=xms9dyhqhi0 The following content is provided under a Creative Commons license. Your support will help MIT OpenCourseWare continue to offer high-quality, educational resources for free.

More information

H 3 C OCH 3 3 C N(CH 3 ) 2 H 3 C H H 3 C CH 3. ketone. pk a = 9 H H. 1,3-keto ester pk a = 11

H 3 C OCH 3 3 C N(CH 3 ) 2 H 3 C H H 3 C CH 3. ketone. pk a = 9 H H. 1,3-keto ester pk a = 11 hapter 21: Ester Enolates 21.1: Ester α ydrogens and Their pk a s. The α-protons of s are less acidic that ketones and aldehydes. Typical pk a s of carbonyl compounds (α-protons): aldehydes 17 ketones

More information

For questions 1-4, match the carbohydrate with its size/functional group name:

For questions 1-4, match the carbohydrate with its size/functional group name: Chemistry 11 Fall 2009 Examination #5 ANSWER KEY For the first portion of this exam, select the best answer choice for the questions below and mark the answers on your scantron. Then answer the free response

More information

Factors to Consider in the Study of Biomolecules

Factors to Consider in the Study of Biomolecules Factors to Consider in the Study of Biomolecules What are the features of the basic building blocks? (ex: monosaccharides, alcohols, fatty acids, amino acids) 1) General structure and functional groups

More information

ORGANIC AND BIOORGANIC CHEMISTRY

ORGANIC AND BIOORGANIC CHEMISTRY P. GERGELY Department os Medical Chemistry Medical and Health Science Center University of Debrecen ORGANIC AND BIOORGANIC CHEMISTRY FÓR MEDICAL STUDENTS THIRD EDITION University of Debrecen Medical and

More information

Chemistry B11 Chapters 14 Amines, aldehydes, ketones and carboxylic acids

Chemistry B11 Chapters 14 Amines, aldehydes, ketones and carboxylic acids Chapters 4 Amines, aldehydes, ketones and carboxylic acids Amines: are derivatives from ammonia ( 3 ). Aliphatic amines: an amine in which nitrogen is bonded only to alkyl group or hydrogens. Aromatic

More information

PAPER No. : 16, Bioorganic and biophysical chemistry MODULE No. : 22, Mechanism of enzyme catalyst reaction (I) Chymotrypsin

PAPER No. : 16, Bioorganic and biophysical chemistry MODULE No. : 22, Mechanism of enzyme catalyst reaction (I) Chymotrypsin Subject Paper No and Title 16 Bio-organic and Biophysical Module No and Title 22 Mechanism of Enzyme Catalyzed reactions I Module Tag CHE_P16_M22 Chymotrypsin TABLE OF CONTENTS 1. Learning outcomes 2.

More information

MahaAbuAjamieh. BahaaNajjar. MamoonAhram

MahaAbuAjamieh. BahaaNajjar. MamoonAhram 7 MahaAbuAjamieh BahaaNajjar MamoonAhram Carbohydrates (saccharides) can be classified into these main categories: 1. Monosaccharides, they are simplesugars (the simplest units), such as glucose, galactose

More information

Chem 263 Dec 1, 2016

Chem 263 Dec 1, 2016 Chem 263 Dec 1, 2016 eactivity of Carboxylic acid Derivatives More eactive S 2 ' ' + a ' 2 - M + Less eactive Example: Acid chloride to anhydride Since an acid chloride is more reactive than an anhydride,

More information

10/29/ Stability of Alkenes. Stability of Alkenes. Stability of Alkenes

10/29/ Stability of Alkenes. Stability of Alkenes. Stability of Alkenes 7.5 Stability of cis and trans isomers Interconversion does not occur spontaneously Cis isomers are less stable than trans isomers because of the steric strain between the two larger substituents on the

More information

REVIEW IN CARBOXYLIC ACIDS AND ITS DERIVATIVES

REVIEW IN CARBOXYLIC ACIDS AND ITS DERIVATIVES IASET: International Journal of Agricultural & Bio-Chemical Science (IASET: IJABS) ISSN(P): Applied; ISSN(E): Applied Vol. 1, Issue 1, Jan - Jun 2017, 49-66 IASET REVIEW IN CARBXYLIC ACIDS AND ITS DERIVATIVES

More information

6. The catalytic mechanism of arylsulfatase A and its theoretical investigation

6. The catalytic mechanism of arylsulfatase A and its theoretical investigation 6. The catalytic mechanism of arylsulfatase A and its theoretical investigation When the crystal structure of arylsulfatase A was solved, a remarkable structural analogy to another hydrolytic enzyme, the

More information

Structure of Alkenes In ethene (ethylene) each carbon is bonded to 3 other atoms, with zero nonbonding electrons => sp 2 hybridization.

Structure of Alkenes In ethene (ethylene) each carbon is bonded to 3 other atoms, with zero nonbonding electrons => sp 2 hybridization. Structure and Synthesis of Alkenes Alkenes (olefins) are hydrocarbons which have carbon carbon double bonds. A double bond is a bond and a bond. Double bond B.D.E. bond B.D.E. = 146 kcal/mol = 83 kcal/mol

More information

Important reactions of lipids

Important reactions of lipids Taif University College of Medicine Preparatory Year Students Medical chemistry (2) Part II (Lipids) week 4 lectures 1435-36 Important reactions of lipids Lectures outlines Definition and importance of

More information

11/5/ Oxidation of Alkenes: Cleavage to Carbonyl Compounds. Oxidation of Alkenes: Cleavage to Carbonyl Compounds

11/5/ Oxidation of Alkenes: Cleavage to Carbonyl Compounds. Oxidation of Alkenes: Cleavage to Carbonyl Compounds 8.8 Oxidation of Alkenes: Cleavage to Carbonyl Compounds Ozone (O 3 ) is useful double-bond cleavage reagent Ozone is generated by passing a stream of oxygen through a highvoltage electrical discharge

More information

Level 3 Chemistry, 2007

Level 3 Chemistry, 2007 Level 3 hemistry, 2007 Annotated answers to this organic paper. Q1 QUESTIN NE Give the proper name that gives the structure a unique name (a) Give the systematic IUPA names for the following molecules

More information

Chemistry 212 Fall Semester 1996 Examination #2

Chemistry 212 Fall Semester 1996 Examination #2 Chemistry 212 Fall Semester 1996 Examination #2 University of Missouri Columbia Prof. Rainer Glaser Wednesday, October 16, 1996 103 Schlundt Hall, 8:40-9:30 featuring Carboxylic Acids and Carboxylic Acid

More information

4 Types of Organic Polar Reactions

4 Types of Organic Polar Reactions Objective 12 Apply Reactivity Principles to Electrophilic Addition Reactions 1: Alkenes Identify structural features (pi bond) and electrophiles Use curved arrows to predict product 4 Types of Organic

More information