77 Economics and Vaccines

Size: px
Start display at page:

Download "77 Economics and Vaccines"

Transcription

1 Economics and Vaccines J. Bos. M. Postma 1 Introduction Modeling Economic Evaluations of Vaccines: Methodological Issues Cost-Effectiveness of Vaccine Interventions Childhood Cluster Diseases Vaccination Programs Measles, Mumps and Rubella (MMR) Vaccination Diphtheria, Tetanus, Pertussis and Polio (DTPP) Vaccination Varicella Vaccination Vaccination Campaigns Against Respiratory Diseases Hemophilus influenzae Type B Pneumococcal Vaccines Meningococcal Vaccines Influenza Vaccines Vaccination Campaigns Against Sexually Transmitted Infections and Other Vaccine-Preventable Viruses Hepatitis B Human Papilloma Virus (HPV) Hepatitis A Rotavirus Discussion and Conclusion Summary Points # Springer Science+Business Media LLC 2010 (USA)

2 1336 Economics and Vaccines Abstract: Infectious diseases are an important cause of mortality and morbidity, causing approximately 27% of the total disease burden in > DALY. A large part of DALY lost due to infectious diseases could be prevented by improving existing vaccination programs for the population. Diseases such as > childhood cluster diseases, hepatitis A and B, respiratory infections caused by influenza, pneumococcal and meningococcal infections, and Hemophilus influenzae type B, are for a large part preventable by current vaccines. The implementation of new vaccine programs or/and strategies is often a costly process with long term consequences. Vaccination programs often concern a large part of the population, and have a large budget impact. Once a vaccination program has started, it is (due to equity reasons) extremely difficult to cease the program. To gain a better understanding of the potential impact on health benefits and costs of a vaccine intervention, health-economic evaluations are frequently used, which estimate the future impact on health gains and costs. Health-economic evaluations are mostly presented as one of the following four types of analysis: cost-minimization, cost-benefit, cost-effectiveness and cost-utility analysis. In this chapter, we provide an overview of the main techniques and challenges associated with health economic evaluations of vaccination programs, such as the choice of the model. Additionally, an overview of health economic evaluations that have been performed on currently implemented vaccination strategies is presented. From our analysis it follows that vaccine programs, and especially those against childhood cluster diseases, and vaccination of elderly against influenza are amongst the world s most cost-effective interventions. List of Abbreviations: BCG, bacillus Calmette-Guérin; CBA, > cost benefit analysis; > CEA, cost effectiveness analysis; > CMA, cost minimization analysis; DALY, disability adjusted life year; > DTPP, diphtheria, tetanus, pertussis and poliomyelitis; > Hib, Hemophilus influenzae type b; > HPV, human papilloma virus; > IPV, inactivated poliomyelitis vaccine; > MMR, measles, mumps and rubella; > OPV, oral poliomyelitis vaccine; > QALY, quality adjusted life year; > WTP, willingness to pay; > VZV, varicella zoster virus 1 Introduction Despite the discovery of vaccines that helped to eradicate smallpox, the launch of a global campaign to eradicate poliomyelitis, and support the control of measles, diphtheria and other diseases, infectious diseases remain the leading cause of death in developing countries (WHO, 2007). Worldwide, infectious diseases are an important cause of mortality and morbidity, causing approximately 27% of the total disease burden in DALY (Authors calculation based on WHO, 2004 data). A large part of DALY lost due to infectious diseases could be prevented by improving existing vaccination programs for the population. Diseases such as childhood cluster diseases, hepatitis B, TB, respiratory infections caused by influenza, pneumococcal and meningococcal infections, Hemophilus influenzae type B, are for a large part preventable by current vaccines but still lead to a large burden of disease and mortality. > Table -1 provides an overview of the global burden of disease caused by infectious diseases. The implementation of new vaccine programs or/and strategies is an often costly process with long term consequences, due to the fact that (1) vaccination strategies often involve vaccination of large parts of the population and (2) once a vaccination program has started, it is (due to equity reasons) extremely difficult to cease the program. Additionally, in most cases,

3 Economics and Vaccines Table -1 Overview of major infectious diseases and DALY burden worldwide a All Causes Communicable conditions Infectious and parasitic diseases Tuberculosis STDs excluding HIV HIV/AIDS Diarrheal diseases Childhood-cluster diseases (Pertussis, Poliomyelitis, Diphtheria, Measles, Tetanus) Meningitis a Hepatitis B Hepatitis C Malaria Tropical-cluster diseases: Trypanosomiasis, Chagas disease, Schitomiasis, Leishmaniasis, lymphatic filariasis, onchocerciasis Leprosy Dengue Japanese encephalitis Trachoma Intestinal nematode infections Respiratory infections Lower respiratory tract infections, Upper respiratory tract infections, Otitis media Noncommunicable diseases Injuries Adapted from (Gwatkin and Guillot, 1998) a Total does not add up since we omitted DALY burden due to perinatal conditions and nutritional deficiencies decisions with regards to vaccination programs are public health policy decisions, making rational decision making a must. A better understanding of the potential impact of an intervention will enable policy makers to prioritize intervention in public healthcare, so that the available funds are spend in such a way that health care gains are being maximized. As a result, in an increasing number of countries, for new interventions to successfully apply for reimbursement, not only their clinical effectiveness has to be proven, but also their costeffectiveness (Cookson and Mc Daid, 2003). For the estimation of potential costs and benefits of the introduction of a new public health program, health-economic evaluations are frequently used, which estimate the future impact on health gains and costs. Health-economic evaluations are mostly presented as one of four types of analysis: cost-minimization analysis (CMA), cost-benefit analysis (CBA), costeffectiveness analysis (CEA) and cost-utility analysis (CUA), of which the latter two are used most often. In cost-minimization analysis, the interventions under study are assumed to have

4 1338 Economics and Vaccines similar efficacy and equal effectiveness. Only relevant costs are compared, and the cheapest intervention is assumed to be the most efficient. In cost-benefit analysis, the benefits of the intervention are expressed in monetary values, usually as the individual s willingness to pay (WTP) for a certain risk reduction in morbidity or mortality due to a new medical intervention (Johannesson and Meltzer, 1998). Concern over the monetary valuation of the resulting human lives, led to the development of cost-effectiveness analysis as an alternative. In costeffectiveness analysis, benefits of the intervention are expressed in a natural outcome measure, such as averted infections or life years gained. In cost-effectiveness analysis, differences in quality of life are not valued. Another form of cost-effectiveness analysis is cost-utility analysis, where health gains are corrected for the quality of life of the patient. Health benefits are then mostly expressed as quality adjusted life years (QALYs) or other denominators, such as disability adjusted life years (DALYs) (Johannesson and Meltzer, 1998). In a growing number of countries, such as the Netherlands, United Kingdom, Australia, and Canada, these evaluations are being used to guide policy making on the introduction on new public vaccination programs (Cookson and Mc Daid, 2003). For instance, the decision of the Netherlands to vaccinate all infants with meningococcal C vaccine on the age of 14 months was a direct effect of the health-economic analysis (Welte et al., 2005). 2 Modeling Economic Evaluations of Vaccines: Methodological Issues In economic evaluations of healthcare interventions, net costs are related to health gains, and expressed as a ratio such as the cost-effectiveness ratio of net costs per life-year gained. Net costs are estimated by subtracting the savings on averted infectious diseases treatment costs from the costs of the vaccines and the investment costs in administration and infrastructure. Both costs and health gains are corrected for the time of occurrence using an annual > discount rate. Vaccine interventions usually have the following features, which might set them apart from other interventions in public health: 1. Preventative character: Although therapeutic vaccines are being developed against certain forms of cancer for instance, most vaccines are given as prophylaxis. Some infectious diseases, such as hepatitis B and HPV infections, have an impact on the occurrence of severe complications much later on in life. This might pose a challenge to the analyst, since often long time frames of analysis need to be modeled. 2. Large scale, hence often large budgetary impacts: Whereas economic evaluations of other pharmaceuticals often target individual patients (or small patient populations), vaccine interventions in most cases concern a larger part of the population, causing the intervention to have a large budgetary impact. Therefore, when assessing these interventions, budget impact and allocation of the total budget will form an important aspect of the final decision. 3. Targeted against infectious diseases: Although some exceptions exist, (for instance vaccines are being developed against cancer) most vaccines target specific infectious diseases. Due to the communicable character of the agents causing disease, all indirect effects of removal of the pathogen from the population on those not vaccinated should also be included in the model. This is a challenge for the analyst, since the transmission mechanism of the causing agent needs to be assessed and included in the analysis. Additionally, an

5 Economics and Vaccines 1339 intervention against an infectious disease will gradually be subject to diminishing marginal returns. This occurs since vaccinating the population leads to a diminished > force of infection, causing the incidence of disease to drop. So, as the coverage of the vaccination program increases, more and more persons need to be vaccinated in order to prevent a single case of disease. This may well cause a paradox, in which eradication of disease is even more costly than disease control by selected vaccination strategies. 4. Incongruent timing between costs associated with the intervention and the resulting health benefits: Some diseases, such as HPV infections or hepatitis B infections have an impact on the occurrence of severe complications much later in life. Thus, a large time gap might exist between the costs of the intervention and the expected benefits of the intervention. Using equal discount rates for costs and health effects might have a large impact on the costeffectiveness ratio of the vaccine. In a recent consensus statement on vaccination programs for preventing Hepatitis B, Beutels et al. (2002) re-iterate that discounting health effects significantly and negatively affects estimated cost-effectiveness of vaccination programs with long term effects. In economic evaluations, it is good practice to use data from clinical trials. However, it has been argued that for the evaluation of vaccine programs, effectiveness data from clinical trials are not transferable to a real life setting (Clemens et al., 1996; Edmunds et al., 1999). Since vaccine trials are small in relation to population based vaccination programs, they can only provide an estimate of the individual efficacy of the vaccine and do not give a good estimate for the overall effectiveness of a mass vaccination campaign in the population. By vaccinating a large group in the population, the circulation of the bacteria or virus will diminish, leading to a reduction of disease beyond the direct effects of vaccination. As a consequence, the force 1 of infection diminishes. So, by mass vaccination, a certain level of protection is also offered to those in the population who are not vaccinated (Edmunds et al., 1999). This phenomenon is called > herd immunity not correcting for it may cause an underestimation of the effect of the intervention (Edmunds et al., 1999). Another consequence of a diminished force of infection is that infections will occur at a later age. This shift in agespecific incidence can have great implications for public health, especially for diseases that have worse outcome when occurring at a later age (for instance varicella zoster infections) (Beutels et al., 2002). Cost-effectiveness analyses of vaccination programs that assess the transmission of disease, use either a static or a dynamic transmission model. The difference between a static or a dynamic model lies in the assumption of the value of the force of infection. A static model assumes that the force of infection is a constant, while in a transmission dynamic model the force of infection is a function of the number of infectious individuals in the population (Edmunds et al., 1999). In the latter, herd immunity effects of mass vaccination on the force infection are taken into account. Also, in transmission dynamic models the effects of vaccination on for instance the age-specific incidence rate are assessed. In > Table -2, an overview is presented of the most important model types and characteristics. 1 The force of infection is defined as the per-susceptible rate of infection. The force of infection can be calculated approximately by dividing the incidence by the number of susceptibles

6 1340 Economics and Vaccines. Table -2 Key characteristics of the models (Bos et al., 2008) Key assumption Model type Main features Static Constant force of infection Decision analysis/ Markov model Dynamic Force of infection is a function of the fraction infected (Age-structured) compartmental model Simple Minimal data requirements Complex Needs detailed data on transmission dynamics Able to evaluate impact of herd immunity Accounts for shift in agespecific incidence rates Gives insight in shifts in costeffectiveness ratio over time 3 Cost-Effectiveness of Vaccine Interventions In this section, we will provide an overview of most common vaccination programs in developed countries, their cost-effectiveness and the cost-effectiveness models used for the analysis. A large number of vaccines have been in use in public health interventions for quite some time, as is illustrated in > Table -3 (which is by no means exhaustive). The cost-effectiveness of an intervention is usually measured compared to the do-nothing alternative. A number of these vaccines have been in use for a long period of time, making the cost-effectiveness of these vaccines is difficult to measure. The effects of the vaccine on the epidemiology and transmission of disease depend highly on the fact that a vaccine has been given for a very long period in time before starting the analysis. Therefore, it is impossible to calculate the cost-effectiveness against the do-nothing scenario. Additionally, the decision to vaccinate against these diseases has been made a long time ago, in a time where health economic evaluations of public health interventions were not performed. However, costeffectiveness studies on adaptations of those vaccines, for instance different formulations with less side-effects and/or higher efficacy, are frequently used by policy makers. 3.1 Childhood Cluster Diseases Vaccination Programs This category consists of vaccination programs against common childhood diseases, such as measles, mumps, diphtheria, tetanus, poliomyelitis, rubella, and pertussis. Cost-effectiveness analysis of the original interventions with Measles, Mumps, Rubella vaccine (MMR) and polio and Diphtheria, Tetanus and Pertussis (DTP) vaccines have only been performed to a limited extend. These childhood vaccines are commonly cited to be among the most cost-effective interventions, and have resulted in the saving of millions of lives of infants and young children (WHO, 2008). A recent study estimated that a one-week supplemental immunization activity against measles carried out in Kenya in 2002 in which 12.8 million children were vaccinated would result in a net savings of US$12 million over the following ten years; during

7 Economics and Vaccines Table -3 Introduction of first generation vaccines Vaccine Year of introduction first generation vaccine for human use Smallpox 1798 Rabies 1885 Plague 1897 Diphtheria 1923 Pertussis 1926 Tuberculosis (BCG) 1927 Tetanus 1927 Yellow fever 1935 Injectable Polio vaccine (IPV) 1955 Oral Polio vaccine (OPV) 1962 Measles 1964 Mumps 1967 Rubella 1970 Hepatitis B 1981 Influenza 1953 Hepatitis A a 1995 Hemophilus influenza type B 1992 Pneumococcal conjugate vaccine 2000 Pneumococcal vaccine polysaccharide b 1948 Meningococcal C vaccine 1999 Meningococcal A, Y, W135 and C vaccine 2005 Adapted from Plotkin and Mortimer (1994) a and b Baker (2007) and Austrian (1981) which it would prevent 3,850,000 cases of measles and 125,000 deaths. In the United States, cost-benefit analysis indicated that every dollar invested in a childhood disease vaccine dose saves US$2 to US$27 in health expenses (WHO, 2008) Measles, Mumps and Rubella (MMR) Vaccination Since the vaccines against measles, mumps and rubella are usually given in the MMR combination vaccine, we will discuss both health-economic analyses of single vaccine interventions, such as revaccination after an outbreak of measles, as well as the cost-effectiveness of MMR vaccine. Few studies have been undertaken to assess the cost-effectiveness of the MMR vaccine since it s introduction in general vaccination programs in the second half of last century. Most studies focus on adaptations of existing formulations, or changes in target population. A single study from 1985 was found that compared vaccination with MMR

8 1342 Economics and Vaccines vaccine to the do-nothing scenario in the US, and found the intervention to be cost-saving (White et al., 1985). Without an immunization program, an estimated 3,325,000 cases of measles would occur as compared to 2,872 actual cases in 1983 with a program. Instead of an expected 1.5 million rubella cases annually, there were only 3,816 actual cases. Mumps cases were lowered from an expected 2.1 million to 32,850 actual cases. Without a vaccination program, disease costs would have been almost $1.4 billion. Expenditures for immunization, including vaccine administration costs and the costs associated with vaccine reactions, totaled $96 million. The resulting benefit-cost ratio for the MMR immunization program was approximately 14:1. The savings realized due to the use of the combination vaccine rather than single antigen vaccines totaled nearly $60 million (White et al., 1985) Measles Vaccine Despite the lack of formal cost-effectiveness studies, measles vaccination is cited to be among the most cost-effective public health interventions implemented world-wide. (WHO, 2008)A few studies have been conducted on the cost-effectiveness of additional vaccination in the case of a measles outbreak, or on measles eradication strategies. Stover et al. (1994) assessed the cost-effectiveness of a program to identify and immunize susceptible hospital employees during a measles outbreak. In three US hospitals, they compared blind MMR vaccination with targeted MMR vaccination to only those at risk (being those born from 1957 onwards). Their analysis showed that a directed MMR immunization program was projected to be costeffective compared to universal MMR vaccination of all hospital employees. However, no formal transmission model was used, making it difficult to assess the effects of vaccinating hospital workers on the transmission of measles, mumps or rubella to the patient population. Sellick et al. (1992), also showed targeted measles immunization for susceptible workers to be more cost-effective than universal vaccination. A few studies were found that assessed the cost-effectiveness of improved measles control or measles eradication within the general population. Pelletier et al. (1998) studied the benefitcost ratio of two-dose measles vaccination of infants in Canada, using a transmission dynamic model. Zwanziger et al. (2001) used a static approach to evaluate the economic impact of increasing measles immunization rates in the United States. They examined the relationship between measles incidence and the immunization rate and converted it to a linear model, which was linked to a decision analysis model to assess the cost-effectiveness. The decision analysis study by Shiell et al. (1998) used similar methodology to assess the cost-effectiveness of measles vaccination to prevent school-based outbreaks in Australia, finding favorable costeffectiveness. A study by Gay et al., used a transmission dynamic model to assess the impact of adding a second booster dose of measles vaccine for infants aged 18 months or 5 years to the national vaccination program in Canada (Gay et al., 1998). Their model analyzed the transmission between five different age groups over time. The results of this modeling study showed that a combination of a catch-up campaign and a booster vaccine for infants would have an immediate impact in reducing the transmission of measles, whereas adding only a routine second dose would still allow endemic transmission between older infants for at least years. Beutels and Gay (2003) analyzed the costs and benefits of the eradication of measles, using a transmission dynamic model that simulated ten different measles vaccination strategies for a hypothetical west-european country. The conclusion of this analysis was that very high (>95%) coverage two-dose vaccination is optimal, irrespective of past vaccination coverage. Additionally, the addition of a catch-up campaign to this two-dose vaccination strategy would

9 Economics and Vaccines 1343 be cost-saving in the case of low historical coverage (<70%). Miller et al. developed a static model for analyzing measles eradication interventions in the US (Miller et al., 1998), estimating that measles eradication would save an estimated US$ 45 million. However, in this study the transmission of measles was not incorporated giving little insight in the coverage rates needed for eradication, timing of eradication and potential age-shifts Mumps and Rubella Vaccines Few economic evaluations have been performed of these vaccines. A review study done by Hinman et al. (2002), showed that in total five economic analyses of Rubella vaccine and seven economic analyses of MMR vaccine had been performed in developed countries. This review study indicated that the comparability of the individual study results was hampered by a lack of standardization in study design and methods used. The results of these studies showed favorable cost-effectiveness for rubella and MMR vaccines, supporting the decision to include this vaccine in national vaccination programs Diphtheria, Tetanus, Pertussis and Polio (DTPP) Vaccination No specific studies were found evaluating DTP or DTPP vaccines. However, separate evaluation of pertussis vaccination and polio vaccines were found. A number of evaluations of pertussis vaccine were found comparing acellular pertussis vaccine with whole cell pertussis vaccine, where the latter vaccine formulation would have a higher incidence of side-effects (Beutels et al., 1999; Caro et al., 2005; Ekwueme et al., 2000; Tormans et al., 1998). Additionally, several studies analyze the impact of a pertussis booster vaccine given later in the infants life (Edmunds et al., 2002; Iskedjian et al., 2004; Purdy et al., 2004; Stevenson et al., 2002). All studies, except the study by Edmunds et al., used a static transmission model. All studies on whole cell pertussis versus acellular vaccine showed that the acellular vaccine was more cost-effective, since all studies projected higher efficacy rates for the acellular vaccine (Caro et al., 2005). A small number of studies were found that evaluated the effects of increasing efforts to eradicate polio (Bart et al., 1996; Kahn and Ehreth, 2003; Thompson and Duintjer Tebbens, 2006, 2007). In general, these studies concluded that the eradication of polio would be costeffective. A study by Thompson (Thompson and Duintjer Tebbens, 2006) concluded that the poliomyelitis vaccination program in the US is a highly cost-effective intervention, responsible for the prevention of hundreds of thousands of cases of paralytic poliomyelitis and premature deaths, and has yielded net economic benefits exceeding US$180,000 million. In another study by Thompson et al., a dynamic transmission model was used to assess the costs and benefits of worldwide polio eradication versus controlling poliomyelitis levels by increasing vaccine coverage (Thompson and Duintjer Tebbens, 2007). Their study supports the completion of eradication now, instead of controlling poliomyelitis Varicella Vaccination Varicella zoster virus (VZV) is a herpes virus that causes both varicella (commonly known as chickenpox) and herpes zoster. When a person becomes infected for the first time with VZV, it results in varicella, which is a mild illness (although severity increases with age). After the initial Varicella infection, VZV becomes latent in the dorsal root ganglia and can reactivate

10 1344 Economics and Vaccines after a long period to cause herpes zoster (Miller et al., 1993). Reactivation occurs in 15 25% of individuals, of which over 70% are adults (Brisson et al., 2000). Zoster is associated with severe morbidity (hospitalization occurs in 4% of cases, median duration of hospitalization of 18 days) and significant case fatality (0.07% of cases), making herpes zoster an essential issue to be considered when analyzing the epidemiology of VZV (Brisson et al., 2000). The precise relationship between varicella and zoster incidence is still unclear, it has been suggested that varicella can decrease the risk of zoster by boosting specific immunity to VZV (Brisson et al., 2000). This relationship implies that a reduction of VZV in the population may have adverse effects on the incidence of zoster. By reducing the exposure to natural varicella and shifting the average age of infection upwards, widespread vaccination would have two potentially adverse consequences. Firstly, the severity of varicella illness increases with age. Therefore infant vaccination avoids mostly cheap cases of varicella in infants, but partly replacing them by more expensive older cases. Secondly, the incidence of herpes zoster (shingles) at older ages temporarily increases if (1) periodical exposure to wild-type VZV infection (i.e., exposure to infectious children) boosts immunity to zoster, and (2) breakthrough varicella cases occur on a limited scale with relatively low infectiousness (Brisson et al., 2000). These effects may have a profound effect on the cost-effectiveness and morbidity caused by VZV (Postma et al., 2003). A live attenuated VZV vaccine has been available since the middle of the 1970s. Currently in the United States and Japan varicella vaccination is included in the childhood immunization schedule (Postma et al., 2003). Several health economic studies have been performed on the introduction of this vaccine for infants. Thiry et al. (2003) reviewed economic evaluations of varicella vaccination, identifying ten studies on infant vaccination. The studies showed costsavings from the societal perspective (benefit-to-cost ratios varying from 1.6 to 6.9). From the societal perspective it was primarily vaccine price and averted unproductive days by parents (indirect costs averted) caring for sick children that determined cost savings. However, all these studies excluded the impact of zoster on the analysis, and used no formal dynamic transmission model. A study by Edmunds et al. (2002) on the cost-effectiveness of Varicella vaccination of infants in Canada was the first to take the potential increase in zoster into account (Brisson and Edmunds, 2002). The inclusion of zoster influenced their results, raising baseline net costs per life-year gained by almost 200%. They estimated that universal infant vaccination may increase the incidence of zoster by 13% (during an analytic period of 30 years and discounted at 3%). We do note that the relationship between VZV infection and zoster as specified by Brisson and Edmunds (2002) has been challenged (Seward et al., 2002). Other theories suggest, for example, subclinical reactivation of VZV with uncertain impact on zoster. Previously, Edmunds et al. (2001) analyzed the epidemiological and economical burden of herpes zoster and its complications (in particular, after herpetic neuralgia) for England and Wales. They estimated that direct medical costs of zoster amounted to almost 70 million annually ( 1.3 per citizen). Adolescent varicella vaccination has also been studied. Banz et al. (2003), Beutels et al. (1999), and Brisson and Edmunds (2002) all indicated superior pharmacoeconomic profiles for vaccinating 12-year-olds as opposed to infants. Brisson and Edmunds (2002) conclude that the attractiveness of preteen vaccination from an economic perspective remains robust under varying plausible parameter, model and methodological, assumptions. For example, the impact of including zoster is very limited in preteen vaccination, as transmission of varicella occurs mostly through contact with very young children who continue to be infected under

11 Economics and Vaccines 1345 this strategy. Obviously, if combined with screening, only those year olds at risk are targeted (approximately 10%), limiting the budget impact of vaccination. To conclude, there is still considerable uncertainty around the interaction between Varicella vaccination and zoster. The potential adverse effects of Varicella vaccination on increases in the incidence of zoster could reverse the cost-effectiveness ratio of universal infant vaccination. Therefore, it is important to consider alternative vaccination strategies that show less sensitivity to the inclusion of potential effects on zoster, such as adolescent booster vaccination. 3.2 Vaccination Campaigns Against Respiratory Diseases Currently, vaccines are being used against Hemophilus influenzae type B, pneumococcal and meningococcal infections, and influenza. Additionally, the > BCG vaccine against TB is still being used for TB proxylaxis. However, since there is still considerable discussion on the efficacy and duration of protection of BCG vaccine in the prevention of TB, we decided not to discuss vaccines against TB in this section Hemophilus influenzae Type B Vaccination against Hemophilus influenzae type b (Hib) has been introduced in most Western countries in the early nineties. The choice to introduce the vaccine in the routine childhood vaccination programs was justified by it s high incidence of between 20 and 69 per 100,000 infants <5 years (Akumu et al., 2007). Prior to vaccination, Hemophilus influenzae type B was the most common cause of meningitis, causing in the US annually more than 20,000 cases of invasive disease (Hay et al., 1987). The case fatality rate of Hemophilus influenzae type B meningitis is approximately 5%. A number of economic evaluations have been performed in developed countries, showing a favorable cost-effectiveness. Martens et al. (1991) calculated a break-even price for the vaccine of US$ 7 for the use of the vaccine in the infant immunization program of the Netherlands. A favorable benefit to cost-ratio was found for Hib vaccination in Slovenia, (Pokorn et al., 2001) of 1.38, (including indirect costs. The cost-effectiveness ratio of Hib vaccination is highly dependent on the epidemiology. A similar study performed in Moscow showed a higher cost-effectiveness ratio of 10,842 per DALY averted as opposed to cost-savings (Platonov et al., 2006). However, this cost-effectiveness ratio is still acceptable in Western countries. Additionally, a number of studies have been performed in countries in Africa and South- America (Akumu et al., 2007). A study by Akumu et al. (2007), indicated that the incidence of Hemophilus influenzae type b meningitis would decrease from 71 per 100,000 to 8, indicating massive health benefits for this intervention. Broughton (2007) analyzed the potential costeffectiveness of introducing Hib vaccination in the infant immunization program in Indonesia. His model indicated that Hib vaccination of infants would result in averting over 76,000 cases of invasive disease per year, saving approximately 7,150 lives. The incremental costeffectiveness of such a program would be US$ 67 per DALY. These indicate the potential impact of Hib vaccination in the prevention of invasive disease such as bacteremia and meningitis, and should make policy makers aware of the massive health benefits that could be saved by introducing the Hib vaccine in endemic areas.

12 1346 Economics and Vaccines Pneumococcal Vaccines Basically, two types of pneumococcal vaccines exist: polysaccharide vaccines primarily intended for elderly populations and conjugate vaccines primarily intended for infant vaccinations. Many western countries have now large-scale polysaccharide vaccination programs for the elderly in place. A recent analysis on the cost-effectiveness of this pneumococcal vaccine in the elderly in ten European countries revealed that high potential for favorable cost-effectiveness exist (Evers et al., 2007). For these countries cost-effectiveness ranged from 3,000 to 5,000 up to a maximum of 20,000 per QALY gained. In the USA, pneumococcal vaccination of elderly is cost-effective, potentially even if the age-limit for vaccination would be lowered from 65 years down to 50 years (Sisk et al., 2003). A number of studies have been performed on the cost-effectiveness of a conjugate pneumococcal vaccine in infants, which potentially prevents meningitis, bacteremia, and otitis media. These studies have shown conflicting results. A recent review by Beutels et al. (2007) reviewed 15 studies from Finland, UK and Wales, US, the Netherlands, Spain, Switzerland, Germany, Australia and Italy. The study found a range of results ranging from cost-saving from the societal perspective (studies from Spain and Germany) to 101,452 per LYG in Canada. The largest difference between the studies was found to be the inclusion or exclusion of herd immunity effects on the adult population. Whitney et al. found a decline in invasive pneumococcal disease in adults after the introduction of pneumococcal conjugate vaccination of infants, (Whitney et al., 2003) leading to additional life years gained and medical and indirect costs saved due to the occurrence of herd immunity. To illustrate the impact of the inclusion of herd immunity on the results, a study by Bos et al. in 2004 showed a base-case cost-effectiveness of 71,703 per QALY without considering the potential effects of herd immunity, whereas the cost-effectiveness ratio improved to 15,600 per QALY when herd immunity effects were considered. Of the available studies, favorable cost-effectiveness ratios were found in Spain, Germany, Canada, the Netherlands (after inclusion of herd immunity effects), and for the UK it was found to be on the upper limit of cost-effective interventions Meningococcal Vaccines Vaccines against subtypes Neisseria meningitidis A, C, Y and W135 are currently available. Meningococcal infections, such as meningitis and septic shock are associated with high mortality rates of up to 35% and complications. Survivors often suffer from neurological or physical sequelae. A number of studies have been performed on the cost-effectiveness of meningococcal C vaccination, which has been introduced in a number of countries, such as Australia, UK, and the Netherlands. A review by Welte et al. (2005), analyzed studies from Canada, the Netherlands, UK, Australia, Portugal, Switzerland. The cost-effectiveness of the interventions was dependent mainly on the age of the vaccinated infant, and the incidence of meningococcal disease. Since infants aged >12 months only need a single dose of vaccine in order to build immunity against the pathogen, and younger infants need three doses to boost their immune system, vaccination of the first group will be more affordable. The cost-effectiveness of a single dose intervention ranged from 19,000 per QALY in Switzerland to 2,600 per QALY in the Netherlands, with the main differences found in the incidence of disease. The three dose scenario was analyzed to be less cost-effective, with cost-effectiveness ratios ranging from 55,000 per QALY in Switzerland, to 21,700 per QALY in the Netherlands.

13 Economics and Vaccines Influenza Vaccines Influenza has been frequently referred to as the last great uncontrolled plague of mankind, Elderly persons are at increased risk of developing influenza-related complications which require complex healthcare and might lead to mortality. By 1997, all but three countries in the European Union had universal vaccination programs for citizens aged 65 years. In a review by Postma et al. (2002), an overview is given of health economic studies on influenza vaccination of the elderly in developed countries. The studies provided remarkably similar results. Benefit to cost ratios ranging from 0.7 to 50 were found, indicating that in most instances the benefits of influenza vaccination of the elderly outweigh the costs associated with the program. Even in the study were a benefit to cost ratio of 0.7 was found, the costeffectiveness ratio was still below the acceptable threshold for cost-effectiveness. In particular, influenza vaccination among elderly people at higher risk, such as the chronically ill elderly, is generally found to be cost saving. A number of studies have been performed on the cost-effectiveness of influenza vaccination of healthy working adults. The results of these studies are not homogeneous; some studies report cost savings, whereas other studies report no economic benefits at all. Most differences in outcome are related to whether indirect costs due to work loss are included in the analysis, the efficacy of the vaccine in relation to the dominant influenza strains in the year of analysis, and the severity of the influenza epidemic (Postma et al., 2002). A review of 11 studies reported in western countries found that eight of the studies reported cost-savings against three studies that reported no economic benefit (Postma et al., 2002). Another review study, by Wood et al. (2000) also noted the disparity in results between the various economic studies, but also concluded that the published studies seem to suggest that influenza vaccination in the healthy, working adult would be a cost-effective health intervention, at least from the perspective of an employer. Some studies have analyzed whether vaccination of healthcare workers to protect high-risk patients would be a cost-effective strategy. A review by Burls et al. (2006) found that most costeffectiveness studies did not take the effects on patient transmission into account and therefore underestimated the cost-effectiveness of the intervention. The study by Burls et al. estimated that vaccination of healthcare workers to protect high-risk patients would be a highly costeffective intervention, with a CER between cost-saving and 405 GBP per LYG. 3.3 Vaccination Campaigns Against Sexually Transmitted Infections and Other Vaccine-Preventable Viruses Hepatitis B Hepatitis B virus (HBV) infection is still an important public health problem, despite the availability of an effective vaccine for several decades now. According to the WHO recommendation for universal routine vaccination many countries of high and intermediate endemicity have implemented routine vaccination. Implementation of such programs is often done at the infant age or young adolescent age, with a combined catch-up program. Favorable cost-effectiveness of implementing these programs has been evidenced broadly (Beutels, 2001), (Beutels et al., 2002). For example, the specific Italian implementation of vaccination

14 1348 Economics and Vaccines in 1992 of a combined universal infant schedule and catch-up of 12-years olds was chosen after careful examination of economic data (Bonanni et al., 2003). Discussions on introducing universal vaccination for infants and/or adolescents are currently going on in countries that currently only vaccinate selected target populations (such as the UK and the Netherlands) and in developing countries for which vaccination becomes feasible due to recent price reductions Human Papilloma Virus (HPV) Recently, two Human papilloma virus vaccines have been registered for prophylactic use. Trials have proved efficacy up to 5 years; long-term effectiveness has yet to be demonstrated in follow-up of the initial trails and post-marketing research. Both vaccines have proven to be highly effective against HPV-types 16 and 18, that are associated with 70% of cervical cancers worldwide (Paavonen et al., 2007; Parkin and Bray, 2006). Slight differences seem to exist between both vaccines, potentially influencing exact cost-effectiveness profiles of both. In particular, one is quadrivalent, also protecting against genital warts caused by types 6 and 11 (Gardasil), whereas the other is bivalent only, but claiming higher likelihood for long-term protection (Frazer, 2007). Various cost-effectiveness analyses have already been performed, generally building on cost-effectiveness analyses for cervical cancer screening (Dasbach et al., 2006). Notably, vaccination is assumed to be implemented on top of the existing screening programs. All cost-effectiveness models for the HPV-vaccines generally assume no deterioration in the coverage of the screening. Additional vaccination of young teenage boys might be considered, but is less likely to be cost-effective (Dasbach et al., 2006). Approximately 20 publications are now available on the cost-effectiveness of HPVvaccination. For effectiveness, most of these models build on the observations in the trials for HPV-infections of the vaccine-types, rather than hard endpoints such as pre-cancerous stages and cervical cancer. Generally, acceptable cost-effectiveness of around US50,000 per QALY or lower are estimated for vaccinating young teenage girls. One concern generally expressed from the cost-effectiveness analyses is that a slight deterioration in the coverage of screening could easily offset the savings and health benefits of vaccination. So, implementation of vaccination should be combined with campaign to sustain screening coverage rates, and such costs should be included in the cost-effectiveness analyses of vaccination Hepatitis A Hepatitis A vaccines have been available for over a decade. With the disease impact primarily affecting developing rather than developed countries, the picture of universal vaccination differs strongly from Hepatitis B. In particular, many developed countries have strategies implemented on vaccinating risk groups, such as ethnic minorities and travelers to Hepatitis A endemic regions. In a recent review, none of the cost-effectiveness studies yet being performed for the Hepatitis A vaccine were done for a developing country (Anonychuk et al., 2008). Costeffectiveness studies have up to now primarily evaluated targeted vaccination, such as vaccinating antibody-negatives only, prison inmates and the military (Jefferson et al., 1994). Additionally, some studies have been done specifically addressing the cost-effectiveness of vaccinating chronic Hepatitis C patients with Hepatitis A vaccine (Jacobs et al., 2002).

15 Economics and Vaccines 1349 Findings indicate that favorable cost-effectiveness is highly unlikely the older the patient is and if antibody screening is performed prior to vaccination. More cost-effectiveness studies are needed and standardization of the approach should be enhanced Rotavirus After initial drawbacks on the use of rotavirus vaccines due to suspected intussusception, recently two vaccines are being marketed worldwide (Rotarix and RotaTeq). Safety and efficacy have been shown in various clinical trials for the respective 2- and 3-dose schedules (Vesikari et al., 2006). Rotavirus infection is considered to be the most prevalent cause of acute gastroenteritis globally. Currently, the vaccine is initially considered for the developed world, where mortality and serious morbidity is relatively low. A small number of cost-effectiveness studies have been done on rotavirus vaccination, however these publications either lack comparability by using QALYs or do not include the full scale of savings and health gains (Widdowson et al., 2007). In particular, due to lack of valid data, rotavirus episodes without hospitalization are not yet factored into the models, leading to underestimation due to the omission of potential work loss of parents. In the absence of more robust information on these aspects, models are yet very sensitive to mortality assumed for rotavirus. Typically, mortality is assumed at approximately 1 per 100,000 infants annually, however valid registrations of rotavirus deaths may be lacking in many countries. Generally, from the cost-effectiveness analyses it appears that rotavirus vaccination may not be highly cost-effective, with cost-effectiveness ratios varying from 50,000 to 100,000 per QALY from the health-care payer perspective (Jit and Edmunds, 2007). Only marginally better ratios were found from the societal perspective for England and Wales (Jit and Edmunds, 2007). If however from the societal perspective parental work and QALY losses are included related to those cases of disease without health-care services visits involved, cost-effectiveness may improve dramatically. For the Belgium situation cost-saving potentials were reported (Bilcke et al., 2007). Cost-effectiveness ratios are highly sensitive to the QALY impact assumed. Up to now only one study is available on the specific quality-of-life aspects of rotavirus infection (Sénécal et al., 2006). In particular, a prospective study was designed in Canada to estimate QALY-impacts for the infants involved and the caregivers using the Health Utilities Index and the Visual Analogue Scale. However, more research is needed to further underpin this crucial parameter in rotavirus cost-effectiveness analysis. Also, we note that further discussions on including QALY impacts for caregivers are required and that current standards for cost-effectiveness analysis do not include QALY loss with caregivers. 4 Discussion and Conclusion In this chapter, we have provided a brief overview of the main challenges that are associated with modeling the economic impact of vaccines. Often, the vaccines are given as prophylaxis, and concern a very large part of the population. The latter implies that the budget impact is a prominent issue to consider prior to the introduction of new vaccination programs. Moreover, it is difficult to stop a program once it has been started, due to reasons of equity. Therefore, with assessing these interventions, budget impact and allocation of the total budget forms an important aspect of the final decision.

16 1350 Economics and Vaccines Most vaccines yield benefits not only for the direct beneficiary, but also for the nonvaccinated population. This phenomenon, called herd immunity, is an important aspect of vaccines. Lastly, due to the preventative character of vaccine interventions, benefits might occur later in life, which should be valued according to the preferences of the population. Vaccine interventions are a public health decision, affecting many citizens directly, and have long term budgetary consequences. Therefore, decision regarding new vaccination programs should consider all aspects of the intervention carefully. To assess the economic and health impact of the intervention, health economic studies such as cost-effectiveness analysis are being used. By using cost-effectiveness analysis, decision makers gain an understanding of those interventions that provide best value for money and that should be prioritized in order to maximize the utility gains in the population. In this chapter, we have provided an overview of health economic evaluations of most vaccines that have been introduced in the developed world. Most of the vaccines that have been introduced all exhibit favorable cost-effectiveness ratios, ranging from cost saving or highly costeffective for childhood cluster vaccines, Hemophilus influenzae type b vaccine, influenza vaccination for the elderly, meningococcal C vaccine and hepatitis A and B vaccine for infants. For some vaccination programs, the cost-effectiveness is very sensitive to changes in certain assumptions, such as the relation with zoster for the varicella vaccine, the occurrence of herd immunity with the pneumococcal conjugate vaccine for infants, and whether or nor screening rates for cervical cancer will decline as a result of HPV vaccination. Each of these assumptions has the potential to change an intervention from cost-effective towards not costeffective or vice versa. Although the cost-effectiveness studies are extremely sensitive to changes in these assumptions they serve a clear purpose in showing decision makers the impact of such changes. It is worth noting that most of the vaccine interventions prior to the 1990s have been implemented with only limited guidance of health economic studies. However, there are signs that economic evaluations are increasingly being used for guidance on whether or not to implement a new vaccination program. Welte et al. (2005) investigated whether or not health economic data played a role in the decision to start national vaccination programs against meningococcal C infections, and found a clear relationship between increasing incidence rates for meningococcal C infections and the commissioning of an health economic study on vaccination. This indicates that health economic studies are starting to play a more important role in decision making on the introduction of new vaccination programs. However, it needs to be kept in mind that, health economic data are only a single consideration next to for instance equity, or ethical reasons. Summary Points Infectious diseases are an important cause of mortality and morbidity, causing approximately 27% of the total disease burden in DALY. A large part of DALY lost due to infectious diseases could be prevented by improving existing vaccination programs for the population. Diseases such as childhood cluster diseases, hepatitis A and B, respiratory infections caused by influenza, pneumococcal and meningococcal infections, and Hemophilus influenzae type B, are for a large part preventable by current vaccines. The implementation of new vaccine programs or/and strategies is a costly process with long term consequences. To gain a better understanding of the potential impact on health

Economics of Vaccine Development A Vaccine Manufacturer s Perspective

Economics of Vaccine Development A Vaccine Manufacturer s Perspective Economics of Vaccine Development A Vaccine Manufacturer s Perspective Gerald Voss The Value of Vaccines 2 29 diseases are currently preventable by vaccination Global public health Cervical cancer 1 Diphtheria

More information

Selected vaccine introduction status into routine immunization

Selected vaccine introduction status into routine immunization Selected introduction status into routine infant immunization worldwide, 2003 This report summarizes the current status of national immunization schedules in 2003, as reported by Member States in the /UNICEF

More information

What are the new active vaccine recommendations in the Canadian Immunization Guide?

What are the new active vaccine recommendations in the Canadian Immunization Guide? 154 CCDR 17 April 2014 Volume 40-8 https://doi.org/10.14745/ccdr.v40i08a03 1 What are the new active vaccine recommendations in the Canadian Immunization Guide? Warshawsky B 1 and Gemmill I 2 on behalf

More information

Cost-effectiveness of controlling infectious diseases from a public health perspective Krabbe Lugnér, Anna Katarina

Cost-effectiveness of controlling infectious diseases from a public health perspective Krabbe Lugnér, Anna Katarina University of Groningen Cost-effectiveness of controlling infectious diseases from a public health perspective Krabbe Lugnér, Anna Katarina IMPORTANT NOTE: You are advised to consult the publisher's version

More information

Vaccinations for Adults

Vaccinations for Adults Case: Vaccinations for Adults Lisa Winston, MD University of California, San Francisco San Francisco General Hospital A 30-year old healthy woman comes for a routine visit. She is recently married and

More information

Public Statement: Medical Policy. Effective Date: 01/01/2012 Revision Date: 03/24/2014 Code(s): Many. Document: ARB0454:04.

Public Statement: Medical Policy. Effective Date: 01/01/2012 Revision Date: 03/24/2014 Code(s): Many. Document: ARB0454:04. ARBenefits Approval: 01/01/2012 Effective Date: 01/01/2012 Revision Date: 03/24/2014 Code(s): Many Medical Policy Title: Immunization Coverage Document: ARB0454:04 Administered by: Public Statement: 1.

More information

Adolescent vaccination strategies

Adolescent vaccination strategies Adolescent vaccination strategies Gregory Hussey Vaccines for Africa Initiative Institute of Infectious Diseases & Molecular Medicine University of Cape Town www.vacfa.uct.ac.za gregory.hussey@uct.ac.za

More information

Vaccines: Heroes or Villains?

Vaccines: Heroes or Villains? Vaccines: Heroes or Villains? (Hint: It s the first one) James W. Jarvis, MD, FAAFP Senior Vice President/Senior Physician Executive Northern Light Eastern Maine Medical Center 1 Vaccinations: A brief

More information

Family and Travel Vaccinations

Family and Travel Vaccinations Family and Travel Vaccinations We offer the full range of baby, child and family vaccinations. We are able to tailor schedules to your child s needs or international schedule. We have a suggested vaccination

More information

Achievements in Public Health, Impact of Vaccines Universal... Children -- United States,

Achievements in Public Health, Impact of Vaccines Universal... Children -- United States, 1 of 6 2/10/2005 7:40 PM Weekly April 02, 1999 / 48(12);243-248 Achievements in Public Health, 1900-1999 Impact of Vaccines Universally Recommended for Children -- United States, 1990-1998 At the beginning

More information

Current Incident Status of Vaccine-Preventable Bacterial and Viral Infectious Diseases in Japan

Current Incident Status of Vaccine-Preventable Bacterial and Viral Infectious Diseases in Japan Research and Reviews Current Incident Status of Vaccine-Preventable Bacterial and Viral Infectious Diseases in Japan JMAJ 53(2): 106 110, 2010 Hajime KAMIYA,* 1 Tomoe SHIMADA,* 2 Nobuhiko OKABE* 3 Abstract

More information

Economic Evaluation. Introduction to Economic Evaluation

Economic Evaluation. Introduction to Economic Evaluation Economic Evaluation Introduction to Economic Evaluation This work is licensed under a Creative Commons Attribution-NonCommercial-ShareAlike License. Your use of this material constitutes acceptance of

More information

7.0 Nunavut Childhood and Adult Immunization Schedules and Catch-up Aids

7.0 Nunavut Childhood and Adult Immunization Schedules and Catch-up Aids 7.0 Nunavut Childhood and Adult Immunization Schedules and Catch-up Aids Contents Introduction Nunavut Recommended Childhood Immunization Schedule Nunavut Routine Adult Immunization Schedule Nunavut Immunization

More information

Systematic review of models assessing the economic value of routine varicella and herpes zoster vaccination in high-income countries

Systematic review of models assessing the economic value of routine varicella and herpes zoster vaccination in high-income countries Damm et al. BMC Public Health (2015) 15:533 DOI 10.1186/s12889-015-1861-8 RESEARCH ARTICLE Open Access Systematic review of models assessing the economic value of routine varicella and herpes zoster vaccination

More information

Vaccines and other immunological antimicrobial therapy 1

Vaccines and other immunological antimicrobial therapy 1 Vaccines and other immunological antimicrobial therapy 1 Vaccines Vaccine: a biological preparation that provides active acquired immunity to a particular disease. Vaccine typically contains an agent that

More information

Introduction and overview of the program; new vaccine pipeline and prioritization process

Introduction and overview of the program; new vaccine pipeline and prioritization process Immunization for the Modern Family: Western Canada Immunization Forum 2011 Introduction and overview of the program; new vaccine pipeline and prioritization process Monika Naus, MD, MHSc, FRCPC, FACPM

More information

Pertussis in adolescents and adults: should we vaccinate Lee G M, LeBaron C, Murphy T V, Lett S, Schauer S, Lieu T A

Pertussis in adolescents and adults: should we vaccinate Lee G M, LeBaron C, Murphy T V, Lett S, Schauer S, Lieu T A Pertussis in adolescents and adults: should we vaccinate Lee G M, LeBaron C, Murphy T V, Lett S, Schauer S, Lieu T A Record Status This is a critical abstract of an economic evaluation that meets the criteria

More information

Immunization Update & focus on meningococcal vaccine PART 1

Immunization Update & focus on meningococcal vaccine PART 1 Immunization Update & focus on meningococcal vaccine PART 1 Gregory Hussey Vaccines for Africa Initiative Institute of Infectious Diseases University of Cape Town www.vacfa.uct.ac.za Disclosures Received

More information

A. Children born in 1942 B. Children born in 1982 C. Children born in 2000 D. Children born in 2010

A. Children born in 1942 B. Children born in 1982 C. Children born in 2000 D. Children born in 2010 Who do you think received the most immunologic components in vaccines? Development of which vaccine slowed after the invention of antibiotics? A. Children born in 1942 B. Children born in 1982 C. Children

More information

11/17/2013 THE WHO, WHAT, WHEN, AND WHY OF ADULT VACCINATIONS. Pneumococcal Vaccines for Adults (PPV) Pneumococcal Vaccines

11/17/2013 THE WHO, WHAT, WHEN, AND WHY OF ADULT VACCINATIONS. Pneumococcal Vaccines for Adults (PPV) Pneumococcal Vaccines THE WHO, WHAT, WHEN, AND WHY OF ADULT VACCINATIONS CAROL A. KAUFFMAN, MD VA ANN ARBOR HEALTHCARE SYSTEM UNIVERSITY OF MICHIGAN Will discuss: bacterial vaccines made of toxoids or polysaccharide capsular

More information

Health economic evaluation of vaccine: the example of varicella-zoster virus

Health economic evaluation of vaccine: the example of varicella-zoster virus Health economic evaluation of vaccine: the example of varicella-zoster virus Benoît DERVAUX, CNRS, Catholic University of Lille Advances in infectious diseases modelling Annecy, Les Pensières, December

More information

Introduction. Infections acquired by travellers

Introduction. Infections acquired by travellers Introduction The number of Australians who travel overseas has increased steadily over recent years and now between 3.5 and 4.5 million exits are made annually. Although many of these trips are to countries

More information

Health technology Four strategies for the control of serogroup C meningococcal disease (CMD) were examined. These were:

Health technology Four strategies for the control of serogroup C meningococcal disease (CMD) were examined. These were: Cost-effectiveness of immunization strategies for the control of serogroup C meningococcal disease De Wals P, Nguyen V H, Erickson L J, Guay M, Drapeau J, St-Laurent J Record Status This is a critical

More information

Immunizations for Children and Teens with Suppressed Immune Systems

Immunizations for Children and Teens with Suppressed Immune Systems Immunizations for Children and Teens with Suppressed Immune Systems Your child is starting treatment that will suppress the immune system. This will affect how your child s body responds to routine immunizations

More information

VACCINES TRIUMPHS AND TRIBULATIONS. William Schaffner, MD Chairman, Department of Preventive Medicine Vanderbilt University School of Medicine

VACCINES TRIUMPHS AND TRIBULATIONS. William Schaffner, MD Chairman, Department of Preventive Medicine Vanderbilt University School of Medicine VACCINES TRIUMPHS AND TRIBULATIONS William Schaffner, MD Chairman, Department of Preventive Medicine Vanderbilt University School of Medicine Never in the history of human progress has a better and cheaper

More information

Healthy People 2020 objectives were released in 2010, with a 10-year horizon to achieve the goals by 2020.

Healthy People 2020 objectives were released in 2010, with a 10-year horizon to achieve the goals by 2020. Appendix 1: Healthy People 2020 Immunization-related Objectives Healthy People provides science-based, 10-year national objectives for improving the health of all Americans. For three decades, Healthy

More information

Update on Vaccine Recommendations. Objectives. Childhood Immunization Schedule At the Turn of the Century. New Horizons in Pediatrics April 30, 2017

Update on Vaccine Recommendations. Objectives. Childhood Immunization Schedule At the Turn of the Century. New Horizons in Pediatrics April 30, 2017 Centers for for Disease Disease Control Control and and Prevention Prevention National Center for Immunization and Respiratory Diseases Update on Vaccine Recommendations New Horizons in Pediatrics April

More information

History and aims of immunisation. Dr Anna Clarke Department of Public Health Dr. Steevens Hospital Dublin 8

History and aims of immunisation. Dr Anna Clarke Department of Public Health Dr. Steevens Hospital Dublin 8 History and aims of immunisation Dr Anna Clarke Department of Public Health Dr. Steevens Hospital Dublin 8 Objectives To examine the history of immunisation To explain the aim of immunisation To develop

More information

Economic aspects of viral hepatitis in Turkey. Levent AKIN VIRAL HEPATITIS PREVENTION BOARD MEETING ISTANBUL, TURKEY, NOVEMBER 12-13, 2009

Economic aspects of viral hepatitis in Turkey. Levent AKIN VIRAL HEPATITIS PREVENTION BOARD MEETING ISTANBUL, TURKEY, NOVEMBER 12-13, 2009 Economic aspects of viral hepatitis in Turkey Levent AKIN VIRAL HEPATITIS PREVENTION BOARD MEETING ISTANBUL, TURKEY, NOVEMBER 12-13, 2009 Vaccines currently recommended for children in National Immunization

More information

Immunisation in the Bay of Plenty and Lakes

Immunisation in the Bay of Plenty and Lakes Medical Officer of Health Report August 2017 Immunisation in the Bay of Plenty and Lakes The New Zealand Immunisation Schedule The current New Zealand vaccination schedule protects against the illnesses

More information

Cyprus Experience. Dr. Elena Papamichael Ministry of Health

Cyprus Experience. Dr. Elena Papamichael Ministry of Health Cyprus Experience Dr. Elena Papamichael Ministry of Health Cyprus became independent on1960. On 1974, Turkish troops invaded in the island disturbing the willing for peaceful living. Since then, Turkey

More information

CHAPTER ONE: EXECUTIVE SUMMARY. The Global Vaccine Industry CHAPTER TWO: INTRODUCTION TO VACCINES

CHAPTER ONE: EXECUTIVE SUMMARY. The Global Vaccine Industry CHAPTER TWO: INTRODUCTION TO VACCINES CHAPTER ONE: EXECUTIVE SUMMARY The Global Vaccine Industry o Scope and Methodology o Overview o Pediatric Preventative Vaccines o The Market o Adult Preventative Vaccines o The Market o Total Market o

More information

Routine Office Visits

Routine Office Visits Routine Office Visits Routine office visits are scheduled in advance. Since the office computer allows us to book appointments months in advance, you will often be able to make your next appointment as

More information

MedInform. Ethical and healthcare considerations in relation to mandatory vaccination - Bulgarian perspective. Literature Review

MedInform. Ethical and healthcare considerations in relation to mandatory vaccination - Bulgarian perspective. Literature Review DOI: 10.18044/Medinform.201632.506 Ethical and healthcare considerations in relation to mandatory vaccination - Bulgarian perspective Alexandrina Vodenitcharova Faculty of Public Health, Medical University

More information

Communicable Disease & Immunization

Communicable Disease & Immunization Communicable Disease & Immunization Ingham County Health Surveillance Book 2016 Communicable Disease & Immunization - 1 Communicable Disease & Immunization T he control of communicable disease and immunization,

More information

Sanofi Pasteur: A partner in eradicating vaccine preventable diseases and improving access to vaccines

Sanofi Pasteur: A partner in eradicating vaccine preventable diseases and improving access to vaccines Sanofi Pasteur: A partner in eradicating vaccine preventable diseases and improving access to vaccines 1 Vaccines: the single most effective medical intervention 2 Vaccines save lives Millions of cases

More information

Mandates and More. Julie Morita, M.D. Deputy Commissioner Chicago Department of Public Health. Chicago Department of Public Health

Mandates and More. Julie Morita, M.D. Deputy Commissioner Chicago Department of Public Health. Chicago Department of Public Health Mandates and More Julie Morita, M.D. Deputy Chicago Department of Public Health Why are vaccines required for school entry? School Vaccine Requirements Small pox vaccine required in Massachusetts 1855

More information

OVERVIEW OF THE NATIONAL CHILDHOOD IMMUNISATION PROGRAMME IN SINGAPORE

OVERVIEW OF THE NATIONAL CHILDHOOD IMMUNISATION PROGRAMME IN SINGAPORE OVERVIEW OF THE NATIONAL CHILDHOOD IMMUNISATION PROGRAMME IN SINGAPORE Dr Tiong Wei Wei, MD, MPH Senior Assistant Director Policy and Control Branch, Communicable Diseases Division Ministry of Health 9

More information

An exploration of the cost-effectiveness of interventions to reduce. differences in the uptake of childhood immunisations in the UK using

An exploration of the cost-effectiveness of interventions to reduce. differences in the uptake of childhood immunisations in the UK using An exploration of the cost-effectiveness of interventions to reduce differences in the uptake of childhood immunisations in the UK using threshold analysis National Collaborating Centre for Women s and

More information

Vaccination Guidelines Sipho Dlamini Division of Infectious Diseases & HIV Medicine University of Cape Town Groote Schuur Hospital

Vaccination Guidelines Sipho Dlamini Division of Infectious Diseases & HIV Medicine University of Cape Town Groote Schuur Hospital Vaccination Guidelines Sipho Dlamini Division of Infectious Diseases & HIV Medicine University of Cape Town Groote Schuur Hospital 4 th Southern African HIV Clinicians Society Conference / 24-27 October

More information

Copyright regulations Warning

Copyright regulations Warning COMMONWEALTH OF AUSTRALIA Copyright regulations 1969 Warning This material has been reproduced and communicated to you by or on behalf of the University of Melbourne pursuant to part VB of the Copyright

More information

Disease and Contemporary Society

Disease and Contemporary Society Disease and Contemporary Society Alan Mortimer PhD Lecture 1 The notes to accompany this lecture series are provided for the educational use of the course participants. It is believed that images may be

More information

Gavi s Vaccine Investment Strategy

Gavi s Vaccine Investment Strategy Gavi s Vaccine Investment Strategy Judith Kallenberg, Head of Policy WHO Product Development for Vaccines Advisory Committee Meeting Geneva, Switzerland, 7-9 September 2015 www.gavi.org Vaccine Investment

More information

Take advantage of preventive care to help manage your health

Take advantage of preventive care to help manage your health UnitedHealthcare Preventive Plan Design Employee Take advantage of preventive care to help manage your health Preventing disease and detecting health issues at an early stage, if they occur, are important

More information

Vaccine-Preventable Diseases in Colorado s Children 2009 Sean O Leary MD, Carl Armon PhD, Joni Reynolds, RNC, MSN, James Todd MD

Vaccine-Preventable Diseases in Colorado s Children 2009 Sean O Leary MD, Carl Armon PhD, Joni Reynolds, RNC, MSN, James Todd MD State of the Health of Colorado s Children Vaccine-Preventable Diseases in Colorado s Children 29 Sean O Leary MD, Carl Armon PhD, Joni Reynolds, RNC, MSN, James Todd MD Vaccines have been highly effective

More information

DISEASE PREVENTION & ANTIMICROBIAL USE REDUCTION: IMPACT OF VACCINATION

DISEASE PREVENTION & ANTIMICROBIAL USE REDUCTION: IMPACT OF VACCINATION DISEASE PREVENTION & ANTIMICROBIAL USE REDUCTION: IMPACT OF VACCINATION Anwar Hoosen Department of Medical microbiology University of Pretoria & Tswane Academic Division, NHLS 1 VACCINE ACHIEVEMENTS At

More information

VACCINES FOR ADULTS. Developing an Underutilised Health Resource. 13 November 2007

VACCINES FOR ADULTS. Developing an Underutilised Health Resource. 13 November 2007 VACCINES FOR ADULTS Developing an Underutilised Health Resource 13 November 2007 OUTLINE background to adult immunisation in Canada roles and recommendations of immunisation advisory committees in Canada

More information

How does Gavi make vaccine investment decisions?

How does Gavi make vaccine investment decisions? How does Gavi make vaccine investment decisions? Judith Kallenberg Global Vaccine and Immunization Research Forum Johannesburg, South-Africa, 16 March 2016 www.gavi.org Vaccine Investment Strategy (VIS)

More information

GAVI ALLIANCE: UPDATE AND FUTURE DIRECTIONS FOR GLOBAL VACCINES AND IMMUNISATIONS

GAVI ALLIANCE: UPDATE AND FUTURE DIRECTIONS FOR GLOBAL VACCINES AND IMMUNISATIONS GAVI ALLIANCE: UPDATE AND FUTURE DIRECTIONS FOR GLOBAL VACCINES AND IMMUNISATIONS Ranjana Kumar International Rotavirus Symposium Istanbul, 3 4 June 2008 The GAVI Alliance Public-private partnership bringing

More information

Table Of Contents Executive Summary Introduction to Vaccines Pediatric Preventive Vaccines

Table Of Contents Executive Summary Introduction to Vaccines Pediatric Preventive Vaccines Table Of Contents Executive Summary THE GLOBAL VACCINES INDUSTRY Scope and Methodology Overview Pediatric Preventative Vaccines THE MARKET Adult Preventative Vaccines THE MARKET TOTAL MARKET ISSUES AND

More information

Vaccine 26S (2008) F3 F15. Contents lists available at ScienceDirect. Vaccine. journal homepage:

Vaccine 26S (2008) F3 F15. Contents lists available at ScienceDirect. Vaccine. journal homepage: Vaccine 26S (2008) F3 F15 Contents lists available at ScienceDirect Vaccine journal homepage: www.elsevier.com/locate/vaccine Review Evolution of the health economics of cervical cancer vaccination Nicole

More information

Preventative Vaccines. Vaccines for Special Populations. Vaccinations for Adults: An Update. Vaccines Generally Available in the U.S.

Preventative Vaccines. Vaccines for Special Populations. Vaccinations for Adults: An Update. Vaccines Generally Available in the U.S. Vaccinations for Adults: An Update Preventative Vaccines Need to be extremely safe Even greater issue as disease prevalence wanes or uncommon diseases targeted Lisa G. Winston, MD University of California,

More information

2016/17 Vaccination and Immunisation list of additional services and enhanced services

2016/17 Vaccination and Immunisation list of additional services and enhanced services 2016/17 Vaccination and Immunisation list of additional services and enhanced services 2016/17 Vaccination and Immunisation list of additional services and enhanced services Version number: 1 First published:

More information

FIMDP 2013 DEPT OF COMMUNITY MEDICINE SRM MEDICAL COLLEGE,SRM UNIVERSITY & UNSW AUSTRALIA 9 TH & 10 TH JAN 2013

FIMDP 2013 DEPT OF COMMUNITY MEDICINE SRM MEDICAL COLLEGE,SRM UNIVERSITY & UNSW AUSTRALIA 9 TH & 10 TH JAN 2013 FIMDP 2013 DEPT OF COMMUNITY MEDICINE SRM MEDICAL COLLEGE,SRM UNIVERSITY & UNSW AUSTRALIA 9 TH & 10 TH JAN 2013 Immunization Dr A Prema Prof. & HOD, Dept of Pediatrics SRM Medical College Beginning of

More information

Medical Coverage Guidelines are subject to change as new information becomes available.

Medical Coverage Guidelines are subject to change as new information becomes available. IMMUNIZATIONS Coverage for services, procedures, medical devices and drugs are dependent upon benefit eligibility as outlined in the member's specific benefit plan. This Medical Coverage Guideline must

More information

BCG vaccine and tuberculosis

BCG vaccine and tuberculosis PART 2: Vaccination for special risk groups 2.1 Vaccination for Aboriginal and Torres Strait Islander people Aboriginal and Torres Strait Islander people historically had a very high burden of infectious

More information

Routine Adult Immunization: American College of Preventive Medicine Practice Policy Statement, updated 2002

Routine Adult Immunization: American College of Preventive Medicine Practice Policy Statement, updated 2002 Routine Adult Immunization: American College of Preventive Medicine Practice Policy Statement, updated 2002 Ann R. Fingar, MD, MPH, and Byron J. Francis, MD, MPH Burden of suffering Vaccines are available

More information

Study population The study population comprised the general population of Senegal inhabitants aged 1 to 30 years.

Study population The study population comprised the general population of Senegal inhabitants aged 1 to 30 years. Comparison of cost-effectiveness of preventive and reactive mass immunization campaigns against meningococcal meningitis in West Africa: a theoretical modeling analysis Parent du Chatelet I, Gessner B

More information

VACCINE FACT BOOK 2012

VACCINE FACT BOOK 2012 VACCINE FACT BOOK 2012 Preface Prevention is better than cure is a proverb in many other languages as well. This idea is central to the development of vaccines, which have transformed human health since

More information

Requirements for new trials to examine offtarget. vaccination. Workshop on: Off-target (heterologous/non-specific) effects of vaccination.

Requirements for new trials to examine offtarget. vaccination. Workshop on: Off-target (heterologous/non-specific) effects of vaccination. Requirements for new trials to examine offtarget effects of vaccination Workshop on: Off-target (heterologous/non-specific) effects of vaccination Les Pensieres Jun 8-10, 2015 PEM Fine London School of

More information

Director of Public Health Board Paper No. 13/13

Director of Public Health Board Paper No. 13/13 Greater Glasgow and Clyde NHS Board Director of Public Health Board Paper No. 13/13 Report of the Director of Public Health : Major Development to Immunisation Programmes in Scotland Implications for NHSGGC

More information

Global Health Policy: Vaccines

Global Health Policy: Vaccines Global Health Policy: Vaccines Edwin J. Asturias Senior Investigator Colorado School of Public Health Department of Pediatrics Children s Hospital Colorado UNIVERSITY OF COLORADO COLORADO STATE UNIVERSITY

More information

Expanded Programme on Immunization (EPI):

Expanded Programme on Immunization (EPI): Expanded Programme on Immunization (EPI): Introduction Four to five million annual deaths could be prevented by 2015 through sustained and appropriate immunization efforts, backed by financial support.

More information

Economic Evaluation. Defining the Scope of a Costeffectiveness

Economic Evaluation. Defining the Scope of a Costeffectiveness Economic Evaluation Defining the Scope of a Costeffectiveness Analysis II This work is licensed under a Creative Commons Attribution-NonCommercial-ShareAlike License. Your use of this material constitutes

More information

2017/18 Immunisation programmes list of additional and enhanced services

2017/18 Immunisation programmes list of additional and enhanced services 2017/18 Immunisation programmes list of additional and enhanced services 2017/18 Vaccination and Immunisation list of additional and enhanced services Version number: 1 First published: April 2017 Prepared

More information

Take advantage of preventive care to help manage your health

Take advantage of preventive care to help manage your health Take advantage of preventive care to help manage your health Preventing disease and detecting health issues at an early stage, if they occur, are important to living a healthy life. Following the recommended

More information

Series of 2 doses, 6-12 months apart. One dose is 720 Elu/0.5ml (GSK) or 25 u/0.5 ml (Merck)

Series of 2 doses, 6-12 months apart. One dose is 720 Elu/0.5ml (GSK) or 25 u/0.5 ml (Merck) UTAH PREVENTIVE CARE RECOMMENDATIONS Adult - Ages 19 and Above IMMUNIZATIONS CONTENTS: General Instructions Hepatitis A Hepatitis B Human Papilloma Virus Influenza Meningococcal A, C, Y, W (MCV4) Meningococcal

More information

CS/PoliSci/Statistics C79 Societal Risks & The Law

CS/PoliSci/Statistics C79 Societal Risks & The Law CS/PoliSci/Statistics C79 Societal Risks & The Law Nicholas P. Jewell Department of Statistics & School of Public Health (Biostatistics) University of California, Berkeley March 19, 2013 1 Nicholas P.

More information

2018/19 Immunisation programmes list of additional and enhanced services

2018/19 Immunisation programmes list of additional and enhanced services 2018/19 Immunisation programmes list of additional and enhanced services 2018/19 Vaccination and Immunisation list of additional and enhanced services Version number: 1 First published: April 2018 Prepared

More information

Guidelines for Vaccinating Pregnant Women

Guidelines for Vaccinating Pregnant Women Guidelines for Vaccinating Pregnant Women March 2012 Guidelines for Vaccinating Pregnant Women Abstracted from recommendations of the Advisory Committee on Immunization Practices (ACIP) MARCH 2012 Risk

More information

vaccines. Lecture 16 Dr. Gary Mumaugh

vaccines. Lecture 16 Dr. Gary Mumaugh Vaccines Lecture 16 Dr. Gary Mumaugh Vaccines A vaccine is a form of antigen (substance which stimulates an immune response) used to create a barrier of immunity against a specific disease. The term derives

More information

9/10/2018. Principles of Vaccination. Immunity. Antigen. September 2018

9/10/2018. Principles of Vaccination. Immunity. Antigen. September 2018 Centers for Disease Control and Prevention National Center for Immunization and Respiratory Diseases Principles of Vaccination September 2018 Chapter 1 September 2018 Photographs and images included in

More information

Polio vaccines and polio immunization in the pre-eradication era: WHO position paper. Published in WER 4 June, 2010

Polio vaccines and polio immunization in the pre-eradication era: WHO position paper. Published in WER 4 June, 2010 Polio vaccines and polio immunization in the pre-eradication era: WHO position paper Published in WER 4 June, 2010 Epidemiology & Background Poliomyelitis (polio) is an acute communicable disease of humans

More information

Deaths/yr Efficacy Use Prev Deaths/yr. Influenza 36,000 70% 60% 18,000. Pneumonia 40,000 60% 40% 20,000 HBV 6,000 90% 30% 4,000

Deaths/yr Efficacy Use Prev Deaths/yr. Influenza 36,000 70% 60% 18,000. Pneumonia 40,000 60% 40% 20,000 HBV 6,000 90% 30% 4,000 Tetanus, Diptheria, Pertussis,! Measles, Mumps, Rubella, Varicella, HPV, Polio Meningococcus, Pneumococcus,! Influenza, Hepatitis B, Hepatitis A,! H influenza, Rabies, Typhoid,! Yellow Fever, Japanese

More information

'Contagious Comments' Department of Epidemiology

'Contagious Comments' Department of Epidemiology 'Contagious Comments' Department of Epidemiology Vaccine-Preventable Diseases in Colorado s Children, 27 Sean O Leary MD, Elaine Lowery JD MSPH, Carl Armon MSPH, James Todd MD Vaccines have been highly

More information

The Gates Challenge. Bill Gates Commencement Address Harvard University Class of 2007

The Gates Challenge. Bill Gates Commencement Address Harvard University Class of 2007 History & Future of the Expanded Programme on Immunization Supplier Meeting, Copenhagen, 3-4 April 2008 Dr Osman David Mansoor Senior Adviser EPI (New Vaccines) UNICEF New York The Gates Challenge If we

More information

For Residence Hall Students Only

For Residence Hall Students Only Immunization Record 2016-2017 Please print all information. PLEASE MAIL OR FAX COMPLETED FORMS (TWO PAGES) TO: Mount St. Joseph University, Wellness Center, 5701 Delhi Road, Cincinnati, OH 45233-1670 ATTN:

More information

UPDATE ON IMMUNIZATION GUIDELINES AND PRACTICES

UPDATE ON IMMUNIZATION GUIDELINES AND PRACTICES DISCLOSURES UPDATE ON IMMUNIZATION GUIDELINES AND PRACTICES Nothing to disclose Kylie Mueller, Pharm.D., BCPS Clinical Specialist, Infectious Diseases Spartanburg Regional Medical Center LEARNING OBJECTIVES

More information

Immunisation Subcommittee of PTAC Meeting held 18 February 2015

Immunisation Subcommittee of PTAC Meeting held 18 February 2015 Immunisation Subcommittee of PTAC Meeting held 18 February 2015 (minutes for web publishing) Immunisation Subcommittee minutes are published in accordance with the Terms of Reference for the Pharmacology

More information

Immunization Report Public Health September 2013

Immunization Report Public Health September 2013 Immunization Report Public Health September 2013 Daycare, school entry and school program immunization enrollment rates, up to 2012 Table of Contents 1. Introduction... 2 2. Data Source... 2 3. Limitations...

More information

Vaccines, Not Just for Babies

Vaccines, Not Just for Babies Vaccines, Not Just for Babies Meg Fisher, MD Medical Director Disclosures I have no relevant financial relationships with the manufacturers of any commercial products or commercial services discussed in

More information

Take advantage of preventive care to help manage your health

Take advantage of preventive care to help manage your health Take advantage of preventive care to help manage your health Preventing disease and detecting health issues at an early stage, if they occur, are important to living a healthy life. Following the recommended

More information

Immunization Guidelines For the Use of State Supplied Vaccine July 1, 2011

Immunization Guidelines For the Use of State Supplied Vaccine July 1, 2011 DTaP / DT DTaP/IPV/Hep B Combination (Pediarix ) Children from 6 weeks of age up to the 7 th birthday Children from 2 months of age up to the 7th birthday: Indicated for the primary doses of DTaP, IPV,

More information

Questions and answers about HPV. Facts about the virus and the vaccine

Questions and answers about HPV. Facts about the virus and the vaccine Questions and answers about HPV Facts about the virus and the vaccine About the introduction of the human papillomavirus (HPV) vaccine Which countries have introduced the HPV vaccine? Over 100 countries

More information

APEC Guidelines Immunizations

APEC Guidelines Immunizations Pregnancy provides an excellent opportunity to enhance a woman s protection against disease and to provide protection to the neonate during the first 3 to 6 months of life. Women of childbearing age should

More information

Daycare, school entry and school program immunization report. Data for school year 2016/17

Daycare, school entry and school program immunization report. Data for school year 2016/17 Daycare, school entry and school program immunization report Data for school year 2016/17 Table of Contents 1. Introduction... 1 2. Data Source... 1 3. Limitations... 2 4. Daycare - Proof of Immunization...

More information

1 Principles of Vaccination Immunology and Vaccine-Preventable Diseases... 1 Classification of Vaccines... 4 Selected References...

1 Principles of Vaccination Immunology and Vaccine-Preventable Diseases... 1 Classification of Vaccines... 4 Selected References... 1 Principles of Vaccination Immunology and Vaccine-Preventable Diseases... 1 Classification of Vaccines... 4 Selected References... 7 2 General Recommendations on Immunization Timing and Spacing of Vaccines...

More information

Immunization Update Richard M. Lampe M.D.

Immunization Update Richard M. Lampe M.D. Immunization Update 2012 Richard M. Lampe M.D. Immunization Update List the Vaccines recommended for Health Care Personnel Explain why Health Care Personnel are at risk Recognize the importance of these

More information

Why is surveillance important after introducing vaccines?

Why is surveillance important after introducing vaccines? Why is surveillance important after introducing vaccines? Dr Michael Edelstein Immunisation Department, National Infections service Public Health England @epi_michael BSAC Spring conference, 12 th March

More information

Alberta Notifiable Disease Incidence

Alberta Notifiable Disease Incidence Alberta Notifiable Disease Incidence A Historical Record 1919-214 Acknowledgements Prepared by Rosa Maheden Business Analyst Contributions Kimberley Simmonds Manager, Infectious Disease, EPI Theresa Lohman

More information

Guideline for the immunization of HIV infected persons in Sri Lanka

Guideline for the immunization of HIV infected persons in Sri Lanka DOI: http://doi.org/10.4038/joshhm.v3i0.64 Guideline for the immunization of HIV infected persons in Sri Lanka Dr. M. K. Darshanie Mallikarachchi, Consultant Venereologist, Provincial General Hospital

More information

Immunisation Subcommittee of PTAC Meeting held 10 February (minutes for web publishing)

Immunisation Subcommittee of PTAC Meeting held 10 February (minutes for web publishing) Immunisation Subcommittee of PTAC Meeting held 10 February 2014 (minutes for web publishing) Immunisation Subcommittee minutes are published in accordance with the Terms of Reference for the Pharmacology

More information

Manitoba Health, Healthy Living and Seniors

Manitoba Health, Healthy Living and Seniors Manitoba Health, Healthy Living and Seniors Manitoba Annual Immunization Surveillance Report, 2012 and 2013 January 1, 2012 to December 31, 2013 with 5-year average comparison (January 1, 2007 to December

More information

Role of Partnerships in Developing Innovative Vaccines: Brazil

Role of Partnerships in Developing Innovative Vaccines: Brazil Role of Partnerships in Developing Innovative Vaccines: Brazil SAGE Meeting, October 2010 Reinaldo Guimarães, M.D, MSc. Secretary of Science, Technology and Strategic Inputs Ministry of Health of Brazil

More information

GSK VACCINES: KEY GROWTH DRIVERS

GSK VACCINES: KEY GROWTH DRIVERS GSK VACCINES: KEY GROWTH DRIVERS Martin Andrews Senior Vice President, Global Vaccines Centre of Excellence, GSK Biologicals Millions of children die from infectious diseases Many of these deaths are preventable

More information

1.0 ROUTINE SCHEDULES...

1.0 ROUTINE SCHEDULES... August 2012 TABLE OF CONTENTS 1.0 ROUTINE SCHEDULES... 1 1.1 SCHEDULE A: BASIC IMMUNIZATION WHEN STARTING WITH INFANRIX HEXA VACCINE... 1 1.1.1 SCHEDULE A: BASIC IMMUNIZATION WHEN STARTING WITH PEDIACEL

More information

Essential Vaccinations for HIV-Positive Adults and Adolescents

Essential Vaccinations for HIV-Positive Adults and Adolescents Essential Vaccinations for HIV-Positive Adults and Adolescents Janak A. Patel, MD Professor & Director, Pediatric Infectious Diseases Director, Maternal-Child Program University of Texas Medical Branch

More information

VACCINATION. DR.FATIMA ALKHALEDY M.B.Ch.B;F.I.C.M.S/C.M.

VACCINATION. DR.FATIMA ALKHALEDY M.B.Ch.B;F.I.C.M.S/C.M. VACCINATION DR.FATIMA ALKHALEDY M.B.Ch.B;F.I.C.M.S/C.M. IMMUNIZATION Immunization is defined as the procedure by which the body is prepared to fight against a specific disease. It is used to induce the

More information

Preventing Vaccine-Preventable Diseases in HIV-Infected Children and Adults

Preventing Vaccine-Preventable Diseases in HIV-Infected Children and Adults Preventing Vaccine-Preventable Diseases in HIV-Infected Children and Adults 1. Objective The objectives of this chapter are to underline the role of vaccination in reducing morbidity and mortality in HIV

More information