Meningitis Outbreak Response intervention thresholds in sub-saharan Africa

Size: px
Start display at page:

Download "Meningitis Outbreak Response intervention thresholds in sub-saharan Africa"

Transcription

1 Meningitis Outbreak Response intervention thresholds in sub-saharan Africa Report for the WHO Meningitis Guideline Revision May 2014 Prepared by Dr Caroline Trotter Recommendation question: Following the introduction of MenAfriVac, what criteria should be used to determine when to start mass vaccination in outbreaks of meningococcal meningitis? Current position: The WHO currently recommends for areas of population greater than 30,000: an alert threshold of 5 cases per 100,000 inhabitants per week; and an epidemic threshold of 10 per 100,000 in 1 week when epidemic risk is high, or 15 per 100,000 per week otherwise 1. For small populations, thresholds are defined by absolute numbers of cases. In most instances, the operational epidemic threshold is 10 per 100,000, with the higher threshold of 15 per 100,000 being PICO Question 1 In outbreaks of meningococcal meningitis due to vaccine preventable serogroups, how many cases and deaths are potentially averted when mass vaccination is implemented at different thresholds? Population: total population in a defined district or subdistrict affected by a C, W or Y meningitis outbreak (or A after introduction of MenAfriVac) Intervention: reactive vaccination campaigns with an appropriate vaccine launched when a given attack rate (or other agreed criteria) is reached Comparator: reactive vaccination campaigns with an appropriate vaccine launched when the current epidemic threshold is reached Outcome: cases, deaths rarely used. Background and aims In the African meningitis belt, meningitis epidemics are detected by using weekly incidence thresholds. The current thresholds were established on the recommendation of a consensus meeting on detection of meningitis epidemics in Africa, held in Paris on 20 June Data to inform this consensus was primarily from Neisseria meningitidis group A (NmA) epidemics 2-4. As the largescale use of the NmA conjugate vaccine, MenAfriVac, is expected to substantially reduce the burden of disease in the meningitis belt, and the epidemiology of disease due to other groups may be different to NmA, it is timely to review the current thresholds. The aim of this paper is to address the PICO question outlined above (PICO 1). Since there have been no outbreaks of group A disease in populations immunised with MenAfriVac and no group C or Y outbreaks have been documented in the meningitis belt in recent years, these analyses concentrate on N. meningitidis group W (NmW) outbreaks. 1

2 Methods Data sources Several sources of data were used to construct an NmW dataset, as summarised in table 1. There was considerable overlap in the data sources used for PICO 1 and PICO 3. All data were at district level; there were no available data at the sub-district level. Table 1: Data sources for PICO 1 analysis Data Source Description Suspected case data WHO IST Ougadougou (Clement Lingani) Weekly case counts by district from 2005 onwards, covering most countries in the meningitis belt though not all countries for all years. ICG vaccine requests a WHO Geneva (Katya Fernandez) Documented requests for vaccine to implement reactive immunisation campaigns Laboratory line lists WHO Geneva Line lists of laboratory reports collated from various Additional data from Burkina Faso 2002, 2003 Additional data from Burkina Faso 2010, 2012, 2013 Additional data from Gambia 2012 Imperial database (Laurence Cibrelus) WHO Geneva (Katya Fernandez) CDC (Ryan Novak) MRC Gambia (Jahangir Hossain) WHO Geneva (Katya Fernandez) countries and sources Weekly case counts by district and laboratory data Laboratory confirmed meningitis cases (line listing) Weekly case counts (suspected and confirmed) from epidemic regions with associated laboratory data Total cases by district and year with additional laboratory data for Burkina Faso, Chad, Niger and Mali used to analyse NmA vs NmW outbreak size Data from these different sources were incorporated into one database. Suspected case data was reorganised so that one line represented one district year with different columns showing cases by week. Laboratory line lists of individual cases were manipulated to provide totals by district and year; these were then matched to the weekly suspected case data by district and year. Additional information from other sources (table 1) was then added to this database. District years with both weekly counts of suspected cases and some evidence of NmW disease were included in the NmW dataset. Evidence of NmW was usually in the form of laboratory confirmation; initially any districts with 2 or more laboratory confirmed NmW cases in a year were included. The proportion of confirmed cases that were NmW compared to all N. meningitidis confirmed cases was then examined, and district years with >50% NmW were retained. Some additional district years were included on the basis of an ICG request for NmW containing vaccine for reactive vaccination. Then, any district years with 20 or fewer suspected cases in total were excluded (33 district years). Since surveillance is most active during the meningitis season, data from weeks 1-26 was used. a The ICG is a partnership between WHO, UNICEF, Médecins Sans Frontières (MSF), and the International Federation of the Red Cross (IFRC) established to provide globally coordinated emergency response for epidemic meningitis through the management of emergency vaccine stockpiles. 2

3 Reactive vaccination response time Data from ICG between 2006 and 2013 was used to determine the range, mean and median time taken from a request for vaccine and implementation of a reactive vaccination campaign. Estimating cases occurring after different weekly incidence thresholds Thresholds of 7, 5 and 3 per 100,000 (below the current epidemic threshold of 10 per 100,000) were considered. The week that a given threshold was crossed (wt) was identified, and the cases that occurred in subsequent weeks were summed, up to week 26 (w26). Since the seasonal incidence of meningitis is high, hyperendemic seasonal activity may need to be distinguished from epidemic activity. Mueller & Gessner report that in Burkina Faso during January through May 2008, 96% and 79%, respectively, of the 63 districts reported a weekly incidence rate above 1 or 2 per 100,000 during at least 4 weeks 5. In addition, the suspected case data may contain cases of meningitis caused by other pathogens. Therefore, in the main analyses, cases that occurred after weekly incidence declined to a normal seasonal incidence of <2 per 100,000 (noted as wn) were excluded. Estimating vaccine preventable cases Because it would not be feasible to instantly implement a reactive vaccination campaign, a time lag (based on the observed reactive vaccination response time) was included, so that cases were only assumed to be by vaccination following this interval (wt+lag, e.g. wt+6). The number of vaccine preventable cases was estimated by multiplying the total number of cases that occurred between wt+lag and wn by the effective vaccine coverage (V EC ). The effective vaccine coverage is a composite variable that summarises both vaccine effectiveness and uptake. E.g. vaccine uptake of 95% multiplied by vaccine effectiveness of 90% gives a V EC of 86%; values of 75% and 90% were used in this analysis. Some previous reactive campaigns with polysaccharide vaccine have restricted the vaccine to 2 to 29 year olds because of lower immunogenicity in young children and low disease risk in older adults. Although there is variation by outbreak, approximately 16% of NmW cases in recent outbreaks have occurred in children less than 2 years of age 6 (see also PICO 3). The effect of excluding <2 year old children from the vaccine campaign was also considered, by assuming that 16% of cases occurred in this age group. The exclusion of <2 year olds in this way in the model could in practice be as a result of either not targeting this age group for vaccination or low immunogenicity in the youngest children. Estimating deaths at different weekly incidence thresholds The number of deaths is not presented but can be estimated by applying the average case fatality experienced in NmW outbreaks (11.6%)(PICO 3 Report). Definition of an NmW epidemic The studies used to inform the existing thresholds defined an epidemic to be a cumulative incidence of 100 cases per 100,000 population (lower cumulative incidences of 70, 80 and 90 per 100,000 were considered in sensitivity analyses). There is evidence that NmW epidemics are, on average, less intense than NmA epidemics (Griffin et al, paper in preparation). A range of cumulative incidences are used to define an epidemic here, from a minimum seasonal incidence of 20 per 100,000 to a maximum of 100 per 100,000 (with 40, 60 and 80 per 100,000 also considered). 3

4 Threshold performance The sensitivity, specificity, positive predictive value (PPV) and negative predictive value (NPV) of different weekly thresholds for detecting an epidemic were calculated. The definition of an epidemic season was varied between 20 and 100 per 100,000, as discussed above. Post MenAfriVac dataset To investigate the properties of the thresholds further, the number of events (i.e. district years where a specific threshold was reached) that occurred in a representative dataset was estimated. Weekly suspected case data from countries that had completed MenAfriVac campaigns was used for this purpose. This post MenAfriVac dataset, included district years from Mali, Niger, Burkina Faso in both 2012 and 2013 and from Chad in 2013 only. Results Description of NmW dataset The final dataset constructed for this analysis comprised 136 district years with both weekly suspected case data and some evidence of NmW disease. There are a total of 20,777 suspected cases, with 2318 confirmed NmW cases (11.1% confirmed overall). Burkina Faso accounted for 82 (60%) of these district years, with Mali and Niger contributing 14 and 17 district years respectively and 7 other countries (Benin, Chad, Cote d Ivoire, Gambia, Ghana, Guinea, Nigeria) contributing between 2 and 7 district years each. The districts included in the NmW dataset are shown in figure 1. District population sizes ranged from 59,330 to 884,859, with a median size of 263,110. There were no districts with a population <30,000 in this dataset. Figure 1: Map of districts in the meningitis belt with confirmed W disease between 2002 and 2013 included in this analysis. Note that some districts may be appear in the dataset for more than 1 year. 4

5 Of the 136 district years in the NmW dataset, 99 reached a cumulative seasonal incidence of 20 per 100,000, 68 district years reached 40 per 100,000, 55 district years were 60 per 100,000 and 36 were 80 per 100,000. Only 22 district-years reached the previously used epidemic definition of 100 per 100,000 and 15 of these occurred in Burkina Faso. The total seasonal incidence ranged between 3 and 506 per 100,000 in the 136 district years. In the 99 district years exceeding a seasonal incidence of 20 per 100,000, the peak weekly incidence ranged from 2.5 to 104 per 100,000 overall, with a median peak incidence of 6.2 per 100,000. Among these districts, the peak was observed between week 2 and week 17 (median week 13). Reactive vaccination response time There were 153 vaccine requests logged with ICG between 2006 and The mean response time from vaccine being requested to reactive immunisation being implemented was 26 days. The minimum response time (excluding those instances where vaccine stocks were already held incountry) was 10 days. A vaccination campaign takes 1-2 weeks to complete and a further week is required for vaccinated individuals to mount a protective immune response. The average lag time is therefore likely to be in the region of 6 weeks. We also considered an optimistic 4 week lag and an unrealistic 2 week lag for illustration purposes. The mean time from threshold to peak weekly incidence is shown in table 2. It is clear that a lower threshold buys more time in which to respond before the peak is reached. Table 2: Time from threshold to peak incidence Threshold (weekly incidence per 100,000) Number of district years reaching threshold Mean interval from threshold to peak incidence in weeks (days) (10.1) (18.1) (22.8) (39.5) Potentially preventable cases at different weekly incidence thresholds The number of cases occurring in the weeks after the threshold was reached, up to week 26 are shown in table 3. A more conservative count is also shown which excludes cases that occur after the incidence has returned to a normal seasonal incidence of 2 per 100,000 per week. The addition of a 6 week time lag, which seems the most likely based on ICG data, decreases the number of potentially preventable cases substantially. If a 4 week or even a 2 week time lag could be achieved, substantially more cases (approximately 2 and 3 times as many for a lag of 4 and 2 weeks respectively) are potentially preventable. 5

6 Table 3: Suspected cases occurring after weekly incidence threshold reached Threshold (weekly incidence per 100,000) week wt* to w26 week wt to wn** week wt+2 to w26 week wt+4 to w26 week wt+6 to w *wt= week at which the threshold is reached ** wn= week at which incidence returns to normal seasonal baseline of 2 per 100,000 per week week wt+6 to wn More detail is given on the number of cases occurring from 6 weeks after the threshold was reached (wt+6) until return to normal seasonal activity (wn) in table 4, together with the average number of cases per district and the range. Table 4: Number of cases occurring 6 weeks after the threshold was reached until return to normal seasonal activity of 2 per 100,000 per week. Threshold (weekly incidence per 100,000) Number of district years reaching threshold occurring in weeks wt+6 to wn Mean cases per district (range) Median cases per district (IQR) * (0-434) 0 (0, 14) (0-434) 6 (0, 18) (0-783) 10 (0, 31) (2-1769) 14 (0, 67) * The current threshold is 10 per 100,000. The number of cases occurring per event after this threshold was reached is shown for information, but vaccination was instigated at this point in many of the districts which will have curtailed the epidemic, which may make this threshold seem less favourable. A greater number of cases (and cases per are as the thresholds are lowered. The proportion of districts where more than 20 cases are potentially preventable increases from 24% to 35% and then to 45% as the threshold is lowered (from 7 to 5 to 3 per 100,000 respectively). However, as the threshold is lowered, successively more individuals would have been targeted for reactive immunisation, i.e. an additional 4.0 million with a threshold of 7, an additional 7.0 million with a threshold of 5 per 100,000 and an additional 13.8 million with the lowest threshold of 3 per 100,000 (assuming the whole district population is targeted). To investigate the robustness of these results, the distribution of the cases averted by outbreak was examined. A large number (1769) of the additional cases by the lowest threshold of 3 per 100,000 per week were due to one district year (figure 2); Pissy in Burkina Faso 2002 where there was a large NmW epidemic. However, the proportion of cases occurring in this district compared to the total over all districts was similar for thresholds of 3, 5 and 7 (27%), so the relative merits of the thresholds are unchanged if this district is excluded. 6

7 Figure 2: Distribution of cases occurring after a given threshold until return to normal seasonal incidence by district year Of the district years reaching a threshold of 7 per 100,000 per week, 74% went on to pass a threshold of 10 per 100,000 per week; this was 63% for a threshold of 5 per 100,000 per week and 50% for the lowest threshold of 3 per 100,000 per week. To investigate any residual effects of vaccination triggered by the current threshold of 10 per 100,000, the districts known to have been vaccinated with an NmW-containing vaccine were excluded (table 5). The mean cases per district, i.e. those that were potentially preventable, were higher than in table 4, but the relative advantage of the lowest threshold remained. Table 5: Number of cases occurring 6 weeks after the threshold was reached until return to normal seasonal activity of 2 per 100,000 per week, excluding vaccinated districts where reactive campaigns with an NmW containing vaccine was implemented. Threshold (weekly incidence per 100,000) Number of district years reaching threshold occurring in weeks wt+6 to wn Mean cases per district (range) Median cases per district (IQR) (0-434) 11 (2,48) (0-434) 14 (6, 40) (0-783) 19 (8, 47) (2-1769) 42 (10, 112) 7

8 Vaccine-preventable cases at different thresholds and vaccine assumptions The estimated number of cases that could be by reactive vaccination at each threshold under varying assumptions of effective vaccine coverage is shown in table 6. The exclusion of children under 2 years of age substantially reduces the number of cases that could be. In all of the scenarios considered, the average number of cases per event is fewer than 60, with 11 out of 16 scenarios preventing fewer than 30 cases per event. Table 6: by reactive vaccination with different thresholds under different assumptions of effective vaccine coverage (V EC ), assuming a 6 week lag Threshold (weekly incidence per 100,000) occurring in weeks wt+6 to wn (number of events) V EC =75% (per V EC =90% (per V EC =75%, <2y/o excluded (per V EC =90%, <2y/o excluded (per (49) 845 (17) 1014 (21) 710 (14) 852 (17) (66) 1226 (19) 1472 (22) 1030 (16) 1236 (19) (77) 2045 (27) 2454 (32) 1718 (22) 2062 (27) (98) 4466 (46) 5360 (55) 3752 (39) 4502 (46) Improving reactive vaccination response The gains in the number of cases that could be if the time between threshold and effective vaccination were 4 weeks rather than 6 weeks are shown in table 7. As expected, many more cases are with a shorter lag. The number of cases per event is higher (better) under the current threshold of 10 per 100,000 per week if a 4 week lag is assumed than the lowest threshold of 3 per 100,000 per week with a 6 week lag. Table 7: by reactive vaccination with different thresholds under different assumptions of effective vaccine coverage (V EC ), assuming a 4 week lag Threshold (weekly incidence per 100,000) occurring in weeks wt+4 to wn (number of events) V EC =75% (per V EC =90% (per V EC =75%, <2y/o excluded (per V EC =90%, <2y/o excluded (per (49) 2662 (54) 3194 (65) 2236 (46) 2683(55) (66) 3522 (53) 4226 (64) 2958 (45) 3550 (54) (77) 4636 (60) 5563 (72) 3894 (51) 4673 (60) (98) 6984 (71) 8381 (86) 5867 (60) 7040 (72) Threshold performance The performance of the weekly thresholds compared to different definitions of an epidemic is shown in table 8. The appropriateness of the threshold is associated with the definition of an epidemic ; i.e. lower thresholds are more appropriate when a lower cumulative incidence is used to define an epidemic. The best threshold for each definition of an epidemic is highlighted. The 8

9 analysis was repeated for Burkina Faso only and for all others excluding Burkina Faso, although this did not markedly change the results (not shown). Table 8: Performance of different weekly thresholds compared to a cumulative seasonal incidence of 20, 40, 60, 80 or 100 per 100,000 population full NmW dataset Seasonal incidence per 100,000 Weekly threshold per 100,000 Sensitivity % (95% CI) Specificity % (95% CI) PPV % (95% CI) NPV % (95% CI) (41.1, 57.9) 100 (100,100) 100 (100,100) 42.5 (34.2, 50.8) (58.7, 74.6) 100 (100,100) 100 (100, 100) 52.9 (44.5, 61.3) (69.7, 83.9) 97.3 (94.6, 100) 98.7 (96.8, 100) 61.0 (52.8, 69.2) (92.6, 99.3) 91.9 (87.3, 96.5) 96.9 (94.0, 99.8) 89.5 (84.3, 94.6) (62.9, 78.3) 98.5 (96.5, 100) 98.0 (95.6, 100) 77.0 (69.9, 84.0) (90.1, 98.1) 97.1 (94.2, 99.9) 97.0 (94.1, 99.9) 94.3 (90.4, 98.2) (100, 100) 86.7 (81.1, 92.4) 88.3 (82.9, 93.7) 100 (100, 100) (100, 100) 55.9 (47.5, 64.2) 69.4 (61.6, 77.1) 100 (100, 100) (75.3, 88.3) 95.1 (91.4, 98.7) 91.8 (87.2, 96.4) 88.5 (83.2, 93.9) (100,100) 86.7 (80.7, 92.2) 83.3 (77.1, 89.6) 100 (100,100) (100,100) 72.8 (65.4, 80.3) 71.4 (63.8, 79.0) 100 (100,100) (100,100) 46.9 (38.5, 55.3) 56.1 (47.8, 64.5) 100 (100, 100) (87.0, 96.3) 84.0 (77.8, 90.1) 67.4 (59.5, 75.2) 96.6 (93.5, 99.6) (100,100) 70.0 (62.3, 77.7) 54.6 (46.8, 62.9) 100 (100,100) (100,100) 59.0 (50.7, 67.3) 46.8 (38.4, 55.1) 100 (100,100) (100,100) 38.0 (29.8, 46.2) 36.7 (28.6, 44.8) 100 (100,100) (100,100) 76.3 (69.2, 83.5) 44.9 (36.5, 53.2) 100 (100, 100) (100,100) 61.4 (53.2, 69.6) 33.3 (25.4, 41.3) 100 (100,100) (100,100) 51.8 (43.4, 60.1) 28.6 (21.0, 36.2) 100 (100, 100) (100,100) 33.3 (25.4, 41.3) 22.4 (15.4, 29.5) 101 (100,100) Number of events occurring at different thresholds post-menafrivac The post-menafrivac dataset comprised 395 district years from 2012 and The median cumulative seasonal incidence among all districts was 1.7 per 100,000 ranging from 0 to 111 per 100,000. There were fewer than 10 cases per year reported in 237 of the 395 district years. Sixty-two districts reached a cumulative seasonal incidence of 20 per 100,000. Three districts reached a cumulative seasonal incidence in excess of 100 per 100,000; these 3 districts exceeded a weekly incidence threshold of 10 per 100,000. The number of districts reaching different weekly thresholds is shown in table 9. 9

10 Table 9: Number of districts in post MenAfriVac dataset that reach different weekly thresholds and the median seasonal incidence in districts reaching that threshold Weekly incidence threshold Number of districts Median seasonal incidence in districts reaching threshold 10 per 100,000 15/ per 100,000 7 per 100, / per 100,000 5 per 100, / per 100,000 3 per 100, / per 100,000 Based on these figures, in the post-menafrivac era, 2, 3, 5 or 9 events would occur at thresholds of 10, 7, 5 or 3 per 100,000 per week respectively in a typical year in a high incidence country. This does not take into account the laboratory confirmation of causative pathogens that would also be required to determine an appropriate response. Discussion A range of analyses are presented here to inform the evaluation of the current operational thresholds for detecting meningitis epidemics in the post-menafrivac era. Weekly incidence thresholds of 7, 5 and 3 per 100,000 were considered and compared to the current threshold of 10 per 100,000. Substantially more cases were potentially preventable when a threshold of 3 per 100,000 was used, largely because this resulted in the greatest time between the threshold being reached and the peak of the epidemic, allowing for a more effective response. Decreasing the lag time from 6 to 4 weeks (i.e. the time between a district reaching the current action threshold of 10 per 100,000 per week and vaccine protection) was at least as effective as decreasing the action threshold from 10 per 100,000 per week to 3 per 100,000 per week, in terms of the number of cases per event. Although this may be challenging to achieve, the resources required are likely to be considerably less than the costs of additional vaccines required under a lower action threshold. The current threshold of 10 per 100,000 was effective at detecting large outbreaks. Lowering the threshold will result in many more events being detected and action being taken to deal with much lower cumulative seasonal incidences. The performance of the thresholds, in terms of sensitivity, specificity, PPV and NPV was assessed relative to a definition of an epidemic based on seasonal cumulative incidence. Using the previous epidemic definition of 100 per 100,000, the current action threshold of 10 per 100,000 performs well. If a lower seasonal cumulative incidence is used, then lower weekly incidence thresholds perform better. The definition of an epidemic is therefore a critical question and is based on a rather subjective assessment. There are important limitations to the analyses presented here. The data are from a variety of sources and although a wide net was cast in search of relevant data there is no assessment of data completeness or data quality. Under-reporting remains a substantial problem notwithstanding ongoing initiatives to improve surveillance in the region. In particular, the paucity of laboratory confirmed cases is problematic. A pragmatic approach was taken here, using as much of the available data as possible. The definition of a NmW outbreak for inclusion in the dataset used here was therefore broad, with the inclusion criteria of at least 2 laboratory confirmed NmW and at least 50% of all Nm being NmW. Nevertheless it is likely that we have excluded some relevant district years (e.g. from Burkina Faso in 2002). Another difficulty, again related to the lack of linked laboratory confirmation, is that it is challenging to assess the contribution of pneumococcal meningitis to the suspected case counts. The epidemiology of pneumococcal meningitis displays 10

11 several of the same features as meningococcal meningitis (including seasonality) but is also changing as more and more countries in Africa are introducing pneumococcal conjugate vaccines. Clearly, information on the causative pathogen is crucial in determining the appropriate response. Continuation of efforts to strengthen laboratory capacity is therefore important. A further limitation is that there is no consideration here of populations smaller than district level, e.g. sub-district or health centre level, although previous work has shown that this could be an effective way of identifying localised outbreaks 7. In addition, there was no data on special populations such as displaced people living in refugee camps. These analyses inform the discussion on the most appropriate epidemic thresholds in the post- MenAfriVac era. It is important to further consider the feasibility of responding to more events if a lower threshold is adopted and the information requirements in addition to weekly suspected case data, particularly on laboratory confirmed cases. Conclusions The current threshold of 10 per 100,000 per week is sensitive and specific for detecting large NmW outbreaks (with a cumulative seasonal incidence of at least 80 per 100,000). Lower weekly incidence thresholds perform better in detecting smaller outbreaks. Assuming a 6 week interval between the action threshold being reached and effective vaccination, the most cases in total and per event could be using the lowest threshold of 3 per 100,000 per week. Adopting a lower threshold than currently used would considerably increase the number of events requiring action and the number of vaccine doses required. Improving the lag time between the action threshold and effective vaccination from 6 weeks to 4 weeks is at least as effective as lowering the threshold and would not increase the number of events requiring action. The quality of this evidence is low. 11

12 Evidence profile: NmW cases potentially averted by reactive vaccination Quality assessment Design Limitations Inconsistency Indirectness Imprecision Publication bias Modelling study Serious limitations (low proportion of cases laboratory confirmed) No serious inconsistency Serious indirectness (modelling of observational data) As above *Serious imprecision (wide range) Not relevant PICO 1 Summary Report Summary of findings: Mean NmW cases by vaccination per event (range)* Threshold Threshold Threshold Threshold Quality Importance (N events= (N events= (N events= (N events= 49) 66) 77) 98) 6 week lag 17 (0-325) 4 week lag 54 (0-960) 19 (0-325) 53 (0-960) 27 (0-587) 60 (0-1171) 46 (0-1327) 71 (0-1512) VERY LOW VERY LOW CRITICAL CRITICAL *The mean and the full range are given here. Although the wide range suggests serious uncertainty in the estimates of effect, this rather reflects the heterogeneity in the epidemiology of epidemic meningitis in the African meningitis belt. 12

13 References 1. WHO. Detecting meningococcal meningitis epidemics in highly endemic African countries. WHO recommendation. Wkly Epidemiol Rec 2000; 75: Kaninda AV, Belanger F, Lewis R, Batchassi E, Aplogan A, Yakoua Y, Paquet C. Effectiveness of incidence thresholds for detection and control of meningococcal meningitis epidemics in northern Togo. Int J Epidemiol. 2000;29(5): Lewis R, Nathan N, Diarra L, Belanger F, Paquet C. Timely detection of meningococcal meningitis epidemics in Africa. Lancet. 2001;358(9278): Leake JA, Kone ML, Yada AA, et al. Early detection and response to meningococcal disease epidemics in sub-saharan Africa: appraisal of the WHO strategy. Bull World Health Organ. 2002;80(5): Mueller JE, Gessner BD. A hypothetical explanatory model for meningococcal meningitis in the African meningitis belt. International journal of infectious diseases : Int J Infect 2010; 14(7): e Collard JM, Issaka B, Zaneidou M, et al. Epidemiological changes in meningococcal meningitis in Niger from 2008 to 2011 and the impact of vaccination. BMC infectious diseases 2013; 13: Tall H, Hugonnet S, Donnen P, et al. Definition and characterization of localised meningitis epidemics in Burkina Faso: a longitudinal retrospective study. BMC infectious diseases 2012; 12: 2. 13

Stockpile needs for epidemic meningitis response Dr Caroline Trotter

Stockpile needs for epidemic meningitis response Dr Caroline Trotter Stockpile needs for epidemic meningitis response 2018-2022 Dr Caroline Trotter clt56@cam.ac.uk Report prepared by: Dr Caroline Trotter, University of Cambridge, UK clt56@cam.ac.uk Date: 8 th December 2017

More information

MENINGITIS EPIDEMIC TRENDS in AFRICA. Mamoudou H. DJINGAREY, MD/MPH WHO-IST/WEST AFRICA OUAGADOUGOU

MENINGITIS EPIDEMIC TRENDS in AFRICA. Mamoudou H. DJINGAREY, MD/MPH WHO-IST/WEST AFRICA OUAGADOUGOU MENINGITIS EPIDEMIC TRENDS in AFRICA Mamoudou H. DJINGAREY, MD/MPH WHO-IST/WEST AFRICA OUAGADOUGOU Background Epidemic Meningococcal meningitis = a challenging public health threat in Africa. 1996: Devastating

More information

Report for the WHO Meningitis Guideline Revision (May 2014)

Report for the WHO Meningitis Guideline Revision (May 2014) Antibiotic Regimens in meningitis epidemics in sub-saharan Africa: Report for the WHO Meningitis Guideline Revision (May 2014) Prepared by Laurence Cibrelus Recommendation question: Should single dose

More information

Impact of MenAfriVac in nine countries of the African meningitis belt, : an analysis of surveillance data

Impact of MenAfriVac in nine countries of the African meningitis belt, : an analysis of surveillance data Impact of MenAfriVac in nine countries of the African meningitis belt, 2010 15: an analysis of surveillance data Caroline L Trotter, Clément Lingani, Katya Fernandez, Laura V Cooper, André Bita, Carol

More information

PREVENTION OF MENINGOCOCCAL MENINGITIS BY VACCINATION IN THE AFRICAN MENINGITIS BELT

PREVENTION OF MENINGOCOCCAL MENINGITIS BY VACCINATION IN THE AFRICAN MENINGITIS BELT PREVENTION OF MENINGOCOCCAL MENINGITIS BY VACCINATION IN THE AFRICAN MENINGITIS BELT Brian Greenwood London School of Hygiene & Tropical Medicine ADVAC, Annecy May 19 th 2014 Cytoplasmic proteins bacterium

More information

Update on Meningococcal A Vaccine Development and Introduction

Update on Meningococcal A Vaccine Development and Introduction Update on Meningococcal A Vaccine Development and Introduction WHO Product Development for Vaccines Advisory Committee Meeting (PD-VAC) @ Geneva, 7-9 September 2015 Dr Marie-Pierre Preziosi, WHO Initiative

More information

Can infant vaccination prevent pneumococcal meningitis outbreaks in sub-saharan Africa?

Can infant vaccination prevent pneumococcal meningitis outbreaks in sub-saharan Africa? Editorial Can infant vaccination prevent pneumococcal meningitis outbreaks in sub-saharan Africa? Author: James M Stuart, FFPH London School of Hygiene and Tropical Medicine, Keppel St, London WC1E 7HT,

More information

Content. Introduction. Overview of reported outbreaks in WHO African Region. Disease Surveillance and Response. Vol. 2 Issue 3, April 30, 2012

Content. Introduction. Overview of reported outbreaks in WHO African Region. Disease Surveillance and Response. Vol. 2 Issue 3, April 30, 2012 Vol. 2 Issue 3, April 30, 2012 Content Introduction Overview of reported outbreaks in the WHO African Region Cholera Meningitis Ongoing outbreaks Lassa Fever in Nigeria Typhoid in Zimbabwe Meningitis in

More information

Reactive vaccination as a control strategy for pneumococcal meningitis outbreaks in the African meningitis belt: analysis of outbreak data from Ghana

Reactive vaccination as a control strategy for pneumococcal meningitis outbreaks in the African meningitis belt: analysis of outbreak data from Ghana *Title Page Reactive vaccination as a control strategy for pneumococcal meningitis outbreaks in the African meningitis belt: analysis of outbreak data from Ghana Laura V. Cooper 1, James M. Stuart 2, Charles

More information

Meningitis outbreak response in sub-saharan Africa. WHO guideline

Meningitis outbreak response in sub-saharan Africa. WHO guideline Meningitis outbreak response in sub-saharan Africa WHO guideline WHO/HSE/PED/CED/14.5 World Health Organization 2014 All rights reserved. Publications of the World Health Organization are available on

More information

World Health Organization Emerging and other Communicable Diseases, Surveillance and Control

World Health Organization Emerging and other Communicable Diseases, Surveillance and Control WHO/EMC/ DIS/ICG/97.10 International Coordinating Group (ICG) on Vaccine Provision for Epidemic Meningitis Control. Summary Report of the Second Meeting. Geneva, Switzerland, 23-24 June 1997 World Health

More information

Global Burden of Meningococcal Disease. Prof. David Salisbury CB FRCP FRCPCH FFPH FMedSci. Centre for Global Health Security, Chatham House, London.

Global Burden of Meningococcal Disease. Prof. David Salisbury CB FRCP FRCPCH FFPH FMedSci. Centre for Global Health Security, Chatham House, London. Global Burden of Meningococcal Disease Prof. David Salisbury CB FRCP FRCPCH FFPH FMedSci. Centre for Global Health Security, Chatham House, London. Neisseria meningitidis Gram negative diplococci. Ten

More information

Study population The study population comprised the general population of Senegal inhabitants aged 1 to 30 years.

Study population The study population comprised the general population of Senegal inhabitants aged 1 to 30 years. Comparison of cost-effectiveness of preventive and reactive mass immunization campaigns against meningococcal meningitis in West Africa: a theoretical modeling analysis Parent du Chatelet I, Gessner B

More information

Content. Introduction. Overview of reported outbreaks in WHO African Region. Disease Surveillance and Response. Vol. 2 Issue 4, 26 May 2012

Content. Introduction. Overview of reported outbreaks in WHO African Region. Disease Surveillance and Response. Vol. 2 Issue 4, 26 May 2012 Vol. 2 Issue 4, 26 May 2012 Content Introduction Overview of reported outbreaks in the WHO African Region Cholera Meningitis Ongoing outbreaks Cholera in Ghana Cholera in Mozambique Cholera in Uganda Cholera

More information

Serogroup W in Africa & travellers

Serogroup W in Africa & travellers Serogroup W in Africa & travellers Muhamed-Kheir TAHA Institut Pasteur 01/11/2016 2 childhood meningococcal meningitis caused by this serogroup. Three infants, two with bacteremia and one with septic arthritis

More information

The MenAfrivac Experience A Successful Approach. Dr Bernard FRITZELL BFL conseils France

The MenAfrivac Experience A Successful Approach. Dr Bernard FRITZELL BFL conseils France The MenAfrivac Experience A Successful Approach Dr Bernard FRITZELL BFL conseils France 1 2 1996 Ministers of Health and Interior from 16 African countries recognized epidemic meningitis as a high priority

More information

Rôle et activités d un Centre Collaborateur de l OMS : le CC- OMS sur les méningites

Rôle et activités d un Centre Collaborateur de l OMS : le CC- OMS sur les méningites Rôle et activités d un Centre Collaborateur de l OMS : le CC- OMS sur les méningites Muhamed-Kheir Taha MD, PhD Invasive Bacterial Infections CNR des Méningocoques et Haemophilus influenzae WHOcc for meningitis

More information

Yellow fever Vaccine investment strategy

Yellow fever Vaccine investment strategy Yellow fever Vaccine investment strategy Background document #5 November 2013 Executive summary Since 2001, GAVI has spent ~$250M on yellow fever control $102M on routine vaccination in 17 countries ~$160M

More information

Predicting Meningitis Risk in Africa

Predicting Meningitis Risk in Africa International Conference on Secure and Sustainable Living: Social and Economic Benefits of Weather, Climate, and Water Services Predicting Meningitis Risk in Africa M. K. Konde, M.H. Djingarey, Thomson

More information

World Health Organization Emerging and other Communicable Diseases, Surveillance and Control

World Health Organization Emerging and other Communicable Diseases, Surveillance and Control WHO/EMC/ DIS/ICG/97.8 Response to epidemic meningitis in Africa, 1997. Report by IFRC-MSF-UNICEF-WHO to the International Coordinating Group (ICG) World Health Organization Emerging and other Communicable

More information

POLIO ERADICATION IN THE AFRICAN REGION: PROGRESS REPORT. Information document EXECUTIVE SUMMARY

POLIO ERADICATION IN THE AFRICAN REGION: PROGRESS REPORT. Information document EXECUTIVE SUMMARY 7 July 2006 REGIONAL COMMITTEE FOR AFRICA ORIGINAL: ENGLISH Fifty-sixth session Addis Ababa, Ethiopia, 28 August 1 September 2006 Provisional agenda item 10.1 POLIO ERADICATION IN THE AFRICAN REGION: PROGRESS

More information

Surveillance Feedback Bulletin

Surveillance Feedback Bulletin Surveillance Feedback Bulletin 2017 Combined Quarter 3 & 4 Quarterly feedback bulletin on bacterial meningitis Table 1. Epidemiological situation, week 27-52 99% of suspect cases reported in the MenAfriNet

More information

Medical Innovation changing business model. Marie-Paule Kieny, WHO-WIPO-WTO, 5 July 2013

Medical Innovation changing business model. Marie-Paule Kieny, WHO-WIPO-WTO, 5 July 2013 Medical Innovation changing business model Marie-Paule Kieny, WHO-WIPO-WTO, 5 July 2013 The Meningitis Vaccine Project (MVP) A successful vaccine development for Africa, partnering with a DCVM An exemplary

More information

Public health impact of MenAfriVac: the first four years

Public health impact of MenAfriVac: the first four years 1 Public health impact of MenAfriVac: the first four years Mamoudou Djingarey, WHO Ryan Novak, CDC James Stuart, LSHTM MVP Closure Conference, Addis Ababa, Ethiopia 23 February 2016 MACV Implementa;on

More information

History, implementation and impact of MenA conjugate on disease burden in Africa

History, implementation and impact of MenA conjugate on disease burden in Africa History, implementation and impact of MenA conjugate on disease burden in Africa First Regional Meningococcal Symposium, 19-20 March 2012 Buenos Aires, Argentina Co-hosted by the Sabin Vaccine Institute

More information

Global reductions in measles mortality and the risk of measles resurgence

Global reductions in measles mortality and the risk of measles resurgence Global reductions in measles mortality 2000 2008 and the risk of measles resurgence Measles is one of the most contagious human diseases. In 1980 before the use of measles vaccine was widespread, there

More information

Outcome of Epidemiological Surveillance of Bacterial Meningitis in Mali from 1996 to 2016: What Lesson to Learn?

Outcome of Epidemiological Surveillance of Bacterial Meningitis in Mali from 1996 to 2016: What Lesson to Learn? Research Article imedpub Journals http://www.imedpub.com/ Journal of MPE Molecular Pathological Epidemiology Outcome of Epidemiological Surveillance of Bacterial Meningitis in Mali from 1996 to 2016: What

More information

DUST AND MENINGITIS IN SUB-SAHARAN AFRICA

DUST AND MENINGITIS IN SUB-SAHARAN AFRICA DUST AND MENINGITIS IN SUB-SAHARAN AFRICA Carlos Pérez García-Pando NASA Goddard Institute for Space Studies Dept of Applied Physics and Applied Math, Columbia University 1st AFRICA/MIDDLE-EAST EXPERT

More information

Malaria Funding. Richard W. Steketee MACEPA, PATH. April World Malaria Day 2010, Seattle WA

Malaria Funding. Richard W. Steketee MACEPA, PATH. April World Malaria Day 2010, Seattle WA Malaria Funding Richard W. Steketee MACEPA, PATH April World Malaria Day 2010, Seattle WA Malaria Funding Is there a plan? Is there money? Where does the money come from? Is the money moving efficiently?

More information

Managing meningitis epidemics in Africa. A quick reference guide for health authorities and health-care workers

Managing meningitis epidemics in Africa. A quick reference guide for health authorities and health-care workers Managing meningitis epidemics in Africa A quick reference guide for health authorities and health-care workers WHO/HSE/GAR/ERI/2010.4 Managing meningitis epidemics in Africa A quick reference guide for

More information

1) SO1: We would like to suggest that the indicator used to measure vaccine hesitancy be DTP 1 to measles first dose dropout.

1) SO1: We would like to suggest that the indicator used to measure vaccine hesitancy be DTP 1 to measles first dose dropout. To SAGE Secretariat, WHO Dear Professor Helen Rees, Dear Dr. Jean Marie Okwo-Bele, On behalf of the Civil Society Constituency of the GAVI Alliance, we would like to thank SAGE and its members for the

More information

J. M. COLLARD 1 *, Z. MAMAN 2,A.ABANI 2,H.B.MAINASARA 1,S.DJIBO 1, H. YACOUBA 2,R.MAITOURNAM 2, F. SIDIKOU 1, P. NICOLAS 3, J.

J. M. COLLARD 1 *, Z. MAMAN 2,A.ABANI 2,H.B.MAINASARA 1,S.DJIBO 1, H. YACOUBA 2,R.MAITOURNAM 2, F. SIDIKOU 1, P. NICOLAS 3, J. Epidemiol. Infect. (2011), 139, 1656 1660. f Cambridge University Press 2011 doi:10.1017/s0950268810003092 SHORT REPORT Microbiological and epidemiological investigation of the Neisseria meningitidis serogroup

More information

Development of a Group A meningococcal conjugate vaccine for sub-saharan Africa: clinical trial results

Development of a Group A meningococcal conjugate vaccine for sub-saharan Africa: clinical trial results Development of a Group A meningococcal conjugate vaccine for sub-saharan Africa: clinical trial results Global Immunization Meeting 2009, United Nations HQ New York City, February 2009 MenA conjugate vaccine

More information

POLIOMYELITIS ERADICATION: PROGRESS REPORT. Information Document CONTENTS BACKGROUND PROGRESS MADE NEXT STEPS... 12

POLIOMYELITIS ERADICATION: PROGRESS REPORT. Information Document CONTENTS BACKGROUND PROGRESS MADE NEXT STEPS... 12 5 August 9 REGIONAL COMMITTEE FOR AFRICA ORIGINAL: ENGLISH Fifty-ninth session Kigali, Republic of Rwanda, August 4 September 9 POLIOMYELITIS ERADICATION: PROGRESS REPORT Information Document CONTENTS

More information

Yellow fever laboratory capacity on-site assessments in Africa: preliminary findings

Yellow fever laboratory capacity on-site assessments in Africa: preliminary findings Yellow fever laboratory capacity on-site assessments in Africa: preliminary findings Maurice Demanou*, Barbara W. Johnson, Gamou Fall, Jean-Luc Betoulle, Chantal Reusken, Marion Koopmans, Lee Hampton,

More information

Health technology Four strategies for the control of serogroup C meningococcal disease (CMD) were examined. These were:

Health technology Four strategies for the control of serogroup C meningococcal disease (CMD) were examined. These were: Cost-effectiveness of immunization strategies for the control of serogroup C meningococcal disease De Wals P, Nguyen V H, Erickson L J, Guay M, Drapeau J, St-Laurent J Record Status This is a critical

More information

PROGRESS REPORT ON THE ROAD MAP FOR ACCELERATING THE ATTAINMENT OF THE MILLENNIUM DEVELOPMENT GOALS RELATED TO MATERNAL AND NEWBORN HEALTH IN AFRICA

PROGRESS REPORT ON THE ROAD MAP FOR ACCELERATING THE ATTAINMENT OF THE MILLENNIUM DEVELOPMENT GOALS RELATED TO MATERNAL AND NEWBORN HEALTH IN AFRICA 5 July 2011 REGIONAL COMMITTEE FOR AFRICA ORIGINAL: ENGLISH Sixty-first session Yamoussoukro, Côte d Ivoire, 29 August 2 September 2011 Provisional agenda item 17.1 PROGRESS REPORT ON THE ROAD MAP FOR

More information

Vol. 5 Issue 2, 31 May 2015

Vol. 5 Issue 2, 31 May 2015 Vol. 5 Issue 2, 31 May 2015 Content Overview of Ebola virus disease epidemic in West Africa Overview of cholera outbreaks Overview of meningitis outbreaks Major outbreaks in selected countries EDITOR:

More information

Definition and characterization of localised meningitis epidemics in Burkina Faso: a longitudinal retrospective study

Definition and characterization of localised meningitis epidemics in Burkina Faso: a longitudinal retrospective study RESEARCH ARTICLE Open Access Definition and characterization of localised meningitis epidemics in Burkina Faso: a longitudinal retrospective study Haoua Tall 1, Stéphane Hugonnet 2, Philippe Donnen 3,

More information

EBOLA SITUATION REPORT

EBOLA SITUATION REPORT EBOLA SITUATION REPORT 11 FEBRUARY 2015 CASES/ DEATHS (data up to 8 February 2015) Guinea Liberia Sierra Leone Mali Nigeria Senegal Spain United Kingdom United States of America Total 8 6 20 8 1 0 1 0

More information

PROGRESS REPORT ON CHILD SURVIVAL: A STRATEGY FOR THE AFRICAN REGION. Information Document CONTENTS

PROGRESS REPORT ON CHILD SURVIVAL: A STRATEGY FOR THE AFRICAN REGION. Information Document CONTENTS 29 June 2009 REGIONAL COMMITTEE FOR AFRICA ORIGINAL: ENGLISH Fifty-ninth session Kigali, Republic of Rwanda, 31 August 4 September 2009 Provisional agenda item 9.2 PROGRESS REPORT ON CHILD SURVIVAL: A

More information

IMMUNIZATION VACCINE DEVELOPMENT

IMMUNIZATION VACCINE DEVELOPMENT IMMUNIZATION VACCINE DEVELOPMENT MONTHLY IMMUNIZATION UPDATE IN THE AFRICAN REGION July-August 2016 (Vol 4, issue N 5) Special issue on 2015 WHO/UNICEF Estimates of National Immunization Coverage (WUENIC)

More information

A vaccine s journey: the many steps to saving lives

A vaccine s journey: the many steps to saving lives A vaccine s journey: the many steps to saving lives GW-USAID Mini-University 7 March 2014 Endale Beyene, MA, MPH Rebecca Fields, MPH Angela Shen, ScD, MPH Outline I. What is the problem and where are we

More information

International Coordinating Group for vaccine provision. Emergency Vaccine Stockpiles

International Coordinating Group for vaccine provision. Emergency Vaccine Stockpiles International Coordinating Group for vaccine provision Emergency Vaccine Stockpiles Existing Vaccine Stockpiles Vaccine Year Use Qty million doses Smallpox 1980 Epidemic response 35 WHO/ countries Storage

More information

EBOLA SITUATION REPORT

EBOLA SITUATION REPORT 09 SEPTEMBER 2015 SUMMARY There were 2 confirmed cases of Ebola virus disease (EVD) reported in the week to 6 September: 1 in Guinea and 1 in Sierra Leone. Overall case incidence has remained stable at

More information

Introduction to Measles a Priority Vaccine Preventable Disease (VPD) in Africa

Introduction to Measles a Priority Vaccine Preventable Disease (VPD) in Africa Introduction to Measles a Priority Vaccine Preventable Disease (VPD) in Africa Nigeria Center for Disease Control Federal Ministry of Health Abuja July 2015 Outline 1. Measles disease 2. Progress towards

More information

A Summary of the UCAR Google.o Weather and Meningitis Project

A Summary of the UCAR Google.o Weather and Meningitis Project A Summary of the UCAR Google.o Weather and Meningitis Project Project Personnel: Abudulai Adams-Forgor 1, Mary Hayden 2, Abraham Hodgson 1, Thomas Hopson 2, Benjamin Lamptey 3, Jeff Lazo 2, Raj Pandya

More information

ANNEX Page. AFR/RC61/11 4 July 2011 ORIGINAL: ENGLISH REGIONAL COMMITTEE FOR AFRICA

ANNEX Page. AFR/RC61/11 4 July 2011 ORIGINAL: ENGLISH REGIONAL COMMITTEE FOR AFRICA 4 July 2011 REGIONAL COMMITTEE FOR AFRICA ORIGINAL: ENGLISH Sixty-first session Yamoussoukro, Côte d Ivoire, 29 August 2 September 2011 Provisional agenda item 16 PROGRESS REPORT ON POLIOMYELITIS ERADICATION

More information

For information on programmes in other countries and regions please access the Federation website at Programme title 2005

For information on programmes in other countries and regions please access the Federation website at   Programme title 2005 POLIO AND MEASLES Appeal no. 5AA89 Appeal target: CHF 3,52,674 1 The International Federation's mission is to improve the lives of vulnerable people by mobilizing the power of humanity. The Federation

More information

Addressing climate change driven health challenges in Africa

Addressing climate change driven health challenges in Africa Addressing climate change driven health challenges in Africa Ednah N Ototo, Parasitologist, Climate Change and Health Kenyatta University, Kenya Kenya Medical Research Institute Outline The impact of climate

More information

Draft Concept Note. Launching of Sahel Malaria Elimination Initiative

Draft Concept Note. Launching of Sahel Malaria Elimination Initiative Draft Concept Note Launching of Sahel Malaria Elimination Initiative Background The Global Malaria Community has set a vision of ending malaria for good. The African Union has also expressed its political

More information

Gavi s Vaccine Investment Strategy

Gavi s Vaccine Investment Strategy Gavi s Vaccine Investment Strategy Judith Kallenberg, Head of Policy WHO Product Development for Vaccines Advisory Committee Meeting Geneva, Switzerland, 7-9 September 2015 www.gavi.org Vaccine Investment

More information

CONTENTS. Paragraphs I. BACKGROUND II. PROGRESS REPORT ON THE AFRICAN REGIONAL IMMUNIZATION STRATEGIC PLAN

CONTENTS. Paragraphs I. BACKGROUND II. PROGRESS REPORT ON THE AFRICAN REGIONAL IMMUNIZATION STRATEGIC PLAN 23 September 2013 REGIONAL COMMITTEE FOR AFRICA ORIGINAL: ENGLISH Sixty-third session Brazzaville, Republic of Congo, 2 6 September, 2013 Agenda item 14 IMMUNIZATION IN THE AFRICAN REGION: PROGRESS REPORT

More information

in the meningitis belt

in the meningitis belt Biological aspects of meningitis epidemics in the meningitis belt Dr Pierre NICOLAS Meningococcus Unit, WHO collaborating centre IMTSSA, Allée du médecin colonel Jamot Parc du Pharo BP 60109 13262 Marseille

More information

SUPPLEMENTARY APPENDICES FOR ONLINE PUBLICATION. Supplement to: All-Cause Mortality Reductions from. Measles Catch-Up Campaigns in Africa

SUPPLEMENTARY APPENDICES FOR ONLINE PUBLICATION. Supplement to: All-Cause Mortality Reductions from. Measles Catch-Up Campaigns in Africa SUPPLEMENTARY APPENDICES FOR ONLINE PUBLICATION Supplement to: All-Cause Mortality Reductions from Measles Catch-Up Campaigns in Africa (by Ariel BenYishay and Keith Kranker) 1 APPENDIX A: DATA DHS survey

More information

Establishing a cholera stockpile: What do we need? Alejandro Costa Epidemic Readiness and Intervention

Establishing a cholera stockpile: What do we need? Alejandro Costa Epidemic Readiness and Intervention Establishing a cholera stockpile: What do we need? Alejandro Costa Epidemic Readiness and Intervention Outline 1. Experience Meningococcal vaccine stockpile Yellow Fever vaccine stockpile 2. Criteria for

More information

Procedure for Expedited Review of imported pre-qualified vaccines for use in national immunization programmes

Procedure for Expedited Review of imported pre-qualified vaccines for use in national immunization programmes Procedure for Expedited Review of imported pre-qualified vaccines for use in national immunization programmes Dr Nora Dellepiane/Dr Anil Kumar Chawla WHO/HQ-Geneva, Switzerland 1 Expedited review procedure

More information

Cholera. Report by the Secretariat

Cholera. Report by the Secretariat EXECUTIVE BOARD EB128/13 128th Session 9 December 2010 Provisional agenda item 4.10 Cholera Report by the Secretariat 1. In May 2010, the Executive Board at its 127th session considered a report on cholera

More information

EBOLA SITUATION REPORT

EBOLA SITUATION REPORT 4 MARCH 205 CORRIGENDUM CASES/ DEATHS (data up to March 205) Guinea Liberia Sierra Leone Mali Nigeria Senegal Spain United Kingdom United States of America Total 8 6 20 8 0 0 0 4 329 229 47 3546 9249 9807

More information

Overview of Measlescontaining. through UNICEF. Overview of [VACCINE] through UNICEF

Overview of Measlescontaining. through UNICEF. Overview of [VACCINE] through UNICEF Overview of Measlescontaining vaccines through UNICEF Overview of [VACCINE] through UNICEF Children wait to be immunized against measles and rubella at the Losikito primary school in Tanzania. Source:

More information

Content. Introduction. Overview of reported outbreaks in WHO African Region. Disease Surveillance and Response. Vol. 4 Issue 3, 23 May 2014

Content. Introduction. Overview of reported outbreaks in WHO African Region. Disease Surveillance and Response. Vol. 4 Issue 3, 23 May 2014 Vol. 4 Issue 3, 23 May 2014 Content Overview of major outbreaks in the WHO African Region Cholera Ebola Virus Disease in West Africa Ongoing outbreaks Dengue in Mozambique and Tanzania Lassa Fever in Nigeria

More information

FRAMEWORK FOR IMPLEMENTING THE GLOBAL STRATEGY TO ELIMINATE YELLOW FEVER EPIDEMICS (EYE), IN THE AFRICAN REGION. Report of the Secretariat

FRAMEWORK FOR IMPLEMENTING THE GLOBAL STRATEGY TO ELIMINATE YELLOW FEVER EPIDEMICS (EYE), IN THE AFRICAN REGION. Report of the Secretariat 13 June 2017 REGIONAL COMMITTEE FOR AFRICA ORIGINAL: ENGLISH Sixty-seventh session Victoria Falls, Republic of Zimbabwe, 28 August 1 September 20177 Provisional agenda item 11 FRAMEWORK FOR IMPLEMENTING

More information

Downloaded from:

Downloaded from: Granerod, J; Davison, KL; Ramsay, ME; Crowcroft, NS (26) Investigating the aetiology of and evaluating the impact of the Men C vaccination programme on probable meningococcal disease in England and Wales.

More information

EBOLA SITUATION REPORT

EBOLA SITUATION REPORT 25 FEBRUARY 205 CASES/ DEATHS (data up to 22 February 205) Guinea Liberia Sierra Leone Mali Nigeria Senegal Spain United Kingdom United States of America Total 8 6 20 8 0 0 0 4 355 209 4037 346 9238 9604

More information

Investigation of a Neisseria meningitidis Serogroup A Case in the Meningitis Belt. January 2017

Investigation of a Neisseria meningitidis Serogroup A Case in the Meningitis Belt. January 2017 January 2017 Investigation of a Neisseria meningitidis Serogroup A Case in the Meningitis Belt Introduction Since the progressive introduction of meningococcal serogroup A conjugate vaccine (MACV) in the

More information

Downloaded from:

Downloaded from: Diomand, FV; Djingarey, MH; Daugla, DM; Novak, RT; Kristiansen, PA; Collard, JM; Gamougam, K; Kandolo, D; Mbakuliyemo, N; Mayer, L; Stuart, J; Clark, T; Tevi-Benissan, C; Perea, WA; Preziosi, MP; Marc

More information

West and Central Africa

West and Central Africa West and Central Africa Life in West and Central Africa is marked by chronic poverty, recurring food insecurity and poor diets that have left a generation of children undernourished. Cyclical drought,

More information

GUINEA-WORM DISEASE: COUNTDOWN TO ERADICATION

GUINEA-WORM DISEASE: COUNTDOWN TO ERADICATION GUINEA-WORM DISEASE: COUNTDOWN TO ERADICATION GUINEA-WORM DISEASE (DRACUNCULIASIS) Guinea-worm disease, also known as dracunculiasis, is on the verge of eradication. The World Health Organization (WHO)

More information

Global deployment of Oral Cholera Vaccine (OCV) Dipika Sur MD Consultant THSTI, India

Global deployment of Oral Cholera Vaccine (OCV) Dipika Sur MD Consultant THSTI, India Global deployment of Oral Cholera Vaccine (OCV) Dipika Sur MD Consultant THSTI, India Stockpiling for OCV Global stockpile of oral cholera vaccine (OCV) created since 2013 as additional tool to help control

More information

THE SITUATION OF YELLOW FEVER IN THE AFRICAN REGION: THE PLAN TO END YF EPIDEMICS IN 2026

THE SITUATION OF YELLOW FEVER IN THE AFRICAN REGION: THE PLAN TO END YF EPIDEMICS IN 2026 THE SITUATION OF YELLOW FEVER IN THE AFRICAN REGION: THE PLAN TO END YF EPIDEMICS IN 2026 Dr Zabulon Yoti WHO AFRO Technical Coordinator for Health Emergencies 1 About 100 acute public health events annually

More information

GAVI S CONTINUED ROLE IN YELLOW FEVER CONTROL

GAVI S CONTINUED ROLE IN YELLOW FEVER CONTROL GAVI S CONTINUED ROLE IN YELLOW FEVER CONTROL BOARD MEETING Michael F Thomas, Abidjan, Côte d Ivoire Reach every child www.gavi.org EVOLVING CONTEXT: THREATS AND OPPORTUNITIES Yellow fever is a global

More information

Overview of WHO/UNICEF Immunization Coverage Estimates

Overview of WHO/UNICEF Immunization Coverage Estimates Overview of WHO/UNICEF Immunization Coverage Estimates Marta Gacic-Dobo, Anthony Burton, David Durrheim Meeting of the Strategic Advisory Group of Experts on Immunization (SAGE) 8-10 November 2011 CCV/CICG,

More information

SITUATION REPORT YELLOW FEVER 28 JULY 2016 SUMMARY

SITUATION REPORT YELLOW FEVER 28 JULY 2016 SUMMARY BABAY ZIKA VIRUS SITUATION REPORT YELLOW FEVER 28 JULY 2016 SUMMARY In Angola, as of 21 July 2016 a total of 3748 suspected cases have been reported, of which 879 are confirmed. The total number of reported

More information

An AW outer membrane vesicle (OMV) meningococcal vaccine trial in Ethiopia. Tesfamariam Mebrahtu Armauer Hansen Research Insitute

An AW outer membrane vesicle (OMV) meningococcal vaccine trial in Ethiopia. Tesfamariam Mebrahtu Armauer Hansen Research Insitute An AW outer membrane vesicle (OMV) meningococcal vaccine trial in Ethiopia Tesfamariam Mebrahtu Armauer Hansen Research Insitute BACKGROUND meningitis belt In the meningitis belt of sub-saharan Africa

More information

Published by Centers for Disease Control (CDC) Archived on this site by permission of CDC, [url]http://www.cdc.gov/ncidod/eid[/url]

Published by Centers for Disease Control (CDC) Archived on this site by permission of CDC, [url]http://www.cdc.gov/ncidod/eid[/url] MSF Field Research Continuing effectiveness of serogroup a meningococcal conjugate vaccine, Chad, 2013 Authors Gamougam, K; Daugla, D M; Toralta, J; Ngadoua, C; Fermon, F; Page, A-L; Djingarey, M H; Caugant,

More information

Meningococcal meningitis

Meningococcal meningitis Etiological Agent: Neisseria meningitis (1) Meningococcal meningitis By Tho Dao Transmission The transmission of Neisseria meningitis is through direct contact from person to person via droplets or throat

More information

Report to the Board 6-7 June 2018

Report to the Board 6-7 June 2018 6-7 June 2018 SUBJECT: VACCINE INVESTMENT STRATEGY: SHORT LIST Agenda item: 07 Category: For Decision Section A: Introduction This report presents outcomes of the Phase II analyses for the Vaccine Investment

More information

CDC ASSESSMENT OF RISKS TO THE GLOBAL POLIO ERADICATION INITIATIVE (GPEI) STRATEGIC PLAN

CDC ASSESSMENT OF RISKS TO THE GLOBAL POLIO ERADICATION INITIATIVE (GPEI) STRATEGIC PLAN CDC ASSESSMENT OF RISKS TO THE GLOBAL POLIO ERADICATION INITIATIVE (GPEI) STRATEGIC PLAN 2010-2012 14 Sept-10 2010 First and Second Quarters (January June) Geographic distribution of wild poliovirus (WPV)

More information

Regional Consultation on Nutrition and HIV/AIDS in French Speaking Countries in Africa Region

Regional Consultation on Nutrition and HIV/AIDS in French Speaking Countries in Africa Region Regional Consultation on Nutrition and HIV/AIDS in French Speaking Countries in Africa Region Evidence, lessons and recommendations for action Ouagadougou, Burkina Faso 17-20 November 2008 CONCEPT PAPER

More information

Measuring the path toward malaria elimination

Measuring the path toward malaria elimination Measuring the path toward malaria elimination Rigorous and achievable targets and milestones can be developed from standard malaria surveillance data. By Thomas S. Churcher, 1 Justin M. Cohen, 2 Joseph

More information

Prevention and control of epidemic meningococcal disease in Africa

Prevention and control of epidemic meningococcal disease in Africa Prevention and control of epidemic meningococcal disease in Africa Report of a WHO technical consultation meeting Ouagadougou, Burkina Faso 23-24 September 2002 Department of Communicable Disease Surveillance

More information

EUROPEAN COMMISSION DIRECTORATE-GENERAL FOR HUMANITARIAN AID - ECHO. Humanitarian Aid Decision

EUROPEAN COMMISSION DIRECTORATE-GENERAL FOR HUMANITARIAN AID - ECHO. Humanitarian Aid Decision EUROPEAN COMMISSION DIRECTORATE-GENERAL FOR HUMANITARIAN AID - ECHO Humanitarian Aid Decision 23 02 01 Title: Humanitarian Aid to populations affected by epidemics in West Africa Location of operation:

More information

SITUATION REPORT YELLOW FEVER 16 JUNE 2016 SUMMARY

SITUATION REPORT YELLOW FEVER 16 JUNE 2016 SUMMARY ZIKA VIRUS SITUATION REPORT YELLOW FEVER 16 JUNE 2016 SUMMARY In Angola the total number of notified cases has increased since early 2016. As of 15 June a total of 3137 cases have been reported, of which

More information

Predicting meningococcal meningitis outbreaks in Niger: current progress

Predicting meningococcal meningitis outbreaks in Niger: current progress Predicting meningococcal meningitis outbreaks in Niger: current progress Laurence Cibrelus, for the study group 2 nd MERIT Meeting, Ethiopia, December 2008 Study group: Jean-François Jusot, Hugo Oliveros,

More information

Overview of the Malaria Vaccine Implementation Programme (MVIP) Prof. Fred Were SAGE meeting 17 April, 2018

Overview of the Malaria Vaccine Implementation Programme (MVIP) Prof. Fred Were SAGE meeting 17 April, 2018 Overview of the Malaria Vaccine Implementation Programme (MVIP) Prof. Fred Were SAGE meeting 17 April, 2018 1 Objectives Brief review Background EMA positive opinion and WHO recommendations Funding Description

More information

Wild Poliovirus Weekly Update

Wild Poliovirus Weekly Update 1 of 5 12/07/2010 12:09 PM Google search this site contact links donate Home > Global Situation Wild Poliovirus Weekly Update 7 July 2010 Data as at 6 July 2010 Map of polio cases worldwide Wild poliovirus

More information

GOAL 2: ACHIEVE RUBELLA AND CRS ELIMINATION. (indicator G2.2) Highlights

GOAL 2: ACHIEVE RUBELLA AND CRS ELIMINATION. (indicator G2.2) Highlights GOAL 2: ACHIEVE RUBELLA AND CRS ELIMINATION (indicator G2.2) Highlights As of December 2014, 140 Member States had introduced rubella vaccines; coverage, however, varies from 12% to 94% depending on region.

More information

Progress has been made with respect to health conditions.

Progress has been made with respect to health conditions. health Strong performers in reducing child mortality 199-2 Niger Guinea-Bissau Guinea Ethiopia Benin 2 199 Strong performers in reducing maternal mortality 199-2 Djibouti Madagascar Eritrea Comoros Somalia

More information

Introduction and Rollout of a New Group A Meningococcal Conjugate Vaccine (PsA-TT) in African Meningitis Belt Countries,

Introduction and Rollout of a New Group A Meningococcal Conjugate Vaccine (PsA-TT) in African Meningitis Belt Countries, SUPPLEMENT ARTICLE Introduction and Rollout of a New Group A Meningococcal Conjugate Vaccine (PsA-TT) in African Meningitis Belt Countries, 2010 2014 Mamoudou H. Djingarey, 1 Fabien V. K. Diomandé, 2,a

More information

Update from the GAVI Alliance Seth Berkley, MD Chief Executive Officer

Update from the GAVI Alliance Seth Berkley, MD Chief Executive Officer Update from the GAVI Alliance Seth Berkley, MD Chief Executive Officer SAGE meeting Geneva, 8-10 November 2011 Topics to cover Update on new vaccine introduction Introductions New approvals Co-financing

More information

Prioritizing Emergency Polio Eradication Activities

Prioritizing Emergency Polio Eradication Activities Prioritizing Emergency Polio Eradication Activities Managing the Financing Gap the other half of the Emergency Hamid Jafari GPEI Financing 2012-13: Budget = $2.23 b - Confirmed contributions = $1.14 b

More information

ESCMID Online Lecture Library. by author

ESCMID Online Lecture Library. by author Challenges and Controversies in Vaccination TRAVEL VACCINES Resat Ozaras, MD, Professor, Istanbul University Cerrahpasa Medical School Infectious Dis. Dept. Risk of exposure The severity of the disease

More information

Management of epidemic meningococcal meningitis

Management of epidemic meningococcal meningitis Management of epidemic meningococcal meningitis 2008 FOURTH EDITION Médecins Sans Frontières January 2008 All rights reserved for all countries. No reproduction, translation and adaptation may be done

More information

Prevalence estimates of chronic hepatitis B virus infection

Prevalence estimates of chronic hepatitis B virus infection Conference on Liver Disease in Africa September 13-15, 2018 Prevalence estimates of chronic hepatitis B virus infection A comparative study of four sources and implications for burden assessment in sub-saharan

More information

New vaccine technologies: Promising advances may save more lives

New vaccine technologies: Promising advances may save more lives New vaccine technologies: Promising advances may save more lives Vaccine Technology III June 10, 2010 PATH s vision A world where innovation ensures that health is within reach for everyone. 2 PATH s mission

More information

California Immunization Coalition 2018 Summit Karen Smith, MD, MPH, Director California Department of Public Health

California Immunization Coalition 2018 Summit Karen Smith, MD, MPH, Director California Department of Public Health California Immunization Coalition 2018 Summit Karen Smith, MD, MPH, Director California Department of Public Health California Department of Public Health 1 It takes a broad coalition of partners to: Stop

More information

MERIT Strategic Review Meeting

MERIT Strategic Review Meeting Meningitis Environmental Risk Information Technologies MERIT Strategic Review Meeting Synthesis Report Hôtel Chavannes de Bogis, near Geneva, Switzerland November 10 11, 2011 0 MERIT Strategic Review Meeting

More information

How to Detect and Confirm Epidemic Meningococcal Disease

How to Detect and Confirm Epidemic Meningococcal Disease How to Detect and Confirm Epidemic Meningococcal Disease Men/Detect & Confirm/1 Detection and Confirmation of Epidemic Meningococcal Disease 1. Maintain surveillance Health facilities report suspected

More information

FIRST GLOBAL SYMPOSIUM ON HEALTH SYSTEMS RESEARCH. Jennifer Bryce Institute for International Programs The Johns Hopkins University

FIRST GLOBAL SYMPOSIUM ON HEALTH SYSTEMS RESEARCH. Jennifer Bryce Institute for International Programs The Johns Hopkins University FIRST GLOBAL SYMPOSIUM ON HEALTH SYSTEMS RESEARCH Jennifer Bryce Institute for International Programs The Johns Hopkins University Outline 1. Lessons from the evaluation of the ACCELERATING CHILD SURVIVAL

More information

Pre- Travel Case Studies (*with Key Pads)

Pre- Travel Case Studies (*with Key Pads) Pre- Travel Case Studies (*with Key Pads) Judi Piasecki, RN, BN Dana Male, RN, BN Pam White RN, BN Certificate in Travel Health A. Which year was the first Manitoba Travel Health Conference? 1. 1999 2.

More information