Isolation of Rhinovirus Intertypes Related to Either Rhinoviruses 12 and 78 or 36 and 58

Size: px
Start display at page:

Download "Isolation of Rhinovirus Intertypes Related to Either Rhinoviruses 12 and 78 or 36 and 58"

Transcription

1 INFECTION AND IMMUNITY, Apr. 1983, p /83/ $02.00/0 Copyright 1983, American Society for Microbiology Isolation of Rhinovirus Intertypes Related to Either Rhinoviruses 12 and 78 or 36 and 58 Vol. 40, No. 1 LAUREL M. HALFPAP AND MARION K. COONEY* Department of Pathobiology, School of Public Health and Community Medicine, University of Washington, Seattle, Washington Received 14 July 1982/Accepted 3 January 1983 Many antigenic relationships have been demonstrated among the 90 rhinovirus serotypes. Among these are reciprocal cross-reactions between serotypes 12 and 78 and between serotypes 36 and 58. Neutralizing-antibody titers to homologous virus of the related pairs are generally 16- to 64-fold higher than to the heterologous member, and neutralization by heterologous anti in the pools is not seen with prototype viruses. However, a number of isolates were encountered which gave anomolous results when tested with the anti pools in fetal tonsil cells. When these strains were tested in fetal tonsil cells against the monospecific antisera composing the pools, it was shown that several isolates were apparently intertypes, neutralized equally by antisera to related types 12 and 78 or 36 and 58. Isolate 1104, an apparent intertype between serotypes 36 and 58, and isolate 9433, intermediate between serotypes 12 and 78, were selected to use as immunogens in rabbits. When tested in HeLa cells, anti prepared against isolate 1104 neutralized isolates 1104, 58, and 36 at titers of 1280, 640, and 40, respectively. The k values against isolates 1104, 58, and 36 were 356, 145, and 4, respectively, indicating a much closer relationship of isolate 1104 to type 58 than to type 36. Similar results were obtained with isolate The neutralizingantibody titer of anti-9433 was 160 against both 9433 and type 78 and was 20 against type 12. The k values of anti-9433 against 9433, 78, and 12 were 161, 111, and 2, respectively, indicating that 9433 and 78 were nearly identical. However, the respective neutralizing-antibody titers of anti-78 to type 78 and isolate 9433 were 640 and 80, and the respective k values were 172 and 85, demonstrating some antigenic differences. The discovery of intertypes confirms the antigenic variation among rhinoviruses, and the intertypes may represent links in the evolution of types. These observations also demonstrate that isolates in first or second passage in diploid cells may display an antigenic profile different from that seen in HeLa cells at high HeLa cell passage level. Rhinoviruses are the largest group of human viruses known at the present time; in this group, 89 serotypes and 1 subtype have been numbered, and at least 20 additional serotypes are believed to exist (13, 16, 17). A number of antigenic relationships have been shown, usually involving a reciprocal cross relationship between two rhinovirus serotypes, and occasionally among three. In our laboratories, rhinovirus isolates from specimens are typed by neutralization by using pools of rabbit anti-rhinovirus sera which include all 90 type-specific antisera (18). The pools are designed so that each type-specific anti is in only one, or at most two, of the pools. Prototype strains of rhinoviruses known to be related to other serotypes are not neutralized by anti pools used for typing which contain the heterologous related virus. Thus, isolates are neutralized by one or two anti pools, but we have observed occasional isolates 213 that are neutralized by three or four pools. These field strains show sufficient variation from the prototype virus to cause a problem in typing. When the identification of these isolates was resolved with monospecific antisera, most were found to be related to rhinoviruses 36 and 58 or to rhinoviruses 78 and 12. Both pairs are reciprocally neutralized at low dilutions (3, 23). These observations suggested considerable variation among wild-type rhinovirus strains, to the extent that intertypes might occur between related pairs of rhinoviruses. Isolates intermediate between two pairs of related rhinoviruses, types 36 and 58 and types 12 and 78, were chosen for further study of antigenic relationships to each other and to prototype strains. The results presented here illustrate considerable variation among wild-type strains, with some strains apparently equally related to both members of a related pair. These findings have implications

2 214 HALFPAP AND COONEY for the future classification of the rhinovirus group as well as for an explanation of the very large number of serotypes in this group. MATERIALS AND METHODS Viruses. Rhinovirus isolates 9433 and 1104, related to types 12 and 78 and to types 36 and 58, respectively, were selected from specimens collected during the Seattle Virus Watch, (14), and from children (5) during A diploid line of human fetal tonsil cells was used for rhinovirus isolation and typing. To ensure a pure strain of virus, the isolates were triply plaque purified and passed in HeLa cells to attain a high concentration of virus for immunogen preparation. Prototype strains of rhinoviruses 12, 78, 36, and 58 were originally obtained from V. V. Hamparian (Ohio State University), and all viruses were stored at -700C. Cell culture. Fetal tonsil cells were used for the initial isolation and early passages of specimens. M- HeLa cell cultures, cultures of a rhinovirus-sensitive cell line originally obtained from the Merck Institute, West Point, Pa., were used for propagation and plaque assay of rhinoviruses. The growth medium was Eagle minimum essential medium with 10% fetal bovine (Flow Laboratories, Inc., Rockville, Md.) plus 100 U of penicillin and 100,ug of streptomycin per ml. For virus propagation, 1% fetal bovine was used in minimum essential medium with 30 mm Mg2" (11). Immunization of rabbits. The procedure used by Cooney and Kenny (4) was followed to produce a hightiter immunogen. Briefly, the procedure included infection of HeLa cells with a high multiplicity of rhinovirus, harvesting infected cells into a small volume of medium before virus release, and homogenization of cells to allow virus release. The homogenate was centrifuged to sediment cell debris. The supernatant fluid was treated with fluorocarbon and constituted the immunogen. Each of two rabbits was injected with a total rhinovirus dose of 3.3 x 107 PFU of isolate 9433, 3.0 x 108 PFU of isolate 1104, and 1.6 x 108 PFU of prototype 58 (for the second lot of anti-58 ). Plaque assay. HeLa cell monolayers plated the previous day (four plates per sampling time) were inoculated with 0.2 ml of appropriately diluted virus. After absorption at room temperature for 1 h, monolayers were overlaid with 5 ml of minimum essential medium with 1% fetal bovine containing 30 mm MgCl2 and 0.4% agarose (Matheson Scientific, Inc., Norwood, Ohio). The plates were incubated at 33 C in a 2.5% CO2 incubator until plaques developed (3 to 5 days). The monolayers were stained with crystal violet, and the plaques were counted. Neutralizing-antibody determination. The procedure for the neutralizing-antibody assay has been described elsewhere (6). Briefly, twofold serial dilutions of anti were prepared in flat-bottomed microtiter plates in ml volumes. An equal volume of the appropriate virus suspension, diluted to contain % tissue culture infectious doses (TICD50s), was added to the dilutions. After 1 h at room temperature, 0.05 ml of a HeLa cell suspension (20,000 cells) was added to each well. A virus titration and cell controls were included in each test. Plates were covered with Lucite INFECT. IMMUN. TABLE 1. Antigenic variation in rhinovirus isolates related to cross-reacting rhinovirus prototypes 58 and 36 Neutralizing-antibody titera No. or type of with: virus isolate Anti-58 Anti lb lb Prototype Prototype ,280 a Expressed as the reciprocal of the dilution which completely neutralized 30 to 300 TCID50s of virus in fetal tonsil cells. b Rhinovirus isolate selected for plaque purification. lids and incubated in 2.5% CO2 at 340C until controls showed the presence of 300 TCID50s of virus (usually at 3 days). Formalinized crystal violet was added to each well to inactivate virus and to stain remaining cells. Neutralizing-antibody titers were expressed as the reciprocal of the highest dilution which completely neutralized the virus dose. Determination of k values. To determine neutralization rate constants (k values) (1, 19), equal volumes of diluted and virus (approximately 10' PFU/ml) were mixed and incubated along with a virus control in a water bath at 37 C. The -virus mixture and the virus control were sampled at different time intervals (0, 2, 5, 10, and 15 min or 0, 5, 10, 15, and 30 min for homologous or heterologous neutralization, respectively). The mixture was diluted 1:100 in cold (0 C) diluent to stop neutralization, and 0.2 ml was plated on HeLa monolayers (four plates per sample) to assay the unneutralized virus (4). Each k value reported is the average of duplicate experiments. The k values (reciprocal of the dilution times slope) were based on the following equation: k = 2.3 x (Dlt) x loglo (VJ/V,), where D is the reciprocal of the final dilution, t is the time in minutes, and V0 and V, are the numbers of PFU of virus at time zero and time t, respectively (1). A value for the slope of the regression line was determined. A CDC 6600 computer, using a REGRESSION subprogram of the Statistical Package for the Social Sciences (Vogelback Computing Center, Evanston, Ill.) in a basic application of the general linear model (2), was used to calculate the slope for each k value by linear regression analysis. Only the points on the linear portion of the neutralization curve were calculated by regression analysis. RESULTS Antigenic variation in rhinovirus isolates related to prototype rhinoviruses 36 and 58. The prototype rhinoviruses 36 and 58 show an antigenic relationship when neutralized with rabbit anti (3). The low-level reciprocal neutralization between types 36 and 58 (Tables 1 and 2) is not equivalent in both directions. Anti-36 showed a higher titer for type 58 than anti-58 showed for type 36.

3 VOL. 40, 1983 ANTIGENIC VARIATION IN RHINOVIRUS ISOLATES 215 TABLE 2. Neutralizing-antibody titers and k values for prototypes 36 and 58 and strain 1104 Anti-36 Anti-1104 Anti-58 Rhinovirus Titer kb Titer k Titer k 36 1, , a Neutralization titer expressed as the reciprocal of the dilution which neutralized 30 to 300 TCID50s of virus in HeLa cells. b Neutalization rate constant calculated as described in the legend to Fig ANTI-RHNOsRJUS 58vsuI04,Dz2OOO A ANTI-RHINOVIRUS S8 vs 36, D 40 0 ANTI-RHINOVIRUS58 vs58,d 2OOO Antisera to rhinoviruses 36 and 58 were titrated against isolates which appeared to be partially neutralized by pools containing both anti-36 and anti-58 sera. A range of antigenic variation among isolates was revealed. Two isolates (Table 1) were nearly equally or equally neutralized by the two antisera; the remaining two were antigenically closer to either type 36 or type 58. The isolates equally neutralized by the prototype antisera appeared to be intertype strains. The two isolates were plaque purified and passaged two to three times in HeLa cells. Cloned viruses from each isolate were equally neutralized by antisera to rhinoviruses 36 and 58. The cloned isolate that grew to the highest titer, isolate 1104, was selected to produce immunogen. The homologous neutralizing-antibody titer of the anti-58 used in the typing pools and titrated against the isolates was 640, and this was thus suitable for typing isolates. However, the homologous k value was only 75, indicating a low affinity, and the therefore was of questionable value as a reagent for comparing type 58 with the possible intertypes. Therefore, a pair of rabbits was immunized with a new preparation of type 58. The resulting anti possessed a high affinity (homologous k value = 574) and a neutralization titer similar to that of type 58 (640 to 1,280). This lot of anti also had a fourfold higher neutralization titer to isolate 1104 (320) than did the anti-36 (80), indicating that isolate 1104 was type 58. The high-affinity anti-58 was used in all subsequent experiments. The neutralization rate constant (k value) and the microneutralization assay were used to determine the relationship between the variant 1104 and the prototypes 36 and 58 (Table 2). The results of both assays indicated that isolate 1104 was a variant of type 58 and was reciprocally related to type 36. Variant 1104 and prototype 58 were neutralized by anti-36 at a dilution of 1:80. However, anti to prototype 58 neutralized 1104 and 58 at extremely different rates and titers, as illustrated by a sample experiment (Fig. 1). These results indicate that isolates 58 and 1104 are variants of the same type. Antigenic variation in rhinovirus isolates related to prototypes 12 and 78. The prototypes 12 and 78 have previously been shown to be antigenically related (3, 13). The neutralizing-anti K=156.~50 K-645 K=3 I0 I Time in minutes FIG. 1. Comparison of rate of neutralization of homologous rhinovirus 58 and heterologous rhinoviruses 36 and 1104 by rabbit anti-rhinovirus 58. The k values (reciprocal of the dilution times slope) were based on the following equation: k = 2.3 x (Dit) x loglo (VJV,), where D is the reciprocal of the final dilution, t is the time in minutes, and VO and V, are the numbers of PFU of virus at time zero and time t, respectively. The slope was calculated by linear regression analysis for each neutralization constant. Only points on the linear portion of the curve were used. The r values (fit of the line) are 0.98 (0), 0.96 (A), and 0.91 (0).

4 216 HALFPAP AND COONEY TABLE 3. Antigenic variation in rhinovirus isolates related to cross-reacting rhinovirus prototypes 12 and 78 Neutralizing-antibody titer' No. or type of virus isolates Anti-12 with: Anti b Prototype 12 1, Prototype a Expressed as the reciprocal of the dilution which completely neutralized 30 to 300 TCID50s of virus. b Rhinovirus isolates selected for plaque purification. body titers and k values shown in Tables 3 and 4 demonstrate that anti-12 neutralizes type 78 at a higher titer and a faster rate than anti-78 neutralizes type 12. This unequal reciprocal neutralization is parallel to the antigenic relationship between prototypes 36 and 58. Titrations of anti-12 and anti-78 sera with selected isolates as the antigen were performed in fetal tonsil cells and revealed a range of antigenic variation among isolates. The isolates listed in Table 3 all demonstrate the crossreaction between types 12 and 78. However, four patterns of neutralization were observed. Four isolates were antigenically closer to rhinovirus 12, five were closer to rhinovirus 78, and five were nearly equally related and three were equally related to types 12 and 78. The three isolates which appeared to be intertypes between types 12 and 78 were plaque purified in HeLa cells and successively passaged in HeLa cells to maximize the titer. All of these clones were more closely related to type 78 than to type 12. Two of the cloned isolates were neutralized at a 16-fold-higher titer by anti-78 than by anti-12. The third clone of isolate 9433 was neutralized by anti-78 at an eightfold-higher titer than by anti-12 (Table 4); therefore, this clone of isolate 9433 INFECT. IMMUN. was selected to produce immunogen. Although the original reaction indicates that it was an intertype, the neutralization titers and k values of anti-9433 against isolates 9433, 78, and 12 (Table 4) reconfirmed the close antigenic relationship between 9433 and 78. Anti-9433 had the highest k value to the homologous virus; however, the neutralizing-antibody titers to isolate 9433 and type 78 were equivalent. The relationship of 9433 to type 12 appears to be similar to that of the prototype strain. Comparison of antisera to strain 1104 and to prototype 58. The virus isolates listed in Table 1 and 3 and other isolates from the Seattle Virus Watch (14) were used to compare anti to isolate 1104 with that to type 58 and anti to isolate 9433 with that to type 78. Neutralizingantibody titers of anti-1104 were consistently high against strain 1104, prototype 58, and other isolates typed as 58, whereas anti-58 titers varied (Table 5). Anti-1104 and anti-58 sera equally neutralized prototype 36 (titer, 40) and six other isolates typed as 36 (titer, 10 to 20). Anti-9433 had equal or lower titers than anti-78 to the isolates listed in Table 3 and to other isolates typed as 78. DISCUSSION Within the rhinovirus group, over 40 serotypes can be linked directly by one- or two-way crosses or indirectly through two or more serotypes; e.g., rhinoviruses 67 and 28 are linked via types 11, 13, and 32 (anti-11 neutralizes type 28, anti-13 neutralizes type 11, and anti-32 neutralizes both types 13 and 67) (7, 10, 20). Schieble et al. (23) reported that anti to rhinovirus 58 neutralized type 36; this has been confirmed and extended to a reciprocal cross in our laboratories (3). A reciprocal cross between rhinoviruses 12 and 78 demonstrated in rabbit antisera was among those reported by Fox (13) to make a total of 12 groups of related viruses. Cross-reacting types, strain variants, and prime strains of existing prototyes have evolved (6, 21). Stott and Walker (26) observed antigenic differences in strains of rhinovirus 51 isolated in different years, and TABLE 4. Neutralizing-antibody titers and k values for prototypes 12 and 78 and strain 9433 Anti-12 Rhinovirus Anti-9433 Anti-78 Titer" kb Titer k Titer k 12 1, a Neutralization titer expressed as the reciprocal of the dilution which neutralized 30 to 300 TCID50s of virus in HeLa cells. b Neutralization rate constant calculated as described in the legend to Fig. 1.

5 VOL. 40, 1983 TABLE 5. Neutralizing-antibody titers of prototype 58 anti and strain 1104 anti against isolates typed as rhinovirus 58 Neutralizing-antibody titera Rhinovirus with: isolate Anti-1104 Anti-58 Group Pb , , , Group II , , , Prototype a Expressed as the reciprocal of the dilution which completely neutralized 30 to 300 TCIDos of virus in HeLa cells. b Virus isolates typed as 58. Virus isolates typed as intermediate between 36 and 58. they suggested that such strain variation of type 51 demonstrated the evolution of rhinovirus serotypes; however, no direction of evolution was indicated. Schieble et al. (24) discovered a "prime" strain of rhinovirus 22, and anti to that strain neutralized prototype 22, but the prime strain was not neutralized by prototype 22 anti. A reciprocal cross-neutralization between two prototypes offers a possibility of intermediate strains. However, rhinoviruses 21 and 22 cross-reacted in only one direction, and rhinovirus 51 had no cross-reactions; therefore, the extent of variation could be tested in relation to only one prototype virus. Now we have observed yet another phenomenon, rhinovirus intertypes. An intertype virus has the unique advantage of being related to two viruses, so antigenic variation can be measured relative to both prototypes. In addition to the constant antigenic evolution of rhinoviruses in the field, the manipulation of strains in the laboratory can induce apparent antigenic variations. Different cell lines vary in their susceptibility to rhinovirus infection, and an increased Mg2+ or Ca2+ concentration enhances virus yield and plaque production in HeLa cells (11). The initial observation that isolates 1104 and 9433 were equally neutralized by both of their respective prototype antisera was based on titrations done on fetal tonsil cells used for virus isolation (Tables 1 and 3). The results in Tables 2 and 4 are from experiments using HeLa cells. The change in cell lines could partially explain why both appear antigenically ANTIGENIC VARIATION IN RHINOVIRUS ISOLATES 217 closer to one of the two prototypes. However, a more likely possibility is that during plaque purification the single virus selected was slightly different antigenically from the entire population of viruses in the original specimen. An interesting experiment for future study would be to select a large number of plaque-purified virus clones from one specimen and to document the frequency of different antigenic variants. Another possible reason why variants 1104 and 9433 were not equally related to their respective pairs of prototypes was the dominant neutralization of anti-12 and anti-36 sera. An apparent intertype equally neutralized by anti-36 and anti-58 sera, for example, could be antigenically closer to type 58 for anti-58 to neutralize the virus at the same dilution as anti-36. The same possibility could explain why isolate 9433 was shown to be a variant of type 78, with an antigenic relationship to type 12. Neutralization kinetics provide the sensitivity required for discerning antigenic variation between virus strains and are the basis for this study. However, it is important to correlate the neutralizing-antibody titer with the neutralization rate. Occasionally, the neutralization titer will not reflect the affinity of the immunoglobulin; e.g., two lots of anti-58 anti discussed in this paper had titers of 640, but the k values reflecting the affinity of the antibody were very different, i.e., 75 and 574, respectively. Nine of twelve rhinovirus 58 strains recovered from field specimens (14) were identified by using the low-affinity, but three strains were only identified as type 58 by the highaffinity anti-58 or by anti to isolate The meaningful interpretation of k values depends on a precise statistical analysis. Calculation of the linear regression line and slope of each experiment is a marked improvement over the less accurate method of sketching a line visually through data points on a graph. Another advantage of linear regression analysis is that the r value (correlation coefficient) can be calculated. If the line perfectly fits all of the points on the graph, then r = 1. The average r value in 36 experiments was 0.935, with a standard deviation of The differences between the three k values listed under each anti in Tables 2 and 4 range from 31 to 99%, except for the values obtained with rhinovirus 36 anti against isolates 1104 and 58, which differ by 16.5%. Dulbecco and Ginsburg (9) stated that "differences of about 20% are usually significant" for animal viruses. Anti-1104 neutralized a wider range of viruses typed as 58 and neutralized viruses intermediate between types 36 and 58 at a higher dilution than did prototype 58 anti. The

6 218 HALFPAP AND COONEY INFECT. IMMUN. total amounts of virus immunogen injected to produce anti-1104 and anti-58 sera were essentially the same (3.0 x 108 PFU of prototype 58). Clearly, anti-1104 would be a superior representative of type 58 and would improve typing efficiency. Isolate 9433 did not produce a high-titer anti (homologous neutralization titer, 160) compared with prototype 78 (homologous titer, 640). Consequently, anti-9433 had equal or lower neutralization titers to viruses intermediate between types 12 and 78 and to isolates typed as 78. Other isolates (Table 3) have the potential to be more representative of type 78. The major reason for the prevailing pessimism concerning a rhinovirus vaccine is the multiplicity of rhinovirus serotypes. As Fox (13) has noted, some rhinovirus serotypes persist in a population and cause more infections than others; hence, they would be the viruses of choice for a vaccine. Natural or experimental infection in humans with one rhinovirus frequently stimulates the appearance or increases the titer of neutralizing antibody to a related type (12, 15, 25), an observation that has been directly sup- Rhino- ported by results from a rabbit model (7). virus vaccines have been tested (8, 15, 22, 25) with encouraging results, and, based on our knowledge of relationships between rhinoviruses, volunteer trials with selected cross-related rhinovirus serotypes should be initiated. The intermediate variants described in this study do not increase the number of rhinovirus types, but instead confirm the reciprocal cross relationship of types 12 and 78 and also of types 36 and 58. ACKNOWLEDGMENTS This research was supported in part by Public Health Service research grants A109775, A112269, and A from the National Institutes of Health. We thank Francisca Morales and Reba Tam for excellent technical assistance. LITERATURE CITED 1. Adams, M. H Bacteriophages, p Interscience Publishers, Inc., New York. 2. Armltage, P Further analysis of straight-line data, p In Statistical methods in medical research. Blackwell Scientific Publications, Oxford. 3. Cooney, M. K., J. P. Fox, and G. E. Kenny Antigenic groupings of 90 rhinovirus serotypes. Infect. Immun. 37: Cooney, M. K., and G. E. Kenny Immunogenicity of rhinoviruses. Proc. Soc. Exp. Biol. Med. 188: Cooney, M. K., and G. E. Kenny Demonstration of dual rhinovirus infection in humans by isolation of different serotypes in human heteroploid (HeLa) and human diploid fibroblast cell cultures. J. Clin. Microbiol. 5: Cooney, M. K., G. E. Kenny, R. Tam, and J. P. Fox Cross relationships among 37 rhinoviruses demonstrated by virus neutralization with potent monotypic rabbit antisera. Infect. Immun. 7: Cooney, M. K., J. A. Wise, G. E. Kenny, and J. P. Fox Broad antigenic relationships among rhinovirus serotypes revealed by cross-immunization of rabbits with different serotypes. J. Immunol. 114: Douglas, R. G., and R. B. Couch Parenteral inactivated rhinovirus vaccine: minimal protective effect. Proc. Soc. Exp. Biol. Med. 139: Dulbecco, R., and H. S. Ginsburg Virology, p In B. D. Davis, R. Dulbecco, H. N. Eisen, H. S. Ginsburg, and W. B. Wood, Jr. (ed.), Microbiology, 2nd ed. Harper & Row, Hagerstown, Md. 10. Fenters, J. D., S. S. Gillum, J. C. Holper, and G. S. Marquis Serotypic relationships among rhinoviruses. Am. J. Epidemiol. 84: Fiala, M., and G. E. Kenny Enhancement of rhinovirus plaque formation in human heteroploid cell cultures by magnesium and calcium. J. Bacteriol. 90: Fleet, W. F., R. G. Douglas, Jr., T. R. Cate, and R. B. Couch Antibody to rhinovirus in human sera. II. Heterotypic responses. Proc. Soc. Exp. Biol. Med. 127: Fox, J. P Is a rhinovirus vaccine possible? Am. J. Epidemiol. 103: Fox, J. P., M. K. Cooney, and C. E. Hall The Seattle Virus Watch. V. Epidemiologic observations of rhinovirus infections, , in families with young children. Am. J. Epidemiol. 101: Hamory, B. H., V. V. Hamparian, R. M. Conant, and J. M. Gwaltney, Jr Human responses to two decavalent rhinovirus vaccines. J. Infect. Dis. 132: Kapikian, A. Z., R. M. Conant, V. V. Hamparian, R. M. Chanock, P. J. Chappel, E. C. Dick, J. D. Fenters, J. M. Gwaltney, Jr., D. Hamre, J. C. Holper, W. S. Jordan, Jr., E. H. Lennette, J. L. Melnick, W. S. Mogabgab, M. A. Mufson, C. A. Phillips, J. H. Schieble, and D. A. J. Tyrrell Rhinoviruses: a numbering system. Nature (London) 213: Kapikian, A. Z., R. M. Conant, V. V. Hamparian, R. J. Chanock, E. C. Dick, J. M. Gwaltney, Jr., D. Hamre, W. S. Jordan, Jr., G. E. Kenny, E. H. Lennette, J. L. Melnick, W. J. Mogbgab, C. A. Phillips, J. H. Schieble, E. J. Stott, and D. A. J. Tyrrell A collaborative report: rhinoviruses-extension of the numbering system. Virology 43: Kenny, G. E., M. K. Cooney, and D. J. Thompson Analysis of pooling schemes for identification of large numbers of viruses. Am. J. Epidemiol. 91: McBride, W. D Antigenic analysis of polioviruses by kinetic studies of neutralization. Virology 7: Mogabgab, W. J., B. J. Holmes, and B. Pollock Antigenic relationships of common rhinovirus types from disabling upper respiratory illnesses. Dev. Biol. Stand. 28: Monto, A. S., and K. M. Johnson Serologic relationships of the B632 and Echo-28 rhinovirus strains. Proc. Soc. Exp. Biol. Med. 121: Perkins, J. C., D. N. Tucker, H. L. S. Knopf, R. P. Wen. zel, A. Z. Kapikian, and R. M. Chanock Comparison of protective effect of neutralizing antibody in and nasal secretions in experimental rhinovirus type 13 illness. Am. J. Epidemiol. 90: Schieble, J. H., V. L. Fox, F. Lester, and E. H. Lennette Rhinoviruses: an antigenic study of the prototype virus strains. Proc. Exp. Biol. Med. 147: Schieble, J. H., E. H. Lennette, and V. L. Fox Antigenic variation of rhinovirus type 22. Proc. Soc. Exp. Biol. Med. 133: Scientific Committee on Common Cold Vaccines Prevention of colds by vaccination against a rhinovirus. Br. Med. J. 1: Stott, E. J., and M. Walker Antigenic variation among strains of rhinovirus type 51. Nature (London) 224:

Isolation of Different Serotypes in Human Heteroploid

Isolation of Different Serotypes in Human Heteroploid JOURNAL OF CLINICAL MICROBIOLOGY, Feb. 1977, p. 202-207 Copyright 1977 American Society for Microbiology Vol. 5, No. 2 Printed in U.S.A. Demonstration of Dual Rhinovirus Infection in Humans by Isolation

More information

Effect of Complement and Viral Filtration on the

Effect of Complement and Viral Filtration on the APPLIED MICROBIOLOGY, JUlY 1968, p. 1076-1080 Copyright @ 1968 American Society for Microbiology Vol. 16, No. 7 Printed in U.S.A. Effect of Complement and Viral Filtration on the Neutralization of Respiratory

More information

Rhinovirus Plaque Formation in WI-38 Cells with

Rhinovirus Plaque Formation in WI-38 Cells with APPLIE MICRoBIoLoGY, Sept. 1968, p. 1331-1336 Copyright @ 1968 American Society for Microbiology Vol. 16, No. 9 Printed in U.S.A. Rhinovirus Plaque Formation in WI-38 Cells with Methylcellulose Overlay

More information

Response of Volunteers to Inoculation with Hemagglutininpositive and Hemaggiutinin-negative Variants of Coxsackie A21 Virus *

Response of Volunteers to Inoculation with Hemagglutininpositive and Hemaggiutinin-negative Variants of Coxsackie A21 Virus * Journal of Clinical Investigation Vol. 44, No. 7, 1965 Response of Volunteers to Inoculation with Hemagglutininpositive and Hemaggiutinin-negative Variants of Coxsackie A21 Virus * DAvm J. LANG, THOMAS

More information

NOTES CONTAMINATION OF CYNOMOLGUS MONKEY KIDNEY CELL CULTURES BY HEMAGGLUTINATING SIMIAN VIRUS (SV 5)

NOTES CONTAMINATION OF CYNOMOLGUS MONKEY KIDNEY CELL CULTURES BY HEMAGGLUTINATING SIMIAN VIRUS (SV 5) Japan. J. Med. Sci. Biol., 18, 151-156, 1965 NOTES CONTAMINATION OF CYNOMOLGUS MONKEY KIDNEY CELL CULTURES BY HEMAGGLUTINATING SIMIAN VIRUS (SV 5) Since the extensive use of cynomolgus monkey kidney cell

More information

Cytomegalovirus Based upon Enhanced Uptake of Neutral

Cytomegalovirus Based upon Enhanced Uptake of Neutral JOURNAL OF CUNICAL MICROBIOLOGY, JUlY 1976, p. 61-66 Copyright 1976 American Society for Microbiology Vol. 4, No. 1 Printed in U.S.A. Plaque Reduction Neutralization Test for Human Cytomegalovirus Based

More information

THE CYTOPATHOGENIC ACTION OF BLUETONGUE VIRUS ON TISSUE CULTURES AND ITS APPLICATION TO THE DETECTION OF ANTIBODIES IN THE SERUM OF SHEEP.

THE CYTOPATHOGENIC ACTION OF BLUETONGUE VIRUS ON TISSUE CULTURES AND ITS APPLICATION TO THE DETECTION OF ANTIBODIES IN THE SERUM OF SHEEP. Onderstepoort Journal of Veterinary Research, Volume 27, Number 2, October, 1956. The Government Printer. THE CYTOPATHOGENIC ACTION OF BLUETONGUE VIRUS ON TISSUE CULTURES AND ITS APPLICATION TO THE DETECTION

More information

Magnesium and Calcium'

Magnesium and Calcium' JOURNAL OF BACTERIOLOGY, Dec., 1966 Copyright @ 1966 American Society for Microbiology Vol. 92, No. 6 Printed in U.S.A. Enhancement of Rhinovirus Plaque Formation in Human Heteroploid Cell Cultures by

More information

Introduction.-Cytopathogenic viruses may lose their cell-destroying capacity

Introduction.-Cytopathogenic viruses may lose their cell-destroying capacity AN INHIBITOR OF VIRAL ACTIVITY APPEARING IN INFECTED CELL CULTURES* BY MONTO Hot AND JOHN F. ENDERS RESEARCH DIVISION OF INFECTIOUS DISEASES, THE CHILDREN'S MEDICAL CENTER, AND THE DEPARTMENT OF BACTERIOLOGY

More information

Effect of Magnesium on Replication of Rhinovirus HGP'

Effect of Magnesium on Replication of Rhinovirus HGP' JOURNAL OF VIROLOGY, June 1967, p. 489-493 Copyright 1967 American Society for Microbiology Vol. 1, No. 3 Printed in U.S.A. Effect of Magnesium on Replication of Rhinovirus HGP' MILAN FIALA' AND GEORGE

More information

however, and the present communication is concerned with some of

however, and the present communication is concerned with some of THE AGGLUTINATION OF HUMAN ERYTHROCYTES MODIFIED BY TREATMENT WITH NEWCASTLE DISEASE AND INFLUENZA VIRUS' ALFRED L. FLORMAN' Pediatric Service and Division of Bacteriology, The Mount Sinai Hospital, New

More information

Immunity to Influenza in Ferrets

Immunity to Influenza in Ferrets INFECTION ANI) IMMUNITY. June 1974. 1). 985-99) Copyright ( 1974 American Society for Microbiology Vol. 9. No. 6 Printed in U.S.A. Immunity to Influenza in Ferrets X. Intranasal Immunization of Ferrets

More information

Markers of Rubella Virus Strains in RK13 Cell Culture

Markers of Rubella Virus Strains in RK13 Cell Culture JOURNAL OF VIROLOGY, Feb. 1969, p. 157-163 Copyright 1969 American Society for Microbiology Vol. 3, No. 2 Printed in U.S.A. Markers of Rubella Virus Strains in RK13 Cell Culture ALICE FOGEL' AND STANLEY

More information

Pathogenesis of Simian Foamy Virus Infection in Natural and Experimental Hosts

Pathogenesis of Simian Foamy Virus Infection in Natural and Experimental Hosts INCTION AD ImmuNrry, Sept. 1975, p. 470-474 Copyright 0 1975 American Society for Microbiology Vol. 12, No. 3 Printed in U.S.A. Pathogenesis of Simian Foamy Virus Infection in Natural and Experimental

More information

PERSISTENT INFECTIONS WITH HUMAN PARAINFLUENZAVIRUS TYPE 3 IN TWO CELL LINES

PERSISTENT INFECTIONS WITH HUMAN PARAINFLUENZAVIRUS TYPE 3 IN TWO CELL LINES 71 PERSISTENT INFECTIONS WITH HUMAN PARAINFLUENZAVIRUS TYPE 3 IN TWO CELL LINES Harold G. Jensen, Alan J. Parkinson, and L. Vernon Scott* Department of Microbiology & Immunology, University of Oklahoma

More information

Determination Of Thermal Stability Of Oral Polio Vaccine (Opv) At Different Temperature Under Laboratory Conditions

Determination Of Thermal Stability Of Oral Polio Vaccine (Opv) At Different Temperature Under Laboratory Conditions Determination Of Thermal Stability Of Oral Polio Vaccine (Opv) At Different Temperature Under Laboratory Conditions Muhammad T 1, SS Baba 2, LT Zaria 2, AD El-Yuguda 2 And IB Thilza 3, 1 who National Polio

More information

Title. Author(s)HASHIMOTO, Nobuo. CitationJapanese Journal of Veterinary Research, 28(1-2): 19. Issue Date DOI. Doc URL.

Title. Author(s)HASHIMOTO, Nobuo. CitationJapanese Journal of Veterinary Research, 28(1-2): 19. Issue Date DOI. Doc URL. Title ISOLATION OF ANTIGENIC MUTANTS OF TYPE 1 POLIOVIRUS PRESENCE OF HOMOLOGOUS ANTISERUM Author(s)HASHIMOTO, Nobuo CitationJapanese Journal of Veterinary Research, 28(1-2): 19 Issue Date 198-5-31 DOI

More information

Enteric Immunization with Live Adenovirus Type 21 Vaccine

Enteric Immunization with Live Adenovirus Type 21 Vaccine INFECTION AND IMMUNITY, March 197, p. 95-99 Copyright 197 American Society for Microbiology Vol. 5, No. 3 Printed in U.S.A. Enteric Immuniation with Live Adenovirus Type 1 Vaccine I. Tests for Safety,

More information

ISOLATION OF ENTEROVIRUSES FROM THE "NORMAL" BABOON (PAPIO DOGUERA)l

ISOLATION OF ENTEROVIRUSES FROM THE NORMAL BABOON (PAPIO DOGUERA)l ISOLATION OF ENTEROVIRUSES FROM THE "NORMAL" BABOON (PAPIO DOGUERA)l R. FUENTES-MARINS,2 A. R. RODRIGUEZ, S. S. KALTER, A. HELLMAN, AND R. A. CRANDELL The Southwest Foundation for Research and Education,

More information

By NATHALIE J. SCHMIDT, E. H. LENNETTE AND R. L. MAGOFFIN

By NATHALIE J. SCHMIDT, E. H. LENNETTE AND R. L. MAGOFFIN J. gen. ViroL 0969), 4, 321-328 Printed in Great Britain 32I Immunological Relationship between Herpes Simplex and Varicella-zoster Viruses Demonstrated by Complement-fixation, Neutralization and Fluorescent

More information

SOME PROPERTIES OF ECHO AND COXSACKIE VIRUSES IN TISSUE CULTURE AND VARIATIONS BY HEAT

SOME PROPERTIES OF ECHO AND COXSACKIE VIRUSES IN TISSUE CULTURE AND VARIATIONS BY HEAT THE KURUME MEDICAL JOURNAL Vol. 9, No. 1, 1962 SOME PROPERTIES OF ECHO AND COXSACKIE VIRUSES IN TISSUE CULTURE AND VARIATIONS BY HEAT SHIGERU YAMAMATO AND MASAHISA SHINGU Department of Microbiology, Kurume

More information

Role of Interferon in the Propagation of MM Virus in L Cells

Role of Interferon in the Propagation of MM Virus in L Cells APPLIED MICROBIOLOGY, Oct. 1969, p. 584-588 Copyright ( 1969 American Society for Microbiology Vol. 18, No. 4 Printed in U S A. Role of Interferon in the Propagation of MM Virus in L Cells DAVID J. GIRON

More information

THERMOINACTIVATION OF HF AND M STRAINS OF HERPES SIMPLEX VIRUS IN VARIOUS CONDITIONS

THERMOINACTIVATION OF HF AND M STRAINS OF HERPES SIMPLEX VIRUS IN VARIOUS CONDITIONS THE KURUME MEDICAL JOURNAL Vol. 16, No. 2, 1969 THERMOINACTIVATION OF HF AND M STRAINS OF HERPES SIMPLEX VIRUS IN VARIOUS CONDITIONS HIDEFUMI KABUTA, SHIGERU YAMAMOTO, MIZUKO TANIKAWA AND YOH NAKAGAWA

More information

Quantitative Assay of Paravaccinia Virus Based

Quantitative Assay of Paravaccinia Virus Based APPrU MICROBIOLOGY, JUly 1972, p. 138-142 Copyright 1972 American Society for Microbiology Vol. 24, No. 1 Printed in U.S.A. Quantitative Assay of Paravaccinia Virus Based on Enumeration of Inclusion-Containing

More information

G. W. WOOD J. C. MUSKETT and D. H. THORNTON MAFF, Central Veterinary Laboratory, New Haw, Weybridge, Surrey, U.K.

G. W. WOOD J. C. MUSKETT and D. H. THORNTON MAFF, Central Veterinary Laboratory, New Haw, Weybridge, Surrey, U.K. J. Comp. Path. 1986 vol. 96 OBSERVATIONS ON THE ABILITY OF AVIAN REOVIRUS VACCINMATION OF HENS TO PROTECT THEIR PROGENY AGAINST THE EFFECTS OF CHALLENGE WITH HOMOLOGOUS AND HETEROLOGOUS STRAINS By G. W.

More information

Respiratory Syncytial Virus: Implications for Parenteral

Respiratory Syncytial Virus: Implications for Parenteral INFECTION AND IMMUNITY, July 1982, p. 160-165 0019-9567/82/070160-06$02.00/0 Vol. 37, No. 1 Comparison of Enzyme-Linked Immunosorbent Assay and Neutralization Techniques for Measurement of Antibody to

More information

Coronaviruses cause acute, mild upper respiratory infection (common cold).

Coronaviruses cause acute, mild upper respiratory infection (common cold). Coronaviruses David A. J. Tyrrell Steven H. Myint GENERAL CONCEPTS Clinical Presentation Coronaviruses cause acute, mild upper respiratory infection (common cold). Structure Spherical or pleomorphic enveloped

More information

Conjunctivitis Due to Adenovirus Type 19

Conjunctivitis Due to Adenovirus Type 19 JOURNAL OF CLINICAL MICROBIOLOGY, Aug. 1978, p. 209-213 0095-1137/78/0008-0209$02.00/0 Copyright 1978 American Society for Microbiology Conjunctivitis Due to Adenovirus Type 19 Vol. 8, No. 2 Printed in

More information

Mechanism of Pock Formation by Shope Fibroma

Mechanism of Pock Formation by Shope Fibroma JOURNAL OF BACTERIOLOGY, Sept., 1966 Copyright ( 1966 American Society for Microbiology Vol. 92, No. 3 Printed in U.S.A. Mechanism of Pock Formation by Shope Fibroma Virus on Monolayers of Rabbit Cells

More information

(;[rowth Charaeteristies of Influenza Virus Type C in Avian Hosts

(;[rowth Charaeteristies of Influenza Virus Type C in Avian Hosts Archives of Virology 58, 349--353 (1978) Archives of Virology by Springer-Verlag 1978 (;[rowth Charaeteristies of Influena Virus Type C in Avian Hosts Brief Report By M ~R A~N D. AUSTIn, A. S. MONTO, and

More information

CHEMICAL STUDIES ON BACTERIAL AGGLUTINATION II. THE IDENTITY OF PRECIPITIN AND AGGLUTININ* BY MICHAEL HEIDELBERGER, PH.D., AND ELVIN A.

CHEMICAL STUDIES ON BACTERIAL AGGLUTINATION II. THE IDENTITY OF PRECIPITIN AND AGGLUTININ* BY MICHAEL HEIDELBERGER, PH.D., AND ELVIN A. CHEMICAL STUDIES ON BACTERIAL AGGLUTINATION II. THE IDENTITY OF PRECIPITIN AND AGGLUTININ* BY MICHAEL HEIDELBERGER, PH.D., AND ELVIN A. KABAT (From the Laboratories of the Departments of Medicine and Biological

More information

EVALUATION OF THE EFFECTIVENESS OF A 7% ACCELERATED HYDROGEN PEROXIDE-BASED FORMULATION AGAINST CANINE PARVOVIRUS

EVALUATION OF THE EFFECTIVENESS OF A 7% ACCELERATED HYDROGEN PEROXIDE-BASED FORMULATION AGAINST CANINE PARVOVIRUS Final report submitted to Virox Technologies, Inc. EVALUATION OF THE EFFECTIVENESS OF A 7% ACCELERATED HYDROGEN PEROXIDE-BASED FORMULATION AGAINST CANINE PARVOVIRUS Syed A. Sattar, M.Sc., Dip. Bact., M.S.,

More information

Blocking Interhost Transmission of Influenza Virus by Vaccination in the Guinea Pig Model

Blocking Interhost Transmission of Influenza Virus by Vaccination in the Guinea Pig Model JOURNAL OF VIROLOGY, Apr. 2009, p. 2803 2818 Vol. 83, No. 7 0022-538X/09/$08.00 0 doi:10.1128/jvi.02424-08 Copyright 2009, American Society for Microbiology. All Rights Reserved. Blocking Interhost Transmission

More information

Defective Interfering Particles of Respiratory Syncytial Virus

Defective Interfering Particles of Respiratory Syncytial Virus INFECTION AND IMMUNITY, Aug. 1982, p. 439-444 0019-9567/82/080439-06$02.00/0 Vol. 37, No. 2 Defective Interfering Particles of Respiratory Syncytial Virus MARY W. TREUHAFTl* AND MARC 0. BEEM2 Marshfield

More information

Definition of Human Rotavirus Serotypes by Plaque Reduction Assay

Definition of Human Rotavirus Serotypes by Plaque Reduction Assay INFECTION AND IMMUNITY, July 1982, p. 110-115 Vol. 37, No. 1 0019-9567/82/070110-06$02.00/0 Definition of Human Rotavirus Serotypes by Plaque Reduction Assay RICHARD G. WYATT,* HARRY B. GREENBERG, WALTER

More information

Longitudinal Studies of Neutralizing Antibody Responses to Rotavirus in Stools and Sera of Children following Severe Rotavirus Gastroenteritis

Longitudinal Studies of Neutralizing Antibody Responses to Rotavirus in Stools and Sera of Children following Severe Rotavirus Gastroenteritis CLINICAL AND DIAGNOSTIC LABORATORY IMMUNOLOGY, Nov. 1998, p. 897 901 Vol. 5, No. 6 1071-412X/98/$04.00 0 Copyright 1998, American Society for Microbiology. All Rights Reserved. Longitudinal Studies of

More information

Simplex and Varicella-Zoster Virus Antigens in Vesicular

Simplex and Varicella-Zoster Virus Antigens in Vesicular JOURNAL OF CLINICAL MICROBIOLOGY, Nov. 1980, p. 651-655 0095-1137/80/11-0651/05$02.00/0 Vol. 12, No. 5 Direct Immunofluorescence Staining for Detection of Herpes Simplex and Varicella-Zoster Virus Antigens

More information

(From the Hospital of The Rockefeller Institute for Medical Research)

(From the Hospital of The Rockefeller Institute for Medical Research) NEUTRALIZATION OF VIRUSES BY HOMOLOGOUS IMMUNE SERUM II. THEORETICAL STUDY OP THE EQUILIBRIUM STATE BY DAVID A. J. TYP.RELL, M.R.C.P. (From the Hospital of The Rockefeller Institute for Medical Research)

More information

Effect of Mutation in Immunodominant Neutralization Epitopes on the Antigenicity of Rotavirus SA-11

Effect of Mutation in Immunodominant Neutralization Epitopes on the Antigenicity of Rotavirus SA-11 J. gen. Virol. (1985), 66, 2375-2381. Printed in Great Britain 2375 Key words: rotaviruses/antigenieity/antiserum selection Effect of Mutation in Immunodominant Neutralization Epitopes on the Antigenicity

More information

INTRABULBAR INOCULATION OF JAPANESE ENCEPHALITIS VIRUS TO MICE

INTRABULBAR INOCULATION OF JAPANESE ENCEPHALITIS VIRUS TO MICE THE KURUME MEDICAL JOURNAL Vol. 15, No. 1, 1968 INTRABULBAR INOCULATION OF JAPANESE ENCEPHALITIS VIRUS TO MICE TOSHINORI TSUCHIYA Department of Microbiology, and Department of Ophthalmology, Kurume University

More information

Evaluation of Mixed Cell Types and 5-Iodo-2'-Deoxyuridine

Evaluation of Mixed Cell Types and 5-Iodo-2'-Deoxyuridine APPLIED AND ENVIRONMENTAL MICROBIOLOGY, May 1986, p. 136-14 99-224/86/5136-5$2./ Copyright C 1986, American Society for Microbiology Vol. 51, No. 5 Evaluation of Mixed Cell Types and 5-Iodo-2'-Deoxyuridine

More information

Effect of Vaccine, Route, and Schedule on Antibody

Effect of Vaccine, Route, and Schedule on Antibody APPUED MICROBIOLOGY, Mar. 1969, p. 355-359 Copyright 1969 American Society for Microbiology Vol. 17, No. 3 Printed in U.S.A. Effect of Vaccine, Route, and Schedule on Antibody Response of Rabbits to Pasteurella

More information

RHINOVIRUSES AND RESPIRATORY DISEASE'

RHINOVIRUSES AND RESPIRATORY DISEASE' BACTERIOLOGICAL REVIEWS Vol. 28, 4, p. 409-422 December, 1964 Copyright 1964 American Society for Microbiology Printed in U.S.A. RHINOVIRUSES AND RESPIRATORY DISEASE' JACK M. GWALTNEY, JR.,' AND WILLIAM

More information

SEROLOGIC EVIDENCE OF INFECTION OF WHITE-TAILED DEER IN TEXAS WITH THREE CALIFORNIA GROUP ARBOVIRUSES, (JAMESTOWN CANYON, SAN ANGELO, AND KEYSTONE)

SEROLOGIC EVIDENCE OF INFECTION OF WHITE-TAILED DEER IN TEXAS WITH THREE CALIFORNIA GROUP ARBOVIRUSES, (JAMESTOWN CANYON, SAN ANGELO, AND KEYSTONE) SEROLOGIC EVIDENCE OF INFECTION OF WHITE-TAILED DEER IN TEXAS WITH THREE CALIFORNIA GROUP ARBOVIRUSES, (JAMESTOWN CANYON, SAN ANGELO, AND KEYSTONE) Authors: CHARLES J. ISSEL, GERALD L. HOFF, and DANIEL

More information

Yellow Fever Vaccine: Direct Challenge of Monkeys Given Graded Doses of 17D

Yellow Fever Vaccine: Direct Challenge of Monkeys Given Graded Doses of 17D AppuzD MmcoaioLOGy, Apr. 1973, p. 539-544. Copyright i 1973 American Society for Microbiology Vol. 25, No. 4 Printed in U.SA. Yellow Fever Vaccine: Direct Challenge of Monkeys Given Graded Doses of 17D

More information

Plaque Formation by Mumps Virus and

Plaque Formation by Mumps Virus and APPE MICROBIOLOGY, Feb. 1970, p. 360-366 Vol. 19, No. 2 Copyright @ 1970 American Society for Microbiology Printed in U.S.A. Plaque Formation by Mumps Virus and Inhibition by Antiserum THOMAS D. FLANAGAN

More information

hemagglutinin and the neuraminidase genes (RNA/recombinant viruses/polyacrylamide gel electrophoresis/genetics)

hemagglutinin and the neuraminidase genes (RNA/recombinant viruses/polyacrylamide gel electrophoresis/genetics) Proc. Natl. Acad. Sci. USA Vol. 73, No. 6, pp. 242-246, June 976 Microbiology Mapping of the influenza virus genome: Identification of the hemagglutinin and the neuraminidase genes (RNA/recombinant viruses/polyacrylamide

More information

Plaque Assay of Sendai Virus in Monolayers of a Clonal Line

Plaque Assay of Sendai Virus in Monolayers of a Clonal Line JOURNAL OF CUNICAL MICROBIOLOGY, Feb. 1976. p. 91-95 Copyright 1976 American Society for Microbiology Vol. 3, No. 2 Printed in U.SA. Plaque Assay of Sendai Virus in Monolayers of a Clonal Line of Porcine

More information

Test Report. Efficacy of A New JM Nanocomposite Material in Inhibiting Respiratory Syncytial Virus Cellular Infection

Test Report. Efficacy of A New JM Nanocomposite Material in Inhibiting Respiratory Syncytial Virus Cellular Infection Test Report Efficacy of A New JM Nanocomposite Material in Inhibiting Respiratory Syncytial Virus Cellular Infection Test Reagent New JM Nanocomposite Material Project Commissioner JM Material Technology,

More information

During Murine Cytomegalovirus Infection

During Murine Cytomegalovirus Infection INFECTION AND IMMUNITY, Sept. 1980, p. 1050-1054 0019-9567/80/09-1050/05$02.00/0 Vol. 29, No. 3 Antivirus Antibody-Dependent Cell-Mediated Cytotoxicity During Murine Cytomegalovirus Infection JODY E. MANISCHEWITZ

More information

New Method for Evaluation of Virucidal Activity of Antiseptics and Disinfectants

New Method for Evaluation of Virucidal Activity of Antiseptics and Disinfectants APPLIED AND ENVIRONMENTAL MICROBIOLOGY, Dec. 2001, p. 5844 5848 Vol. 67, No. 12 0099-2240/01/$04.00 0 DOI: 10.1128/AEM.67.12.5844 5848.2001 Copyright 2001, American Society for Microbiology. All Rights

More information

The Infectious Cycle. Lecture 2 Biology W3310/4310 Virology Spring You know my methods, Watson --SIR ARTHUR CONAN DOYLE

The Infectious Cycle. Lecture 2 Biology W3310/4310 Virology Spring You know my methods, Watson --SIR ARTHUR CONAN DOYLE The Infectious Cycle Lecture 2 Biology W3310/4310 Virology Spring 2016 You know my methods, Watson --SIR ARTHUR CONAN DOYLE The Infectious Cycle Virologists divide the infectious cycle into steps to facilitate

More information

C for 2 hr at 22,620 X G. The supernatant fluid. was discarded and the sediment resuspended to

C for 2 hr at 22,620 X G. The supernatant fluid. was discarded and the sediment resuspended to SAFETY TEST FOR Q FEVER VACCINE SANFORD BERMAN, GERALD LE, JOSEPH P. LOWENTHAL, AND RAYMOND B. GOCHENOUR Department of Biologics Research, Division of Immunology, Walter Reed Army Institute of Research,

More information

Radioimmunoassay of Herpes Simplex Virus Antibody: Correlation with Ganglionic Infection

Radioimmunoassay of Herpes Simplex Virus Antibody: Correlation with Ganglionic Infection J. gen. Virol. (I977), 3 6, ~ 371-375 Printed in Great Britain 371 Radioimmunoassay of Herpes Simplex Virus Antibody: Correlation with Ganglionic Infection By B. FORGHANI, TONI KLASSEN AND J. R. BARINGER

More information

Human Rhinovirus 87 and Enterovirus 68 Represent a Unique Serotype with Rhinovirus and Enterovirus Features

Human Rhinovirus 87 and Enterovirus 68 Represent a Unique Serotype with Rhinovirus and Enterovirus Features JOURNAL OF CLINICAL MICROBIOLOGY, Nov. 2002, p. 4218 4223 Vol. 40, No. 11 0095-1137/02/$04.00 0 DOI: 10.1128/JCM.40.11.4218 4223.2002 Copyright 2002, American Society for Microbiology. All Rights Reserved.

More information

In Vitro Cultivation of Human Rotavirus in MA 104 Cells

In Vitro Cultivation of Human Rotavirus in MA 104 Cells Acute Diarrhea: Its Nutritional Consequences in Children, edited by J. A. Bellanti. Nestle, Vevey/Raven Press, New York 1983. ETIOLOGIC AGENTS OF ACUTE DIARRHEA In Vitro Cultivation of Human Rotavirus

More information

(From the Department of Animal and Plant Pathology of The Rockefeller Institute for Medical Research, Princeton, New Jersey)

(From the Department of Animal and Plant Pathology of The Rockefeller Institute for Medical Research, Princeton, New Jersey) THE YIELD OF RABIES VIRUS IN THE CHICK EMBRYO BY BJORN SIGURDSSON, M.D.* (From the Department of Animal and Plant Pathology of The Rockefeller Institute for Medical Research, Princeton, New Jersey) (Received

More information

Serological studies on 40 cases of mumps virus

Serological studies on 40 cases of mumps virus J Clin Pathol 1980; 33: 28-32 Serological studies on 40 cases of mumps virus infection R FREEMAN* AND MH HAMBLING From Leeds Regional Public Health Laboratory, Bridle Path, York Road, Leeds, UK SUMMARY

More information

Serological Comparison Between Twenty-Five Bovine Ureaplasma (T-Mycoplasma) Strains by Immunofluorescence

Serological Comparison Between Twenty-Five Bovine Ureaplasma (T-Mycoplasma) Strains by Immunofluorescence INTERNATIONAL JOURNAL OF SYSTEMATIC BACTERIOLOGY, Apr. 197, p. 119 Copyright 0 197 International Association of Microbiological Societies Vol. 2. No. 4 Printed in U.S.A. Serological Comparison Between

More information

Neutralization Epitopes on Poliovirus Type 3 Particles: an Analysis Using Monoclonal Antibodies

Neutralization Epitopes on Poliovirus Type 3 Particles: an Analysis Using Monoclonal Antibodies J.-gen. Virol. (1984), 65, 197-201. Printed in Great Britain 197 Key words: poliovirus type 3/monoclonal Abs/neutralization/immunoblot Neutralization Epitopes on Poliovirus Type 3 Particles: an Analysis

More information

Adenovirus Manual 1. Table of Contents. Large Scale Prep 2. Quick MOI Test 4. Infection of MNT-1 Cells 8. Adenovirus Stocks 9

Adenovirus Manual 1. Table of Contents. Large Scale Prep 2. Quick MOI Test 4. Infection of MNT-1 Cells 8. Adenovirus Stocks 9 Adenovirus Manual 1 Table of Contents Large Scale Prep 2 Quick MOI Test 4 TCID 50 Titration 5 Infection of MNT-1 Cells 8 Adenovirus Stocks 9 CAUTION: Always use filter tips and bleach everything!!! Adenovirus

More information

Production of Reassortant Viruses Containing Human Rotavirus VP4 and SA11 VP7 for Measuring Neutralizing Antibody following Natural Infection

Production of Reassortant Viruses Containing Human Rotavirus VP4 and SA11 VP7 for Measuring Neutralizing Antibody following Natural Infection CLINICAL AND DIAGNOSTIC LABORATORY IMMUNOLOGY, Sept. 1997, p. 509 514 Vol. 4, No. 5 1071-412X/97/$04.00 0 Copyright 1997, American Society for Microbiology Production of Reassortant Viruses Containing

More information

Leukocytes and Interferon in the Host Response to Viral Infections

Leukocytes and Interferon in the Host Response to Viral Infections JOURNAL OF BACTERIOLOGY, June, 1966 Copyright 1966 American Society for Microbiology Vol. 91, No. 6 Printed in U.S.A. Leukocytes and Interferon in the Host Response to Viral Infections IL. Enhanced Interferon

More information

Effects of Cell Culture and Laboratory Conditions on Type 2 Dengue Virus Infectivity

Effects of Cell Culture and Laboratory Conditions on Type 2 Dengue Virus Infectivity JOURNAL OF CLINICAL MICROBIOLOGY, Aug. 1979, p. 235-239 0095-1137/79/08-0235/05$02.00/0 Vol. 10, No. 2 Effects of Cell Culture and Laboratory Conditions on Type 2 Dengue Virus Infectivity JARUE S. MANNING*

More information

Min Levine, Ph. D. Influenza Division US Centers for Disease Control and Prevention. June 18, 2015 NIBSC

Min Levine, Ph. D. Influenza Division US Centers for Disease Control and Prevention. June 18, 2015 NIBSC Workshop on Immunoassay Standardization for Universal Flu Vaccines Min Levine, Ph. D. Influenza Division US Centers for Disease Control and Prevention June 18, 2015 NIBSC 1 Multiple Immune Mechanisms Contribute

More information

Infectivity of Respiratory Syncytial Virus by Various Routes of Inoculation

Infectivity of Respiratory Syncytial Virus by Various Routes of Inoculation INFECTION AND IMMUNITY, Sept. 1981, p. 779-783 0019-9567/81/090779-05$02.00/0 Vol. 33, No. 3 Infectivity of Respiratory Syncytial Virus by Various Routes of Inoculation CAROLINE B. HALL,* R. GORDON DOUGLAS,

More information

Human Cytomegalovirus

Human Cytomegalovirus JOURNAL OF CLINICAL MICROBIOLOGY, Oct. 1975, p. 332-336 Copyright ) 1975 American Society for Microbiology Vol. 2, No. 4 Printed in U.S.A. Demonstration of Immunoglobulin G Receptors Induced by Human Cytomegalovirus

More information

Preparation of La Crosse Virus Hemagglutinating

Preparation of La Crosse Virus Hemagglutinating APPLIED MICROBIOLOGY, Sept. 1969, p. 33-37 Copyright 1969 American Society for Microbiology Vol. 18, No. 3 Printed in U.S.A. Preparation of La Crosse Virus Hemagglutinating Antigen in BHK-21 Suspension

More information

Immunogenicity and Protective Effect of Inactivated M.

Immunogenicity and Protective Effect of Inactivated M. INFECTION AND IMMUNITY, Apr. 1977, p. 88-92 Copyright C 1977 American Society for Microbiology Vol. 16, No. 1 Printed in U.S.A. Immunoprophylaxis of Experimental Mycoplasma pneumoniae Disease: Effect of

More information

Application of μmacs Streptavidin MicroBeads for the analysis of HIV-1 directly from patient plasma

Application of μmacs Streptavidin MicroBeads for the analysis of HIV-1 directly from patient plasma Excerpt from MACS&more Vol 8 1/2004 Application of μmacs Streptavidin MicroBeads for the analysis of HIV-1 directly from patient plasma L. Davis Lupo and Salvatore T. Butera HIV and Retrovirology Branch,

More information

(From the Department of Epidemiology and Virus Laboratory, School of Pubbic Health, University of Michigan, Ann Arbor) Methods

(From the Department of Epidemiology and Virus Laboratory, School of Pubbic Health, University of Michigan, Ann Arbor) Methods Published Online: 1 November, 1948 Supp Info: http://doi.org/1.184/jem.88.5.515 Downloaded from jem.rupress.org on May 3, 218 THE RELATION OF INFECTIOUS AND HEMAGGLUTINATION TITERS TO THE ADAPTATION OF

More information

against phage B was prepared by intravenous inoculation of 5 pound rabbits CORYNEBACTERIUM DIPHTHERIAE1

against phage B was prepared by intravenous inoculation of 5 pound rabbits CORYNEBACTERIUM DIPHTHERIAE1 FURTHER OBSERVATIONS ON THE CHANGE TO VIRULENCE OF BACTERIOPHAGE-INFECTED AVIRULENT STRAINS OF CORYNEBACTERIUM DIPHTHERIAE1 VICTOR J. FREEMAN" AND I. UNA MORSE Department of Public Health and Preventive

More information

DRAFT. c 2.G Serological diagnosis of influenza by microneutralization assay 2.G

DRAFT. c 2.G Serological diagnosis of influenza by microneutralization assay 2.G 2.G c 2.G Serological diagnosis of influenza by microneutralization assay Serological methods rarely yield an early diagnosis of acute influenza virus infection. However, the demonstration of a significant

More information

Subgroup Characteristics of Respiratory Syncytial Virus Strains

Subgroup Characteristics of Respiratory Syncytial Virus Strains JOURNAL OF CLINICAL MICROBIOLOGY, Aug. 1987, p. 1535-1539 0095-1137/87/081535-05$02.00/0 Copyright C 1987, American Society for Microbiology Vol. 25, No. 8 Subgroup Characteristics of Respiratory Syncytial

More information

Supplementary Appendix

Supplementary Appendix Supplementary Appendix This appendix has been provided by the authors to give readers additional information about their work. Supplement to: Ehrlich HJ, Müller M, Oh HML, et al. A clinical trial of a

More information

Ultraviolet Light Upon Influenza Virus Infectivity,

Ultraviolet Light Upon Influenza Virus Infectivity, APPuED MICROBIOLOGY, Feb. 197, p. 29-294 Copyright @ 197 American Society for Microbiology Vol. 19, No. 2 Printed in U.S.A. Effect of Formalin, 3-Propiolactone, Merthiolate, and Ultraviolet Light Upon

More information

WHO biosafety risk assessment and guidelines for the production and quality control of human influenza pandemic vaccines: Update

WHO biosafety risk assessment and guidelines for the production and quality control of human influenza pandemic vaccines: Update WHO biosafety risk assessment and guidelines for the production and quality control of human influenza pandemic vaccines: Update 23 July 2009 Introduction This document updates guidance 1 from the World

More information

STUDIES OF THE HEMAGGLUTININ OF HAEMOPHILUS PERTUSSIS HIDEO FUKUMI, HISASHI SHIMAZAKI, SADAO KOBAYASHI AND TATSUJI UCHIDA

STUDIES OF THE HEMAGGLUTININ OF HAEMOPHILUS PERTUSSIS HIDEO FUKUMI, HISASHI SHIMAZAKI, SADAO KOBAYASHI AND TATSUJI UCHIDA STUDIES OF THE HEMAGGLUTININ OF HAEMOPHILUS PERTUSSIS HIDEO FUKUMI, HISASHI SHIMAZAKI, SADAO KOBAYASHI AND TATSUJI UCHIDA The National Institute of Health, Tokyo, Japan (Received: August 3rd, 1953) INTRODUCTION

More information

Guinea Pig Herpes-Like Virus Infection

Guinea Pig Herpes-Like Virus Infection INF7CTION AND IMMUNITY, Mar. 1973, p. 426431 Copyright 1973 American Society for Microbiology Vol. 7, No. 3 Printed in U.S.A. Guinea Pig Herpes-Like Virus Infection I. Antibody Response and Virus Persistence

More information

Induction of an Inhibitor of Influenza Virus Hemagglutination

Induction of an Inhibitor of Influenza Virus Hemagglutination APPLIED MICROBIOLOGY, Apr. 1968, p. 563-568 Copyright @ 1968 American Society for Microbiology Vol. 16, No. 4 Printed in U.S.A. Induction of an Inhibitor of Influenza Virus Hemagglutination by Treatment

More information

Recommended laboratory tests to identify influenza A/H5 virus in specimens from patients with an influenza-like illness

Recommended laboratory tests to identify influenza A/H5 virus in specimens from patients with an influenza-like illness World Health Organization Recommended laboratory tests to identify influenza A/H5 virus in specimens from patients with an influenza-like illness General information Highly pathogenic avian influenza (HPAI)

More information

NUTRITIONAL REQUIREMENTS FOR THE PRODUCTION OF POLIOVIRUS

NUTRITIONAL REQUIREMENTS FOR THE PRODUCTION OF POLIOVIRUS NUTRITIONAL REQUIREMENTS FOR THE PRODUCTION OF POLIOVIRUS TYPE II, COXSACKIE B3, AND VACCINIA VIRUSES BY CONTINUOUS ANIMAL CELL CULTURES' R. L. TYNDALL AND E. H. LUDWIG Department of Bacteriology, The

More information

Amantadine in Tissue Culture'

Amantadine in Tissue Culture' JOURNAL OF BACTERIOLOGY, Sept., 1965 Copyright 1965 American Society for Microbiology Vol. 90, No. 3 Printed in U.S.A. Mode of Action of the Antiviral Activity of Amantadine in Tissue Culture' C. E. HOFFMANN,

More information

Persistent Infection of MDCK Cells by Influenza C Virus: Initiation and Characterization

Persistent Infection of MDCK Cells by Influenza C Virus: Initiation and Characterization J. gen. Virol. (199), 70, 341-345. Printed in Great Britain 341 Key words: influenza C virus/interferon/persistent infection Persistent Infection of MDCK Cells by Influenza C Virus: Initiation and Characterization

More information

Principal Investigators ~ Ananda Nisalak, M.D. Donald s. Burke~ MAJ~ MC Douglas M. Watts, Ph.D.

Principal Investigators ~ Ananda Nisalak, M.D. Donald s. Burke~ MAJ~ MC Douglas M. Watts, Ph.D. Effect of Intravenous Inoculation of Bordetella Pertussis Vaccine on the In vivo Viremia and Antibody Response to Flavi~Tirus Infection in Rhesus Monkeys Principal Investigators ~ Ananda Nisalak, M.D.

More information

Inactivation of Poliovirus I (Brunhilde) Single Particles by Chlorine in Water

Inactivation of Poliovirus I (Brunhilde) Single Particles by Chlorine in Water APPLIED AND ENVIRONMENTAL MICROBIOLOGY, Aug. 198, p. 381-385 99-224/8/8-381/5$2./ Vol. 4, No. 2 Inactivation of Poliovirus I (Brunhilde) Single Particles by Chlorine in Water D. G. SHARP* AND JENNY LEONG

More information

FACTORS INFLUENCING VARIOLA VIRUS GROWTH ON THE CHORIOALLANTOIC MEMBRANE OF EMBRYONATED EGGS

FACTORS INFLUENCING VARIOLA VIRUS GROWTH ON THE CHORIOALLANTOIC MEMBRANE OF EMBRYONATED EGGS FACTORS INFLUENCING VARIOLA VIRUS GROWTH ON THE CHORIOALLANTOIC MEMBRANE OF EMBRYONATED EGGS NICHOLAS HAHON, MILTON RATNER, AND EDMUND KOZIKOWSKI U. S. Army Chemical Corps, Fort Detrick, Frederick, Maryland

More information

Indirect Enzyme-linked Immtmosorbent Assay (ELISA) for the Detection of Coxsackievirus Group B Antibodies

Indirect Enzyme-linked Immtmosorbent Assay (ELISA) for the Detection of Coxsackievirus Group B Antibodies J. gen. Virol. (I98o), 48, 225-229 22 5 Printed in Great Britain Indirect Enzyme-linked Immtmosorbent Assay (ELISA) for the Detection of Coxsackievirus Group B Antibodies (Accepted 26 November r979) SUMMARY

More information

Identification of the Virucidal Agent in Wastewater Sludge

Identification of the Virucidal Agent in Wastewater Sludge APPLIED AND ENVIRONMENTAL MICROBIOLOGY, Apr. 1977, p. 860-864 Copyright X) 1977 American Society for Microbiology Vol. 33, No. 4 Printed in U.S.A. Identification of the Virucidal Agent in Wastewater Sludge

More information

The isolation of enteroviruses from cases of

The isolation of enteroviruses from cases of J. clin Path., 1973, 26, 706-711 The isolation of enteroviruses from cases of acute conjunctivitis P. G. HIGGINS AND R. J. D. SCOTT1 From the Virus Reference Laboratory, Central Public Health Laboratory,

More information

Evaluation of Influenza Virus Mutants for Possible Use in a Live Virus Vaccine*

Evaluation of Influenza Virus Mutants for Possible Use in a Live Virus Vaccine* Bull. Org. mond. Sante 11969, 41, 599-606 Bull. Wld Hlth Org. Evaluation of Influenza Virus Mutants for Possible Use in a Live Virus Vaccine* JOHN MILLS, M.D., J. VAN KIRK, M.D., D. A. HILL, M.D. & R.

More information

Dengue-2 Vaccine: Viremia and Immune Responses in Rhesus Monkeys

Dengue-2 Vaccine: Viremia and Immune Responses in Rhesus Monkeys INFECTION AND IMMUNITY, Jan. 1980, p. 181-186 0019-9567/80/01-0181/06$02.00/0 Vol. 27, No. 1 Dengue-2 Vaccine: Viremia and Immune Responses in Rhesus Monkeys ROBERT McN. SCOTT,'t* ANANDA NISALAK,' KENNETH

More information

Use of Trypsin-Modified Human Erythrocytes

Use of Trypsin-Modified Human Erythrocytes APPLIED MICROBIOLOGY, Sept. 1972, p. 353-357 Copyright i 1972 American Society for Microbiology Vol. 24, No. 3 Printed in U.S.A. Use of Trypsin-Modified Human Erythrocytes in Rubella Hemagglutination-Inhibition

More information

Studies with Rhinoviruses in Volunteers: Production of Illness,

Studies with Rhinoviruses in Volunteers: Production of Illness, Journal of Clinical Investigation Vol. 43, No. 1, 1964 Studies with Rhinoviruses in Volunteers: Production of Illness, Effect of Naturally Acquired Antibody, and Demonstration of a Protective Effect Not

More information

SUSCEPTIBILITY OF SUCKLING MICE TO VARIOLA VIRUS

SUSCEPTIBILITY OF SUCKLING MICE TO VARIOLA VIRUS SUSCEPTIBILITY OF SUCKLING MICE TO VARIOLA VIRUS RONALD G. MARSHALL AND PETER J. GERONE U. S. Army Chemical Corps, Fort Detrick, Frederick, Maryland Received for publication December, 6 ABSTRACT MARSHALL,

More information

Ultracentrifugation in the Concentration and Detection

Ultracentrifugation in the Concentration and Detection APPLIED MICROBIOLOGY, May, 95 Copyright 95 American Society for Microbiology Vol. 3, No. 3 Printed in U.S.A. Ultracentrifugation in the Concentration and Detection of Enteroviruses DEAN 0. CLIVER AND JOHN

More information

Electron Microscope Studies of HeLa Cells Infected with Herpes Virus

Electron Microscope Studies of HeLa Cells Infected with Herpes Virus 244 STOKER, M. G. P., SMITH, K. M. & Ross, R. W. (1958). J. gen. Microbiol. 19,244-249 Electron Microscope Studies of HeLa Cells Infected with Herpes Virus BY M: G. P. STOKER, K. M. SMITH AND R. W. ROSS

More information

Enzyme-Linked Immunosorbent Assay for Detection of Respiratory Syncytial Virus Infection: Application to Clinical Samples

Enzyme-Linked Immunosorbent Assay for Detection of Respiratory Syncytial Virus Infection: Application to Clinical Samples JOURNAL OF CLINICAL MICROBIOLOGY, Aug. 1982, p. 329-333 95-1137/82/8329-5$2./ Vol. 16, No. 2 Enzyme-Linked Immunosorbent Assay for Detection of Respiratory Syncytial Virus Infection: Application to Clinical

More information

To detect antibodies to Avian Influenza (AI) using the haemagglutination inhibition test in avian serum specimens 2.

To detect antibodies to Avian Influenza (AI) using the haemagglutination inhibition test in avian serum specimens 2. SADC Harmonized SOP for Avian Influenza HA and HI Serological Tests Prepared by: Dr. P.V. Makaya, Dr. Joule Kangumba and Ms Delille Wessels Reviewed by Dr. P.V. Makaya 1. Purpose and scope To detect antibodies

More information

Pandemic Preparedness Team Immunology and Pathogenesis Branch Influenza Division Centers for Disease Control and Prevention USA VERSION 1

Pandemic Preparedness Team Immunology and Pathogenesis Branch Influenza Division Centers for Disease Control and Prevention USA VERSION 1 MODIFIED HEMAGGLUTINATION INHIBITION (HI) ASSAY USING HORSE RBCS FOR SEROLOGIC DETECTION OF ANTIBODIES TO H7 SUBTYPE AVIAN INFLUENZA VIRUS IN HUMAN SERA Pandemic Preparedness Team Immunology and Pathogenesis

More information