LESSON 1.4 WORKBOOK. Viral sizes and structures. Workbook Lesson 1.4

Size: px
Start display at page:

Download "LESSON 1.4 WORKBOOK. Viral sizes and structures. Workbook Lesson 1.4"

Transcription

1 Eukaryotes organisms that contain a membrane bound nucleus and organelles. Prokaryotes organisms that lack a nucleus or other membrane-bound organelles. Viruses small, non-cellular (lacking a cell), infectious agents that can replicate only within the cells of living organisms. LESSON 1.4 WORKBOOK Viral sizes and structures In this lesson we will learn about viruses what their relative sizes are compared to bacterial and host cells; what structures they use to infect host cells and what their lifecycle is. As with bacterial structures, viral structures are precisely adapted for propagation in the host. You may even be able to predict the function of the viral structures based on what you have learned from bacteri Just how small are viruses? As we mentioned before, there are many different classes of pathogens. The larger pathogens, such as fungi and multicellular parasites, are eukaryotic, which means they have a membrane-bound nucleus. Bacteria are prokaryotic, which, as we saw before, means they lack a membrane-bound nucleus. Viruses are neither prokaryotic nor eukaryotic in fact they are not even alive! They are simply a collection of genetic material and proteins that are able to replicate by exploiting the cell they infect. Viruses are much, much smaller than bacteria and this impacts our ability to detect them they are so small we can't even see them under a simple microscope! How big are viruses compared with other pathogens? The microbial world generally exists below the limit of what the unaided human eye can see. Sizes can vary considerably within each category. Eukaryotes are the biggest, followed by prokaryotes, and then by viruses. However, within each group, sizes can vary in volume by a thousand fol In fact, the largest viruses fall within the lower size range of prokaryotes similar to the size of small bacteria such as Chlamydiae that cause chlamydia infections. For example, the largest virus found till date, Pithovirus sibericum, was revived from 30,000 year-old Siberian permafrost and can easily be seen under a light microscope. 41

2 Micron (micrometer, µm) one millionth of a meter. Because the differences in microbe sizes are so large, we need more than one unit of measurement Most bacteria are on the order of 1 micron in diameter. A micron, or a micrometer, is one millionth of a meter. To give you an idea of how small this is, bacteria are so small that when they are in suspension in a fluid like urine, it only appears cloudy when there are between one million to ten million bacteria per milliliter. This means that even when water looks completely clear, it can contain millions of bacteri Viruses are even smaller, on average being about 8,000 times smaller in volume than the average bacterium. To give you a sense of scale, if a virus were the size of an orange, a bacterium would be about the size of a sof Practice Calculation: Conversion Conversion between units is important for every aspect of science. Fortunately, in this course we are only concerned with a few conversions that relate to microbe size. So, let s practice: How big is a micron? 1 millimeter = 1 X 10-3 meters or meters 1 micron = 1 X 10-6 meters or meters 1 nanometer = 1 X 10-9 meters or meters 1. Which shows the correct increasing order of the relative average sizes of microbes? virus < proteins < prokaryotes < eukaryotes eukaryotes < bacteria < virus < proteins proteins < virus < bacteria < eukaryotes prokaryotes < eukaryotes < virus < proteins 2. How big is 2 microns? 2 x 10-3 m 2 x 10-4 m 2 x 10-5 m 2 x 10-6 m 42

3 Genome the genetic material of an organism. Envelope membrane layer surrounding the capsid that is derived from the host cell membrane. Capsid a protein shell of a virus surrounding and protecting its genome. Viral structure: It's all about delivering the genome to the host cell Now back to viral structures. When you are reading about viral structures, it is important to keep in mind that viruses require their host cells to supply everything they need to make more copies of themselves, with the exception of a few key viral proteins and the viral genome. For this reason, viruses can be thought of simply as vessels that carry genetic information. Because the virus uses so many of the host cell proteins to replicate, it does not need to code for these genes. Hence, viral genomes are much, much, smaller than either bacterial or eukaryotic genomes. Viral genomes can be either DNA or RNA, as we will discuss later. Viral genomes are enclosed within two structures: 1. The protein coat (capsid) all viruses have it 2. The envelope some viruses have it Figure 1: There are two types of viruses: Naked and Envelope Both have a capsid, but only the enveloped viruses have an envelope. All viruses also have a genome (RNA or DNA), and a few viral proteins that they need for replication these are proteins that the host cells lack. 3. Viral structures are composed of: viral genome, capsid, envelope capsule, murein, flagella RNA, envelope, capsule none of the above 43

4 The capsid protects the genome All viruses have a capsid that surrounds their genome. The capsid is a shell that can be single or double layered, and is arranged in one of three symmetrical patterns: icosahedral, helical or complex. Icosahedral capsids have the shape of a regular polygon with 20 identical equilateral triangular faces. Helical capsids are arranged as a helix or spiral. Complex capsids are neither purely helical nor icosahedral in shape, and may have additional structures. The capsid is composed of viral proteins. Along with the genome, sometimes viral proteins required for replication in the host cell are also enclosed within the capsi For non-enveloped or naked viruses, the capsid is the only protection the genome has from the environment! The envelope is made of host cell lipids/proteins and viral proteins For enveloped viruses, the envelope is vital to their life cycle. It surrounds the capsid and is made of viral proteins that help viruses enter host cells, plus lipids and proteins stolen from the cell membrane of the host cell. The inner surface of the envelope has virus-specific proteins that form attachments to the capsid to anchor it. These proteins stabilize the interactions between the envelope and the capsi As we will see later, they also determine the location of viral assembly in the host cell. The four stages of the viral life cycle The rest of this reading describes viral structures in the context of how they function. To simplify we can divide the viral life cycle into four steps: 1. Attachment 2. Entry 3. Replication 4. Exit Figure 2: Helical capsid (upper left); Complex capsid (upper right); Icosahedral capsid (bottom). We will focus on viral replication in later units. While you are reading keep in mind that, like bacterial structures, each viral structure performs its own unique key function. 4. All viruses have a/an but only some have a/an. envelope, DNA capsid, envelope envelope, capsid DNA, capsid 44

5 Uncoating the process of release of the viral genome from the capsi Virion a complete virus particle. Receptor a molecule, usually protein, on a cell or virus surface that binds to a corresponding specific molecule that it encounters. Tropism the property of a specific virus to attach to only a specific type of cells. The virus has a major goal to make more virus particles. To reproduce, a virus needs to enter its specific host cell where it will make new viral particles and finally exit the cell. Figure 3: An overview of the virus lifecycle in a host cell. First, the virus attaches to the cell it is going to infect. Second, the virus enters the cell and uncoats its genome so that replication can begin. Third, viruses replicate their genomes and make the structural proteins they need to assemble a new virus particle. Fourth, once the virus has made all its parts it assembles new virions that exit the host cell to infect other cells. 1) Attachment usually requires a specific receptor Both naked and enveloped viruses need to attach to a host cell before they can enter it. To do this all viruses have receptors on their surface that act like keys, which interact with select receptors on the host cell surface that act like locks. For example, HIV is an enveloped virus that uses its receptor protein gp120 to attach to a receptor on the host cell surface called CD4 (see Fig. 4 below). HIV can therefore only infect cells that have CD4 on them, which happens to be the helper T cells and dendritic cells of the immune system (more about immune cells in Lesson 1.5 and Unit 5). This lock-and-key interaction, determines which host cells can be targets for a given virus a phenomenon called tropism. 5. Which shows the accurate viral life cycle? entry > attachment > exit > replication attachment > entry > replication > exit entry > attachment > replication > exit replication > entry > attachment > exit 45

6 H1N1 a strain (type) of the flu virus. Hemagglutinin a protein on the surface of flu viruses which is used as a receptor to bind to host cells. Endocytosis the process which cells use to absorb molecules from the outside by engulfing and bringing them inside the cytoplasm. Extracellular outside of the cell. Endosome a membrane bound vesicle in eukaryotic cells used to transport molecules within the cytoplasm. A"achment* Genome& Viral&protein& Capsid& Figure 4: HIV, like all viruses attach to their host cells using specific surface receptors. Consider the influenza virus. Influenza virus has a receptor on its envelope called hemagglutinin (the H in H1N1). Hemagglutinin binds to sialic acid sugars that are on the surface of epithelial cells in the respiratory tract, making the virus tropic for those cells. Different variants of influenza have different H receptors that attach to different sialic acid sugars. These different sialic acid sugars are located on cells that are in different locations in the respiratory tract. This means that different variants of H1N1 infect different sites in the respiratory tract, which can impact the severity of disease. 2) Entry depends on whether the virus is enveloped or nake In order to replicate, all viruses must cross the plasma membrane and get inside the host cell. As we will see, enveloped and naked viruses enter cells differently. Naked viruses cross the host membrane Naked viruses aren t coated in a lipid envelope, so they can t fuse with membranes. Instead, naked viruses either inject their genomes into the host cell cytoplasm through the plasma membrane. An alternative route naked viruses can take is via endocytosis, a process that host cells usually use to take up molecules from the extracellular space. A virus particle may hijack the endocytosis process to enter the host cell in a vesicle (sac), formed by the host membrane, called an endosome. Next the capsid and the genome are released into the cytoplasm where the genome can start to replicate. Figure 5: Both naked (shown here) and enveloped viruses can be taken up through endocytosis. 6. Attachment of both enveloped and naked viruses depends on: the tropism of the virus and host cell s receptors how fast uncoating of the genome occurs the presence and secretion of sialic acid all of the above 46

7 Lysis the process of rupturing or breaking down of a cell. Enveloped viruses fuse with the host membrane The most direct way for enveloped viruses to deliver their capsid to the host cell cytoplasm is to fuse their own envelope membrane with the membrane of the host. Since both viral envelopes and host cell membranes are composed of similar host cell membrane lipids, fusion happens easily, like two oil droplets combining in water. After the membranes have fused the virus can then release its capsid, which contains its genome, into the cytoplasm. HIV is an example of a virus that fuses its envelope with the T cell membrane. The genome is then released from the capsi Some enveloped viruses such as influenza are taken up by the host cell through endocytosis in a similar manner to some naked viruses as described above. The virus enters the cell via the endosome. Next, the virus fuses its envelope with the endosomal membrane, and the capsid and nucleic acid are released into the cytoplasm. 3) Viral replication will be discussed in detail in Unit 4. 4) Exit also depends on whether the virus is enveloped or nake Once the step of replication has occurred and the virus has made many copies of itself, these virions must leave the infected cell to infect other cells so that further cycles of propagation can take place. Again, viruses have two different exit strategies depending on whether they are enveloped or nake Naked viruses lyse the host cell Figure 6: Enveloped viruses fuse with the host membrane. Naked viruses employ a more straightforward exit strategy than enveloped viruses. Quite simply, the virus replicates rapidly, and the huge number of virus particles that accumulate in the cytoplasm burst the cell open. This process of rupturing a cell is termed lysis. It is an important phenomenon and we will use the term routinely to describe when a cell is broken open. An example of a naked virus that exits by lysis is human papillomavirus or HPV, the virus that causes genital warts and is linked to forms of cervical cancer. 47

8 Budding the process in which viruses leave the host cells by exiting its surface by wrapping their capsids in the host cell membrane. Enveloped viruses bud off of host cells Enveloped viruses leave the cell in distinct stages. First, the envelope proteins collect in the host cell membrane close to where the genome is making the capsid proteins. Then the genome and capsid proteins travel together to the site on the host cell membrane where the envelope proteins are located, and attach to them on the inside of the membrane. Next, the fully formed capsid containing the genome buds out of the host cell. As it does so, the capsid surrounds itself with the stolen host membrane, studded with viral envelope proteins, and forms a new complete virus particle or virion. This is true of both HIV and influenz Whether or not the budding off of virus particles will cause the host cell to die depends on the rate with which a virus is replicating; if a virus is replicating slowly the cell may survive, but rapidly replicating viruses will probably cause the host cell to die. Figure 7: Enveloped viruses exit the host cell by budding. Naked viruses lyse the cell. 7. The exit of naked and enveloped viruses differ because naked viruses result in cell lysis while enveloped viruses bud off enveloped viruses result in cell death while naked viruses bud off there is no difference in the exit of naked and enveloped viruses naked viruses exit through endocytosis while enveloped viruses use enzymes 48

9 How do viruses cause illness? As you have just seen, in replicating through a host, viruses can cause widespread cell death and damage. Sometimes infected cells are killed by the host s own immune system in order to stop the virus from spreading through the body. In either case, cell death can cause serious illness if the cells that are being killed are important to the body s functioning, such as those in the lungs or in the central nervous system, or if the host cannot replace the cells that are being destroyed quickly enough. Some viral infections seem to transform cells into a cancerous state that makes them grow out of control. One of the most common cancers, is of the liver, and is caused by persistent infection with Hepatitis B or C viruses. Another example is cervical cancer caused by human papillomavirus (HPV). 49

10 STUDENT RESPONSES Predict what happens to a virus once it exits its human host (e.g. through sneezing or out the gut into the fecal matter). How does it survive? Remember to identify your sources If a lab dish is 10cm across, how many average bacterial cells in a row would it take to form a side-by-side chain across the middle? How many average-sized viruses would it take to make a chain of the same length? How many average-sized eukaryotic cells would it take? 50

11 TERMS TERM DEFINITION Budding Capsid Complex Cytoplasm Endocytosis Endosome Envelope Eukaryotes Extracellular Genome H1N1 Helical Hemagglutinin Icosahedral shape Lysis The process in which viruses leave the host cells by budding off its surface by wrapping their capsids in the host cell membrane. Protein shell of a virus surrounding and protecting its genome. Viruses that have a capsid that is not icosahedral nor helical, and may have additional structures. The internal content of a cell, excluding the nucleus when present. The process which cells use to absorb molecules from the outside by engulfing and bringing them inside the cytoplasm. A membrane bound vesicle in eukaryotic cells used to transport molecules within the cytoplasm. These molecules can be engulfed from outside or produced inside the cell. Membrane layer surrounding the capsid that is derived from the host cell membrane. Organisms that contain a membrane bound nucleus and organelles. Outside of the cell. The genetic material of an organism. A strain (type) of the flu virus. Having the shape of a spiral or a helix. A protein on the surface of flu viruses which is used as a receptor to bind to host cells. Having the shape of an icosahedron that has 20 identical triangular faces. The process of rupturing or breaking down of a cell. Micron (micrometer, µm) One millionth of a meter. 51

12 TERMS TERM DEFINITION Prokaryotes Receptor Sialic acid Tropism Uncoating Virion Viruses Organisms that lack a nucleus or other membrane-bound organelles. A molecule in or on a cell that receives chemical signals. A modified sugar molecule present on the surface of many cells and used as a receptor by the flu virus. The property of a specific virus to attach to only a specific type of cells. The process of release of the viral genome. One viral particle that contains all the components of a mature virus. Small, non-cellular (lacking a cell), infectious agents that can replicate only within the cells of living organisms. 52

LESSON 1.4 WORKBOOK. Viral structures. Just how small are viruses? Workbook Lesson 1.4 1

LESSON 1.4 WORKBOOK. Viral structures. Just how small are viruses? Workbook Lesson 1.4 1 Eukaryotes- organisms that contain a membrane bound nucleus and organelles Prokaryotes- organisms that lack a nucleus or other membrane-bound organelles Viruses-small acellular (lacking a cell) infectious

More information

Lecture 2: Virology. I. Background

Lecture 2: Virology. I. Background Lecture 2: Virology I. Background A. Properties 1. Simple biological systems a. Aggregates of nucleic acids and protein 2. Non-living a. Cannot reproduce or carry out metabolic activities outside of a

More information

LESSON 4.4 WORKBOOK. How viruses make us sick: Viral Replication

LESSON 4.4 WORKBOOK. How viruses make us sick: Viral Replication DEFINITIONS OF TERMS Eukaryotic: Non-bacterial cell type (bacteria are prokaryotes).. LESSON 4.4 WORKBOOK How viruses make us sick: Viral Replication This lesson extends the principles we learned in Unit

More information

Some living things are made of ONE cell, and are called. Other organisms are composed of many cells, and are called. (SEE PAGE 6)

Some living things are made of ONE cell, and are called. Other organisms are composed of many cells, and are called. (SEE PAGE 6) Section: 1.1 Question of the Day: Name: Review of Old Information: N/A New Information: We tend to only think of animals as living. However, there is a great diversity of organisms that we consider living

More information

Unit 13.2: Viruses. Vocabulary capsid latency vaccine virion

Unit 13.2: Viruses. Vocabulary capsid latency vaccine virion Unit 13.2: Viruses Lesson Objectives Describe the structure of viruses. Outline the discovery and origins of viruses. Explain how viruses replicate. Explain how viruses cause human disease. Describe how

More information

WHY? Viruses are considered non-living because they do:

WHY? Viruses are considered non-living because they do: Viruses What is a Virus? Non-living particle WHY? Viruses are considered non-living because they do: NOT Carry out metabolism NOT Grow or develop NOT Replicate without the help of a living cell (host).

More information

Viral structure م.م رنا مشعل

Viral structure م.م رنا مشعل Viral structure م.م رنا مشعل Viruses must reproduce (replicate) within cells, because they cannot generate energy or synthesize proteins. Because they can reproduce only within cells, viruses are obligate

More information

STRUCTURE, GENERAL CHARACTERISTICS AND REPRODUCTION OF VIRUSES

STRUCTURE, GENERAL CHARACTERISTICS AND REPRODUCTION OF VIRUSES STRUCTURE, GENERAL CHARACTERISTICS AND REPRODUCTION OF VIRUSES Introduction Viruses are noncellular genetic elements that use a living cell for their replication and have an extracellular state. Viruses

More information

11/15/2011. Outline. Structural Features and Characteristics. The Good the Bad and the Ugly. Viral Genomes. Structural Features and Characteristics

11/15/2011. Outline. Structural Features and Characteristics. The Good the Bad and the Ugly. Viral Genomes. Structural Features and Characteristics Chapter 19 - Viruses Outline I. Viruses A. Structure of viruses B. Common Characteristics of Viruses C. Viral replication D. HIV II. Prions The Good the Bad and the Ugly Viruses fit into the bad category

More information

18.2 Viruses and Prions

18.2 Viruses and Prions KEY CONCEPT Infections can be caused in several ways. Viruses, bacteria, viroids, and prions can all cause infection. Any disease-causing agent is called a pathogen. 1 nanometer (nm) = one billionth of

More information

Name Class Date. Infection in which a virus inserts its nucleic acid into the DNA of the host cell and is duplicated with the cell s DNA

Name Class Date. Infection in which a virus inserts its nucleic acid into the DNA of the host cell and is duplicated with the cell s DNA Name Class Date 20.1 Viruses Lesson Objectives Explain how viruses reproduce. Explain how viruses cause infection. BUILD Vocabulary A. The chart below shows key terms from the lesson with their definitions.

More information

Viruses 101., and concluded that living organisms do not crystallize. In other words,.

Viruses 101., and concluded that living organisms do not crystallize. In other words,. Viruses 101 In 1897, Dutch scientist called tiny particles in the liquid extracted from a plant disease, which is the Latin word for. In 1935, American biochemist isolated crystals of, and concluded that

More information

Microbiology Chapter 7 Viruses

Microbiology Chapter 7 Viruses Microbiology Chapter 7 Viruses 7:1 Viral Structure and Classification VIRUS: a biological particle composed of genetic material (DNA or RNA) encased in a protein coat CAPSID: protein coat surrounding a

More information

Viruses. Picture from:

Viruses. Picture from: Viruses Understand the structure of bacteriophages & human immunodeficiency virus (HIV) Appreciate that viruses replicate in host cells (thereby destroying them) Picture from: http://eands.caltech.edu/articles/lxvii1/viruses.html

More information

19 Viruses BIOLOGY. Outline. Structural Features and Characteristics. The Good the Bad and the Ugly. Structural Features and Characteristics

19 Viruses BIOLOGY. Outline. Structural Features and Characteristics. The Good the Bad and the Ugly. Structural Features and Characteristics 9 Viruses CAMPBELL BIOLOGY TENTH EDITION Reece Urry Cain Wasserman Minorsky Jackson Outline I. Viruses A. Structure of viruses B. Common Characteristics of Viruses C. Viral replication D. HIV Lecture Presentation

More information

Chapter 19: Viruses. 1. Viral Structure & Reproduction. 2. Bacteriophages. 3. Animal Viruses. 4. Viroids & Prions

Chapter 19: Viruses. 1. Viral Structure & Reproduction. 2. Bacteriophages. 3. Animal Viruses. 4. Viroids & Prions Chapter 19: Viruses 1. Viral Structure & Reproduction 2. Bacteriophages 3. Animal Viruses 4. Viroids & Prions 1. Viral Structure & Reproduction Chapter Reading pp. 393-396 What exactly is a Virus? Viruses

More information

19/06/2013. Viruses are not organisms (do not belong to any kingdom). Viruses are not made of cells, have no cytoplasm, and no membranes.

19/06/2013. Viruses are not organisms (do not belong to any kingdom). Viruses are not made of cells, have no cytoplasm, and no membranes. VIRUSES Many diseases of plants and animals are caused by bacteria or viruses that invade the body. Bacteria and viruses are NOT similar kinds of micro-organisms. Bacteria are classified as living organisms,

More information

Chapter 19: Viruses. 1. Viral Structure & Reproduction. What exactly is a Virus? 11/7/ Viral Structure & Reproduction. 2.

Chapter 19: Viruses. 1. Viral Structure & Reproduction. What exactly is a Virus? 11/7/ Viral Structure & Reproduction. 2. Chapter 19: Viruses 1. Viral Structure & Reproduction 2. Bacteriophages 3. Animal Viruses 4. Viroids & Prions 1. Viral Structure & Reproduction Chapter Reading pp. 393-396 What exactly is a Virus? Viruses

More information

Dr. Gary Mumaugh. Viruses

Dr. Gary Mumaugh. Viruses Dr. Gary Mumaugh Viruses Viruses in History In 1898, Friedrich Loeffler and Paul Frosch found evidence that the cause of foot-and-mouth disease in livestock was an infectious particle smaller than any

More information

Virology. *Viruses can be only observed by electron microscope never by light microscope. The size of the virus: nm in diameter.

Virology. *Viruses can be only observed by electron microscope never by light microscope. The size of the virus: nm in diameter. Virology We are going to start with general introduction about viruses, they are everywhere around us; in food; within the environment; in direct contact to etc.. They may cause viral infection by itself

More information

AP Biology. Viral diseases Polio. Chapter 18. Smallpox. Influenza: 1918 epidemic. Emerging viruses. A sense of size

AP Biology. Viral diseases Polio. Chapter 18. Smallpox. Influenza: 1918 epidemic. Emerging viruses. A sense of size Hepatitis Viral diseases Polio Chapter 18. Measles Viral Genetics Influenza: 1918 epidemic 30-40 million deaths world-wide Chicken pox Smallpox Eradicated in 1976 vaccinations ceased in 1980 at risk population?

More information

Part I. Content: History of Viruses. General properties of viruses. Viral structure. Viral classifications. Virus-like agents.

Part I. Content: History of Viruses. General properties of viruses. Viral structure. Viral classifications. Virus-like agents. Viruses Part I Content: History of Viruses. General properties of viruses. Viral structure. Viral classifications. Virus-like agents. History Through the 1800s, many scientists discovered that something

More information

Dr. Ahmed K. Ali Attachment and entry of viruses into cells

Dr. Ahmed K. Ali Attachment and entry of viruses into cells Lec. 6 Dr. Ahmed K. Ali Attachment and entry of viruses into cells The aim of a virus is to replicate itself, and in order to achieve this aim it needs to enter a host cell, make copies of itself and

More information

Chapter 18. Viral Genetics. AP Biology

Chapter 18. Viral Genetics. AP Biology Chapter 18. Viral Genetics 2003-2004 1 A sense of size Comparing eukaryote bacterium virus 2 What is a virus? Is it alive? DNA or RNA enclosed in a protein coat Viruses are not cells Extremely tiny electron

More information

Viruses. Rotavirus (causes stomach flu) HIV virus

Viruses. Rotavirus (causes stomach flu) HIV virus Viruses Rotavirus (causes stomach flu) HIV virus What is a virus? A virus is a microscopic, infectious agent that may infect any type of living cell. Viruses must infect living cells in order to make more

More information

18.2. Viral Structure and Reproduction. Viruses differ in shape and in ways of entering

18.2. Viral Structure and Reproduction. Viruses differ in shape and in ways of entering 18.2 Viral Structure and Reproduction VOCABULARY bacteriophage lytic infection lysogenic infection prophage compare the structures of viruses to cells, describe viral reproduction, and describe the role

More information

Overview: Chapter 19 Viruses: A Borrowed Life

Overview: Chapter 19 Viruses: A Borrowed Life Overview: Chapter 19 Viruses: A Borrowed Life Viruses called bacteriophages can infect and set in motion a genetic takeover of bacteria, such as Escherichia coli Viruses lead a kind of borrowed life between

More information

LESSON 4.6 WORKBOOK. Designing an antiviral drug The challenge of HIV

LESSON 4.6 WORKBOOK. Designing an antiviral drug The challenge of HIV LESSON 4.6 WORKBOOK Designing an antiviral drug The challenge of HIV In the last two lessons we discussed the how the viral life cycle causes host cell damage. But is there anything we can do to prevent

More information

Chapter13 Characterizing and Classifying Viruses, Viroids, and Prions

Chapter13 Characterizing and Classifying Viruses, Viroids, and Prions Chapter13 Characterizing and Classifying Viruses, Viroids, and Prions 11/20/2017 MDufilho 1 Characteristics of Viruses Viruses Minuscule, acellular, infectious agent having either DNA or RNA Cause infections

More information

Virology Introduction. Definitions. Introduction. Structure of virus. Virus transmission. Classification of virus. DNA Virus. RNA Virus. Treatment.

Virology Introduction. Definitions. Introduction. Structure of virus. Virus transmission. Classification of virus. DNA Virus. RNA Virus. Treatment. DEVH Virology Introduction Definitions. Introduction. Structure of virus. Virus transmission. Classification of virus. DNA Virus. RNA Virus. Treatment. Definitions Virology: The science which study the

More information

LEC 2, Medical biology, Theory, prepared by Dr. AYAT ALI

LEC 2, Medical biology, Theory, prepared by Dr. AYAT ALI General Characteristics, Structure and Taxonomy of Viruses Viruses A virus is non-cellular organisms made up of genetic material and protein that can invade living cells. They are considered both a living

More information

Introduction to viruses. BIO 370 Ramos

Introduction to viruses. BIO 370 Ramos Introduction to viruses BIO 370 Ramos 1 2 General Structure of Viruses Size range most

More information

LESSON 4.5 WORKBOOK. How do viruses adapt Antigenic shift and drift and the flu pandemic

LESSON 4.5 WORKBOOK. How do viruses adapt Antigenic shift and drift and the flu pandemic DEFINITIONS OF TERMS Gene a particular sequence of DNA or RNA that contains information for the synthesis of a protien or RNA molecule. For a complete list of defined terms, see the Glossary. LESSON 4.5

More information

The Zombies of the Scientific Community Viruses and Other Acellular Infectious Agents. Acellular Agents

The Zombies of the Scientific Community Viruses and Other Acellular Infectious Agents. Acellular Agents viruses protein and nucleic acid viroids RNA virusoids RNA prions proteins The Zombies of the Scientific Community Viruses and Other Acellular Infectious Agents Acellular Agents Viruses major cause of

More information

Chapter 6- An Introduction to Viruses*

Chapter 6- An Introduction to Viruses* Chapter 6- An Introduction to Viruses* *Lecture notes are to be used as a study guide only and do not represent the comprehensive information you will need to know for the exams. 6.1 Overview of Viruses

More information

1. Virus 2. Capsid 3. Envelope

1. Virus 2. Capsid 3. Envelope VIRUSES BIOLOGY II VOCABULARY- VIRUSES (22 Words) 1. Virus 2. Capsid 3. Envelope 4. Provirus 5. Retrovirus 6. Reverse transcriptase 7. Bacteriophage 8. Lytic Cycle 9. Virulent 10. Lysis 11. Lysogenic Cycle

More information

Chapter 08 Lecture Outline

Chapter 08 Lecture Outline Chapter 08 Lecture Outline See separate PowerPoint slides for all figures and tables preinserted into PowerPoint without notes. Copyright 2016 McGraw-Hill Education. Permission required for reproduction

More information

Size nm m m

Size nm m m 1 Viral size and organization Size 20-250nm 0.000000002m-0.000000025m Virion structure Capsid Core Acellular obligate intracellular parasites Lack organelles, metabolic activities, and reproduction Replicated

More information

2.1 VIRUSES. 2.1 Learning Goals

2.1 VIRUSES. 2.1 Learning Goals 2.1 VIRUSES 2.1 Learning Goals To understand the structure, function, and how Viruses replicate To understand the difference between Viruses to Prokaryotes and Eukaryotes; namely that viruses are not classified

More information

Chapter 19: The Genetics of Viruses and Bacteria

Chapter 19: The Genetics of Viruses and Bacteria Chapter 19: The Genetics of Viruses and Bacteria What is Microbiology? Microbiology is the science that studies microorganisms = living things that are too small to be seen with the naked eye Microorganisms

More information

Chapter 13B: Animal Viruses

Chapter 13B: Animal Viruses Chapter 13B: Animal Viruses 1. Overview of Animal Viruses 2. DNA Viruses 3. RNA Viruses 4. Prions 1. Overview of Animal Viruses Life Cycle of Animal Viruses The basic life cycle stages of animal viruses

More information

19 2 Viruses Slide 1 of 34

19 2 Viruses Slide 1 of 34 1 of 34 What Is a Virus? What Is a Virus? Viruses are particles of nucleic acid, protein, and in some cases, lipids. Viruses can reproduce only by infecting living cells. 2 of 34 What Is a Virus? Viruses

More information

VIRUSES. 1. Describe the structure of a virus by completing the following chart.

VIRUSES. 1. Describe the structure of a virus by completing the following chart. AP BIOLOGY MOLECULAR GENETICS ACTIVITY #3 NAME DATE HOUR VIRUSES 1. Describe the structure of a virus by completing the following chart. Viral Part Description of Part 2. Some viruses have an envelope

More information

PHARMACEUTICAL MICROBIOLOGY JIGAR SHAH INSTITUTE OF PHARMACY NIRMA UNIVERSITY

PHARMACEUTICAL MICROBIOLOGY JIGAR SHAH INSTITUTE OF PHARMACY NIRMA UNIVERSITY PHARMACEUTICAL MICROBIOLOGY JIGAR SHAH INSTITUTE OF PHARMACY NIRMA UNIVERSITY VIRUS - HISTORY In 1886, the Dutch Chemist Adolf Mayer showed TMD In 1892, the Russian Bactriologist Dimtri Iwanowski isolate

More information

5/6/17. Diseases. Disease. Pathogens. Domain Bacteria Characteristics. Bacteria Viruses (including HIV) Pathogens are disease-causing organisms

5/6/17. Diseases. Disease. Pathogens. Domain Bacteria Characteristics. Bacteria Viruses (including HIV) Pathogens are disease-causing organisms 5/6/17 Disease Diseases I. II. Bacteria Viruses (including HIV) Biol 105 Chapter 13a Pathogens Pathogens are disease-causing organisms Domain Bacteria Characteristics 1. Domain Bacteria are prokaryotic.

More information

Chapter 13 Viruses, Viroids, and Prions. Biology 1009 Microbiology Johnson-Summer 2003

Chapter 13 Viruses, Viroids, and Prions. Biology 1009 Microbiology Johnson-Summer 2003 Chapter 13 Viruses, Viroids, and Prions Biology 1009 Microbiology Johnson-Summer 2003 Viruses Virology-study of viruses Characteristics: acellular obligate intracellular parasites no ribosomes or means

More information

Date. Student Name. Prompt: This passage is called Characteristics of Viruses. It is about viruses.

Date. Student Name. Prompt: This passage is called Characteristics of Viruses. It is about viruses. Student Name Characteristics of Viruses--Part I Level High School - Science Date _ Prompt: This passage is called Characteristics of Viruses. It is about viruses. Similarities and Differences Between Viruses

More information

KEY CONCEPT Germs cause many diseases in humans.

KEY CONCEPT Germs cause many diseases in humans. 31.1 40.1 Pathogens Infectious Diseases and Human Illness KEY CONCEPT Germs cause many diseases in humans. 31.1 40.1 Pathogens Infectious Diseases and Human Illness Germ theory states that microorganisms

More information

Bacteriophage Reproduction

Bacteriophage Reproduction Bacteriophage Reproduction Lytic and Lysogenic Cycles The following information is taken from: http://student.ccbcmd.edu/courses/bio141/lecguide/unit3/index.html#charvir Bacteriophage Structure More complex

More information

All living creatures share two basic purposes 1. survival 2. reproduction

All living creatures share two basic purposes 1. survival 2. reproduction Infectious Diseases All living creatures share two basic purposes 1. survival 2. reproduction *Organisms must take nutrients essential for growth and proliferation from the environment. *In many conditions

More information

Biodiversity: prokaryotes & viruses

Biodiversity: prokaryotes & viruses Biodiversity: prokaryotes & viruses All three domains contain microscopic organisms. Focus now: Prokaryotes Prokaryotes in general Asexual, single-celled, no nucleus or organelles, circular DNA Can live

More information

Human Genome Complexity, Viruses & Genetic Variability

Human Genome Complexity, Viruses & Genetic Variability Human Genome Complexity, Viruses & Genetic Variability (Learning Objectives) Learn the types of DNA sequences present in the Human Genome other than genes coding for functional proteins. Review what you

More information

BIOSC 041. v Today s lecture. v Today s lab. v Note- Monday is a holiday good time to do some reading!

BIOSC 041. v Today s lecture. v Today s lab. v Note- Monday is a holiday good time to do some reading! BIOSC 041 v Today s lecture Review questions Chapter 6, Cells More review questions v Today s lab Quick review of lab safety The Scientific Method start thinking about which environments you might want

More information

Microbiology. Microbiology

Microbiology. Microbiology Microbiology Microbiology What are GERMS? What are GERMS? Microorganisms that make you sick (pathogens) There are many different types of microorganisms: Bacteria (strep throat, food poisoning like E.

More information

Warts are a skin virus!

Warts are a skin virus! Viruses Warts are a skin virus! Herpes mouth virus: Other Viral Diseases Measles Polio Smallpox Influenza Hepatitis B Virus Viruses & Cancer Human Papilloma Virus HPV Tree Man - HPV Is a Virus a Living

More information

Chapter 21: Prokaryotes & Viruses

Chapter 21: Prokaryotes & Viruses Chapter 21: Prokaryotes & Viruses Microorganisms Single-celled organisms that are too small to be seen without a microscope Bacteria are the smallest living organisms Viruses are smaller but are not alive

More information

LIFE IS CELLULAR. Cell Theory. Cells Are Small. Prokaryotic Cell 10/4/15. Chapter 7 Cell Structure and Function

LIFE IS CELLULAR. Cell Theory. Cells Are Small. Prokaryotic Cell 10/4/15. Chapter 7 Cell Structure and Function Chapter 7 Cell Structure and Function The cell basic unit of life, all living things are made of a cell (unicellular) or more than one cell (multicellular). LIFE IS CELLULAR The invention of the microscope

More information

Virus Basics. General Characteristics of Viruses. Chapter 13 & 14. Non-living entities. Can infect organisms of every domain

Virus Basics. General Characteristics of Viruses. Chapter 13 & 14. Non-living entities. Can infect organisms of every domain Virus Basics Chapter 13 & 14 General Characteristics of Viruses Non-living entities Not considered organisms Can infect organisms of every domain All life-forms Commonly referred to by organism they infect

More information

Starting with MICROBIOLOGY

Starting with MICROBIOLOGY Starting with MICROBIOLOGY Micro means very small and biology is the study of living things. Microbes are the oldest form of life on Earth. They've been here for 3.8 billion years! Microbes live everywhere.

More information

Characterizing and Classifying Viruses, Viroids, and Prions

Characterizing and Classifying Viruses, Viroids, and Prions PowerPoint Lecture Presentations prepared by Mindy Miller-Kittrell, North Carolina State University Modified by Ossi Turunen, Aalto University C H A P T E R 13 Characterizing and Classifying Viruses, Viroids,

More information

A Tour of the Cell. reference: Chapter 6. Reference: Chapter 2

A Tour of the Cell. reference: Chapter 6. Reference: Chapter 2 A Tour of the Cell reference: Chapter 6 Reference: Chapter 2 Monkey Fibroblast Cells stained with fluorescent dyes to show the nucleus (blue) and cytoskeleton (yellow and red fibers), image courtesy of

More information

PhysicsAndMathsTutor.com. Question Number. 1. prevents viruses attaching to {uninfected / eq} host cells / eq ; 2. by binding to receptors / eq ;

PhysicsAndMathsTutor.com. Question Number. 1. prevents viruses attaching to {uninfected / eq} host cells / eq ; 2. by binding to receptors / eq ; 1(a) 1. prevents viruses attaching to {uninfected / eq} host cells / eq ; 2. by binding to receptors / eq ; 3. (therefore) preventing virus from entering cell / eq ; 4. (therefore) viruses cannot replicate

More information

Virus Basics. General Characteristics of Viruses 5/9/2011. General Characteristics of Viruses. Chapter 13 & 14. Non-living entities

Virus Basics. General Characteristics of Viruses 5/9/2011. General Characteristics of Viruses. Chapter 13 & 14. Non-living entities Virus Basics Chapter 13 & 14 General Characteristics of Viruses Non-living entities Not considered organisms Can infect organisms of every domain All life-formsf Commonly referred to by organism they infect

More information

8/13/2009. Diseases. Disease. Pathogens. Domain Bacteria Characteristics. Bacteria Shapes. Domain Bacteria Characteristics

8/13/2009. Diseases. Disease. Pathogens. Domain Bacteria Characteristics. Bacteria Shapes. Domain Bacteria Characteristics Disease Diseases I. Bacteria II. Viruses including Biol 105 Lecture 17 Chapter 13a are disease-causing organisms Domain Bacteria Characteristics 1. Domain Bacteria are prokaryotic 2. Lack a membrane-bound

More information

A Tour of the Cell. reference: Chapter 6. Reference: Chapter 2

A Tour of the Cell. reference: Chapter 6. Reference: Chapter 2 A Tour of the Cell reference: Chapter 6 Reference: Chapter 2 Monkey Fibroblast Cells stained with fluorescent dyes to show the nucleus (blue) and cytoskeleton (yellow and red fibers), image courtesy of

More information

VIRUS TAXONOMY AND REPLICATION

VIRUS TAXONOMY AND REPLICATION VIRUS TAXONOMY AND REPLICATION Paulo Eduardo Brandão, PhD Department of Preventive Veterinary Medicine and Animal Health School of Veterinary Medicine University of São Paulo, Brazil I. VIRUS STRUCTURE

More information

علم األحياء الدقيقة Microbiology Introduction to Virology & Immunology

علم األحياء الدقيقة Microbiology Introduction to Virology & Immunology علم األحياء الدقيقة Microbiology Introduction to Virology & Immunology What is a virus? Viruses may be defined as acellular organisms whose genomes consist of nucleic acid (DNA or RNA), and which obligatory

More information

Chapter 39 Viruses. Viruses are tiny. They are much smaller (50 times) than a bacterium.

Chapter 39 Viruses. Viruses are tiny. They are much smaller (50 times) than a bacterium. Chapter 39 Viruses Viruses are tiny. They are much smaller (50 times) than a bacterium. They are not made of cellsand cannot reproduceon their own. Therefore they are not alive according to our rules.

More information

Types of cells. Cell size comparison. The Jobs of Cells 10/5/2015. Cells & Cell Organelles. Doing Life s Work

Types of cells. Cell size comparison. The Jobs of Cells 10/5/2015. Cells & Cell Organelles. Doing Life s Work Types of cells Prokaryote Cells & Cell Organelles bacteria cells Doing Life s Work Eukaryotes 2009-2010 animal cells plant cells Cell size comparison Animal cell Bacterial cell most bacteria (prokaryotic)

More information

number Done by Corrected by Doctor Ashraf Khasawneh

number Done by Corrected by Doctor Ashraf Khasawneh number 3 Done by Mahdi Sharawi Corrected by Doctor Ashraf Khasawneh *Note: Please go back to the slides to view the information that the doctor didn t mention. Prions Definition: Prions are rather ill-defined

More information

Characterizing and Classifying Viruses, Viroids, and Prions

Characterizing and Classifying Viruses, Viroids, and Prions PowerPoint Lecture Presentations prepared by Mindy Miller-Kittrell, North Carolina State University C H A P T E R 13 Characterizing and Classifying Viruses, Viroids, and Prions SLOs What are the Characteristics

More information

Antibacterials and Antivirals

Antibacterials and Antivirals Structure of a Bacterium: Antibacterials and Antivirals Capsule: protective layer made up of proteins, sugars and lipids Cell wall: provides the bacteria with its shape and structure Cell membrane: permeable

More information

VIROIDS, PRIONS. Infectious Stage When virus infects a cell, nucleic acid must be uncoated and gain access to metabolic machinery of cell.

VIROIDS, PRIONS. Infectious Stage When virus infects a cell, nucleic acid must be uncoated and gain access to metabolic machinery of cell. VIROIDS, PRIONS A virus is a small infectious agent that can replicate only inside the living cells of organisms. Most viruses are too small to be seen directly with a light microscope. Viruses infect

More information

Last time we talked about the few steps in viral replication cycle and the un-coating stage:

Last time we talked about the few steps in viral replication cycle and the un-coating stage: Zeina Al-Momani Last time we talked about the few steps in viral replication cycle and the un-coating stage: Un-coating: is a general term for the events which occur after penetration, we talked about

More information

History electron microscopes

History electron microscopes Viruses History Through the 1800s, many scientists discovered that something smaller than bacteria could cause disease and they called it virion (Latin word- poison) In the 1930s, after the invention of

More information

Dr. Ahmed K. Ali. Outcomes of the virus infection for the host

Dr. Ahmed K. Ali. Outcomes of the virus infection for the host Lec. 9 Dr. Ahmed K. Ali Outcomes of the virus infection for the host In the previous few chapters we have looked at aspects of the virus replication cycle that culminate in the exit of infective progeny

More information

BIOLOGY. Viruses CAMPBELL. Reece Urry Cain Wasserman Minorsky Jackson. Lecture Presentation by Nicole Tunbridge and Kathleen Fitzpatrick TENTH EDITION

BIOLOGY. Viruses CAMPBELL. Reece Urry Cain Wasserman Minorsky Jackson. Lecture Presentation by Nicole Tunbridge and Kathleen Fitzpatrick TENTH EDITION CAMPBELL BIOLOGY TENTH EDITION Reece Urry Cain Wasserman Minorsky Jackson 19 Viruses Lecture Presentation by Nicole Tunbridge and Kathleen Fitzpatrick Figure 19.1 Are the viruses (red) budding from this

More information

Viral reproductive cycle

Viral reproductive cycle Lecture 29: Viruses Lecture outline 11/11/05 Types of viruses Bacteriophage Lytic and lysogenic life cycles viruses viruses Influenza Prions Mad cow disease 0.5 µm Figure 18.4 Viral structure of capsid

More information

I. Bacteria II. Viruses including HIV. Domain Bacteria Characteristics. 5. Cell wall present in many species. 6. Reproduction by binary fission

I. Bacteria II. Viruses including HIV. Domain Bacteria Characteristics. 5. Cell wall present in many species. 6. Reproduction by binary fission Disease Diseases I. Bacteria II. Viruses including are disease-causing organisms Biol 105 Lecture 17 Chapter 13a Domain Bacteria Characteristics 1. Domain Bacteria are prokaryotic 2. Lack a membrane-bound

More information

Viruses. and Prions. ct o, ni, 21. Viruses. Table 2. Essential Questions

Viruses. and Prions. ct o, ni, 21. Viruses. Table 2. Essential Questions ct o, ni, 21 Essential Questions ;1 What is the general structure of a virus? What are similarities and differences in the lytic cycle, the lysogenic cycle, and retroviral replication? I What is the relationship

More information

Introductory Virology. Ibrahim Jamfaru School of Medicine UHAS

Introductory Virology. Ibrahim Jamfaru School of Medicine UHAS Introductory Virology Ibrahim Jamfaru School of Medicine UHAS Lecture outline Definition of viruses and general characteristics Structure of virus (virion) Chemical composition of viruses Virus morphology

More information

Virus and Prokaryotic Gene Regulation - 1

Virus and Prokaryotic Gene Regulation - 1 Virus and Prokaryotic Gene Regulation - 1 We have discussed the molecular structure of DNA and its function in DNA duplication and in transcription and protein synthesis. We now turn to how cells regulate

More information

2) What is the difference between a non-enveloped virion and an enveloped virion? (4 pts)

2) What is the difference between a non-enveloped virion and an enveloped virion? (4 pts) Micro 260 SFCC Spring 2010 Name: All diagrams and drawings shall be hand drawn (do not photo-copied from a publication then cut and pasted into work sheet). Do not copy other student s answers. Para phase

More information

MONTGOMERY COUNTY COMMUNITY COLLEGE CHAPTER 13: VIRUSES. 1. Obligate intracellular parasites that multiply in living host cells

MONTGOMERY COUNTY COMMUNITY COLLEGE CHAPTER 13: VIRUSES. 1. Obligate intracellular parasites that multiply in living host cells MONTGOMERY COUNTY COMMUNITY COLLEGE CHAPTER 13: VIRUSES I. CHARACTERISTICS OF VIRUSES A. General Characteristics 1. Obligate intracellular parasites that multiply in living host cells 2. Contain a single

More information

Lecture Readings. Vesicular Trafficking, Secretory Pathway, HIV Assembly and Exit from Cell

Lecture Readings. Vesicular Trafficking, Secretory Pathway, HIV Assembly and Exit from Cell October 26, 2006 1 Vesicular Trafficking, Secretory Pathway, HIV Assembly and Exit from Cell 1. Secretory pathway a. Formation of coated vesicles b. SNAREs and vesicle targeting 2. Membrane fusion a. SNAREs

More information

CONTENTS. 1. Introduction. 4. Virology. 2. Virus Structure. 5. Virus and Medicine. 3. Virus Replication. 6. Review

CONTENTS. 1. Introduction. 4. Virology. 2. Virus Structure. 5. Virus and Medicine. 3. Virus Replication. 6. Review CONTENTS 1. Introduction 4. Virology 2. Virus Structure 5. Virus and Medicine 3. Virus Replication 6. Review We have all gotten viruses from bacteria, plants to animals. Viruses cause colds, flu, warts

More information

DOLPHIN RESEARCH CENTER Viruses and Dolphins

DOLPHIN RESEARCH CENTER Viruses and Dolphins DOLPHIN RESEARCH CENTER Grade Level: 6 th -8 th Objectives: Students will be able to explain how viruses operate within cells and how they can be transmitted. Students will be able to apply their knowledge

More information

October 26, Lecture Readings. Vesicular Trafficking, Secretory Pathway, HIV Assembly and Exit from Cell

October 26, Lecture Readings. Vesicular Trafficking, Secretory Pathway, HIV Assembly and Exit from Cell October 26, 2006 Vesicular Trafficking, Secretory Pathway, HIV Assembly and Exit from Cell 1. Secretory pathway a. Formation of coated vesicles b. SNAREs and vesicle targeting 2. Membrane fusion a. SNAREs

More information

Chapter 20. Table of Contents. Section 1 Viruses. Section 2 Bacteria. Viruses and Bacteria

Chapter 20. Table of Contents. Section 1 Viruses. Section 2 Bacteria. Viruses and Bacteria Viruses and Bacteria Table of Contents Section 1 Viruses Section 2 Bacteria Section 1 Viruses Objectives Describe why a virus is not considered a living organism. Describe the basic structure of a virus.

More information

Coronaviruses. Virion. Genome. Genes and proteins. Viruses and hosts. Diseases. Distinctive characteristics

Coronaviruses. Virion. Genome. Genes and proteins. Viruses and hosts. Diseases. Distinctive characteristics Coronaviruses Virion Genome Genes and proteins Viruses and hosts Diseases Distinctive characteristics Virion Spherical enveloped particles studded with clubbed spikes Diameter 120-160 nm Coiled helical

More information

General Virology I. Dr Esam Ibraheem Azhar (BSc, MSc, Ph.D Molecular Medical Virology) Asst. Prof. Medical Laboratory Technology Department

General Virology I. Dr Esam Ibraheem Azhar (BSc, MSc, Ph.D Molecular Medical Virology) Asst. Prof. Medical Laboratory Technology Department General Virology I Dr Esam Ibraheem Azhar (BSc, MSc, Ph.D Molecular Medical Virology) Asst. Prof. Medical Laboratory Technology Department ١ General Virology I Lecture Outline Introduction istory Definition

More information

Discovery of. 1892: Russian biologist Dmitri Ivanovsky publishes. 1931: first images of viruses obtained using

Discovery of. 1892: Russian biologist Dmitri Ivanovsky publishes. 1931: first images of viruses obtained using Discovery of (1884: invention of the Chamberland filter with pores smaller than bacteria) 1892: Russian biologist Dmitri Ivanovsky publishes a paper in which shows that extracts from diseased tobacco plants

More information

Unit 5: The Kingdoms of Life Module 12: Simple Organisms

Unit 5: The Kingdoms of Life Module 12: Simple Organisms Unit 5: The Kingdoms of Life Module 12: Simple Organisms NC Essential Standard: 1.2.3 Explain how specific cell adaptations help cells survive in particular environments 2.1.2 Analyze how various organisms

More information

1/29/2013. Viruses and Bacteria. Infectious Disease. Pathogens cause disease by: Chapters 16 and 17

1/29/2013. Viruses and Bacteria. Infectious Disease. Pathogens cause disease by: Chapters 16 and 17 Viruses and Bacteria Chapters 16 and 17 Infectious Disease Caused by the invasion of a host by agents whose activities harm the host s tissues Can be transmitted to others Pathogen microorganisms that

More information

Virus Structure. Characteristics of capsids. Virus envelopes. Virion assembly John Wiley & Sons, Inc. All rights reserved.

Virus Structure. Characteristics of capsids. Virus envelopes. Virion assembly John Wiley & Sons, Inc. All rights reserved. Virus Structure Characteristics of capsids Virus envelopes Virion assembly Capsids package viral genomes and transmit them to a new host cell Capsid rigid, symmetrical container composed of viral protein

More information

Revisiting the Definition of Living Thing

Revisiting the Definition of Living Thing Biology of Viruses (Ch 0 p77 and 88-9) What do you already know about viruses? Revisiting the Definition of Living Thing How did we define a living thing? H0 DOMAIN ARCHAEA virus So, if the Cell Theory

More information

Cellular Structure and Function. Chapter 7

Cellular Structure and Function. Chapter 7 Cellular Structure and Function. Chapter 7 Cell Discovery and Theory. A cell is the basic structural and functional unit of all living organisms. The human body is made of trillions of cells that are too

More information

Wednesday, October 19, 16. Viruses

Wednesday, October 19, 16. Viruses Viruses Image of an animal cell More realistic size of a virus compared to an animal cell Cells can fulfill all characteristics of life Viruses on their own can be considered lifeless chemicals, unless?

More information

Part Of A Virus That Contains The Instructions For Making New Viruses

Part Of A Virus That Contains The Instructions For Making New Viruses Part Of A Virus That Contains The Instructions For Making New Viruses A hidden virus. Becomes part of the host cell's generic material. A virus's contains the instructions for making new viruses. Genetic

More information

The Cell. BIOLOGY OF HUMANS Concepts, Applications, and Issues. Judith Goodenough Betty McGuire

The Cell. BIOLOGY OF HUMANS Concepts, Applications, and Issues. Judith Goodenough Betty McGuire BIOLOGY OF HUMANS Concepts, Applications, and Issues Fifth Edition Judith Goodenough Betty McGuire 3 The Cell Lecture Presentation Anne Gasc Hawaii Pacific University and University of Hawaii Honolulu

More information