ARTICLE. epidemics of respiratory disease that affect all age groups and all segments of the population. Serious

Size: px
Start display at page:

Download "ARTICLE. epidemics of respiratory disease that affect all age groups and all segments of the population. Serious"

Transcription

1 ARTICLE Illness Among Schoolchildren During Influenza Season Effect on School Absenteeism, Parental Absenteeism From Work, and Secondary Illness in Families Kathleen M. Neuzil, MD, MPH; Cynthia Hohlbein, RN; Yuwei Zhu, MD, MS Background: High attack rates of Influenzavirus among school-aged children tend to be expected to cause significant disruption of usual activities at school and at home. Objective: To quantify the effect of influenza season on illness episodes, school absenteeism, medication use, parental absenteeism from work, and the occurrence of secondary illness in families among a cohort of children enrolled in an elementary school during the influenza season. Design: Prospective survey study. Setting: Kindergarten through eighth grade elementary school in Seattle, Wash. Patients or Other Participants: All children enrolled in the school were eligible for the study. Study participants were 313 children in 216 families. Main Outcome Measures: The primary outcome measure was missed school days. Secondary outcomes measures included total illness episodes, febrile illness episodes, medication usage, physician visits, parental workdays missed, and secondary illnesses among family members of children in the study cohort. Differences between the rates of study events among participants when influenza was circulating and the event rates during the winter season when influenza was not circulating were used to calculate influenza-attributable excess events. Results: Total illness episodes, febrile illness episodes, analgesic use, school absenteeism, parental industrial absenteeism, and secondary illness among family members were significantly higher during influenza season compared with the noninfluenza winter season. For every 100 children followed up for this influenza season, which included 37 school days, an excess 28 illness episodes and 63 missed school days occurred. Similarly, for every 100 children followed up, influenza accounted for an estimated 20 days of work missed by the parents and 22 secondary illness episodes among family members. Conclusion: Influenza season has significant adverse effects on the quality of life of school-aged children and their families. Arch Pediatr Adolesc Med. 2002;156: From the Department of Medicine, University of Washington School of Medicine (Dr Neuzil) and the Veterans Affairs Puget Sound Health Care System (Dr Neuzil and Ms Hohlbein), Seattle; and the Department of Pediatrics, Vanderbilt University School of Medicine, Nashville, Tenn (Dr Zhu). INFLUENZA CAUSES annual winter epidemics of respiratory disease that affect all age groups and all segments of the population. Serious complications and hospitalizations due to Influenzavirus occur preponderantly in persons younger than 2 years, persons 65 years and older, and persons with certain chronic medical conditions. Deaths occur preponderantly in persons older than 70 years. 1-7 However, even among otherwise healthy individuals, the health and economic consequences of influenza are substantial. Annual influenza attack rates vary from 10% to 30% in adults and 20% to 50% in children during interpandemic years, and may approach 70% during pandemic years. 3,4,8-10 Among adults, influenza infections lead to increased health care visits, medication usage, work loss, and restricted activity days While the epidemic nature of influenza and the high attack rates in children would be expected to cause significant disruption of usual activities at school and at home, data on the effects of influenza on school-aged children are limited. In a study of healthy children aged 5 through 14 years enrolled in Tennessee Medicaid, influenza was associated with a health care visit in approximately 8% of the children and with an antibiotic prescription in approximately 7%. 5 This study likely underestimated the effect of influenza on this population, as it did not examine the effects of influenza on schoolaged children who did not seek medical care. Additional adverse effects of influenza in this population include the dis- 986

2 comfort of the illness, increased over-the-counter medication usage, and school absenteeism. 3,15 Influenza in a child may also affect the family. Working parents may stay home to care for a sick child, leading to industrial absenteeism, 16 or sick children may transmit Influenzavirus to other family members Considering the potential for influenza to substantially affect the quality of life of children and their families, targeting school-aged children for prevention or treatment of influenza may reduce the individual and societal burden of this disease. This prospective study was designed to quantify the effect of influenza season on school and industrial absenteeism, on health care and medication usage, and on secondary illnesses within families, among a cohort of schoolchildren and their families. PARTICIPANTS AND METHODS STUDY DESIGN We conducted a 1-year prospective study of the effect of influenza season on a cohort of children enrolled in a large elementary school in Seattle, Wash. Baseline surveys obtained information on household size, prevalence of childhood asthma, and receipt of influenza vaccine. When a child was absent from school during the winter season, from December 4, 2000, through April 13, 2001, surveys were sent to the child s parent or guardian to determine the reason for the absence, to characterize the types and severity of illnesses that occurred during the winter season, and to determine the effect of the illness on medication usage, physician visits, parental industrial absenteeism, and secondary illnesses within the family. This study was approved by the Human Subjects Division at the University of Washington. Baseline surveys and informed consent were sent to all parents at the school. Parents chose to enroll in the study by returning the baseline survey and the accompanying informed consent. After receiving the informed consent from the parents, two of us (K.M.N., C.H.) obtained assent from the children. These children and their families constituted the study population. SOURCE POPULATION The study school is a parochial elementary school (grades kindergarten-8) located in central Seattle and draws children from 24 ZIP codes within the city, and 14 ZIP codes from the surrounding suburbs. The school represents an ethnically and socioeconomically diverse population of children. Of a total enrollment of 611 children, 18% are nonwhite; almost 20% receive financial aid. DATA COLLECTION Baseline Data Baseline data on household size, ages of all household members, and receipt of influenza vaccine by each member of the family was collected from all of the 216 families who chose to participate. To determine the prevalence of asthma among the schoolchildren, the survey also included a question asking whether a physician had ever diagnosed asthma for the child. Illness Data Coded, computerized absentee records were obtained by the study coordinator (C.H.) from the school office at the end of each week. Children who were participating in the study were identified. From December 4, 2000, through April 13, 2001 (the day before spring break), the parent or guardian of a child listed on the computerized absentee records was sent a survey inquiring about the child s reason for missing school. If the child missed school for an illness, then the parent completed the remainder of the form, which asked details about the symptoms of the illness, medication usage, health care use, parental industrial absenteeism, and illnesses among other household members. The following symptoms were included on the survey: fever, coryza, sore throat, cough, myalgia, earache, headache, nausea, vomiting, and diarrhea. Parents returned the surveys in stamped, self-addressed envelopes to the study nurse (C.H.). If the survey was not received by the study nurse within 2 weeks, a telephone call was placed, and the details of the absence were ascertained by telephone interview. Influenza Season Influenza season was defined by prospective viral surveillance at the University of Washington Clinical Virology Laboratory at Children s Hospital and Medical Center. 21 Influenza season was defined as the first day of the first week in which there were at least 5 isolates of Influenzavirus, until the last day of the last week in which there were at least 5 isolates of Influenzavirus. MAIN OUTCOME MEASURES The primary outcome measure was the total number of school days missed during influenza season compared with the noninfluenza winter season. Secondary outcomes included the total illness episodes, febrile illness episodes, other symptoms associated with the illness episodes, number of days that parents miss work secondary to childhood illness, the number of family members who become ill within 3 days of the child s illness, and the number of health care visits and medications dispensed during influenza season. DATA ANALYSIS The expected number of study outcomes during influenza season was calculated based on the rate of study outcomes observed during the noninfluenza winter season. The observed number of study events during influenza season was then compared with the expected number, and a relative risk was calculated. Influenza-attributable excess events were calculated by subtracting the expected outcomes from the observed outcomes during influenza season. An excess event rate per 100 children was then generated by dividing by the total number of children in the cohort (313), then multiplying by 100. The 95% confidence intervals were generated using StatXact (Cytel Software, Cambridge, Mass). 2 or Fisher exact test was used as appropriate for symptom comparison between the influenza and noninfluenza winter season. In an attempt to control for the confounding effect of respiratory syncytial virus (RSV) circulation, a nested analysis was performed that was restricted to January 8, 2001, through March 31, 2001, during which the mean number of RSV isolates per week was equivalent during the influenza and noninfluenza winter season. All calculations other than the 95% confidence interval were done using SAS version 8.0 (SAS Institute Inc, Cary, NC). RESULTS Of 428 families with 611 children enrolled at the school, 216 families with 313 children chose to participate in the study. Baseline characteristics of the study population are 987

3 No. of Isolates Table 1. Baseline Characteristics of 313 Children in 216 Families Participating in Illness Survey Study* Characteristic Participants Children Mean age (range), y 10 (6-15) Median grade (range) 4 (kindergarten-8) Those who have asthma 12 Those who ever received influenza vaccine 16 Those who have received influenza vaccine 6 this influenza season Families Children 18 y residing in the household With 1 child 22 With 2 children 49 With 3 children 23 With 4 children 6 Single-parent household 13 Grandparents residing in the household 3.3 *Data are given as percentages unless otherwise indicated September October November December January February The number of isolates of influenza (solid line), respiratory syncytial virus (large dashed line), and parainfluenza (small dashed line) per week at Children s Hospital and Regional Medical Center, Seattle, Wash, during the school year. Adapted from the University of Washington Clinical Virology Laboratory Web site. 21 given in Table 1. Participation was equally distributed through all of the grades with a low of 9% of the participants being second graders to a high of 14% of participants being eighth graders. The prevalence of asthma among this study population was 12%, and 9 (24%) of 37 children with asthma received influenza vaccine during the study year. Among all participants, 6% of the study children, 25% of the parents, 37% of the grandparents, and 5% of other household members reported receiving influenza vaccine. INFLUENZA SEASON Influenza season occurred in the Seattle area from January 8, 2001, through March 2, Influenza A (H1N1) and influenza B viruses circulated during this period. Influenza season included 37 school days. The noninfluenza winter season occurred from December 4, 2000, through January 5, 2001, and March 5, 2001, through April 13, 2001, representing 44 school days. Respiratory syncytial virus circulated in the Seattle area during the entire study period, from December 4, 2000, through April 13, 2001 (Figure). The mean number of March April May June RSV isolates per week was higher in influenza season than in the noninfluenza winter season, at 37 and 23 per week, respectively. From January 8, 2001, through March 31, 2001, the mean number of RSV isolates per week was 37 during both influenza season and the noninfluenza winter season. Parainfluenza virus circulated at relatively constant levels throughout the study period (Figure). OUTCOME RATES Throughout the school year, weekly rates of absenteeism were monitored. The weekly percentage of children in the study who missed school was similar to the percentage of all students who missed school (data not shown). From December 4, 2000, through April 13, 2001, on notification by the school that a study participant missed school, 868 surveys were mailed to parents and 804 (93%) were returned. Of these 804 returned surveys, 360 surveys indicated that either the child did not miss school, or that the child did miss school but was not ill. On 444 surveys, the parents confirmed that the child missed school owing to an illness. Of the 444 illness episodes, 194 (43.7%) occurred during the noninfluenza winter season, and 250 (56.3%) occurred during influenza season. Among the 313 children monitored throughout the 44 days of the noninfluenza season, 194 illnesses occurred during the child-days of follow-up. Using this rate as the background rate, the expected number of illness episodes during influenza season was calculated and compared with the observed number. As given in Table 2, the 250 reported illnesses during influenza season exceeded the expected number by more than 50%. The 87 excess illness events occurring among 313 children followed up during winter represents an estimated influenza attack rate of 28%. In addition to total illness episodes, days of school missed per episode was higher during influenza season than during the noninfluenza winter season. Febrile illnesses increased during influenza season, with the difference in illness episodes entirely accounted for by illness episodes with fever. Analgesic use during influenza season, and parental work absenteeism, were likewise higher than expected during influenza season. The observed numbers of antibiotic prescriptions and health care visits were not statistically significantly greater than expected during influenza season (Table 2). To determine the excess event rate for outcomes during influenza season, the expected rate during influenza season was subtracted from the observed rate (Table 2). It is estimated that for every 100 children followed up for this influenza season, which included 37 school days, an additional 28 illness episodes and 63 missed school days would occur. Similarly, for every 100 children followed up, influenza accounted for an estimated 20 excess days of work missed by the parents. When the study was restricted to periods of peak RSV activity, from January 8, 2001, through March 31, 2001, estimates of influenza-attributable events were similar (data not shown). During influenza season, parents were much more likely to report illness in other household members in the 3 days following the child s absence from school compared with the noninfluenza winter season. An estimated 22 excess secondary illness episodes occurred for 988

4 Table 2. Effect of Winter Illness on School and Family Among 313 Schoolchildren Monitored From December 1, 2000, Through April 13, 2001 Variable Events During the Noninfluenza Winter Season (44 School Days) Events During Influenza Season (37 School Days) Expected Observed Relative Risk (95% CI)* Influenza-Attributable Events per 100 Children No. of illness episodes ( ) 27.8 Total No. of days missed ( ) 62.9 No. of febrile illnesses ( ) 28.1 No. of antibiotic courses ( ) 0.64 No. of analgesics used ( ) 24.0 No. of health care visits ( ) 4.2 Days of work missed by parent ( ) 19.8 No. of household members ill in 3 days after absence ( ) 21.7 *Values indicate the comparison of the rate of events during influenza season with the rate of events during the noninfluenza winter season. CI indicates confidence interval. Values were calculated by subtracting the expected outcomes from the observed outcomes during influenza season. An excess event rate per 100 children was then generated by dividing the total number of children in the cohort (N = 313), then multiplying by 100. every 100 children followed up during this influenza season (Table 2). Of the 126 household members who became ill during influenza season within 3 days of the child s illness, 46% were parents, 33% were siblings aged 5 to 17 years, 20% were siblings younger than 5 years, and fewer than 1% were grandparents. ILLNESS CHARACTERISTICS Fever was reported as a component of 67% of illnesses during influenza season compared with 49% of illnesses during the noninfluenza winter season (P=.001). Similarly, febrile respiratory illness (defined as fever with at least one of the following symptoms: cough, runny nose, or sore throat) was significantly more common in influenza season compared with the noninfluenza winter season (57% vs 44%, P=.04). The systemic symptoms of myalgia and headache were significantly more frequent during influenza season compared with the noninfluenza winter season among children aged 11 to 14 years, but not among younger children. There were no differences in the prevalence of nausea, vomiting, diarrhea, or earache among illnesses in any age group occurring during the influenza and noninfluenza winter season. COMMENT This Seattle population based study examined the effect of the influenza season on multiple and diverse outcomes among schoolchildren and their families during the winter season. Illness during influenza season was common, with an estimated 87 excess illness events occurring among 313 children followed up during the winter, for an attack rate of 28%. This likely represents a minimum estimate, as it only included children who were sufficiently ill to miss a day of school, and did not include illnesses that occurred only on weekends or school holidays. This attack rate is consistent with other studies that report symptomatic attack rates of 23% to 48% among school-aged children during interpandemic years The total number of school days missed during influenza season was likewise higher than expected based on the noninfluenza winter season baseline. We estimated that for this influenza season, which encompassed 37 school days, 63 excess school days were missed for every 100 children followed up. Estimates of school days missed per 100 children due to influenza infection from a randomized, controlled trial of influenza vaccine among schoolchildren in Russia were slightly higher at 79 school days missed for every 100 unvaccinated children. 26 The increase in absenteeism for illness in our cohort was paralleled by increases in febrile illnesses and analgesic use. That fever is a major component of influenza illness in children is well established. 27,28 Health care visits and antibiotic use did not increase significantly during influenza season compared with the noninfluenza winter season. This is in contrast to other studies that demonstrate significant excess outpatient health care visits and antibiotic prescriptions among school-aged children during influenza season. 5 The reasons for this discrepancy are unclear, but may relate to differences in parents knowledge and attitudes about viral illness, the threshold for bringing children to a physician, or our relatively small sample size. The effect of influenza season on this cohort extended beyond illness in the schoolchildren. In this study, significant excess industrial absenteeism occurred among the parents, who missed almost 1 day of work for every 3 days of school missed by a child attributable to influenza infection. National data report that 57% of mothers and 97% of fathers of school-aged children work fulltime and, thus, may need to miss work or hire alternative care if their children miss school. 16 Presumably, our study population included fewer households with 2 working parents, or parents with more flexibility in their schedules or alternative child care providers. Rates of parental absenteeism could be higher in other populations. Our estimates of parental industrial absenteeism were based solely on missing work to care for a sick child, and did not include work that may have been missed if the child transmitted influenza to the parent. 989

5 What This Study Adds Symptomatic influenza illness is frequent among schoolaged children. However, studies evaluating the effect of influenza illness on quality of life in such children are unavailable. This prospective, population-based study quantifies a major effect of Influenzavirus on multiple and diverse outcomes in schoolchildren and their families, including significant increases in school absenteeism, analgesic use, parental industrial absenteeism, and secondary illness among family members. Such information is important for both individual and public policy decisions regarding the use of influenza vaccine in schoolaged children. Children more frequently shed Influenzavirus compared with adults, 29 and this may facilitate the transmission of Influenzavirus. In a large general practice population outside London, England, during the pandemic of 1957, attack rates in adults who resided with schoolaged children were 2 to 3 times higher than attack rates in adults who did not reside with school-aged children. 30 Family studies of influenza transmission in Seattle and Tecumseh, Mich, during the 1970s found children to be the main introducers of influenza infection into households during interpandemic periods. 17,18,20 In this study, the number of household members who became ill within 3 days of a child s absence from school was 2.2 times higher than expected during influenza season. For every 10 children who miss school for an influenza-related illness, our data suggest that 8 household members will subsequently become ill. Increased use of influenza vaccine among children could reduce illness in household or community contacts. In a 1995 randomized controlled trial of influenza vaccine for preschoolaged children, influenza-unvaccinated household contacts of influenza-vaccinated children had 42% fewer febrile respiratory illnesses compared with unvaccinated household contacts of control children. 13 Mass vaccination of schoolchildren has been correlated with reduced respiratory illness in Tecumseh 31 and with reductions in allcause mortality rates in Japan, 32 suggesting that immunization on a larger scale can affect community epidemics. This was a survey study, and we did not attempt to diagnose the reported illnesses by clinical or laboratory evaluation. We assumed that noninfluenza illnesses occurred equally during the influenza and noninfluenza winter season, so that any excess during influenza season was attributable to influenza infection. Using a similar method, our estimates of influenza-associated hospitalizations and outpatients visits in children correlated well with laboratory documented rates of influenza disease. 5,8 That most of the excess illness in this study was febrile illness is consistent with the clinical picture of Influenzavirus in children. 9,23,24,27,28 Likewise, our secondary analysis that was restricted to peak RSV season yielded results similar to our primary analysis, suggesting that RSV was not a significant confounder. This study included only 1 influenza season, in which influenza type B and type A (H1N1) strains circulated. The effect of influenza varies from year to year, and may be influenced by circulating strains and the underlying immunity in the population. While in adults morbidity is generally believed to be greatest when H3N2 viruses are circulating, the effect of different viral strains on morbidity in school-aged children is not well established, as all 3 strains may cause high attack rates or serious illness. 25,26,28,36 Studies that include multiple influenza seasons are needed to adequately address this issue. CONCLUSIONS Among a cohort of children followed up during the winter season, total illness episodes, school days missed, workdays missed by parents, and subsequent illnesses among household members were significantly increased when Influenzavirus circulated in the community. These data should aid pediatric health care providers and parents when deciding whether to immunize a healthy schoolaged child with influenza vaccine. When planning important school events during influenza season, school administrators should be cognizant of the potential for significant increases in school absenteeism. Finally, this study reinforces the recommendation to vaccinate children if they reside in households with persons who are at increased risk for complications of Influenzavirus, to reduce the potential for transmission. 4 Accepted for publication May 10, This study was funded through a research grant from GlaxoWellcome Worldwide Epidemiology. GlaxoWellcome Worldwide Epidemiology had no role in the design, conduct, collection, analysis, or interpretation of the data and did not review or approve the manuscript prior to submission. We are indebted to the students, parents, and staff at St Joseph s School for their enthusiastic participation in this study, and to Anne Cent, Children s Hospital and Regional Medical Center, Seattle, for her dedication to organizing and maintaining the viral surveillance data. Corresponding author and reprints: Kathleen M. Neuzil, MD, MPH, University of Washington School of Medicine, Veterans Affairs Puget Sound Health Care System, 1660 S Columbian Way, Seattle, WA ( REFERENCES 1. Simonsen L, Clarke MJ, Williamson DG, Sroup DF, Arden NH, Schonberger LB. The impact of influenza epidemics on mortality: introducing a severity index. Am J Public Health. 1997;87: Glezen WP. Emerging infections: pandemic influenza. Epidemiol Rev. 1996;18: Glezen WP, Couch RB. Interpandemic influenza in the Houston area, N Engl J Med. 1978;298: Centers for Disease Control and Prevention. Advisory Committee on Immunization Practices (ACIP): prevention and control of influenza. MMWR Morb Mortal Wkly Rep. 2001,50: Neuzil KM, Mellen BG, Wright PF, et al. The impact of influenza on hospitalizations, outpatient visits and antibiotic prescriptions in children. N Engl J Med. 2000;342: Izurieta HS, Thompson WW, Piotr K, et al. Influenza and the rates of hospitalization for respiratory disease among infants and young children. N Engl J Med. 2000;342:

6 7. Neuzil KM, Wright PF, Mitchel EF, et al. The burden of influenza illness in children with asthma and other chronic medical conditions. J Pediatr. 2000;137: Neuzil KM, Zhu Y, Griffin MR, et al. The burden of interpandemic influenza in children younger than 5 years: a 25-year prospective study. J Infect Dis. 2002; 185: Glezen WP, Keitel WA, Taber LH, Piedra PA, Clover RD, Couch RB. Age distribution of patients with medically-attended illnesses caused by sequential variants of influenzaa/h1n1; comparison to age-specific infection rates, Am J Epidemiol. 1991;133: Dunn FL, Carey DE, Cohen A, Martin JD. Epidemiologic studies of Asian influenza in a Louisiana parish. Am J Hyg. 1959;70: Sullivan KM, Monto AS, Longini IM Jr. Estimates of the US health impact of influenza. Am J Public Health. 1993;83: Adams PF, Hendershot GE, Marano MA. Current Estimates From the National Health Interview Survey. Hyattsville, Md: National Center for Health Statistics, Data from Vital Health Statistics, No Nichol KL, Lind A, Margolis KL, et al. The effectiveness of vaccination against influenza in healthy, working adults. N Engl J Med. 1995;333: Keech M, Scott AJ, Ryan PJ. The impact of influenza and influenza-like illness on productivity and healthcare resource utilization in a working population. Occup Med. 1998;48: Lenaway DD, Ambler A. Evaluation of a school-based influenza surveillance system. Public Health Rep. 1995;3: White T, Lavoie S, Nettleman MD. Potential cost savings attributable to influenza vaccination of school-aged children. Pediatrics [serial online]. 1999;103:e Foy HM, Cooney MK, Allan I. Longitudinal studies of type A and B influenza among Seattle schoolchildren and families, J Infect Dis. 1976;134: Fox JP, Hall CE, Cooney MK, Foy HM. Influenza virus infections in Seattle families, : study design, methods, and the occurrence of infections by time and age. Am J Epidemiol. 1982;116: Hurwitz ES, Haber M, Chang A, et al. Effectiveness of influenza vaccination of day care children in reducing influenza-related morbidity among household contacts. JAMA. 2000;284: Longini IM, Koopman JS, Monto AS, Fox JP. Estimating household and community transmission parameters for influenza. Am J Epidemiol. 1982;115: Respiratory virus surveillance, Seattle, Wash, September 2000 through June 2001.Availableat: Accessed March 19, Clover RD, Crawford S, Glezen WP, et al. Comparison of heterotypic protection against influenza A/Taiwan/86 (H1N1) by attenuated and inactivated vaccines to A/Chile/83-like viruses. J Infect Dis. 1991;163: Gruber WC, Taber LH, Glezen WP, et al. Live attenuated and inactivated influenza vaccine in school-age children. AJDC. 1990;144: Piedro PA, Glezen WP. Influenza in children: epidemiology, immunity and vaccines. Semin Pediatr Infect Dis. 1991;2: Sugaya N, Nerome K, Ishida M, et al. Efficacy of inactivated vaccine in preventing antigenically drifted influenza type A and well-matched type B. JAMA. 1996; 272: Khan AS, Polezhaev F, Vailjeva R, et al. Comparison of US inactivated split-virus and Russian live attenuated, cold-adapted trivalent influenza vaccines in Russian schoolchildren. J Infect Dis. 1996;173; Wright PF, Bryant JD, Karzon DT. Comparison of Influenza B/Hong Kong virus infections among infants, children and young adults. J Infect Dis. 1980;141: Wright PF, Thompson J, Karzon DT. Differing virulence of H1N1 and H3N2 influenza strains. Am J Epidemiol. 1980;112: Long CE, Hall CB, Cunningham CK, et al. Influenza surveillance in communitydwelling elderly compared with children. Arch Fam Med. 1997;6: Woodall J, Rowson KEK, McDonald JC. Age and Asian influenza, BMJ. 1958; ii: Monto AS, Davenport FM. Modification of an outbreak of influenza in Tecumseh, Michigan by vaccination of school children. J Infect Dis. 1970;122: Reichert TA, Sugaya N, Fedson DS, Glezen WP, et al. The Japanese experience with vaccinating schoolchildren against influenza. N Engl J Med. 2001;344: Neuzil KM, Reed GW, Mitchel EF Jr, Griffin MR. Influenza-associated morbidity and mortality in young and middle-aged women. JAMA. 1999;281: Housworth J, Langmuir AD. Excess mortality from epidemic influenza, Am J Epidemiol. 1974;100: Simonsen L, Fukuda K, Schonberger LB, Cox NJ. Impact of influenza epidemics on hospitalizations. J Infect Dis. 2000;181: van den Dungen FA, van Furth AM, Fetter WP, Zaaijer HL, van Elburg R. Fatal case of influenza B virus pneumonia in a preterm neonate. Pediatr Infect Dis J. 2001;20:

Influenza Backgrounder

Influenza Backgrounder Influenza Backgrounder Influenza Overview Influenza causes an average of 36,000 deaths and 200,000 hospitalizations in the U.S. every year. 1,2 Combined with pneumonia, influenza is the seventh leading

More information

SAFETY, EFFICACY, AND USE OF INACTIVATED INFLUENZA VACCINE IN CHILDREN * Kathryn M. Edwards, MD RANDOMIZED TRIALS COMPARING INACTIVATED

SAFETY, EFFICACY, AND USE OF INACTIVATED INFLUENZA VACCINE IN CHILDREN * Kathryn M. Edwards, MD RANDOMIZED TRIALS COMPARING INACTIVATED SAFETY, EFFICACY, AND USE OF INACTIVATED INFLUENZA VACCINE IN CHILDREN * Kathryn M. Edwards, MD ABSTRACT A review of selected clinical trials of influenza vaccine shows that the vaccines are safe and effective

More information

Winter Respiratory Viruses and Health Care Use: A Population-Based Study in the Northwest United States

Winter Respiratory Viruses and Health Care Use: A Population-Based Study in the Northwest United States MAJOR ARTICLE Winter Respiratory Viruses and Health Care Use: A Population-Based Study in the Northwest United States Kathleen M. Neuzil, 1,3 Charles Maynard, 2,4 Marie R. Griffin, 5 and Patrick Heagerty

More information

The New England Journal of Medicine

The New England Journal of Medicine The New England Journal of Medicine Copyright 22 by the Massachusetts Medical Society VOLUME 347 D ECEMBER 26, 22 NUMBER 26 INFLUENZA-RELATED HOSPITALIZATIONS AMONG CHILDREN IN HONG KONG SUSAN S. CHIU,

More information

THE JAPANESE EXPERIENCE WITH VACCINATING SCHOOLCHILDREN AGAINST INFLUENZA THE JAPANESE EXPERIENCE WITH VACCINATING SCHOOLCHILDREN AGAINST INFLUENZA

THE JAPANESE EXPERIENCE WITH VACCINATING SCHOOLCHILDREN AGAINST INFLUENZA THE JAPANESE EXPERIENCE WITH VACCINATING SCHOOLCHILDREN AGAINST INFLUENZA THE JAPANESE EXPERIENCE WITH VACCINATING SCHOOLCHILDREN AGAINST INFLUENZA THE JAPANESE EXPERIENCE WITH VACCINATING SCHOOLCHILDREN AGAINST INFLUENZA THOMAS A. REICHERT, PH.D., M.D., NORIO SUGAYA, M.D.,

More information

School-based Seasonal Influenza (flu) Vaccinations Frequently Asked Questions Parents/Guardians

School-based Seasonal Influenza (flu) Vaccinations Frequently Asked Questions Parents/Guardians School-based Seasonal Influenza (flu) Vaccinations Frequently Asked Questions Parents/Guardians 1) Why are school children being offered free flu vaccine? The Hawai i State Department of Health (DOH) believes

More information

3. Rapidly recognize influenza seasons in which the impact of influenza appears to be unusually severe among children.

3. Rapidly recognize influenza seasons in which the impact of influenza appears to be unusually severe among children. 07-ID-14 Committee: Title: Infectious Disease Influenza-Associated Pediatric Mortality Statement of the Problem: In 2004, CSTE adopted influenza-associated pediatric mortality reporting with a provision

More information

Influenza Vaccination of Schoolchildren and Influenza Outbreaks in a School

Influenza Vaccination of Schoolchildren and Influenza Outbreaks in a School MAJOR ARTICLE Influenza Vaccination of Schoolchildren and Influenza Outbreaks in a School Shioko Kawai, 1 Seiichiro Nanri, 1 Eiko Ban, 1 Mikako Inokuchi, 1 Tetsuya Tanaka, 1 Mitsuaki Tokumura, 1 Keiko

More information

Let s Fight Flu Together! School-Based Influenza Immunization Initiative

Let s Fight Flu Together! School-Based Influenza Immunization Initiative Let s Fight Flu Together! School-Based Influenza Immunization Initiative Influenza Disease Burden Influenza remains a burning public health issue in the United States 1 - Up to 20 percent of the US population

More information

2007 ACIP Recommendations for Influenza Vaccine. Anthony Fiore, MD, MPH Influenza Division, NCIRD, CDC

2007 ACIP Recommendations for Influenza Vaccine. Anthony Fiore, MD, MPH Influenza Division, NCIRD, CDC 2007 ACIP Recommendations for Influenza Vaccine Anthony Fiore, MD, MPH Influenza Division, NCIRD, CDC National Influenza Vaccine Summit April 19, 2007 Recommendation Changes for Influenza Vaccination:

More information

IN THE UNITED STATES EACH YEAR, INfluenza

IN THE UNITED STATES EACH YEAR, INfluenza ORIGINAL CONTRIUTION Influenza-Associated Morbidity and Mortality in Young and Middle-Aged Women Kathleen Maletic Neuzil, MD, MPH George W. Reed, PhD Edward F. Mitchel, Jr, MS Marie R. Griffin, MD, MPH

More information

H igh rates of hospitalisation have been recognised in

H igh rates of hospitalisation have been recognised in 20 ORIGINAL ARTICLE related hospitalisations in Sydney, New South Wales, Australia F Beard, P McIntyre, H Gidding, M Watson... See end of article for authors affiliations... Correspondence to: Dr F Beard,

More information

Effectiveness of School-Based Influenza Vaccination

Effectiveness of School-Based Influenza Vaccination The new england journal of medicine original article Effectiveness of School-Based Influenza Vaccination James C. King, Jr., M.D., Jeffrey J. Stoddard, M.D., Manjusha J. Gaglani, M.B., B.S., Kristine A.

More information

Texas Influenza Summary Report, Season (September 28, 2008 April 11, 2009)

Texas Influenza Summary Report, Season (September 28, 2008 April 11, 2009) Texas Influenza Summary Report, 2008 2009 Season (September 28, 2008 April 11, 2009) Background Influenza and influenza-like illnesses (ILI) were last reportable by law in any county in Texas in 1993 (1).

More information

SURVEILLANCE, MONITORING ABSENTEEISM

SURVEILLANCE, MONITORING ABSENTEEISM SURVEILLANCE, MONITORING ABSENTEEISM and RESPIRATORY TRANSMISSION in SCHOOLS (SMART 2 ) A Report for the Canon-McMillan, Fox Chapel Area and Washington School Districts October, 2016 INTRODUCTION SMART

More information

COUNTY OF MORRIS DEPARTMENT OF LAW & PUBLIC SAFETY OFFICE OF HEALTH MANAGEMENT

COUNTY OF MORRIS DEPARTMENT OF LAW & PUBLIC SAFETY OFFICE OF HEALTH MANAGEMENT 1 COUNTY OF MORRIS DEPARTMENT OF LAW & PUBLIC SAFETY OFFICE OF HEALTH MANAGEMENT P.O. Box 900 Morristown, NJ 07963 (973) 631-5485 (973) 631-5490 Fax www.morrishealth.org 2012-2013 Influenza Season FREQUENTLY

More information

2009 H1N1 (Pandemic) virus IPMA September 30, 2009 Anthony A Marfin

2009 H1N1 (Pandemic) virus IPMA September 30, 2009 Anthony A Marfin 2009 H1N1 (Pandemic) virus IPMA September 30, 2009 Anthony A Marfin Introduction to Influenza What is influenza? What is pandemic influenza? What is 2009 H1N1 influenza? Current situation & predictions

More information

THIS ACTIVITY HAS EXPIRED. CME CREDIT IS NO LONGER AVAILABLE

THIS ACTIVITY HAS EXPIRED. CME CREDIT IS NO LONGER AVAILABLE THIS ACTIVITY HAS EXPIRED. CME CREDIT IS NO LONGER AVAILABLE The following content is provided for informational purposes only. PREVENTION AND CONTROL OF INFLUENZA Lisa McHugh, MPH Influenza can be a serious

More information

Tarrant County Influenza Surveillance Weekly Report CDC Week 06: February 2-8, 2014

Tarrant County Influenza Surveillance Weekly Report CDC Week 06: February 2-8, 2014 Tarrant County Public Health Division of Epidemiology and Health Information Tarrant County Influenza Surveillance Weekly Report 06: February 2-8, 2014 Influenza Activity Code, County and State Levels

More information

RISK MANAGEMENT PLAN

RISK MANAGEMENT PLAN RISK MANAGEMENT PLAN Active substance(s) (INN or common name): Pharmaco-therapeutic group (ATC Code): Name of Marketing Authorisation Holder or Applicant: Haemagglutinin of three strains of influenza virus,

More information

Acute respiratory illness This is a disease that typically affects the airways in the nose and throat (the upper respiratory tract).

Acute respiratory illness This is a disease that typically affects the airways in the nose and throat (the upper respiratory tract). Influenza glossary Adapted from the Centers for Disease Control and Prevention, US https://www.cdc.gov/flu/glossary/index.htm and the World Health Organization http://www.wpro.who.int/emerging_diseases/glossary_rev_sept28.pdf?ua=1

More information

Influenza Vaccine Effectiveness among the Elderly Monto et al. Influenza Vaccine Effectiveness among Elderly Nursing Home Residents: A Cohort Study

Influenza Vaccine Effectiveness among the Elderly Monto et al. Influenza Vaccine Effectiveness among Elderly Nursing Home Residents: A Cohort Study American Journal of Epidemiology Copyright 2001 by the Johns Hopkins University Bloomberg School of Public Health All rights reserved Vol. 154, No. 2 Printed in U.S.A. Influenza Vaccine Effectiveness among

More information

Human infection with pandemic (H1N1) 2009 virus: updated interim WHO guidance on global surveillance

Human infection with pandemic (H1N1) 2009 virus: updated interim WHO guidance on global surveillance Human infection with pandemic (H1N1) 2009 virus: updated interim WHO guidance on global surveillance 10 July 2009 Background This document updates the interim WHO guidance on global surveillance of pandemic

More information

Tarrant County Influenza Surveillance Weekly Report CDC Week 20: May 11-17, 2014

Tarrant County Influenza Surveillance Weekly Report CDC Week 20: May 11-17, 2014 Tarrant County Public Health Division of Epidemiology and Health Information Tarrant County Influenza Surveillance Weekly Report 20: May 11-17, 2014 Influenza Activity Code, County and State Levels Tarrant

More information

Tarrant County Influenza Surveillance Weekly Report CDC Week 10: March 2-8, 2014

Tarrant County Influenza Surveillance Weekly Report CDC Week 10: March 2-8, 2014 Tarrant County Public Health Division of Epidemiology and Health Information Tarrant County Influenza Surveillance Weekly Report 10: March 2-8, 2014 Influenza Activity Code, County and State Levels Tarrant

More information

Influenza: The Threat of a Pandemic

Influenza: The Threat of a Pandemic April, 2009 Definitions Epidemic: An increase in disease above what you what would normally expect. Pandemic: A worldwide epidemic 2 What is Influenza? Also called Flu, it is a contagious respiratory illness

More information

Tarrant County Influenza Surveillance Weekly Report CDC Week 06: February 05 11, 2012

Tarrant County Influenza Surveillance Weekly Report CDC Week 06: February 05 11, 2012 Tarrant County Public Health Division of Epidemiology and Health Information Tarrant County Influenza Surveillance Weekly Report CDC Week 06: February 05 11, 2012 Influenza Activity Code, County and State

More information

Outline. Seasonal Influenza & Pneumonia National & State Statistics Novel Influenza A H1N1

Outline. Seasonal Influenza & Pneumonia National & State Statistics Novel Influenza A H1N1 Outline Seasonal Influenza & Pneumonia National & State Statistics Novel Influenza A H1N1 National & State Statistics Lessons from Past Pandemics Vaccination & Treatment Strategies Influenza Virus Influenza

More information

Emerging Infections: Pandemic Influenza. W. Paul Glezen

Emerging Infections: Pandemic Influenza. W. Paul Glezen Emerging Infections: Pandemic Influenza W. Paul Glezen Challenges The trends of modern society tend to facilitate spread and increase morbidity Travel, urbanization morbidity vs. mortality The cost of

More information

Universal Influenza Vaccination in the United States: Are We Ready? Report of a Meeting

Universal Influenza Vaccination in the United States: Are We Ready? Report of a Meeting SUPPLEMENT ARTICLE Universal Influenza Vaccination in the United States: Are We Ready? Report of a Meeting Benjamin Schwartz, 1 Alan Hinman, 3 Jon Abramson, 2 Raymond A. Strikas, 1 Norma Allred, 4 Timothy

More information

Tarrant County Influenza Surveillance Weekly Report CDC Week 02: January 08 14, 2012

Tarrant County Influenza Surveillance Weekly Report CDC Week 02: January 08 14, 2012 Tarrant County Public Health Division of Epidemiology and Health Information Tarrant County Influenza Surveillance Weekly Report CDC Week 02: January 08 14, 2012 Influenza Activity Code, County and State

More information

Update/Le point. Influenza surveillance*

Update/Le point. Influenza surveillance* Update/Le point Influenza surveillance* Y. Ghendon' The main objectives of influenza surveillance are: collection of influenza virus isolates and analysis of their antigenic characteristics so that the

More information

Vaccinating Schoolchildren: Next Step Forward in the Battle Against Influenza?

Vaccinating Schoolchildren: Next Step Forward in the Battle Against Influenza? October 2009 Vaccinating Schoolchildren: Next Step Forward in the Battle Against Influenza? CME Course Director and Moderator Stephen I. Pelton, MD Professor of Pediatrics Boston University School of Medicine

More information

We ll be our lifesaver. We ll get the flu vaccine.

We ll be our lifesaver. We ll get the flu vaccine. We ll be our lifesaver. We ll get the flu vaccine. The flu vaccine is a lifesaver for healthcare workers and the people they care for. www.immunisation.ie Flu Vaccine 2017-18 Healthcare workers prevent

More information

Influenza Season and EV-D68 Update. Johnathan Ledbetter, MPH

Influenza Season and EV-D68 Update. Johnathan Ledbetter, MPH 2014-2015 Influenza Season and EV-D68 Update Johnathan Ledbetter, MPH 2014-2015 Influenza Season Influenza Reporting Individual cases are not reportable in the state of Texas Situations where influenza

More information

Novel H1N1 Influenza. It s the flu after all! William Muth M.D. Samaritan Health Services 9 November 2009

Novel H1N1 Influenza. It s the flu after all! William Muth M.D. Samaritan Health Services 9 November 2009 Novel H1N1 Influenza It s the flu after all! William Muth M.D. Samaritan Health Services 9 November 2009 Influenza A Primer.. What is the flu? How do you get it? What s a virus anyhow? Can the flu be prevented,

More information

What You Need to Know About the Flu

What You Need to Know About the Flu Wednesday, August 0, 017 BLUE P FISH E D I A T R I C S www.bluefishmd.com CYPRESS EDITION Biannual Newsletter In This Issue Find Out: Who should receive the flu vaccine? Who should NOT receive the flu

More information

10/6/2014. INFLUENZA: Why Should We Take The Vaccine? OUTLINE INFLUNZA VIRUS INFLUENZA VIRUS INFLUENZA VIRUS

10/6/2014. INFLUENZA: Why Should We Take The Vaccine? OUTLINE INFLUNZA VIRUS INFLUENZA VIRUS INFLUENZA VIRUS INFLUENZA: Why Should We Take The Vaccine? Baptist Hospital Baptist Children s Hospital Doctors Hospital J. Milton Gaviria, MD, FACP October 17, 2014 Homestead Hospital Mariners Hospital Baptist Cardiac

More information

Tarrant County Influenza Surveillance Weekly Report CDC Week 35, August 27-September 2, 2017

Tarrant County Influenza Surveillance Weekly Report CDC Week 35, August 27-September 2, 2017 Tarrant County Public Health Division of Epidemiology and Health Information Tarrant County Influenza Surveillance Weekly Report 35, August 27-September 2, 2017 Influenza Activity Code, County and State

More information

Information collected from influenza surveillance allows public health authorities to:

Information collected from influenza surveillance allows public health authorities to: OVERVIEW OF INFLUENZA SURVEILLANCE IN NEW JERSEY Influenza Surveillance Overview Surveillance for influenza requires monitoring for both influenza viruses and disease activity at the local, state, national,

More information

Tarrant County Influenza Surveillance Weekly Report CDC Week 17: April 22-28, 2012

Tarrant County Influenza Surveillance Weekly Report CDC Week 17: April 22-28, 2012 Tarrant County Public Health Division of Epidemiology and Health Information Tarrant County Influenza Surveillance Weekly Report CDC Week 17: April 22-28, 2012 Influenza Activity Code, County and State

More information

Age Distribution of Influenza and Pneumonia Mortality in the United States,

Age Distribution of Influenza and Pneumonia Mortality in the United States, Age Distribution of Influenza and Pneumonia Mortality in the United States, 1960-2002 Nobuko Mizoguchi Department of Demography University of California at Berkeley nobukom@demog.berkeley.edu Andrew Noymer

More information

INFLUENZA VACCINATION AND MANAGEMENT SUMMARY

INFLUENZA VACCINATION AND MANAGEMENT SUMMARY INFLUENZA VACCINATION AND MANAGEMENT SUMMARY Morbidity and mortality related to influenza occur at a higher rate in people over 65 and those with underlying chronic medical conditions. Annual influenza

More information

Tarrant County Influenza Surveillance Weekly Report CDC Week 5, Jan 29 Feb 4, 2017

Tarrant County Influenza Surveillance Weekly Report CDC Week 5, Jan 29 Feb 4, 2017 Tarrant County Public Health Division of Epidemiology and Health Information Tarrant County Influenza Surveillance Weekly Report 5, Jan 29 Feb, 2017 Influenza Activity Code, County and State Levels Tarrant

More information

Overview of the Influenza Virus

Overview of the Influenza Virus Overview of the Influenza Virus Victor C. Huber, Ph.D. September 24, 2015 victor.huber@usd.edu General Features of Influenza Virus Infections Clinical Features of Influenza Sudden onset of symptoms Incubation

More information

Running head: INFLUENZA VIRUS SEASON PREPAREDNESS AND RESPONSE 1

Running head: INFLUENZA VIRUS SEASON PREPAREDNESS AND RESPONSE 1 Running head: INFLUENZA VIRUS SEASON PREPAREDNESS AND RESPONSE 1 Electron micrograph of H1N1 Virus (CDC, 2009) Influenza Virus Season Preparedness and Response Patricia Bolivar Walden University Epidemiology

More information

2009 (Pandemic) H1N1 Influenza Virus

2009 (Pandemic) H1N1 Influenza Virus 2009 (Pandemic) H1N1 Influenza Virus September 15, 2009 Olympia, Washington Anthony A Marfin Washington State Department of Health Goals Understand current situation & pattern of transmission of 2009 H1N1

More information

Pandemic Influenza Planning Assumptions U n i v e r s i t y o f N o r t h C a r o l i n a a t C h a p e l H i l l August Revised September 2008

Pandemic Influenza Planning Assumptions U n i v e r s i t y o f N o r t h C a r o l i n a a t C h a p e l H i l l August Revised September 2008 Pandemic Influenza Planning Assumptions U n i v e r s i t y o f N o r t h C a r o l i n a a t C h a p e l H i l l August 2006 - Revised September 2008 UNC is taking steps to prepare and plan for the possibility

More information

For questions, or to receive this report weekly by , send requests to either or

For questions, or to receive this report weekly by  , send requests to either or STARK COUNTY INFLUENZA SNAPSHOT, WEEK 47 Week ending November 24, 2012, with updates through 12/1/2012. All data are preliminary and may change as additional information is received. NOTE: Compilation

More information

INFLUENZA INFECTIONS RESULT IN

INFLUENZA INFECTIONS RESULT IN ORIGINAL CONTRIBUTION Mortality Associated With Influenza and Respiratory Syncytial Virus in the United States William W. Thompson, PhD David K. Shay, MD, MPH Eric Weintraub, MPH Lynnette Brammer, MPH

More information

Clinical Guidance for 2009 H1N1 Influenza and Seasonal Influenza. Barbara Wallace, MD New York State Department of Health (Updated 10/8/09)

Clinical Guidance for 2009 H1N1 Influenza and Seasonal Influenza. Barbara Wallace, MD New York State Department of Health (Updated 10/8/09) Clinical Guidance for 2009 H1N1 Influenza and Seasonal Influenza Barbara Wallace, MD New York State Department of Health (Updated 10/8/09) 1 Outline Clinical assessment Diagnostic testing Antiviral medications

More information

Pandemic H1N1 2009: The Public Health Perspective. Massachusetts Department of Public Health November, 2009

Pandemic H1N1 2009: The Public Health Perspective. Massachusetts Department of Public Health November, 2009 Pandemic H1N1 2009: The Public Health Perspective Massachusetts Department of Public Health November, 2009 Training Objectives Describe and distinguish between seasonal and pandemic influenza. Provide

More information

Medically attended pediatric influenza during the resurgence of the Victoria lineage of influenza B virus

Medically attended pediatric influenza during the resurgence of the Victoria lineage of influenza B virus International Journal of Infectious Diseases (2007) 11, 40 47 http://intl.elsevierhealth.com/journals/ijid Medically attended pediatric influenza during the resurgence of the Victoria lineage of influenza

More information

Seasonal influenza and vaccine herd effect

Seasonal influenza and vaccine herd effect Review article CLINICAL EXPERIMENTAL VACCINE RESEARCH Seasonal influenza and vaccine herd effect Clin Exp Vaccine Res 2014;3:128-132 pissn 2287-3651 eissn 2287-366X Tae Hyong Kim Division of Infectious

More information

TABLE OF CONTENTS. Peterborough County-City Health Unit Pandemic Influenza Plan Section 1: Introduction

TABLE OF CONTENTS. Peterborough County-City Health Unit Pandemic Influenza Plan Section 1: Introduction TABLE OF CONTENTS 1. Introduction...1-2 1.1 Background...1-2 1.2 Why Does Peterborough County and City Need a Plan for Influenza Pandemic?...1-2 1.3 About Influenza...1-3 1.4 When Does Influenza Become

More information

The Cold, the Flu or INFLUENZA!

The Cold, the Flu or INFLUENZA! The Cold, the Flu or INFLUENZA! Jim Reid Dept of General Practice and Rural Health Dunedin School of Medicine University of Otago INFLUENZA Don t confuse with the common cold Symptoms may be similar BUT

More information

IT S A LIFESAVER EVERY YEAR FLU CAUSES SEVERE ILLNESS AND DEATH. GET YOUR FLU VACCINE NOW. IF YOU ARE: worker

IT S A LIFESAVER EVERY YEAR FLU CAUSES SEVERE ILLNESS AND DEATH. GET YOUR FLU VACCINE NOW. IF YOU ARE: worker FLU VACCINE Information FOR Health care workers EVERY YEAR FLU CAUSES SEVERE ILLNESS AND DEATH. IF YOU ARE: A health care worker Over 65 Have a longterm illness Pregnant GET YOUR FLU VACCINE NOW. IT S

More information

Prevention and Control of Influenza

Prevention and Control of Influenza Prevention and Control of Influenza Recommendations of the Advisory Committee on Im... Page 1 of 47 Early Release July 17, 2008 / 57(Early Release);1-60 Prevention and Control of Influenza Recommendations

More information

Tarrant County Influenza Surveillance Weekly Report CDC Week 4: Jan 21-27, 2018

Tarrant County Influenza Surveillance Weekly Report CDC Week 4: Jan 21-27, 2018 Tarrant County Public Health Division of Epidemiology and Health Information Tarrant County Influenza Surveillance Weekly Report 4: Jan 21-27, 2018 Influenza Activity Code: County and State Levels Tarrant

More information

STARK COUNTY INFLUENZA SNAPSHOT, WEEK 06 Week ending February 11, 2012, with updates through 02/20/2012.

STARK COUNTY INFLUENZA SNAPSHOT, WEEK 06 Week ending February 11, 2012, with updates through 02/20/2012. STARK COUNTY INFLUENZA SNAPSHOT, WEEK 06 Week ending February 11, 2012, with updates through 02/20/2012. All data are preliminary and may change as additional information is received. NOTE: Compilation

More information

Tarrant County Influenza Surveillance Weekly Report CDC Week 40: Oct 2-8, 2016

Tarrant County Influenza Surveillance Weekly Report CDC Week 40: Oct 2-8, 2016 Tarrant County Public Health Division of Epidemiology and Health Information Tarrant County Influenza Surveillance Weekly Report 40: Oct 2-8, 2016 Influenza Activity Code, County and State Levels Tarrant

More information

What You Need to Know About the Flu

What You Need to Know About the Flu Thursday, August 16, 018 BLUE P FISH E D I A T R I C S www.bluefishmd.com SIENNA PLANTATION EDITION Biannual Newsletter In This Issue Find Out: Who should receive the flu vaccine? Who should NOT receive

More information

STATE OF ALABAMA DEPARTMENT OF. Donald E. Williamson, MD State Health Officer. July 17, 2003

STATE OF ALABAMA DEPARTMENT OF. Donald E. Williamson, MD State Health Officer. July 17, 2003 STATE OF ALABAMA DEPARTMENT OF PUBLIC HEALTH Donald E. Williamson, MD State Health Officer July 17, 2003 Dear Vaccines for Children (VFC) Provider: Enclosed are several points of interest regarding vaccines.

More information

WHO Technical Consultation on the severity of disease caused by the new influenza A (H1N1) virus infections

WHO Technical Consultation on the severity of disease caused by the new influenza A (H1N1) virus infections WHO Technical Consultation on the severity of disease caused by the new influenza A (H1N1) virus infections Original short summary posted 6 May 2009. Revised full report posted May 9 2009. On 5 May 2009

More information

What You Need to Know About the Flu

What You Need to Know About the Flu Thursday, August 16, 018 BLUE P FISH E D I A T R I C S www.bluefishmd.com CYPRESS EDITION Biannual Newsletter In This Issue Find Out: Who should receive the flu vaccine? Who should NOT receive the flu

More information

What s New in Flu? An Update on Influenza Prevention and Treatment

What s New in Flu? An Update on Influenza Prevention and Treatment What s New in Flu? An Update on Influenza Prevention and Treatment Kathryn M. Edwards MD Sarah H. Sell and Cornelius Vanderbilt Professor of Pediatrics Vanderbilt University Nashville, TN, USA Disclosures

More information

Tarrant County Influenza Surveillance Weekly Report CDC Week 10: March 04-10, 2012

Tarrant County Influenza Surveillance Weekly Report CDC Week 10: March 04-10, 2012 Tarrant County Public Health Division of Epidemiology and Health Information Tarrant County Influenza Surveillance Weekly Report CDC Week 10: March 04-10, 2012 Influenza Activity Code, County and State

More information

U.S. Human Cases of Swine Flu Infection (As of April 29, 2009, 11:00 AM ET)

U.S. Human Cases of Swine Flu Infection (As of April 29, 2009, 11:00 AM ET) Swine Flu Call Center Script 4/29/2009 3:00 PM SWINE FLU QUESTIONS What is swine flu? Swine Influenza, also called swine flu, is a respiratory disease of pigs caused by type A influenza viruses. Outbreaks

More information

Adult Immunizations & the Workplace

Adult Immunizations & the Workplace Adult Immunizations & the Workplace Samuel B. Graitcer, MD Office of Associate Director for Adult Immunizations Immunization Services Division National Center for Immunization & Respiratory Diseases Immunization

More information

It is difficult to overemphasize the

It is difficult to overemphasize the ... REPORT... New Developments in Influenza Vaccine Technology: A Potential New Prevention Strategy for Employers and Managed Care Organizations John P. Williams, MD, MBA; and Wayne Lednar, MD Abstract

More information

In This Issue. The Flu A Major Troublemaker For People With Asthma. When the flu hits, people with asthma are hit hard

In This Issue. The Flu A Major Troublemaker For People With Asthma. When the flu hits, people with asthma are hit hard Volume 3 Issue 2 Fall 2004 In This Issue "One of the greatest viral terrorists of our time is the flu. The Flu A Major Troublemaker For People With Asthma When the flu hits, people with asthma are hit

More information

Evaluation of a mass influenza vaccination campaign Takahashi H, Tanaka Y, Ohyama T, Sunagawa T, Nakashima K, Schmid G P, Okabe N

Evaluation of a mass influenza vaccination campaign Takahashi H, Tanaka Y, Ohyama T, Sunagawa T, Nakashima K, Schmid G P, Okabe N Evaluation of a mass influenza vaccination campaign Takahashi H, Tanaka Y, Ohyama T, Sunagawa T, Nakashima K, Schmid G P, Okabe N Record Status This is a critical abstract of an economic evaluation that

More information

Key Facts about Seasonal Flu Vaccine from the Centers for Disease Control and Prevention

Key Facts about Seasonal Flu Vaccine from the Centers for Disease Control and Prevention Key Facts about Seasonal Flu Vaccine from the Centers for Disease Control and Prevention Why should people get vaccinated against the flu? Influenza is a serious disease that can lead to hospitalization

More information

Vaccines in the Pipeline: Norovirus and Respiratory Syncytial Virus (RSV)

Vaccines in the Pipeline: Norovirus and Respiratory Syncytial Virus (RSV) National Center for Immunization & Respiratory Diseases Vaccines in the Pipeline: Norovirus and Respiratory Syncytial Virus (RSV) Aron J. Hall, DVM, MSPH, Dipl ACVPM (RSV slides courtesy of Sue Gerber,

More information

We ll be our lifesaver. We ll get the flu vaccine.

We ll be our lifesaver. We ll get the flu vaccine. We ll be our lifesaver. We ll get the flu vaccine. www.hse.ie/flu Flu Vaccine 2018-19 Healthcare workers prevent the spread of flu and save lives every year by getting vaccinated with the flu vaccine.

More information

CDC DIRECTOR JOINS NATION S TOP HEALTH EXPERTS TO URGE AMERICANS TO SEEK INFLUENZA AND PNEUMOCOCCAL VACCINATIONS THIS FALL AND WINTER

CDC DIRECTOR JOINS NATION S TOP HEALTH EXPERTS TO URGE AMERICANS TO SEEK INFLUENZA AND PNEUMOCOCCAL VACCINATIONS THIS FALL AND WINTER Contact: Jennifer Corrigan 732-382-8898 732-742-7148 (Cell phone) Victoria Amari 212-886-2248 718-413-6491 (Cell phone) CDC DIRECTOR JOINS NATION S TOP HEALTH EXPERTS TO URGE AMERICANS TO SEEK INFLUENZA

More information

Tarrant County Influenza Surveillance Weekly Report CDC Week 43: Oct 22-28, 2017

Tarrant County Influenza Surveillance Weekly Report CDC Week 43: Oct 22-28, 2017 Tarrant County Public Health Division of Epidemiology and Health Information Tarrant County Influenza Surveillance Weekly Report 43: Oct 22-28, 2017 Influenza Activity Code: County and State Levels Tarrant

More information

Prevention and Control of Seasonal Influenza with Vaccines

Prevention and Control of Seasonal Influenza with Vaccines Prevention and Control of Seasonal Influenza with Vaccines Recommendations of the Advisory Committee on Immunization Practices (ACIP), 2009 Prepared by Anthony E. Fiore, MD 1 David K. Shay, MD 1 Karen

More information

Influenza A 6/23/2010. Lisa Winston, MD UCSF / San Francisco General Hospital Divisions of Infectious Diseases and Hospital Medicine

Influenza A 6/23/2010. Lisa Winston, MD UCSF / San Francisco General Hospital Divisions of Infectious Diseases and Hospital Medicine Influenza Update in a Pandemic Year Nothing to disclose. Lisa Winston, MD UCSF / San Francisco General Hospital Divisions of Infectious Diseases and Hospital Medicine Influenza Biology Influenza Biology

More information

Tarrant County Influenza Surveillance Weekly Report CDC Week 17: April 22-28, 2018

Tarrant County Influenza Surveillance Weekly Report CDC Week 17: April 22-28, 2018 Tarrant County Public Health Division of Epidemiology and Health Information Tarrant County Influenza Surveillance Weekly Report 17: April 22-28, 2018 Influenza Activity Code: County and State Levels Tarrant

More information

2013 About Pertussis (Whooping Cough)

2013 About Pertussis (Whooping Cough) 2013 About Pertussis (Whooping Cough) Pertussis Pertussis, also known as whooping cough, is a highly contagious and often serious disease, especially in young children. 1,2 In adolescents and adults it

More information

Pertussis, or whooping cough, was first recognized in

Pertussis, or whooping cough, was first recognized in INVITED COMMENTARY Coughing Up Answers: A Community s Response to Pertussis Joseph B. Bass Jr., Stacie R. Turpin-Saunders Pertussis is a highly contagious but vaccine-preventable disease. In spite of relatively

More information

Influenza. Tim Uyeki MD, MPH, MPP, FAAP

Influenza. Tim Uyeki MD, MPH, MPP, FAAP Influenza Tim Uyeki MD, MPH, MPP, FAAP Influenza Division National Center for Immunization and Respiratory Diseases Coordinating Center for Infectious Diseases Centers for Disease Control and Prevention

More information

NEWS RELEASE FOR INFORMATION CONTACT: Tel [203] Tel [203]

NEWS RELEASE FOR INFORMATION CONTACT: Tel [203] Tel [203] NEWS RELEASE FOR INFORMATION CONTACT: Caroline Calderone Baisley Deborah C. Travers Director of Health Director of Family Health Tel [203] 622-7836 Tel [203] 622-3782 September 18, 2017 For Immediate Release

More information

Tarrant County Influenza Surveillance Weekly Report CDC Week 51: Dec 17-23, 2017

Tarrant County Influenza Surveillance Weekly Report CDC Week 51: Dec 17-23, 2017 Tarrant County Public Health Division of Epidemiology and Health Information Tarrant County Influenza Surveillance Weekly Report 51: Dec 17-23, 2017 Influenza Activity Code: County and State Levels Tarrant

More information

Influenza Activity in Indiana

Influenza Activity in Indiana Objectives of Influenza Surveillance Influenza Activity in Indiana 2014-2015 Reema Patel, MPH Respiratory Epidemiologist Epidemiology Resource Center Indiana State Department of Health Monitor influenza-like

More information

Fluzone High-Dose Vaccine and FIM12 Efficacy Trial Results

Fluzone High-Dose Vaccine and FIM12 Efficacy Trial Results Fluzone High-Dose Vaccine and FIM12 Efficacy Trial Results Corey A. Robertson, MD, MPH Director, Scientific and Medical Affairs, Sanofi Pasteur 1 Older Adults Suffer Disproportionately from Influenza-related

More information

Trends in Pneumonia and Influenza Morbidity and Mortality

Trends in Pneumonia and Influenza Morbidity and Mortality Trends in Pneumonia and Influenza Morbidity and Mortality American Lung Association Research and Program Services Epidemiology and Statistics Unit September 2008 Table of Contents Trends in Pneumonia and

More information

Tarrant County Influenza Surveillance Weekly Report CDC Week 11: Mar 10-16, 2019

Tarrant County Influenza Surveillance Weekly Report CDC Week 11: Mar 10-16, 2019 Tarrant County Public Health Division of Epidemiology and Health Information Tarrant County Influenza Surveillance Weekly Report 11: Mar 10-16, 2019 Influenza Activity Code: County and State Levels Tarrant

More information

The evaluation of free influenza vaccination in health care workers in a medical center in Taiwan

The evaluation of free influenza vaccination in health care workers in a medical center in Taiwan Pharm World Sci (2008) 30:39 43 DOI 10.1007/s11096-007-9137-8 RESEARCH ARTICLE The evaluation of free influenza vaccination in health care workers in a medical center in Taiwan Agnes L. F. Chan Æ Huei-Jen

More information

1/31/2013 DISEASE BASICS. Influenza; Implications for Public Health Professionals. Influenza: An Age-Old Disease, A Disease for All Ages

1/31/2013 DISEASE BASICS. Influenza; Implications for Public Health Professionals. Influenza: An Age-Old Disease, A Disease for All Ages Influenza; Implications for Public Health Professionals Phillip L. Barkley, M.D. Director of Student Health University of Florida DISEASE BASICS Influenza: An Age-Old Disease, A Disease for All Ages Epidemics

More information

INFLUENZA AND OTHER RESPIRATORY VIRUSES

INFLUENZA AND OTHER RESPIRATORY VIRUSES INFLUENZA AND OTHER RESPIRATORY VIRUSES Lung Foundation Australia Patient Seminar 21 st October 2017 Lynette Reid Respiratory Clinical Nurse Specialist, RHH What is influenza (the flu )? Influenza (flu)

More information

INFLUENZA. Rob Young (James. J. Reid) Faculty of Medicine University of Auckland (Otago)

INFLUENZA. Rob Young (James. J. Reid) Faculty of Medicine University of Auckland (Otago) INFLUENZA Rob Young (James. J. Reid) Faculty of Medicine University of Auckland (Otago) INFLUENZA Don t confuse with the common cold Symptoms may be similar BUT those with influenza are sick those with

More information

Severe Acute Respiratory Infections during the Influenza A(H1N1)2009 pandemic in Belgium: first experience of hospital-based flu surveillance

Severe Acute Respiratory Infections during the Influenza A(H1N1)2009 pandemic in Belgium: first experience of hospital-based flu surveillance Arch Public Health 2010, 68, 87-93 Severe Acute Respiratory Infections during the Influenza A(H1N1)2009 pandemic in Belgium: first experience of hospital-based flu surveillance by Hammadi S 1, Gutiérrez

More information

Chapter 5: Influenza Lynnette Brammer, MPH; Nancy Arden, MN; Helen Regnery, PhD; Leone Schmeltz; Keiji Fukuda, MD; and Nancy Cox, PhD

Chapter 5: Influenza Lynnette Brammer, MPH; Nancy Arden, MN; Helen Regnery, PhD; Leone Schmeltz; Keiji Fukuda, MD; and Nancy Cox, PhD VPD Surveillance Manual Chapter 5 (v. 1999) 5 1 Chapter 5: Influenza Lynnette Brammer, MPH; Nancy Arden, MN; Helen Regnery, PhD; Leone Schmeltz; Keiji Fukuda, MD; and Nancy Cox, PhD I. Disease description

More information

Influenza-Associated Pediatric Mortality rev Jan 2018

Influenza-Associated Pediatric Mortality rev Jan 2018 rev Jan 2018 Infectious Agent Influenza A, B or C virus BASIC EPIDEMIOLOGY Transmission Transmission occurs via droplet spread. After a person infected with influenza coughs, sneezes, or talks, influenza

More information

TRENDS IN PNEUMONIA AND INFLUENZA MORBIDITY AND MORTALITY

TRENDS IN PNEUMONIA AND INFLUENZA MORBIDITY AND MORTALITY TRENDS IN PNEUMONIA AND INFLUENZA MORBIDITY AND MORTALITY AMERICAN LUNG ASSOCIATION RESEARCH AND PROGRAM SERVICES EPIDEMIOLOGY AND STATISTICS UNIT February 2006 TABLE OF CONTENTS Trends in Pneumonia and

More information

Novel H1N1 Influenza A: Protecting the Public

Novel H1N1 Influenza A: Protecting the Public Novel H1N1 Influenza A: Protecting the Public Humayun J. Chaudhry, DO, MS, SM, FACOI, FACP, FAODME President, American College of Osteopathic Internists; Clinical Associate Professor of Preventive Medicine,

More information

Seasonal Influenza in Alberta 2010/2011 Summary Report

Seasonal Influenza in Alberta 2010/2011 Summary Report Seasonal Influenza in Alberta 21/211 Summary Report Government of Alberta October 211 ISSN 1927-4114, Surveillance and Assessment Branch Send inquiries to: Health.Surveillance@gov.ab.ca Executive Summary

More information