Contributing Factors to Improved Speech Perception in Children Using the Nucleus 22-Channel Cochlear Prosthesis

Size: px
Start display at page:

Download "Contributing Factors to Improved Speech Perception in Children Using the Nucleus 22-Channel Cochlear Prosthesis"

Transcription

1 Honjo I, Takahashi H (eds): Cochlear Implant and Related Sciences Update. Adv Otorhinolaryngol. Basel, Karger, 1997, vol 52, pp Contributing Factors to Improved Speech Perception in Children Using the Nucleus 22-Channel Cochlear Prosthesis Robert S.C Cowan a,c, e, Karyn L. Calvina, d, Sharon Klieve a, Elizabeth 1. Barker a. e, Julia Z. Sarant a,d, Shani Dettman a, e, Rod Hollow a, e" Cary Rance a, d, Richard C. Dowel/a, c, e, Brian Pymana,C,e, Craeme M. Clarka- d "Cooperative Research Centre for Cochlear Implant, Speech and Hearing Research; bhuman Communication Research Centre; cthe Department of Otolaryngology, University of Melbourne; d The Bionic Ear Institute, and e The Royal Victorian Eye and Ear Hospital, Cochlear Implant Clinic, Melbourne, Vic., Australia Introduction It has been established that use of multiple-channel intracochlear implants can significantly improve speech perception for postlinguistically deafened adults [1]. In the development of the Nucleus 22-channel cochlear implant, there have been significant developments in speech processing strategies, providing additional benefits to speech perception for users [2]. This has recently culminated in the release of the Speak speech processing strategy, developed from research at the University of Melbourne [3]. The Speak strategy employs 20 programmable bandpass filters which are scanned at an adaptive rate, with the largest outputs of these filters presented to up to ten stimulation channels along the electrode array. Comparative studies of the Speak processing strategy (in the Nucleus Spectra-22 speech processor), with the previously-used Multipeak (Multipeak) speech processing strategy (in the Minisystem-22 speech processor), with profoundly deaf adult cochlear implant users have shown that the Speak processing strategy provides a significant benefit to adult users both in quiet situations and particularly in the presence of background noise (4]. Since the first implantation of the Nucleus device in a profoundly hearingimpaired child in Melbourne in 1985, there has been a rapid growth in the Advances in Oto-Rhino-laryngology Editor: w. Arnold, Miinchen Reprint Publishers: S.Karger, Basel Printed in Switzerland

2 number of children using this device. Studies of cochlear implant benefits for children using the Nucleus 22-channel cochlear implant have also shown that children can obtain significant benefits to speech perception, speech production and language, including open-set understanding of words and sentences using the cochlear implant alone [5-9]. In evaluating contributing factors to speech perception benefits available for children, four specific factors are important to investigate: (1) earlier implantation - resulting from earlier detection of deafness; (2) improved hardware and surgical techniques - allowing implantation in infants; (3) improved speech processing, and (4) improved habilitation techniques. Results reported previously have been recorded primarily for children using the Multipeak strategy implemented in the MSP speech processor. While it is important to evaluate the factors which might contribute to improvements in speech perception benefits, an important question is the effect of improved speech processing strategy, since this will determine what is perceived through the device. Given that adult patients changing to the Spectra speech processor had also shown improved perception in noisy situations, and the fact that children are in general in noisy environments in the classroom setting for a large proportion of their day, it was of obvious interest to evaluate the potential for benefit in poor signal-to-noise ratios from use of the Speak processing strategy and from specific training in the ability to perceive in background noise. The study was aimed at evaluating whether children who were experienced in use of the Multipeak speech processing strategy would be able to changeover to the new Speak processing strategy, which provides a subjectively different output. Secondly, the study aimed to evaluate the benefits which might accrue to children from use of controlled habilitation in background noise. Methods Seven children participated in the study. These children were all patients of the University of Melbourne/Royal Victorian Eye and Ear Hospital Cochlear Implant Clinic. All of the children had more than 1 year of experience with the Multipeak processor, and had achieved implant-alone scores on open-set word and sentence materials. In addition, all of the children were in the age range of 6-14 years. No other specific selection criteria were applied, and the children varied in etiology, length of profound deafness preimplant, residual hearing thresholds, age at onset, and experience with the device. These children represented a reasonable crosssection of the pediatric population. The children were evaluated with open-set Speech Intelligibility Test (SIT) sentences. scored by key words (50 per list). In all cases, testing was live-voice, using a consistent speaker throughout the test procedures for each child. Children wrote their response to each test item. or if this was not possible, the responses were videotaped and indepen Cowan/Gal vin/klievelbarkerisarantidettman/hollow/rance/doweilipymaniclark 194

3 % 100 Speak 18 m o Speak 12 m 90 ~ Speak 6 m 80 rul Mpeak * 40 * -* 30 ~ ~l I 20 m. 10 o * * L * 1 ~ ~ jut] lli ~ ~ ~ MA EB CG DH SE RW SN Mean Child * Fig. 1. Implant-alone scores on SIT sentences for 7 children using the Multipeak and Speak processing strategies in background noise (+15 db SIN ratio). *p = dently scored by two experienced clinicians. Each list was only used once for each child, and the use of lists and order of presentation was balanced between processors and across sessions. Each child had four assessments with Multipeak at 2 weekly intervals. The children were switched to Speak, and were subsequently evaluated after 6,12 and 18 months' experience with Speak. In the second study, 4 children participated in a pilot study, during which they received habilitation in background noise for 15 minsession, 2 sessions/week. The signal-tonoise varied for each child, across the range of +5 to +15 db SPL. The children were assessed on perception of CNC words in background noise before and after 6 months of habilitation. Results Figure 1 shows speech perception scores on the SIT sentences in background noise for the 7 children. As shown, 6 of the 7 children showed significant improvements in speech perception scores when using the Speak speech processing strategy as compared with Multipeak. Only 1 child did not show an improved speech perception ability with Speak. It was also evident that improvements for a number of the children continued to increase with additional Improved Speech Perception for Children Using Cochlear Implants 195

4 % 1001J ~ Pretraining Posttraining JA RW SE SN Child Fig. 2. Implant-alone scores on CNC words in background noise for 4 children following controlled habiliation in background noise (+15 db SIN ratio). experience. Mean scores for the group were also significantly higher with Speak as compared to Multipeak. Figure 2 shows results on CNC words in background noise for the 4 children who participated in the controlled habilitation in background noise study. As shown, all 4 children showed improved perception scores following habilitation in background noise. Discussion The results suggest that children who have previously used the Multipeak speech processing strategy in the Nucleus Mini-22 multichannel cochlear implant are able to change to the new Speak processing strategy implemented in the Spectra-22 speech proeessor, and that speech perception benefits may be improved through use of the advanced strategy. As indicated in the data presented in figure 1, and as presented in more detail elsewhere [10], the Speak processing strategy would be of benefit to a large proportion of the children currently using the Multipeak strategy, as benefits were available in both quiet and in the presence of baekground noise, which is more representative of the communication environment experienced by children at school It is also of note that following completion of the study all of the 12 children chose to re- Cowan/Galvin/Klieve/BarkerlSarant/Dettman/Hollow/RancelDoweII/Pyman/Clark 196

5 tain the Speak processor. This included the child who did not score at a higher level with Speak, who was adamant in preferring the Speak processing strategy. Follow-up testing showed that 5 of the children continued to show improvements in speech perception benefits following additional experience with the Speak processing strategy. The results for the habilitation in background noise study suggest that children might benefit from a specific program of habilitation which is focused on improving the children's listening skills in noisy environments. The results also suggest that children, using the Speak processing strategy, will be able to show improved perception in background noise. References Dowell RC, Mecklenburg Dl, Clark GM: Speech recognition for 40 patients receiving multichannel cochlear implants. Arch OtoI1986;112: Clark GM: The development of speech processing strategies for the University of Melbourne/Cochlear multiple channel implantable hearing prosthesis. 1 S L P A 1992;16: McDermott H: An advanced multiple channel cochlear implant. IEEE Trans Biomed Eng 1989:36: Skinner MW, Clark GM, Whitford LA, Seligman PM, Staller SI, Shipp DB, Shallop lk, Everingham C, Menapace CM, Arndt PL, Antognelli T, Brimacombe la, Pijl S, Daniels P, George CR, McDermott HI, Beiter AL: Evaluation of a new spectral peak coding strategy for the Nucleus 22 channel cochlear implant system. Am 1 Otol 1994;15: Cowan RSC, Dowell RC, Pyman BC, Dcttman SJ, Dawson PW, Rance G. Barker EJ, Sarant lz, Clark GM: Preliminary speech perception results for children with the 22-electrode Melbourne/Cochlear hearing prosthesis. Adv OtorhinolaryngoI1993;48: Dawson PW, Blarney PI, Rowland LC, Dettman SI, Clark GM, Busby PA, Brown AM, Dowell RC. Rickards FW: Cochlear implants in children, adolescents, and prelinguistically deafened adults: Speech perception. J Speech Hear Res 1992;35: Osberger MJ, Maso M, Sam LK: Speech intelligibility of children with cochlear implants, tactile aids or hearing aids. J Speech Hear Res 1993;36: Tye-Murray N, Spencer L, Gilbert-Bedia E: Relationships between speech production and speech perception skills in young cochlear implant users. J Acoust Soc Am 1995;98: Cochlear Implants in Adults and Children: NIH Consensus Statement, May , No 13, pp Cowan RSC, Brown C, Whitford LA, Galvin KL, Sarant lz, Barker EJ, Shaw S, King A, Skok M, Seligman PM, Dowell RC. Gibson WPR, Clark GM: Comparative evaluation of Multipeak and Speak speech processing strategies in children using the Nucleus multichannel cochlear implant. Ear Hear, in review. Robert Cowan, Department of Otolaryngology, University of Melbourne, Albert Street, East Melbourne, Vic 3002 (Australia) Improved Speech Perception for Children Using Cochlear Implants 197

6 Minerva Access is the Institutional Repository of The University of Melbourne Author/s: Cowan, Robert S. C.; Galvin, Karyn L.; KLIEVE, SHARON; Barker, Elizabeth J.; Sarant, Julia Z.; DETTMAN, SHANI; Hollow, Rod; RANCE, GARY; Dowell, Richard C.; PYMAN, BRIAN; Clark, Graeme M. Title: Contributing factors to improved speech perception in children using the nucleus 22-channel cochlear prosthesis Date: 1997 Citation: Cowan, R. S. C., Galvin, K. L., Klieve, S., Barker, E. J., Sarant, J. Z., Dettman, S., et al. (1997). Contributing factors to improved speech perception in children using the nucleus 22- channel cochlear prosthesis. In I. Honjo, & H. Takahashi (Eds.), Cochlear implant and related sciences update (Advances in Oto-Rhino-Laryngology), 52, Persistent Link: File Description: Contributing factors to improved speech perception in children using the nucleus 22-channel cochlear prosthesis Terms and Conditions: Terms and Conditions: Copyright in works deposited in Minerva Access is retained by the copyright owner. The work may not be altered without permission from the copyright owner. Readers may only download, print and save electronic copies of whole works for their own personal non-commercial use. Any use that exceeds these limits requires permission from the copyright owner. Attribution is essential when quoting or paraphrasing from these works.

SPEECH PERCEPTION IN CHILDREN USING THE ADVANCED SPEAK SPEECH-PROCESSING STRATEGY

SPEECH PERCEPTION IN CHILDREN USING THE ADVANCED SPEAK SPEECH-PROCESSING STRATEGY SPEECH PERCEPTION IN CHILDREN USING THE ADVANCED SPEAK SPEECH-PROCESSING STRATEGY R. S. C. COWAN, PHD, DAUD; C. BROWN, BA, DAUD; L. A. WIUTFORD, BSc, DAUD; K. L. GALVIN, BSC, DAUD; J. Z. SARANT, BSC, DAUD;

More information

Speech perception of hearing aid users versus cochlear implantees

Speech perception of hearing aid users versus cochlear implantees Speech perception of hearing aid users versus cochlear implantees SYDNEY '97 OtorhinolaIYngology M. FLYNN, R. DOWELL and G. CLARK Department ofotolaryngology, The University ofmelbourne (A US) SUMMARY

More information

Cochlear Implants for Congenitally Deaf Adolescents: Is Open-Set Speech Perception a Realistic Expectation?

Cochlear Implants for Congenitally Deaf Adolescents: Is Open-Set Speech Perception a Realistic Expectation? Cochlear Implants for Congenitally Deaf Adolescents: Is OpenSet Speech Perception a Realistic Expectation? J. Z. Sarant, R. S. C. Cowan, P. J. Blamey, K. L. Galvin, and G. M. Clark The prognosis for benefit

More information

RESEARCH ON SPOKEN LANGUAGE PROCESSING Progress Report No. 22 (1998) Indiana University

RESEARCH ON SPOKEN LANGUAGE PROCESSING Progress Report No. 22 (1998) Indiana University SPEECH PERCEPTION IN CHILDREN RESEARCH ON SPOKEN LANGUAGE PROCESSING Progress Report No. 22 (1998) Indiana University Speech Perception in Children with the Clarion (CIS), Nucleus-22 (SPEAK) Cochlear Implant

More information

Speech perception in children: effects of speech processing strategy and residual hearing

Speech perception in children: effects of speech processing strategy and residual hearing Speech perception in children: effects of speech processing strategy and residual hearing R. COWAN, E. BARKER 2, P. PEGG 3, S. DETTMAN 2, M. RENNE 3, K. GALVN 2, T. MESKN 3, G. RANCE 2, K. CODY 3, K. CODY

More information

A Clinical Report on Receptive Vocabulary Skills in

A Clinical Report on Receptive Vocabulary Skills in A Clinical Report on Receptive Vocabulary Skills in Cochlear Implant Users P. W. Dawson, P. J. Blarney, S. J. Dettman, E. J. Barker, and G. M. Clark Objective: The aim was to measure the rate of vocabulary

More information

Differential-Rate Sound Processing for Cochlear Implants

Differential-Rate Sound Processing for Cochlear Implants PAGE Differential-Rate Sound Processing for Cochlear Implants David B Grayden,, Sylvia Tari,, Rodney D Hollow National ICT Australia, c/- Electrical & Electronic Engineering, The University of Melbourne

More information

A PROPOSED MODEL OF SPEECH PERCEPTION SCORES IN CHILDREN WITH IMPAIRED HEARING

A PROPOSED MODEL OF SPEECH PERCEPTION SCORES IN CHILDREN WITH IMPAIRED HEARING A PROPOSED MODEL OF SPEECH PERCEPTION SCORES IN CHILDREN WITH IMPAIRED HEARING Louise Paatsch 1, Peter Blamey 1, Catherine Bow 1, Julia Sarant 2, Lois Martin 2 1 Dept. of Otolaryngology, The University

More information

POTENTIAL AND LIMITATIONS OF COCHLEAR IMPLANTS IN CHILDREN

POTENTIAL AND LIMITATIONS OF COCHLEAR IMPLANTS IN CHILDREN . _ POTENTIAL AND LIMITATIONS OF COCHLEAR IMPLANTS IN CHILDREN R. C. DOWELL, PHD, DAuo; P. J. BLAMEY, PHD; G. M. CLARK, PHD, FRACS From the Human Communication Research Centre (Dowell. Clark) and the Department

More information

FOF21985 FOF1F21990 Mpeak 1992 N=40 N=64 N=8. Aoous1lc """"Itude. Fundamen1al frequency

FOF21985 FOF1F21990 Mpeak 1992 N=40 N=64 N=8. Aoous1lc Itude. Fundamen1al frequency ~LARK, C.M. ET AL 75 COMPARISON OF THE SPEAK (SPECTRAL MAXIMA) AND MULTIPEAl SPEECH PROCESSING STRATEGIES AND IMPROVED SPEECH PERCEPTION IN BACKGROUND NOISE 781.M. CLARK, L. WHITFORD, R. VAN HOESEL, C.M.

More information

ADJUSTMENT OF APPROPRIATE SIGNAL LEVELS IN THE SPECTRA 22 AND MINI SPEECH PROCESSORS

ADJUSTMENT OF APPROPRIATE SIGNAL LEVELS IN THE SPECTRA 22 AND MINI SPEECH PROCESSORS DJUSTMENT OF PPROPRTE SGNL LEVELS N THE SPECTR 22 ND MN SPEECH PROCESSORS P. SELGMN, PHD; L. WH1FORD, BSc, DuD From the Cooperative Research CenlJ'e for Cochlear mplanl. Speech and Hearing, Melbourne,

More information

ORIGINAL ARTICLE. Outcomes for Cochlear Implant Users With Significant Residual Hearing

ORIGINAL ARTICLE. Outcomes for Cochlear Implant Users With Significant Residual Hearing ORIGINAL ARTICLE Outcomes for Cochlear Implant Users With Significant Residual Hearing Implications for Selection Criteria in Children Richard C. Dowell, DipAud, PhD; Rod Hollow, BSc, DipAud; Elizabeth

More information

BORDERLINE PATIENTS AND THE BRIDGE BETWEEN HEARING AIDS AND COCHLEAR IMPLANTS

BORDERLINE PATIENTS AND THE BRIDGE BETWEEN HEARING AIDS AND COCHLEAR IMPLANTS BORDERLINE PATIENTS AND THE BRIDGE BETWEEN HEARING AIDS AND COCHLEAR IMPLANTS Richard C Dowell Graeme Clark Chair in Audiology and Speech Science The University of Melbourne, Australia Hearing Aid Developers

More information

EXECUTIVE SUMMARY Academic in Confidence data removed

EXECUTIVE SUMMARY Academic in Confidence data removed EXECUTIVE SUMMARY Academic in Confidence data removed Cochlear Europe Limited supports this appraisal into the provision of cochlear implants (CIs) in England and Wales. Inequity of access to CIs is a

More information

The clinical use of cochlear implants has rekindled the historic controversy

The clinical use of cochlear implants has rekindled the historic controversy Journal of Speech, Language, and Hearing Research, Volume 40, 183 199, February 1997 Cochlear Implant Use by Prelingually Deafened Children: The Influences of Age at Implant and Length of Device Use Holly

More information

research directions Cochlear implant G.M.CLARK FREQUENCY CODING ELECTRICAL RATE STIMULATION - PHYSIOLOGY AND PSYCHOPHYSICS Department ofotolaryngology

research directions Cochlear implant G.M.CLARK FREQUENCY CODING ELECTRICAL RATE STIMULATION - PHYSIOLOGY AND PSYCHOPHYSICS Department ofotolaryngology Cochlear implant research directions G.M.CLARK COl1gress of. Sydney, Auslra'ia 2-7 March 1997 Department ofotolaryngology The University ofmelbourne, Melbourne (AUS) The Bionic Ear Institute, Melbourne

More information

IMPROVING CHANNEL SELECTION OF SOUND CODING ALGORITHMS IN COCHLEAR IMPLANTS. Hussnain Ali, Feng Hong, John H. L. Hansen, and Emily Tobey

IMPROVING CHANNEL SELECTION OF SOUND CODING ALGORITHMS IN COCHLEAR IMPLANTS. Hussnain Ali, Feng Hong, John H. L. Hansen, and Emily Tobey 2014 IEEE International Conference on Acoustic, Speech and Signal Processing (ICASSP) IMPROVING CHANNEL SELECTION OF SOUND CODING ALGORITHMS IN COCHLEAR IMPLANTS Hussnain Ali, Feng Hong, John H. L. Hansen,

More information

A surgical approach for a cochlear implant: An anatomical study

A surgical approach for a cochlear implant: An anatomical study A surgical approach for a cochlear implant: An anatomical study By GRAEME M. CLARK (Melbourne) Introduction THERE is now increased interest in the possibility of restoring brain and nerve function by applying

More information

Current evidence for Implantation under 12 months: Australian experience

Current evidence for Implantation under 12 months: Australian experience 14th Symposium on Cochlear Implants in Children, Nashville, Dec 11-13th, 2014 Current evidence for Implantation under 12 months: Australian experience Robert Briggs1,2,3 Jaime Leigh1,3 Monique Waite4 Yetta

More information

The Nucleus 22-Channel Cochlear Implant System

The Nucleus 22-Channel Cochlear Implant System The Nucleus 22-Channel Cochlear mplant System James F. Patrick, MSEE; Graeme M. Clark, FRACS Cochlear Proprietary Limited, New South Wales, Australia (J. F. P.) and Department of Otolaryngology, Royal

More information

Outcomes of Paediatric Cochlear implantation in Single-Sided Deafness or very Asymmetrical Hearing Loss (SSD/AHL)

Outcomes of Paediatric Cochlear implantation in Single-Sided Deafness or very Asymmetrical Hearing Loss (SSD/AHL) Outcomes of Paediatric Cochlear implantation in Single-Sided Deafness or very Asymmetrical Hearing Loss (SSD/AHL) Karyn Galvin 1, Michelle Todorov 1, Rebecca Farrell 2, Robert Briggs 1,2,3,4, Markus Dahm

More information

Acoustic and Electric Same Ear Hearing in Patients with a Standard Electrode Array

Acoustic and Electric Same Ear Hearing in Patients with a Standard Electrode Array Acoustic and Electric Same Ear Hearing in Patients with a Standard Electrode Array Sue Karsten, AuD, Camille Dunn, PhD, Marlan Hansen, MD & Bruce Gantz, MD University of Iowa American Cochlear Implant

More information

COCHLEAR IMPLANTS IN THE SECOND AND THIRD MILLENNIA

COCHLEAR IMPLANTS IN THE SECOND AND THIRD MILLENNIA ISCA Archive http://www.isca-speech.org/archive 5 th International Conference on Spoken Language Processing (ICSLP 98) Sydney, Australia November 30 - December 4, 1998 COCHLEAR IMPLANTS IN THE SECOND AND

More information

===================================================================

=================================================================== =================================================================== Language in India www.languageinindia.com ISSN 1930-2940 Vol. 15:12 December 2015 ==================================================================

More information

The ultimate goals of auditory habilitation programs for children

The ultimate goals of auditory habilitation programs for children Relationships Among Speech Perception, Production, Language, Hearing Loss, and Age in Children With Impaired Hearing Peter J. Blamey Department of Otolaryngology University of Melbourne Australia Julia

More information

Optimizing Dynamic Range in Children Using the Nucleus Cochlear Implant

Optimizing Dynamic Range in Children Using the Nucleus Cochlear Implant Optimizing Dynamic Range in Children Using the Nucleus Cochlear Implant P. W. Dawson, J. A. Decker, and C. E. Psarros Objective: The aim of this study was to investigate the benefits of the preprocessing

More information

Cochlear Implantation for Single-Sided Deafness in Children and Adolescents

Cochlear Implantation for Single-Sided Deafness in Children and Adolescents Cochlear Implantation for Single-Sided Deafness in Children and Adolescents Douglas Sladen, PhD Dept of Communication Sciences and Disorders Western Washington University Daniel M. Zeitler MD, Virginia

More information

THE ROLE OF VISUAL SPEECH CUES IN THE AUDITORY PERCEPTION OF SYNTHETIC STIMULI BY CHILDREN USING A COCHLEAR IMPLANT AND CHILDREN WITH NORMAL HEARING

THE ROLE OF VISUAL SPEECH CUES IN THE AUDITORY PERCEPTION OF SYNTHETIC STIMULI BY CHILDREN USING A COCHLEAR IMPLANT AND CHILDREN WITH NORMAL HEARING THE ROLE OF VISUAL SPEECH CUES IN THE AUDITORY PERCEPTION OF SYNTHETIC STIMULI BY CHILDREN USING A COCHLEAR IMPLANT AND CHILDREN WITH NORMAL HEARING Vanessa Surowiecki 1, vid Grayden 1, Richard Dowell

More information

Factors in the Development of a Training Program for Use with Tactile Devices

Factors in the Development of a Training Program for Use with Tactile Devices Factors in the Development of a Training Program for Use with Tactile Devices Karyn L. Galvin, Robert S.C. Cowan, Julia Z. Sarant, Peter J. Blarney, Graeme M. Clark ABSTRACT A review of the literature

More information

Noise Susceptibility of Cochlear Implant Users: The Role of Spectral Resolution and Smearing

Noise Susceptibility of Cochlear Implant Users: The Role of Spectral Resolution and Smearing JARO 6: 19 27 (2004) DOI: 10.1007/s10162-004-5024-3 Noise Susceptibility of Cochlear Implant Users: The Role of Spectral Resolution and Smearing QIAN-JIE FU AND GERALDINE NOGAKI Department of Auditory

More information

PETER]. BLAMEY,PHD. ALISON M. BROWN, BSc, DIPAuD RICHARD C. DOWELL, MSc, DIPAuD

PETER]. BLAMEY,PHD. ALISON M. BROWN, BSc, DIPAuD RICHARD C. DOWELL, MSc, DIPAuD ... Ann Otol Rhinol LaryngollOl:1992 REPRINTED FROM ANNALS OF OTOLOGY, RHINOLOGY & LARYNGOLOGY APRIL 1992 Volume 101 Number 4 C:=.O~PY.:..:R:..::I:.::G:..:H.:..:T~ 1992, ANNALS PUBLISHING COMPANY FACTORS

More information

RESEARCH ON SPOKEN LANGUAGE PROCESSING Progress Report No. 23 (1999) Indiana University. New Directions in Pediatric Cochlear Implantation 1

RESEARCH ON SPOKEN LANGUAGE PROCESSING Progress Report No. 23 (1999) Indiana University. New Directions in Pediatric Cochlear Implantation 1 RESEARCH ON SPOKEN LANGUAGE PROCESSING Progress Report No. 23 (1999) Indiana University New Directions in Pediatric Cochlear Implantation 1 Karen I. Kirk, 2 Laurie S. Eisenberg 3 and Richard T. Miyamoto

More information

A lip-reading assessment for profoundly deaf patients

A lip-reading assessment for profoundly deaf patients The Journal of Laryngology and Otology April 1983. VoL 97. pp. 343-350 A lip-reading assessment for profoundly deaf patients by L. F. A. MARTIN, G. M. CLARK, P. M. SELIGMAN and Y. C. TONG (Melbourne, Australia)

More information

A Clinical Report on Speech Production of Cochlear

A Clinical Report on Speech Production of Cochlear A Clinical Report on Speech Production of Cochlear Implant Users P. W. Dawson, P. J. Blamey, S. J. Dettman, L. C. Rowland, E. J. Barker, E. A. Tobey, P. A. Busby, R. C. Cowan, and G. M. Clark Objective:

More information

Critical Review: Speech Perception and Production in Children with Cochlear Implants in Oral and Total Communication Approaches

Critical Review: Speech Perception and Production in Children with Cochlear Implants in Oral and Total Communication Approaches Critical Review: Speech Perception and Production in Children with Cochlear Implants in Oral and Total Communication Approaches Leah Chalmers M.Cl.Sc (SLP) Candidate University of Western Ontario: School

More information

Modern cochlear implants provide two strategies for coding speech

Modern cochlear implants provide two strategies for coding speech A Comparison of the Speech Understanding Provided by Acoustic Models of Fixed-Channel and Channel-Picking Signal Processors for Cochlear Implants Michael F. Dorman Arizona State University Tempe and University

More information

The role of periodicity in the perception of masked speech with simulated and real cochlear implants

The role of periodicity in the perception of masked speech with simulated and real cochlear implants The role of periodicity in the perception of masked speech with simulated and real cochlear implants Kurt Steinmetzger and Stuart Rosen UCL Speech, Hearing and Phonetic Sciences Heidelberg, 09. November

More information

Minerva Access is the Institutional Repository of The University of Melbourne

Minerva Access is the Institutional Repository of The University of Melbourne Minerva Access is the nstitutional Repository of The University of Melbourne Author/s: Grogan, M. L.; arker, E. J.; Dettman, S. J.; lamey, P. J. Title: Phonetic and phonological changes in the connected

More information

ive your child the gift of hearing A parents guide to hearing health

ive your child the gift of hearing A parents guide to hearing health ive your child the gift of hearing A parents guide to hearing health Early hearing is critical Hearing loss and deafness is a silent and debilitating disability which affects over 278 million people world

More information

Advances in Implantable Technologies. Huw Cooper BAA 2014

Advances in Implantable Technologies. Huw Cooper BAA 2014 Advances in Implantable Technologies Huw Cooper BAA 2014 Huw.cooper@uhb.nhs.uk Implantable technologies for hearing Aim: to provide access to sound when conventional amplification no longer useful For

More information

Slide 1 REVISITING CANDIDACY: EXPANDING CRITERIA FOR COCHLEAR IMPLANTS. Slide 2. Slide 3. Cochlear Implant History. Cochlear Implant History

Slide 1 REVISITING CANDIDACY: EXPANDING CRITERIA FOR COCHLEAR IMPLANTS. Slide 2. Slide 3. Cochlear Implant History. Cochlear Implant History Slide 1 REVISITING CANDIDACY: EPANDING CRITERIA FR CCHLEAR IMPLANTS Jordan King, Au.D. CCC-A Cochlear Implant Audiologist Arkansas Children s Hospital kingje@archildrens.org Slide 2 Cochlear Implant History

More information

Hearing the Universal Language: Music and Cochlear Implants

Hearing the Universal Language: Music and Cochlear Implants Hearing the Universal Language: Music and Cochlear Implants Professor Hugh McDermott Deputy Director (Research) The Bionics Institute of Australia, Professorial Fellow The University of Melbourne Overview?

More information

Who are cochlear implants for?

Who are cochlear implants for? Who are cochlear implants for? People with little or no hearing and little conductive component to the loss who receive little or no benefit from a hearing aid. Implants seem to work best in adults who

More information

University of Arkansas at Little Rock. remaining auditory neurons directly.

University of Arkansas at Little Rock.  remaining auditory neurons directly. Signal Processing for Cochlear Prosthesis: A Tutorial Review Philipos C. Loizou Department of Applied Science University of Arkansas at Little Rock Little Rock, AR 72204-1099, U.S.A. http://giles.ualr.edu/asd/cimplants/

More information

NIH Public Access Author Manuscript Psychol Sci. Author manuscript; available in PMC 2012 August 28.

NIH Public Access Author Manuscript Psychol Sci. Author manuscript; available in PMC 2012 August 28. NIH Public Access Author Manuscript Published in final edited form as: Psychol Sci. 2000 March ; 11(2): 153 158. LANGUAGE DEVELOPMENT IN PROFOUNDLY DEAF CHILDREN WITH COCHLEAR IMPLANTS Mario A. Svirsky,

More information

Implementation of Spectral Maxima Sound processing for cochlear. implants by using Bark scale Frequency band partition

Implementation of Spectral Maxima Sound processing for cochlear. implants by using Bark scale Frequency band partition Implementation of Spectral Maxima Sound processing for cochlear implants by using Bark scale Frequency band partition Han xianhua 1 Nie Kaibao 1 1 Department of Information Science and Engineering, Shandong

More information

Long-Term Performance for Children with Cochlear Implants

Long-Term Performance for Children with Cochlear Implants Long-Term Performance for Children with Cochlear Implants The University of Iowa Elizabeth Walker, M.A., Camille Dunn, Ph.D., Bruce Gantz, M.D., Virginia Driscoll, M.A., Christine Etler, M.A., Maura Kenworthy,

More information

Adunka et al.: Effect of Preoperative Residual Hearing

Adunka et al.: Effect of Preoperative Residual Hearing The Laryngoscope Lippincott Williams & Wilkins 2008 The American Laryngological, Rhinological and Otological Society, Inc. Effect of Preoperative Residual Hearing on Speech Perception After Cochlear Implantation

More information

The REAL Story on Spectral Resolution How Does Spectral Resolution Impact Everyday Hearing?

The REAL Story on Spectral Resolution How Does Spectral Resolution Impact Everyday Hearing? The REAL Story on Spectral Resolution How Does Spectral Resolution Impact Everyday Hearing? Harmony HiResolution Bionic Ear System by Advanced Bionics what it means and why it matters Choosing a cochlear

More information

ADVANCES in NATURAL and APPLIED SCIENCES

ADVANCES in NATURAL and APPLIED SCIENCES ADVANCES in NATURAL and APPLIED SCIENCES ISSN: 1995-0772 Published BYAENSI Publication EISSN: 1998-1090 http://www.aensiweb.com/anas 2016 December10(17):pages 275-280 Open Access Journal Improvements in

More information

Essential feature. Who are cochlear implants for? People with little or no hearing. substitute for faulty or missing inner hair

Essential feature. Who are cochlear implants for? People with little or no hearing. substitute for faulty or missing inner hair Who are cochlear implants for? Essential feature People with little or no hearing and little conductive component to the loss who receive little or no benefit from a hearing aid. Implants seem to work

More information

Corporate Medical Policy

Corporate Medical Policy Corporate Medical Policy Cochlear Implant File Name: Origination: Last CAP Review: Next CAP Review: Last Review: cochlear_implant 2/1996 2/2017 2/2018 2/2017 Description of Procedure or Service A cochlear

More information

Effects of Setting Thresholds for the MED- EL Cochlear Implant System in Children

Effects of Setting Thresholds for the MED- EL Cochlear Implant System in Children Effects of Setting Thresholds for the MED- EL Cochlear Implant System in Children Stacy Payne, MA, CCC-A Drew Horlbeck, MD Cochlear Implant Program 1 Background Movement in CI programming is to shorten

More information

Hearing Preservation Cochlear Implantation: Benefits of Bilateral Acoustic Hearing

Hearing Preservation Cochlear Implantation: Benefits of Bilateral Acoustic Hearing Hearing Preservation Cochlear Implantation: Benefits of Bilateral Acoustic Hearing Kelly Jahn, B.S. Vanderbilt University TAASLP Convention October 29, 2015 Background 80% of CI candidates now have bilateral

More information

MEDICAL POLICY SUBJECT: COCHLEAR IMPLANTS AND AUDITORY BRAINSTEM IMPLANTS

MEDICAL POLICY SUBJECT: COCHLEAR IMPLANTS AND AUDITORY BRAINSTEM IMPLANTS MEDICAL POLICY. PAGE: 1 OF: 6 If the member's subscriber contract excludes coverage for a specific service it is not covered under that contract. In such cases, medical policy criteria are not applied.

More information

REVISED. The effect of reduced dynamic range on speech understanding: Implications for patients with cochlear implants

REVISED. The effect of reduced dynamic range on speech understanding: Implications for patients with cochlear implants REVISED The effect of reduced dynamic range on speech understanding: Implications for patients with cochlear implants Philipos C. Loizou Department of Electrical Engineering University of Texas at Dallas

More information

752 IEEE TRANSACTIONS ON BIOMEDICAL ENGINEERING, VOL. 51, NO. 5, MAY N. Lan*, K. B. Nie, S. K. Gao, and F. G. Zeng

752 IEEE TRANSACTIONS ON BIOMEDICAL ENGINEERING, VOL. 51, NO. 5, MAY N. Lan*, K. B. Nie, S. K. Gao, and F. G. Zeng 752 IEEE TRANSACTIONS ON BIOMEDICAL ENGINEERING, VOL. 51, NO. 5, MAY 2004 A Novel Speech-Processing Strategy Incorporating Tonal Information for Cochlear Implants N. Lan*, K. B. Nie, S. K. Gao, and F.

More information

2/25/2013. Context Effect on Suprasegmental Cues. Supresegmental Cues. Pitch Contour Identification (PCI) Context Effect with Cochlear Implants

2/25/2013. Context Effect on Suprasegmental Cues. Supresegmental Cues. Pitch Contour Identification (PCI) Context Effect with Cochlear Implants Context Effect on Segmental and Supresegmental Cues Preceding context has been found to affect phoneme recognition Stop consonant recognition (Mann, 1980) A continuum from /da/ to /ga/ was preceded by

More information

A neural network model for optimizing vowel recognition by cochlear implant listeners

A neural network model for optimizing vowel recognition by cochlear implant listeners A neural network model for optimizing vowel recognition by cochlear implant listeners Chung-Hwa Chang, Gary T. Anderson, Member IEEE, and Philipos C. Loizou, Member IEEE Abstract-- Due to the variability

More information

DO NOT DUPLICATE. Copyrighted Material

DO NOT DUPLICATE. Copyrighted Material Annals of Otology, Rhinology & Laryngology 115(6):425-432. 2006 Annals Publishing Company. All rights reserved. Effects of Converting Bilateral Cochlear Implant Subjects to a Strategy With Increased Rate

More information

Comparing Speech Perception Abilities of Children with Cochlear Implants and Digital Hearing Aids

Comparing Speech Perception Abilities of Children with Cochlear Implants and Digital Hearing Aids Comparing Speech Perception Abilities of Children with Cochlear Implants and Digital Hearing Aids Lisa S. Davidson, PhD CID at Washington University St.Louis, Missouri Acknowledgements Support for this

More information

Bilateral cochlear implantation in children identified in newborn hearing screening: Why the rush?

Bilateral cochlear implantation in children identified in newborn hearing screening: Why the rush? Bilateral cochlear implantation in children identified in newborn hearing screening: Why the rush? 7 th Australasian Newborn Hearing Screening Conference Rendezous Grand Hotel 17 th 18 th May 2013 Maree

More information

JARO. Effects of Stimulus Level on Speech Perception with Cochlear Prostheses KEVIN H. FRANCK, 1,2 LI XU, 1,3 AND BRYAN E.

JARO. Effects of Stimulus Level on Speech Perception with Cochlear Prostheses KEVIN H. FRANCK, 1,2 LI XU, 1,3 AND BRYAN E. JARO 04: 49 59 (2002) DOI: 10.1007/s10162-002-2047-5 JARO Journal of the Association for Research in Otolaryngology Effects of Stimulus Level on Speech Perception with Cochlear Prostheses KEVIN H. FRANCK,

More information

RESEARCH ON SPOKEN LANGUAGE PROCESSING Progress Report No. 22 (1998) Indiana University. Speech Production by Users of Cochlear Implants:A Review 1

RESEARCH ON SPOKEN LANGUAGE PROCESSING Progress Report No. 22 (1998) Indiana University. Speech Production by Users of Cochlear Implants:A Review 1 SPEECH PRODUCTION BY USERS OF COCHLEAR IMPLANTS RESEARCH ON SPOKEN LANGUAGE PROCESSING Progress Report No. 22 (1998) Indiana University Speech Production by Users of Cochlear Implants:A Review 1 Mario

More information

Wheaton Journal of Neuroscience Senior Seminar Research

Wheaton Journal of Neuroscience Senior Seminar Research Wheaton Journal of Neuroscience Senior Seminar Research Issue 1, Spring 2016: "Life 2.0: Blurring the Boundary Between our Tech and Ourselves" R.L. Morris, Editor. Wheaton College, Norton Massachusetts.

More information

Speech, Language, and Hearing Sciences. Discovery with delivery as WE BUILD OUR FUTURE

Speech, Language, and Hearing Sciences. Discovery with delivery as WE BUILD OUR FUTURE Speech, Language, and Hearing Sciences Discovery with delivery as WE BUILD OUR FUTURE It began with Dr. Mack Steer.. SLHS celebrates 75 years at Purdue since its beginning in the basement of University

More information

MEDICAL POLICY SUBJECT: COCHLEAR IMPLANTS AND AUDITORY BRAINSTEM IMPLANTS. POLICY NUMBER: CATEGORY: Technology Assessment

MEDICAL POLICY SUBJECT: COCHLEAR IMPLANTS AND AUDITORY BRAINSTEM IMPLANTS. POLICY NUMBER: CATEGORY: Technology Assessment MEDICAL POLICY PAGE: 1 OF: 5 If the member's subscriber contract excludes coverage for a specific service it is not covered under that contract. In such cases, medical policy criteria are not applied.

More information

Understanding cochlear implants: a guide for parents and educators

Understanding cochlear implants: a guide for parents and educators Washington University School of Medicine Digital Commons@Becker Independent Studies and Capstones Program in Audiology and Communication Sciences 2005 Understanding cochlear implants: a guide for parents

More information

The Effects of Speech Production and Vocabulary Training on Different Components of Spoken Language Performance

The Effects of Speech Production and Vocabulary Training on Different Components of Spoken Language Performance The Effects of Speech Production and Vocabulary Training on Different Components of Spoken Language Performance Louise E. Paatsch University of Melbourne Peter J. Blamey University of Melbourne Dynamic

More information

1. Human auditory pathway.

1. Human auditory pathway. 1. Human auditory pathway. the pinna, ear channel, and eardrum (tympanic membrane). The external ear collects the sound waves and guides them to the middle ear. The eardrum or tympanic membrane transmits

More information

HCSCGS16: Introduction to Speech, Hearing and Audiology: Part 2 (Academic Year 2014/15)

HCSCGS16: Introduction to Speech, Hearing and Audiology: Part 2 (Academic Year 2014/15) HCSCGS16: Introduction to Speech, Hearing and Audiology: Part 2 (Academic Year 2014/15) View Online 1 McCormick B. Behavioural hearing tests 6 months to 3;6 years. In: Paediatric audiology, 0-5 years.

More information

Essential feature. Who are cochlear implants for? People with little or no hearing. substitute for faulty or missing inner hair

Essential feature. Who are cochlear implants for? People with little or no hearing. substitute for faulty or missing inner hair Who are cochlear implants for? Essential feature People with little or no hearing and little conductive component to the loss who receive little or no benefit from a hearing aid. Implants seem to work

More information

Influence of Electrical Field Interation on Speech Recognition Performance of Cochlear Implant Users: Adults With Prelingual Deafness

Influence of Electrical Field Interation on Speech Recognition Performance of Cochlear Implant Users: Adults With Prelingual Deafness Influence of Electrical Field Interation on Speech Recognition Performance of Cochlear Implant Users: Adults With Prelingual Deafness Goutam Goyal, M. E., Dr. K. K. Dhawan, Dr. S. S. Tiwari, ABSTRACT To

More information

Development of Silicon Microelectrodes for Cochlear Implant Technology

Development of Silicon Microelectrodes for Cochlear Implant Technology Development of Silicon Microelectrodes for Cochlear Implant Technology Joanna R. Parker*. H. Barry Hanison**.Graeme M. Clark*. Jim Patrick*. OlafReinhol~ * Cooperative Research Centre/or Cochlear Implant,

More information

Jack Noble, PhD, René Gifford, PhD, Benoit Dawant, PhD, and Robert Labadie, MD, PhD

Jack Noble, PhD, René Gifford, PhD, Benoit Dawant, PhD, and Robert Labadie, MD, PhD Jack Noble, PhD, René Gifford, PhD, Benoit Dawant, PhD, and Robert Labadie, MD, PhD Overview The position of implanted electrodes relative to stimulation targets can be used to aid programming Individualized

More information

Title: Preliminary speech recognition results after cochlear implantation in patients with unilateral hearing loss: a case report

Title: Preliminary speech recognition results after cochlear implantation in patients with unilateral hearing loss: a case report Author's response to reviews Title: Preliminary speech recognition results after cochlear implantation in patients with unilateral hearing loss: a case report Authors: Yvonne Stelzig (yvonnestelzig@bundeswehr.org)

More information

What you re in for. Who are cochlear implants for? The bottom line. Speech processing schemes for

What you re in for. Who are cochlear implants for? The bottom line. Speech processing schemes for What you re in for Speech processing schemes for cochlear implants Stuart Rosen Professor of Speech and Hearing Science Speech, Hearing and Phonetic Sciences Division of Psychology & Language Sciences

More information

Production of Stop Consonants by Children with Cochlear Implants & Children with Normal Hearing. Danielle Revai University of Wisconsin - Madison

Production of Stop Consonants by Children with Cochlear Implants & Children with Normal Hearing. Danielle Revai University of Wisconsin - Madison Production of Stop Consonants by Children with Cochlear Implants & Children with Normal Hearing Danielle Revai University of Wisconsin - Madison Normal Hearing (NH) Who: Individuals with no HL What: Acoustic

More information

Mandarin tone recognition in cochlear-implant subjects q

Mandarin tone recognition in cochlear-implant subjects q Hearing Research 197 (2004) 87 95 www.elsevier.com/locate/heares Mandarin tone recognition in cochlear-implant subjects q Chao-Gang Wei a, Keli Cao a, Fan-Gang Zeng a,b,c,d, * a Department of Otolaryngology,

More information

Factors Associated with Development of Speech Production Skills in Children Implanted by Age Five

Factors Associated with Development of Speech Production Skills in Children Implanted by Age Five Factors Associated with Development of Speech Production Skills in Children Implanted by Age Five Emily A. Tobey, Ann E. Geers, Chris Brenner, Dianne Altuna, and Gretchen Gabbert Objective: This study

More information

The Effects of Auditory Feedback from the Nucleus Cochlear Implant on the Vowel Formant Frequencies Produced by Children and Adults

The Effects of Auditory Feedback from the Nucleus Cochlear Implant on the Vowel Formant Frequencies Produced by Children and Adults The Effects of Auditory Feedback from the Nucleus Cochlear Implant on the Vowel Formant Frequencies Produced by Children and Adults Louise M. Richardson, Peter A. Busby, Peter J. Blarney, Richard C. DoweII,

More information

Diagnosis and Management of ANSD: Outcomes of Cochlear Implants versus Hearing Aids

Diagnosis and Management of ANSD: Outcomes of Cochlear Implants versus Hearing Aids Diagnosis and Management of ANSD: Outcomes of Cochlear Implants versus Hearing Aids Gary Rance PhD The University of Melbourne International Paediatric Conference, Shanghai, April 214 Auditory Neuropathy

More information

Binaural Hearing and Speech Laboratory. In un

Binaural Hearing and Speech Laboratory. In un In un Pitch ranking, pitch matching, and binaural fusion in children with bilateral cochlear implants: bringing research into clinical practice Co-authors: Ruth Litovsky, Ph.D. Professor, Depts. of Communication

More information

Validation Studies. How well does this work??? Speech perception (e.g., Erber & Witt 1977) Early Development... History of the DSL Method

Validation Studies. How well does this work??? Speech perception (e.g., Erber & Witt 1977) Early Development... History of the DSL Method DSL v5.: A Presentation for the Ontario Infant Hearing Program Associates The Desired Sensation Level (DSL) Method Early development.... 198 Goal: To develop a computer-assisted electroacoustic-based procedure

More information

Cochlear Implant. Description

Cochlear Implant. Description Subject: Cochlear Implant Page: 1 of 24 Last Review Status/Date: December 2014 Cochlear Implant Description Cochlear implant is a device for individuals with severe-to-profound hearing loss who only receive

More information

NATIONAL INSTITUTE FOR CLINICAL EXCELLENCE

NATIONAL INSTITUTE FOR CLINICAL EXCELLENCE NATIONAL INSTITUTE FOR CLINICAL EXCELLENCE INTERVENTIONAL PROCEDURES PROGRAMME Interventional procedures overview of auditory brain stem implants Introduction This overview has been prepared to assist

More information

Policy #: 018 Latest Review Date: June 2014

Policy #: 018 Latest Review Date: June 2014 Name of Policy: Cochlear Implants Policy #: 018 Latest Review Date: June 2014 Category: Surgery Policy Grade: A Background/Definitions: As a general rule, benefits are payable under Blue Cross and Blue

More information

Program. Setting Appropriate Expectations and Communication Goals with a Cochlear Implant. Name Title

Program. Setting Appropriate Expectations and Communication Goals with a Cochlear Implant. Name Title Program Setting Appropriate Expectations and Communication Goals with a Cochlear Implant Name Title Mission At Advanced Bionics we are dedicated to improving lives by developing technologies and services

More information

PRECURVED ELECTRODE ARRAY AND INSERTION TOOL

PRECURVED ELECTRODE ARRAY AND INSERTION TOOL PRECURVED ELECTRODE ARRAY AND INSERTION TOOL C. G. TREABA, MENGSC; J. Xu, MD; S.-A. Xu, MD; G. M. CLARK, PHD, FRACS FromCochlearPty limiled, Sydney (l'reaba), the Department ofotolaryngology (J. Xu, S.-A.

More information

BRING ON BINAURAL VOICESTREAM TECHNOLOGY The Best Technology for Hearing with Both Ears

BRING ON BINAURAL VOICESTREAM TECHNOLOGY The Best Technology for Hearing with Both Ears Advanced Bionics AG Laubisrütistrasse 28, 8712 Stäfa, Switzerland T: +41.58.928.78.00 F: +41.58.928.78.90 info.switzerland@advancedbionics.com Advanced Bionics LLC 28515 Westinghouse Place Valencia, CA

More information

Basic Fitting and Evaluation Parameters of a Newly Designed Cochlear Implant Electrode

Basic Fitting and Evaluation Parameters of a Newly Designed Cochlear Implant Electrode Acta Otolaryngol 2003; 00: 1/5 Basic Fitting and Evaluation Parameters of a Newly Designed Cochlear Implant Electrode P.R. DEMAN 1, K. DAEMERS 1,*, M. YPERMAN 1,*, F.F. OFFECIERS 1, A. PLASMANS 2, B. VAN

More information

Medical Policy An independent licensee of the Blue Cross Blue Shield Association

Medical Policy An independent licensee of the Blue Cross Blue Shield Association Cochlear Implant Page 1 of 30 Medical Policy An independent licensee of the Blue Cross Blue Shield Association Title: Cochlear Implant Professional Institutional Original Effective Date: February 1, 2002

More information

Adapting to bilateral cochlear implants: Early post-operative device use by children receiving

Adapting to bilateral cochlear implants: Early post-operative device use by children receiving Adapting to bilateral cochlear implants: Early post-operative device use by children receiving sequential or simultaneous implants at or before 3.5 years. Karyn Louise Galvin and Kathryn Clare Hughes Audiology,

More information

Performance outcome of paediatric pre-lingual cochlear implantation

Performance outcome of paediatric pre-lingual cochlear implantation Case Report Performance outcome of paediatric pre-lingual cochlear ation Dr. Anjan Das* Abstract Objective : To evaluate the speech and hearing outcome of paediatric pre-lingual cochlear ation. Study Design

More information

A simple two-component model of the electrically evoked compound action potential in the human cochlea

A simple two-component model of the electrically evoked compound action potential in the human cochlea Zurich Open Repository and Archive University of Zurich Main Library Strickhofstrasse 39 CH-8057 Zurich www.zora.uzh.ch Year: 2000 A simple two-component model of the electrically evoked compound action

More information

Michael Dorman Department of Speech and Hearing Science, Arizona State University, Tempe, Arizona 85287

Michael Dorman Department of Speech and Hearing Science, Arizona State University, Tempe, Arizona 85287 The effect of parametric variations of cochlear implant processors on speech understanding Philipos C. Loizou a) and Oguz Poroy Department of Electrical Engineering, University of Texas at Dallas, Richardson,

More information

FM for Cochlear Implants Chapter 13. Effects of Accessory-Mixing Ratio on Performance with Personal FM and Cochlear Implants

FM for Cochlear Implants Chapter 13. Effects of Accessory-Mixing Ratio on Performance with Personal FM and Cochlear Implants FM for Cochlear Implants Chapter 13 Effects of Accessory-Mixing Ratio on Performance with Personal FM and Cochlear Implants Jace Wolfe & Erin C. Schafer Jace Wolfe, Ph.D., is the Director of Audiology

More information

Speech conveys not only linguistic content but. Vocal Emotion Recognition by Normal-Hearing Listeners and Cochlear Implant Users

Speech conveys not only linguistic content but. Vocal Emotion Recognition by Normal-Hearing Listeners and Cochlear Implant Users Cochlear Implants Special Issue Article Vocal Emotion Recognition by Normal-Hearing Listeners and Cochlear Implant Users Trends in Amplification Volume 11 Number 4 December 2007 301-315 2007 Sage Publications

More information

Emergence of Consonants in Young Children with Hearing Loss

Emergence of Consonants in Young Children with Hearing Loss Emergence of Consonants in Young Children with Hearing Loss Mallene Wiggin 1, Allison L. Sedey 1, Rebecca Awad 2, Jamie M. Bogle 3, and Christine Yoshinaga-Itano 1 1 University of Colorado-Boulder 2 Children

More information

James W. Hall III, Ph.D.

James W. Hall III, Ph.D. Application of Auditory Steady State Response (ASSR) in Diagnosis of Infant Hearing Loss in the Era of Universal Newborn Hearing Screening James W. Hall III, Ph.D. Clinical Professor and Chair Department

More information