The Central Auditory System

Size: px
Start display at page:

Download "The Central Auditory System"

Transcription

1 THE AUDITORY SYSTEM

2 Each auditory nerve sends information to the cochlear nucleus. The Central Auditory System From there, projections diverge to many different pathways.

3 The Central Auditory System There are many parallel pathways in the auditory brainstem. The binaural system receives input from both ears. The monaural system receives input from one ear only.

4 Each set of auditory pathways has a specialized function

5 The cochlear nucleus is the first stage in the central auditory pathway Each auditory nerve fiber diverges to three divisions of the cochlear nucleus. This means that there Are three tonotopic maps In the cochlear nucleus. Each map provides a separate set of pathways.

6 Each division of the cochlear nucleus contains specialized cell types Different cell types receive different types of synaptic endings, and respond differently to the same stimulus.

7 Neurons in the cochlear nucleus (and at higher levels) transform the incoming signal in many different ways. The auditory nerve input is strictly excitatory (glutamate). Some neurons in the cochlear nucleus are inhibitory (GABA or glycine). Auditory nerve discharge patterns are converted to many other types of temporal pattern. There is a progressive increase in the range of response latencies.

8 Changes in response pattern The stereotyped auditory nerve discharge is converted to many different temporal response patterns. Each pattern emphasizes different information.

9 Increase in range of latencies Each synapse adds approximately 1 ms latency. Any integrative process that requires time adds latency.

10 The superior olive and processing of sound localization cues Cues for sound localization in the horizontal plane: Interaural level difference Interaural time difference

11 Interaural Intensity Differences (IIDs) For wavelengths less than head diameter, the head casts a partial or total sound shadow. The difference in sound intensity between the two ears is the interaural intensity difference (IID). IID varies as a function of sound source position

12 Interaural Time Differences (ITDs) For wavelengths greater than head diameter, there is no sound shadow, but the sound may reach the two ears at slightly different times. The difference in timing between the two ears is the interaural time difference (ITD). ITD varies as a function of sound source position.

13 The superior olivary complex receives input from both cochlear nuclei The medial superior olive (MSO) receives excitatory input from both ears. The lateral superior olive (LSO) receives excitatory input from the ipsilateral ear and inhibitory input from the contralateral ear.

14 The duplex theory of sound localization The cues that are available suggest that we use two different mechanisms for localizing sound sources: Interaural Intensity Differences (ILDs) for high frequency sounds Interaural Time Differences (ITDs) for low frequency sounds

15 VIA AUDITIVA CORTEZA AUDITIVA TÁLAMO AUDITIVO COLÍCULO INFERIOR NÚCLEOS DEL LEMNISCO LATERAL NÚCLEOS COCLEARES COMPLEJO OLIVAR SUPERIOR

16 ESTRUCTURA DE LOS NÚCLEOS DEL LEMNISCO LATERAL DEL GATO NDLL VNLL

17 Coronal Plane

18 IC IC Petrol Station DNLL VNLL From CN and SOC From NLL

19

20 Neurotrasmitters

21 TEMPORAL PROCESSING includes Neural representation of time-varying stimulus features Generation of a temporal pattern of neural activity from stimulus properties that are not temporal in nature. Time-based neural computations or other operations.

22 Neural Representation of Time-Varying Information: Some Examples Onset or sustained responses provide time markers for temporal features of a stimulus, e.g. onset time and/or duration. There may be synchrony of responses within a neural population. onset sustained

23 Many neurons at early stages of the auditory system respond in a phaselocked pattern to each cycle of a low frequency tone or each cycle of a tone that is periodically modulated in amplitude or frequency. The temporal pattern of response provides real-time information about the fine structure of sound.

24 What Happens to Temporal Patterns of Neural Activity in Sensory Systems? The original temporal pattern that directly reflects stimulus timing may be retained. Any neuron can transmit this information. The original temporal pattern may be converted to a place code. This means that activity in a specific neuron signals that a specific temporal pattern occurred. The activity in this case does not need to reflect stimulus timing properties. The original temporal pattern may be converted to a hybrid spatio-temporal code in which specific neurons are active and fire in specific temporal patterns.

25 The Central Nervous System Performs Storage, Retrieval, and Recombination of Temporal Information. Short-term storage provides context or sets up a pattern of expectation. Long-term storage provides templates for recognition of commonly encountered temporal patterns. Specific patterns of sensory stimuli can evoke specific spatiotemporal patterns of motor activity.

26 All of the auditory structures and pathways in the central nervous system participate in some aspect of temporal processing. Green arrows show the cochlear nucleus (CN) and inferior colliculus (IC). They also indicate the plane of section in the next slide where the laleral lemniscus nuclei are shown.

27 The Nuclei of the Lateral Lemniscus (NLL) are an important part of the pathway for analyzing temporal patterns of sound. Frontal section through the brain of a bat shows the large NLL complex.

28 In animals such as the cat, the nuclei of the lateral lemniscus are smaller relative to total brain size, and cell types are not as well segregated.

29 VIA AUDITIVA CORTEZA AUDITIVA TÁLAMO AUDITIVO COLÍCULO INFERIOR NÚCLEOS DEL LEMNISCO LATERAL NÚCLEOS COCLEARES COMPLEJO OLIVAR SUPERIOR

30 ESTRUCTURA DE LOS NÚCLEOS DEL LEMNISCO LATERAL DEL GATO NDLL VNLL

31 CASE OO/ khz. Fluorescein 110µm VCN 30.5 khz. Rodhamine 160µm 200µm Deep DCN 100µm

32 Case 00/034 Case 97/114

33 Coronal CASE 00/122 DCN-30.5 khz. VCN-31 khz. Sagittal Horizontal Slicing (270 µm. thick) D M V D D R M M C

34

35 Coronal CASE 00/121 DCN-1.8 khz. DCN-1.7 khz. Sagittal Horizontal Slicing (200 µm. thick) D M V D D M M C C

36 Coronal Sagittal Horizontal L C D D CASE 00/121 DCN-1.8 khz. DCN-1.7 khz M C

37

38 CASE 97/114 VCN-3 khz. DCN-6 khz. Coronal Sagittal Horizontal Slicing (230 µm. thick) D M D D R M V M C

39

40

41 97/114 3 khz. vs. 6kHz. Segregated axonal plexus 00/ khz. vs. 1.7kHz. Overlaping axonal plexus Lateral view D D C C

42 1.8 khz. vs. 1.7kHz. 3 khz. vs. 6kHz.

43 TONOTOPICAL ORGANIZATION OF CNC AFFERENCES 30.5 / 31 khz. 1.7/1.8 khz. WIRING DIAGRAM Dorsal Middle Ventral

44 ESTRUCTURA DE LOS NÚCLEOS DEL LEMNISCO LATERAL DEL GATO

45 ESTRUCTURA DE LOS NÚCLEOS DEL LEMNISCO LATERAL DEL GATO

46 ESTRUCTURA DE LOS NÚCLEOS DEL LEMNISCO LATERAL DEL GATO

47 ESTRUCTURA DE LOS NÚCLEOS DEL LEMNISCO LATERAL DEL GATO

48 The intermediate and ventral divisions of the NLL (INLL and VLL) are predominantly monaural, receiving excitatory input from the contralateral cochlear nucleus (AVCN and PVCN) and inhibitory input from the medial nucleus of the trapezoid body (MNTB)

49 The IC receives direct projections from the cochlear nucleus (DCN and AVCN) as well as projections via the INLL and VNLL.

50 6 µm 20 µm

51

52 Neuron Types DNLL

53 Neuron Types VCLL

54 The lower brainstem auditory pathways perform a number of transformations that are important for temporal processing: Change from excitation to inhibition Change in discharge pattern Increase in response latency Selectivity for behaviorally relevant sound patterns.

55 Change From Excitation to Inhibition All input from the auditory nerve is glutamatergic and excitatory. Fibers diverge to different cell types which in turn provide direct or indirect excitatory or inhibitory input to cells in the NLL complex. The firing of the NLL neuron (or IC neuron) is determined by the relative strengths and timing of convergent inputs, which may add together or cancel each other.

56 Each division of the NLL has characteristic cell types and characteristic discharge patterns. Sustained, nonadapting response Single-spike onset response Chopper response

57 The range of latencies increases at each stage of processing up through the level of the IC.

58 There is considerable overlap in the ranges of neurons latencies at every stage of the central auditory system. This means that a single brief sound causes a prolonged wave of activity that is simultaneously present at all stages.

59 Delay lines Neurons with different latencies form systems of delay lines that provide a mechanism for comparing or otherwise integrating information about sounds that occur at different times. This is important for analyzing temporal patterns, including speech.

60 Blue = monaural Red = binaural The nuclei of the lateral lemniscus provide both excitatory and inhibitory inputs to the IC. These inputs have different latencies and time courses.

61 A single neuron in the IC may receive many inputs with very different characteristics. There is convergence of excitatory and inhibitory inputs with different latiencies, time courses, and tuning.

62 As a result of this convergence, many neurons in the IC are selective for specific temporal features of patterns of sound. IC neurons may be selective for: Amplitude Sound duration Interstimulus interval Direction of frequency modulation Rate of sinusoidal amplitude modulation Multiple parameters of sinusoidal frequency modulation

63 Synaptic inputs interact with IC neurons intrinsic properties. The resulting computations are important for creating selectivity to temporal features, including those important for speech.

64 IC neurons act as coincidence detectors (or anti-coincidence detectors) in that they respond only to certain combinations of inputs that arrive in specific time relationships.

65 A Case Study in Temporal Pattern Analysis: Delay-Tuned Neurons A Some neurons in the IC respond selectively to two sounds separated by a specific interval, or delay between one sound and the next (A- C). They respond poorly or not at all to a single sound (D). B C D

66 Another Case Study: Duration Tuning. Some IC neurons respond only to sounds of a specific duration. They do not respond if the sound is too short, or if it is too long. Different neurons have different best durations (pink arrows).

67 Blocking neural inhibition abolishes duration tuning so that the IC neuron responds to sounds regardless of their duration.

68 FM Direction-Selective Neurons Some neurons in the NLL and IC respond only to a sound that changes in frequency from high to low or vice versa. A number of mechanisms could be responsible, including coincidence of EPSPs when different frequencies occur in the proper sequence or coincidence of EPSP and IPSP when the change is in the wrong direction.

69 Specializations in the IC Specific populations of neurons in the IC are specialized to detect specific patterns of sound. These patterns may be simple features such as sound duration or interstimulus interval. They may be more complex patterns such as the direction of change in frequency, the rate of periodic amplitude or frequency modulation, or even whether a sound is predictable or novel. All of these specializations arise through interaction of synaptic inputs with IC neurons intrinsic properties and state.

Processing in The Cochlear Nucleus

Processing in The Cochlear Nucleus Processing in The Cochlear Nucleus Alan R. Palmer Medical Research Council Institute of Hearing Research University Park Nottingham NG7 RD, UK The Auditory Nervous System Cortex Cortex MGB Medial Geniculate

More information

Processing in The Superior Olivary Complex

Processing in The Superior Olivary Complex Processing in The Superior Olivary Complex Alan R. Palmer Medical Research Council Institute of Hearing Research University Park Nottingham NG7 2RD, UK Binaural cues for Localising Sounds in Space time

More information

J Jeffress model, 3, 66ff

J Jeffress model, 3, 66ff Index A Absolute pitch, 102 Afferent projections, inferior colliculus, 131 132 Amplitude modulation, coincidence detector, 152ff inferior colliculus, 152ff inhibition models, 156ff models, 152ff Anatomy,

More information

The Auditory Nervous System

The Auditory Nervous System Processing in The Superior Olivary Complex The Auditory Nervous System Cortex Cortex Alan R. Palmer MGB Excitatory GABAergic IC Glycinergic Interaural Level Differences Medial Geniculate Body Inferior

More information

Spatial hearing and sound localization mechanisms in the brain. Henri Pöntynen February 9, 2016

Spatial hearing and sound localization mechanisms in the brain. Henri Pöntynen February 9, 2016 Spatial hearing and sound localization mechanisms in the brain Henri Pöntynen February 9, 2016 Outline Auditory periphery: from acoustics to neural signals - Basilar membrane - Organ of Corti Spatial

More information

Dorsal Cochlear Nucleus. Amanda M. Lauer, Ph.D. Dept. of Otolaryngology-HNS

Dorsal Cochlear Nucleus. Amanda M. Lauer, Ph.D. Dept. of Otolaryngology-HNS Dorsal Cochlear Nucleus Amanda M. Lauer, Ph.D. Dept. of Otolaryngology-HNS May 30, 2016 Overview Structure Response properties Hypothesized roles in hearing Review of VCN-DCN circuits and projections Structure

More information

Neural Recording Methods

Neural Recording Methods Neural Recording Methods Types of neural recording 1. evoked potentials 2. extracellular, one neuron at a time 3. extracellular, many neurons at a time 4. intracellular (sharp or patch), one neuron at

More information

Modeling and Simulation of the Auditory Pathway

Modeling and Simulation of the Auditory Pathway ModelingandSimulationoftheAuditory Pathway TECHNICALREPORT CalF.Rabang WeldonSchoolofBiomedicalEngineering crabang@purdue.edu EdwardL.Bartlett DepartmentsofBiologicalSciencesandBiomedicalEngineering ebartle@purdue.edu

More information

Binaural Hearing. Steve Colburn Boston University

Binaural Hearing. Steve Colburn Boston University Binaural Hearing Steve Colburn Boston University Outline Why do we (and many other animals) have two ears? What are the major advantages? What is the observed behavior? How do we accomplish this physiologically?

More information

Before we talk about the auditory system we will talk about the sound and waves

Before we talk about the auditory system we will talk about the sound and waves The Auditory System PHYSIO: #3 DR.LOAI ZAGOUL 24/3/2014 Refer to the slides for some photos. Before we talk about the auditory system we will talk about the sound and waves All waves have basic characteristics:

More information

21/01/2013. Binaural Phenomena. Aim. To understand binaural hearing Objectives. Understand the cues used to determine the location of a sound source

21/01/2013. Binaural Phenomena. Aim. To understand binaural hearing Objectives. Understand the cues used to determine the location of a sound source Binaural Phenomena Aim To understand binaural hearing Objectives Understand the cues used to determine the location of a sound source Understand sensitivity to binaural spatial cues, including interaural

More information

Lecture 7 Hearing 2. Raghav Rajan Bio 354 Neurobiology 2 February 04th All lecture material from the following links unless otherwise mentioned:

Lecture 7 Hearing 2. Raghav Rajan Bio 354 Neurobiology 2 February 04th All lecture material from the following links unless otherwise mentioned: Lecture 7 Hearing 2 All lecture material from the following links unless otherwise mentioned: 1. http://wws.weizmann.ac.il/neurobiology/labs/ulanovsky/sites/neurobiology.labs.ulanovsky/files/uploads/purves_ch12_ch13_hearing

More information

Auditory System & Hearing

Auditory System & Hearing Auditory System & Hearing Chapters 9 and 10 Lecture 17 Jonathan Pillow Sensation & Perception (PSY 345 / NEU 325) Spring 2015 1 Cochlea: physical device tuned to frequency! place code: tuning of different

More information

Binaurally-coherent jitter improves neural and perceptual ITD sensitivity in normal and electric hearing

Binaurally-coherent jitter improves neural and perceptual ITD sensitivity in normal and electric hearing Binaurally-coherent jitter improves neural and perceptual ITD sensitivity in normal and electric hearing M. Goupell 1 (matt.goupell@gmail.com), K. Hancock 2 (ken_hancock@meei.harvard.edu), P. Majdak 1

More information

Hearing and the Auditory System: Overview

Hearing and the Auditory System: Overview Harvard-MIT Division of Health Sciences and Technology HST.723: Neural Coding and Perception of Sound Instructor: Bertrand Delgutte, and Andrew Oxenham Hearing and the Auditory System: Overview Bertrand

More information

Representation of sound in the auditory nerve

Representation of sound in the auditory nerve Representation of sound in the auditory nerve Eric D. Young Department of Biomedical Engineering Johns Hopkins University Young, ED. Neural representation of spectral and temporal information in speech.

More information

Modeling Physiological and Psychophysical Responses to Precedence Effect Stimuli

Modeling Physiological and Psychophysical Responses to Precedence Effect Stimuli Modeling Physiological and Psychophysical Responses to Precedence Effect Stimuli Jing Xia 1, Andrew Brughera 2, H. Steven Colburn 2, and Barbara Shinn-Cunningham 1, 2 1 Department of Cognitive and Neural

More information

Innervation of the Cochlea. Reading: Yost Ch. 8

Innervation of the Cochlea. Reading: Yost Ch. 8 Innervation of the Cochlea Reading: Yost Ch. 8 Fine Structure of the Organ of Corti Auditory Nerve Auditory nerve (AN) is a branch of the VIII th cranial nerve (other branch is vestibular). AN is composed

More information

Sound waves from the auditory environment all combine in the ear canal to form a complex waveform. This waveform is deconstructed by the cochlea with

Sound waves from the auditory environment all combine in the ear canal to form a complex waveform. This waveform is deconstructed by the cochlea with 1 Sound waves from the auditory environment all combine in the ear canal to form a complex waveform. This waveform is deconstructed by the cochlea with respect to time, loudness, and frequency and neural

More information

Intracellular Recordings in Response to Monaural and Binaural Stimulation of Neurons in the Inferior Colliculus of the Cat

Intracellular Recordings in Response to Monaural and Binaural Stimulation of Neurons in the Inferior Colliculus of the Cat The Journal of Neuroscience, October 1, 1997, 17(19):7565 7581 Intracellular Recordings in Response to Monaural and Binaural Stimulation of Neurons in the Inferior Colliculus of the Cat Shigeyuki Kuwada,

More information

to vibrate the fluid. The ossicles amplify the pressure. The surface area of the oval window is

to vibrate the fluid. The ossicles amplify the pressure. The surface area of the oval window is Page 1 of 6 Question 1: How is the conduction of sound to the cochlea facilitated by the ossicles of the middle ear? Answer: Sound waves traveling through air move the tympanic membrane, which, in turn,

More information

Binaural Spectral Processing in Mouse Inferior Colliculus

Binaural Spectral Processing in Mouse Inferior Colliculus University of Connecticut DigitalCommons@UConn Doctoral Dissertations University of Connecticut Graduate School 6-9-2015 Binaural Spectral Processing in Mouse Inferior Colliculus Xi Bie zoebiexi@gmail.com

More information

How is the stimulus represented in the nervous system?

How is the stimulus represented in the nervous system? How is the stimulus represented in the nervous system? Eric Young F Rieke et al Spikes MIT Press (1997) Especially chapter 2 I Nelken et al Encoding stimulus information by spike numbers and mean response

More information

Binaural Interactions in the Auditory Brainstem

Binaural Interactions in the Auditory Brainstem Harvard-MIT Division of Health Sciences and Technology HST.723: Neural Coding and Perception of Sound Instructor: Bertrand Delgutte Binaural Interactions in the Auditory Brainstem Bertrand Delgutte, 2000-2005

More information

INTRODUCTION. 475 J. Acoust. Soc. Am. 103 (1), January /98/103(1)/475/19/$ Acoustical Society of America 475

INTRODUCTION. 475 J. Acoust. Soc. Am. 103 (1), January /98/103(1)/475/19/$ Acoustical Society of America 475 A model for binaural response properties of inferior colliculus neurons. I. A model with interaural time differencesensitive excitatory and inhibitory inputs Hongmei Cai, Laurel H. Carney, and H. Steven

More information

CNS pathways. topics. The auditory nerve, and the cochlear nuclei of the hindbrain

CNS pathways. topics. The auditory nerve, and the cochlear nuclei of the hindbrain CNS pathways topics The auditory nerve, and the cochlear nuclei of the hindbrain Sensory channels of information flow in CNS Pathways to medial geniculate body of thalamus Functional categorization of

More information

Dorsal Cochlear Nucleus September 14, 2005

Dorsal Cochlear Nucleus September 14, 2005 HST.722 Brain Mechanisms of Speech and Hearing Fall 2005 Dorsal Cochlear Nucleus September 14, 2005 Ken Hancock Dorsal Cochlear Nucleus (DCN) Overview of the cochlear nucleus and its subdivisions Anatomy

More information

Sensitivity to Interaural Time Differences in the Medial Superior Olive of a Small Mammal, the Mexican Free-Tailed Bat

Sensitivity to Interaural Time Differences in the Medial Superior Olive of a Small Mammal, the Mexican Free-Tailed Bat The Journal of Neuroscience, August 15, 1998, 18(16):6608 6622 Sensitivity to Interaural Time Differences in the Medial Superior Olive of a Small Mammal, the Mexican Free-Tailed Bat Benedikt Grothe 1 and

More information

Signals, systems, acoustics and the ear. Week 5. The peripheral auditory system: The ear as a signal processor

Signals, systems, acoustics and the ear. Week 5. The peripheral auditory system: The ear as a signal processor Signals, systems, acoustics and the ear Week 5 The peripheral auditory system: The ear as a signal processor Think of this set of organs 2 as a collection of systems, transforming sounds to be sent to

More information

Hearing in the Environment

Hearing in the Environment 10 Hearing in the Environment Click Chapter to edit 10 Master Hearing title in the style Environment Sound Localization Complex Sounds Auditory Scene Analysis Continuity and Restoration Effects Auditory

More information

I. INTRODUCTION. A. Extracellular physiological responses to AM stimuli.

I. INTRODUCTION. A. Extracellular physiological responses to AM stimuli. A phenomenological model of peripheral and central neural responses to amplitude-modulated tones Paul C. Nelson and Laurel H. Carney a) Department of Bioengineering and Neuroscience and Institute for Sensory

More information

NEW ROLES FOR SYNAPTIC INHIBITION IN SOUND LOCALIZATION

NEW ROLES FOR SYNAPTIC INHIBITION IN SOUND LOCALIZATION NEW ROLES FOR SYNAPTIC INHIBITION IN SOUND LOCALIZATION Benedikt Grothe The arrival times of a sound at the two ears are only microseconds apart, but both birds and mammals can use these interaural time

More information

Auditory System. Barb Rohrer (SEI )

Auditory System. Barb Rohrer (SEI ) Auditory System Barb Rohrer (SEI614 2-5086) Sounds arise from mechanical vibration (creating zones of compression and rarefaction; which ripple outwards) Transmitted through gaseous, aqueous or solid medium

More information

Development of Sound Localization 2. How do the neural mechanisms subserving sound localization develop?

Development of Sound Localization 2. How do the neural mechanisms subserving sound localization develop? Development of Sound Localization 2 How do the neural mechanisms subserving sound localization develop? 1 Overview of the development of sound localization Gross localization responses are observed soon

More information

Sensory Systems Vision, Audition, Somatosensation, Gustation, & Olfaction

Sensory Systems Vision, Audition, Somatosensation, Gustation, & Olfaction Sensory Systems Vision, Audition, Somatosensation, Gustation, & Olfaction Sarah L. Chollar University of California, Riverside sarah.chollar@gmail.com Sensory Systems How the brain allows us to see, hear,

More information

AUDL GS08/GAV1 Signals, systems, acoustics and the ear. Pitch & Binaural listening

AUDL GS08/GAV1 Signals, systems, acoustics and the ear. Pitch & Binaural listening AUDL GS08/GAV1 Signals, systems, acoustics and the ear Pitch & Binaural listening Review 25 20 15 10 5 0-5 100 1000 10000 25 20 15 10 5 0-5 100 1000 10000 Part I: Auditory frequency selectivity Tuning

More information

Theme 2: Cellular mechanisms in the Cochlear Nucleus

Theme 2: Cellular mechanisms in the Cochlear Nucleus Theme 2: Cellular mechanisms in the Cochlear Nucleus The Cochlear Nucleus (CN) presents a unique opportunity for quantitatively studying input-output transformations by neurons because it gives rise to

More information

9.01 Introduction to Neuroscience Fall 2007

9.01 Introduction to Neuroscience Fall 2007 MIT OpenCourseWare http://ocw.mit.edu 9.01 Introduction to Neuroscience Fall 2007 For information about citing these materials or our Terms of Use, visit: http://ocw.mit.edu/terms. 9.01 Recitation (R02)

More information

Neuroethology in Neuroscience or Why study an exotic animal

Neuroethology in Neuroscience or Why study an exotic animal Neuroethology in Neuroscience or Why study an exotic animal Nobel prize in Physiology and Medicine 1973 Karl von Frisch Konrad Lorenz Nikolaas Tinbergen for their discoveries concerning "organization and

More information

In order to study any brain system, one should consider what the system does and then how the components of the system are designed and how they

In order to study any brain system, one should consider what the system does and then how the components of the system are designed and how they In order to study any brain system, one should consider what the system does and then how the components of the system are designed and how they might work together. The challenge in studying the brain

More information

Auditory nerve. Amanda M. Lauer, Ph.D. Dept. of Otolaryngology-HNS

Auditory nerve. Amanda M. Lauer, Ph.D. Dept. of Otolaryngology-HNS Auditory nerve Amanda M. Lauer, Ph.D. Dept. of Otolaryngology-HNS May 30, 2016 Overview Pathways (structural organization) Responses Damage Basic structure of the auditory nerve Auditory nerve in the cochlea

More information

HST.723J, Spring 2005 Theme 3 Report

HST.723J, Spring 2005 Theme 3 Report HST.723J, Spring 2005 Theme 3 Report Madhu Shashanka shashanka@cns.bu.edu Introduction The theme of this report is binaural interactions. Binaural interactions of sound stimuli enable humans (and other

More information

Auditory and Vestibular Systems

Auditory and Vestibular Systems Auditory and Vestibular Systems Objective To learn the functional organization of the auditory and vestibular systems To understand how one can use changes in auditory function following injury to localize

More information

A dendritic model of coincidence detection in the avian brainstem

A dendritic model of coincidence detection in the avian brainstem Neurocomputing 26}27 (1999) 263}269 A dendritic model of coincidence detection in the avian brainstem Jonathan Z. Simon *, Catherine E. Carr, Shihab A. Shamma Institute for Systems Research, University

More information

Lab 4: Compartmental Model of Binaural Coincidence Detector Neurons

Lab 4: Compartmental Model of Binaural Coincidence Detector Neurons Lab 4: Compartmental Model of Binaural Coincidence Detector Neurons Introduction The purpose of this laboratory exercise is to give you hands-on experience with a compartmental model of a neuron. Compartmental

More information

SPECIAL SENSES: THE AUDITORY SYSTEM

SPECIAL SENSES: THE AUDITORY SYSTEM SPECIAL SENSES: THE AUDITORY SYSTEM REVISION OF PHYSICS: WAVES A wave is an oscillation of power, sound waves have two main characteristics: amplitude, which is the maximum displacement or the power of

More information

Nucleus Laminaris. Yuan WangJason Tait Sanchez, and Edwin W Rubel

Nucleus Laminaris. Yuan WangJason Tait Sanchez, and Edwin W Rubel 1 2 3 Nucleus Laminaris Yuan WangJason Tait Sanchez, and Edwin W Rubel 4 5 6 7 8 9 Our ability to detect subtle acoustic cues in noisy environments, like a conversation in a crowded restaurant, is one

More information

I: To describe the pyramidal and extrapyramidal tracts. II: To discuss the functions of the descending tracts.

I: To describe the pyramidal and extrapyramidal tracts. II: To discuss the functions of the descending tracts. Descending Tracts I: To describe the pyramidal and extrapyramidal tracts. II: To discuss the functions of the descending tracts. III: To define the upper and the lower motor neurons. 1. The corticonuclear

More information

Binaural Hearing for Robots Introduction to Robot Hearing

Binaural Hearing for Robots Introduction to Robot Hearing Binaural Hearing for Robots Introduction to Robot Hearing 1Radu Horaud Binaural Hearing for Robots 1. Introduction to Robot Hearing 2. Methodological Foundations 3. Sound-Source Localization 4. Machine

More information

Binaural Hearing. Why two ears? Definitions

Binaural Hearing. Why two ears? Definitions Binaural Hearing Why two ears? Locating sounds in space: acuity is poorer than in vision by up to two orders of magnitude, but extends in all directions. Role in alerting and orienting? Separating sound

More information

Structure and Function of the Auditory and Vestibular Systems (Fall 2014) Auditory Cortex (3) Prof. Xiaoqin Wang

Structure and Function of the Auditory and Vestibular Systems (Fall 2014) Auditory Cortex (3) Prof. Xiaoqin Wang 580.626 Structure and Function of the Auditory and Vestibular Systems (Fall 2014) Auditory Cortex (3) Prof. Xiaoqin Wang Laboratory of Auditory Neurophysiology Department of Biomedical Engineering Johns

More information

Cellular Bioelectricity

Cellular Bioelectricity ELEC ENG 3BB3: Cellular Bioelectricity Notes for Lecture 24 Thursday, March 6, 2014 8. NEURAL ELECTROPHYSIOLOGY We will look at: Structure of the nervous system Sensory transducers and neurons Neural coding

More information

CISC 3250 Systems Neuroscience

CISC 3250 Systems Neuroscience CISC 3250 Systems Neuroscience Levels of organization Central Nervous System 1m 10 11 neurons Neural systems and neuroanatomy Systems 10cm Networks 1mm Neurons 100μm 10 8 neurons Professor Daniel Leeds

More information

Structure and Function of the Auditory and Vestibular Systems (Fall 2014) Auditory Cortex (1) Prof. Xiaoqin Wang

Structure and Function of the Auditory and Vestibular Systems (Fall 2014) Auditory Cortex (1) Prof. Xiaoqin Wang 580.626 Structure and Function of the Auditory and Vestibular Systems (Fall 2014) Auditory Cortex (1) Prof. Xiaoqin Wang Laboratory of Auditory Neurophysiology Department of Biomedical Engineering Johns

More information

Sound movement detection deficit due to a brainstem lesion

Sound movement detection deficit due to a brainstem lesion 522 52ournal of Neurology, Neurosurgery, and Psychiatry 1997;62:522-526 SHORT REPORT Department of Physiological Sciences, Newcastle University Medical School, NE2 4HH, UK Rees C Witton G G R Green Department

More information

The neural code for interaural time difference in human auditory cortex

The neural code for interaural time difference in human auditory cortex The neural code for interaural time difference in human auditory cortex Nelli H. Salminen and Hannu Tiitinen Department of Biomedical Engineering and Computational Science, Helsinki University of Technology,

More information

Models of Plasticity in Spatial Auditory Processing

Models of Plasticity in Spatial Auditory Processing Auditory CNS Processing and Plasticity Audiol Neurootol 2001;6:187 191 Models of Plasticity in Spatial Auditory Processing Barbara Shinn-Cunningham Departments of Cognitive and Neural Systems and Biomedical

More information

Convergent Input from Brainstem Coincidence Detectors onto Delay-Sensitive Neurons in the Inferior Colliculus

Convergent Input from Brainstem Coincidence Detectors onto Delay-Sensitive Neurons in the Inferior Colliculus The Journal of Neuroscience, August 1, 1998, 18(15):6026 6039 Convergent Input from Brainstem Coincidence Detectors onto Delay-Sensitive Neurons in the Inferior Colliculus David McAlpine, Dan Jiang, Trevor

More information

THE NEURAL CODING OF AUDITORY SPACE BY TERRY T. TAKAHASHI

THE NEURAL CODING OF AUDITORY SPACE BY TERRY T. TAKAHASHI J. exp. Biol. 146, 307-322 (1989) 307 Printed in Great Britain The Company of Biologists Limited 1989 THE NEURAL CODING OF AUDITORY SPACE BY TERRY T. TAKAHASHI Institute of Neuroscience, University of

More information

Spectrograms (revisited)

Spectrograms (revisited) Spectrograms (revisited) We begin the lecture by reviewing the units of spectrograms, which I had only glossed over when I covered spectrograms at the end of lecture 19. We then relate the blocks of a

More information

The Structure and Function of the Auditory Nerve

The Structure and Function of the Auditory Nerve The Structure and Function of the Auditory Nerve Brad May Structure and Function of the Auditory and Vestibular Systems (BME 580.626) September 21, 2010 1 Objectives Anatomy Basic response patterns Frequency

More information

Ch 5. Perception and Encoding

Ch 5. Perception and Encoding Ch 5. Perception and Encoding Cognitive Neuroscience: The Biology of the Mind, 2 nd Ed., M. S. Gazzaniga, R. B. Ivry, and G. R. Mangun, Norton, 2002. Summarized by Y.-J. Park, M.-H. Kim, and B.-T. Zhang

More information

Plasticity of Cerebral Cortex in Development

Plasticity of Cerebral Cortex in Development Plasticity of Cerebral Cortex in Development Jessica R. Newton and Mriganka Sur Department of Brain & Cognitive Sciences Picower Center for Learning & Memory Massachusetts Institute of Technology Cambridge,

More information

Electrophysiology. General Neurophysiology. Action Potentials

Electrophysiology. General Neurophysiology. Action Potentials 5 Electrophysiology Cochlear implants should aim to reproduce the coding of sound in the auditory system as closely as possible, for best sound perception. The cochlear implant is in part the result of

More information

THE COCHLEA AND AUDITORY PATHWAY

THE COCHLEA AND AUDITORY PATHWAY Dental Neuroanatomy Suzanne S. Stensaas, PhD February 23, 2012 Reading: Waxman, Chapter 16, Review pictures in a Histology book Computer Resources: http://www.cochlea.org/ - Promenade around the Cochlea

More information

Motor systems III: Cerebellum April 16, 2007 Mu-ming Poo

Motor systems III: Cerebellum April 16, 2007 Mu-ming Poo Motor systems III: Cerebellum April 16, 2007 Mu-ming Poo Population coding in the motor cortex Overview and structure of cerebellum Microcircuitry of cerebellum Function of cerebellum -- vestibulo-ocular

More information

Week 5. Fall 2016 Part 2: Structure and Function of Auditory System 1

Week 5. Fall 2016 Part 2: Structure and Function of Auditory System 1 This outline summarizes major points covered in lecture. It is not intended to replace your own lecture notes. Week 5 How sound is heard: EAR Mechanical energy reaches the eardrum, moves to the middle

More information

Adaptation of Binaural Processing in the Adult Brainstem Induced by Ambient Noise

Adaptation of Binaural Processing in the Adult Brainstem Induced by Ambient Noise 462 The Journal of Neuroscience, January 11, 212 32(2):462 473 Development/Plasticity/Repair Adaptation of Binaural Processing in the Adult Brainstem Induced by Ambient Noise Ida Siveke, 1 Christian Leibold,

More information

Modeling and Simulation of the Auditory Pathway

Modeling and Simulation of the Auditory Pathway Modeling and Simulation of the Auditory Pathway INTERIM REPORT: Computational Models for the Study of Hearing and Language Impairement in Children Alok Bakshi School of Industrial Engineering Purdue University,

More information

Physiological measures of the precedence effect and spatial release from masking in the cat inferior colliculus.

Physiological measures of the precedence effect and spatial release from masking in the cat inferior colliculus. Physiological measures of the precedence effect and spatial release from masking in the cat inferior colliculus. R.Y. Litovsky 1,3, C. C. Lane 1,2, C.. tencio 1 and. Delgutte 1,2 1 Massachusetts Eye and

More information

Ch 5. Perception and Encoding

Ch 5. Perception and Encoding Ch 5. Perception and Encoding Cognitive Neuroscience: The Biology of the Mind, 2 nd Ed., M. S. Gazzaniga,, R. B. Ivry,, and G. R. Mangun,, Norton, 2002. Summarized by Y.-J. Park, M.-H. Kim, and B.-T. Zhang

More information

BRAIN AND ITS VITAL FUNCTIONS 1 Brain and Its Vital Functions Student s Name Institution Name Professor s Name Course Title BRAIN AND ITS VITAL FUNCTIONS 2 The brain is the integral organism and all its

More information

Central Auditory System Basics and the Effects of Abnormal Auditory Input to the Brain. Amanda M. Lauer, Ph.D. July 3,

Central Auditory System Basics and the Effects of Abnormal Auditory Input to the Brain. Amanda M. Lauer, Ph.D. July 3, Central Auditory System Basics and the Effects of Abnormal Auditory Input to the Brain Amanda M. Lauer, Ph.D. July 3, 2012 1 Overview Auditory system tasks Peripheral auditory system Central pathways -Ascending

More information

Lauer et al Olivocochlear efferents. Amanda M. Lauer, Ph.D. Dept. of Otolaryngology-HNS

Lauer et al Olivocochlear efferents. Amanda M. Lauer, Ph.D. Dept. of Otolaryngology-HNS Lauer et al. 2012 Olivocochlear efferents Amanda M. Lauer, Ph.D. Dept. of Otolaryngology-HNS May 30, 2016 Overview Structural organization Responses Hypothesized roles in hearing Olivocochlear efferent

More information

ABR assesses the integrity of the peripheral auditory system and auditory brainstem pathway.

ABR assesses the integrity of the peripheral auditory system and auditory brainstem pathway. By Prof Ossama Sobhy What is an ABR? The Auditory Brainstem Response is the representation of electrical activity generated by the eighth cranial nerve and brainstem in response to auditory stimulation.

More information

Systems Neuroscience Oct. 16, Auditory system. http:

Systems Neuroscience Oct. 16, Auditory system. http: Systems Neuroscience Oct. 16, 2018 Auditory system http: www.ini.unizh.ch/~kiper/system_neurosci.html The physics of sound Measuring sound intensity We are sensitive to an enormous range of intensities,

More information

FINE-TUNING THE AUDITORY SUBCORTEX Measuring processing dynamics along the auditory hierarchy. Christopher Slugocki (Widex ORCA) WAS 5.3.

FINE-TUNING THE AUDITORY SUBCORTEX Measuring processing dynamics along the auditory hierarchy. Christopher Slugocki (Widex ORCA) WAS 5.3. FINE-TUNING THE AUDITORY SUBCORTEX Measuring processing dynamics along the auditory hierarchy. Christopher Slugocki (Widex ORCA) WAS 5.3.2017 AUDITORY DISCRIMINATION AUDITORY DISCRIMINATION /pi//k/ /pi//t/

More information

THE COCHLEA AND AUDITORY PATHWAY

THE COCHLEA AND AUDITORY PATHWAY Dental Neuroanatomy Suzanne S. Stensaas, PhD April 14, 2010 Reading: Waxman, Chapter 16, Review pictures in a Histology book Computer Resources: http://www.cochlea.org/ - Promenade around the Cochlea HyperBrain

More information

Study of sound localization by owls and its relevance to humans

Study of sound localization by owls and its relevance to humans Comparative Biochemistry and Physiology Part A 126 (2000) 459 469 www.elsevier.com/locate/cbpa Review Study of sound localization by owls and its relevance to humans Masakazu Konishi Di ision of Biology

More information

Neurobiology of Hearing (Salamanca, 2012) Auditory Cortex (2) Prof. Xiaoqin Wang

Neurobiology of Hearing (Salamanca, 2012) Auditory Cortex (2) Prof. Xiaoqin Wang Neurobiology of Hearing (Salamanca, 2012) Auditory Cortex (2) Prof. Xiaoqin Wang Laboratory of Auditory Neurophysiology Department of Biomedical Engineering Johns Hopkins University web1.johnshopkins.edu/xwang

More information

INTRODUCTION. 494 J. Acoust. Soc. Am. 103 (1), January /98/103(1)/494/13/$ Acoustical Society of America 494

INTRODUCTION. 494 J. Acoust. Soc. Am. 103 (1), January /98/103(1)/494/13/$ Acoustical Society of America 494 A model for binaural response properties of inferior colliculus neurons. II. A model with interaural time differencesensitive excitatory and inhibitory inputs and an adaptation mechanism Hongmei Cai, Laurel

More information

Spectro-temporal response fields in the inferior colliculus of awake monkey

Spectro-temporal response fields in the inferior colliculus of awake monkey 3.6.QH Spectro-temporal response fields in the inferior colliculus of awake monkey Versnel, Huib; Zwiers, Marcel; Van Opstal, John Department of Biophysics University of Nijmegen Geert Grooteplein 655

More information

Sensorimotor Functioning. Sensory and Motor Systems. Functional Anatomy of Brain- Behavioral Relationships

Sensorimotor Functioning. Sensory and Motor Systems. Functional Anatomy of Brain- Behavioral Relationships Sensorimotor Functioning Sensory and Motor Systems Understanding brain-behavior relationships requires knowledge of sensory and motor systems. Sensory System = Input Neural Processing Motor System = Output

More information

Prof. Greg Francis 7/31/15

Prof. Greg Francis 7/31/15 s PSY 200 Greg Francis Lecture 06 How do you recognize your grandmother? Action potential With enough excitatory input, a cell produces an action potential that sends a signal down its axon to other cells

More information

Chapter 4 Neuronal Physiology

Chapter 4 Neuronal Physiology Chapter 4 Neuronal Physiology V edit. Pg. 99-131 VI edit. Pg. 85-113 VII edit. Pg. 87-113 Input Zone Dendrites and Cell body Nucleus Trigger Zone Axon hillock Conducting Zone Axon (may be from 1mm to more

More information

Sound and Hearing. Decibels. Frequency Coding & Localization 1. Everything is vibration. The universe is made of waves.

Sound and Hearing. Decibels. Frequency Coding & Localization 1. Everything is vibration. The universe is made of waves. Frequency Coding & Localization 1 Sound and Hearing Everything is vibration The universe is made of waves db = 2log(P1/Po) P1 = amplitude of the sound wave Po = reference pressure =.2 dynes/cm 2 Decibels

More information

An Auditory System Modeling in Sound Source Localization

An Auditory System Modeling in Sound Source Localization An Auditory System Modeling in Sound Source Localization Yul Young Park The University of Texas at Austin EE381K Multidimensional Signal Processing May 18, 2005 Abstract Sound localization of the auditory

More information

Medial Superior Olive in the Free-Tailed Bat: Response to Pure Tones and Amplitude-Modulated Tones

Medial Superior Olive in the Free-Tailed Bat: Response to Pure Tones and Amplitude-Modulated Tones Medial Superior Olive in the Free-Tailed Bat: Response to Pure Tones and Amplitude-Modulated Tones BENEDIKT GROTHE, 1 THOMAS J. PARK, 2 AND GERD SCHULLER 1 1 Zoologisches Institut, Universität München,

More information

Unit VIII Problem 9 Physiology: Hearing

Unit VIII Problem 9 Physiology: Hearing Unit VIII Problem 9 Physiology: Hearing - We can hear a limited range of frequency between 20 Hz 20,000 Hz (human hearing acuity is between 1000 Hz 4000 Hz). - The ear is divided into 3 parts. Those are:

More information

The Cerebellum. The Little Brain. Neuroscience Lecture. PhD Candidate Dr. Laura Georgescu

The Cerebellum. The Little Brain. Neuroscience Lecture. PhD Candidate Dr. Laura Georgescu The Cerebellum The Little Brain Neuroscience Lecture PhD Candidate Dr. Laura Georgescu Learning Objectives 1. Describe functional anatomy of the cerebellum - its lobes, their input and output connections

More information

Temporal coding in the auditory brainstem of the barn owl

Temporal coding in the auditory brainstem of the barn owl Temporal coding in the auditory brainstem of the barn owl J. Z. Simon 1, S. Parameshwaran 2, T. Perney 3 and C. E. Carr 2 1 Institute for Systems Research and 2 Department of Biology, University of Maryland,

More information

Brainstem. Steven McLoon Department of Neuroscience University of Minnesota

Brainstem. Steven McLoon Department of Neuroscience University of Minnesota Brainstem Steven McLoon Department of Neuroscience University of Minnesota 1 Course News Change in Lab Sequence Week of Oct 2 Lab 5 Week of Oct 9 Lab 4 2 Goal Today Know the regions of the brainstem. Know

More information

The Nervous System. Nervous System Functions 1. gather sensory input 2. integration- process and interpret sensory input 3. cause motor output

The Nervous System. Nervous System Functions 1. gather sensory input 2. integration- process and interpret sensory input 3. cause motor output The Nervous System Nervous System Functions 1. gather sensory input 2. integration- process and interpret sensory input 3. cause motor output The Nervous System 2 Parts of the Nervous System 1. central

More information

Temporal and Binaural Properties in Dorsal Cochlear Nucleus and Its Output Tract

Temporal and Binaural Properties in Dorsal Cochlear Nucleus and Its Output Tract The Journal of Neuroscience, December 1, 1998, 18(23):10157 10170 Temporal and Binaural Properties in Dorsal Cochlear Nucleus and Its Output Tract Philip X. Joris 1,2 and Philip H. Smith 3 1 Division of

More information

Mechanosensation. Central Representation of Touch. Wilder Penfield. Somatotopic Organization

Mechanosensation. Central Representation of Touch. Wilder Penfield. Somatotopic Organization Mechanosensation Central Representation of Touch Touch and tactile exploration Vibration and pressure sensations; important for clinical testing Limb position sense John H. Martin, Ph.D. Center for Neurobiology

More information

Hearing II Perceptual Aspects

Hearing II Perceptual Aspects Hearing II Perceptual Aspects Overview of Topics Chapter 6 in Chaudhuri Intensity & Loudness Frequency & Pitch Auditory Space Perception 1 2 Intensity & Loudness Loudness is the subjective perceptual quality

More information

Overview of the Nervous System (some basic concepts) Steven McLoon Department of Neuroscience University of Minnesota

Overview of the Nervous System (some basic concepts) Steven McLoon Department of Neuroscience University of Minnesota Overview of the Nervous System (some basic concepts) Steven McLoon Department of Neuroscience University of Minnesota 1 Coffee Hour Tuesday (Sept 11) 10:00-11:00am Friday (Sept 14) 8:30-9:30am Surdyk s

More information

PHY3111 Mid-Semester Test Study. Lecture 2: The hierarchical organisation of vision

PHY3111 Mid-Semester Test Study. Lecture 2: The hierarchical organisation of vision PHY3111 Mid-Semester Test Study Lecture 2: The hierarchical organisation of vision 1. Explain what a hierarchically organised neural system is, in terms of physiological response properties of its neurones.

More information

CASE 48. What part of the cerebellum is responsible for planning and initiation of movement?

CASE 48. What part of the cerebellum is responsible for planning and initiation of movement? CASE 48 A 34-year-old woman with a long-standing history of seizure disorder presents to her neurologist with difficulty walking and coordination. She has been on phenytoin for several days after having

More information

Coincidence Detection in Pitch Perception. S. Shamma, D. Klein and D. Depireux

Coincidence Detection in Pitch Perception. S. Shamma, D. Klein and D. Depireux Coincidence Detection in Pitch Perception S. Shamma, D. Klein and D. Depireux Electrical and Computer Engineering Department, Institute for Systems Research University of Maryland at College Park, College

More information