Deafness and hearing impairment

Size: px
Start display at page:

Download "Deafness and hearing impairment"

Transcription

1 Auditory Physiology

2 Deafness and hearing impairment About one in every 10 Americans has some degree of hearing loss. The great majority develop hearing loss as they age. Hearing impairment in very early life can prevent normal language development unless corrected or substituted with sign language.

3 What is sound? It is the vibration of air molecules. Sound can be categorized according to frequency and amplitude.

4 Sound frequency frequency: vibrations per second (pitch) Typical human speech: about Hz.

5 Sound amplitude magnitude of vibrations (loudness) measured in units of decibels (db) 0 db - Near total silence 15 db - A whisper 60 db - Normal conversation 90 db - A power lawnmower 120 db - A pop concert or a jet engine

6

7 Effects of sound Sound causes the eardrum (tympanum) to move in and out. The eardrum is located at the inner end of the external part of the ear. OUTER EAR

8 Outer ear pinna -- funnels and filters sound ear canal (external auditory canal) --funnels sound ear drum (tympanum) -- vibrates in response to sound OUTER EAR

9 MIDDLE EAR OUTER EAR

10 The middle ear Components: malleus (hammer) attached to the eardrum incus (anvil) stapes (stirrup) attached to the oval window of the inner ear stapes

11 Functions Middle ear: ossicles Conduct the vibration of the eardrum to the oval window. Amplify vibration about 25 times. The movements of the tympanum aren t actually very large.

12 Middle ear: ossicles Humans can detect sounds that involve air movements of less than 1 nm! The ossicles convert the small movements of a large structure, the tympanum, into large movements of a small structure, the stapes.

13 Middle ear: ossicles The transfer of energy is most efficient in the frequency range of 1-4 khz. Interruption or calcification of the ossicle chain can result in a hearing loss of 60 db.

14 Middle ear: stapedius and tensor tympani Muscles that protect the cochlea from damage due to very loud noises

15 The stapedius muscle stapedius

16 Attached to the stapes. The stapedius muscle Damps movements of ossicles. Contracts just before we speak or chew. Contracts in response to loud external sound. Damage (as during surgery) can produce intolerance to noise and difficulty hearing in noisy surroundings.

17 Tensor tympani stapedius

18 The tensor tympani muscle Attached to the malleus Acts reflexively with stapedius Pulls the tympanic membrane inwards and renders it more tense.

19 MIDDLE EAR OUTER EAR INNER EAR

20 The structure is where sound energy is transduced into neural signals. A spiral, snail-shaped tube divided into 3 sub-tubes by 2 membranes. The cochlea

21 Cochlear structure The basilar membrane contains the cochlear hair cells. Basilar membrane

22 Scala vestibuli Reissner s membrane Scala media Spiral ganglion Scala tympani Basilar membrane

23 oval window round window

24 The basilar membrane uncoiled Movements of the ossicles cause the cochlear fluids to move and that leads to vibration of the basilar membrane.

25 The basilar membrane uncoiled The basilar membrane s dimensions & stiffness aren t uniform. The regions near the base vibrate most in response to high frequencies. The regions near the apex vibrate most in response to low frequencies. apex base high freq. mid freq. low freq. narrower wider stiffest less stiff

26 Tonotopic map

27

28 Organ of Corti: tectorial membrane and hair cells tectorial membrane

29 inner hair cells Organ of Corti: Two types of hair cells

30 Inner hair cells (IHCs) 3,500 inner hair cells per cochlea Primarily involved with sending information about sounds to the central nervous system

31 Two types of hair cells outer hair cells inner hair cells

32 Outer hair cells About 12,000 OHCs per cochlea Their role is not to bring messages to the brain about what we hear but instead to improve the cochlea s ability to discriminate different sounds.

33 Outer hair cells How do they do this? They lengthen or contract in response to sound or messages brought to the cochlea from the brain via efferent axons. This motion selectively controls the motion of the basilar and tectorial membranes. The process reduces the cochlea s response to constant background noise, allowing a greater response to transient and selectively-attended sounds.

34 Outer hair cells: Otoacoustic emissions Sounds that are produced by healthy ears in response to acoustic stimulation. They are byproducts of the activity of the outer hair cells in the cochlea. Useful for screening infants for malfunction in the cochlea 1 child in 1000 is born with hearing impairment.

35 Outer hair cells: Otoacoustic emissions A normal auditory pathway from the hair cells into the brain and back through the efferents will yield otoacoustic emissions.

36 Hair cell loss Damage to a particular part of the cochlea will produce a loss in sensitivity to sounds of the corresponding frequencies. If damage or a genetic anomaly has destroyed hair cells but not eighth nerve fibers, then it is possible to implant a cochlear implant that will directly activate the correct nerve endings.

37 Cochlear implant

38

39 Critical period for auditory development Growing evidence indicates cut-off of about age 3-4 for normal acquisition of language. Connections to auditory cortex don t develop normally without auditory input.

40 Critical period for auditory development Test by using EEG to monitor cortical auditory evoked potential. Normal hearing Early implant (age 6 mo.) Late implant (age 6 yrs.)

41 Some causes of hair cell loss drugs such as streptomycin diuretics such as furosemide anticancer chemotherapeutic drugs, such as cisplatin

42 Noise-induced hearing loss Exposure to excessive noise is a common cause of hearing loss. Noise exposure leads to cell death by inducing reactive oxygen species.

43 Genetic causes More than 40 genes have been identified that cause deafness Some dominant, some recessive No hair cells, incorrect orientation of hair cells, disorganized hair cell bundles, no separation of endolymph and perilymph compartments, no tip links.

44 Short-term noise-induced hearing loss Tip links break easily with exposure to noise. Unlike hair cells, which can t regenerate in humans, tip links repair themselves, mostly within a matter of hours. The breaking of tip links, and their regeneration, is one of the causes of the temporary hearing loss after a loud blast of sound (or a loud concert).

45 Loss of high frequency hearing with age (presbycusis)

46 Sound-induced membrane movements Sound causes the tectorial membrane & the basilar membrane to pivot around slightly different points. This movement & the shear in the fluid between the membranes causes hair bundles to bend. tectorial basilar membrane membrane

47 Louder sounds Encoding of loudness bigger amplitude vibrations bigger changes in depolarization bigger changes in transmitter release bigger changes in firing Because a single fiber can not respond over the full listening range of 120 db, intensity must be coded in populations of eighth nerve fibers with different thresholds.

48 The auditory nerve The spiral ganglion contains about 33,000 neurons. Relatively few innervate outer hair cells.

49 The auditory nerve About 90% innervate only one inner hair cell. They can transmit a very faithful account of inner hair cell activity to the brain.

50 The auditory nerve Each inner hair cell is innervated by 9-10 auditory fibers.

51 Encoding of loudness Why bother to have so many 8 th nerve cells contact each hair cell? One reason is to encode different sound intensities (loudness). A single fiber can not respond over the full perceptible intensity range (> a billion-fold).

52 Encoding of loudness Why bother to have so many 8 th nerve cells contact each hair cell? One reason is to encode different sound intensities (loudness). A single fiber can not respond over the full perceptible intensity range (> a billion-fold). Therefore, loudness is coded in populations of eighth nerve fibers with different thresholds.

53 Frequency coding: tonotopic map A given hair cell will respond only to sounds of a given range of frequencies. Since the typical 8 th nerve fiber gets input from a single hair cell, 8 th nerve fibers also have a tonotopic map, depending on their cochlear location.

54 Characteristic frequency Each hair cell and each auditory nerve axon has a particular characteristic frequency. It will respond to that frequency and that frequency only, if the sound is very quiet. Line shows threshold, the quietest sound that elicits a response at a particular frequency

55 Characteristic frequency The hair cells and axons can respond to other, nearby frequencies too, if they are loud enough. Line shows threshold, the quietest sound that elicits a response at a particular frequency

56 Characteristic frequency The hair cells and axons can respond to other, nearby frequencies too, if they are loud enough. A very quiet sound will activate only a few hair cells & axons, but a louder sound will activate more cells. Line shows threshold, the quietest sound that elicits a response at a particular frequency

57 Summary of 8th nerve information encoding Eighth nerve activity encodes frequencies of sound (Which axons are firing faster?) loudness of sound (How many axons are firing, and how fast are they firing?)

58 Response properties of cells in the cochlear nuclei Some cells respond like eighth nerve fibers. They are most sensitive to one characteristic frequency. They will also respond to nearby frequencies, as the sound becomes louder.

59 Response properties of cells in the cochlear nuclei Some respond to a wide range of frequencies. Some cells in the cochlear nuclei respond to only a very narrow range of frequencies. They are inhibited by higher and lower frequencies.

60 Response properties of cells in the cochlear nuclei Some respond to a wide range of frequencies. Some cells in the cochlear nuclei respond to only a very narrow range of frequencies. They are inhibited by higher and lower frequencies. Some cells respond only when the sound is changing in loudness.

61 Auditory responses beyond the cochlear nuclei Many cells respond like those in cochlear nuclei. Many cells at higher levels are more selective for particular frequencies than are cells in the cochlear nuclei.

62 Auditory responses beyond the cochlear nuclei Many cells respond like those in cochlear nuclei. Many cells at higher levels are more selective for particular frequencies than are cells in the cochlear nuclei. Some show more complex properties, such as selectivity for frequency modulation. (Such cells respond only to changes in frequency.)

63 Localizing sound sources There are 2 kinds of binaural cues: Timing Intensity

64 Localizing sound sources The pinna also helps in localizing whether a sound is coming from in front of the head or from the back. The pinna acts as a directional amplifier of sound. The frequency profile of a particular sound will be altered depending upon where it comes from.

65 Sound localization functions of the cortex Many location-selective cells respond best to sounds coming from the opposite side of the head. Some cells are particularly responsive to sounds from moving sources.

66 Cortical specializations The subdivisions of the auditory regions of cortex are still being sorted out. Strong evidence indicates that there is a what stream and a where stream, but the details are still being worked out.

Required Slide. Session Objectives

Required Slide. Session Objectives Auditory Physiology Required Slide Session Objectives Auditory System: At the end of this session, students will be able to: 1. Characterize the range of normal human hearing. 2. Understand the components

More information

Auditory System Feedback

Auditory System Feedback Feedback Auditory System Feedback Using all or a portion of the information from the output of a system to regulate or control the processes or inputs in order to modify the output. Central control of

More information

MECHANISM OF HEARING

MECHANISM OF HEARING MECHANISM OF HEARING Sound: Sound is a vibration that propagates as an audible wave of pressure, through a transmission medium such as gas, liquid or solid. Sound is produced from alternate compression

More information

Receptors / physiology

Receptors / physiology Hearing: physiology Receptors / physiology Energy transduction First goal of a sensory/perceptual system? Transduce environmental energy into neural energy (or energy that can be interpreted by perceptual

More information

Auditory System. Barb Rohrer (SEI )

Auditory System. Barb Rohrer (SEI ) Auditory System Barb Rohrer (SEI614 2-5086) Sounds arise from mechanical vibration (creating zones of compression and rarefaction; which ripple outwards) Transmitted through gaseous, aqueous or solid medium

More information

Sound. Audition. Physics of Sound. Properties of sound. Perception of sound works the same way as light.

Sound. Audition. Physics of Sound. Properties of sound. Perception of sound works the same way as light. Sound Audition Perception of sound works the same way as light. Have receptors to convert a physical stimulus to action potentials Action potentials are organized in brain structures You apply some meaning

More information

Audition. Sound. Physics of Sound. Perception of sound works the same way as light.

Audition. Sound. Physics of Sound. Perception of sound works the same way as light. Audition Sound Perception of sound works the same way as light. Have receptors to convert a physical stimulus to action potentials Action potentials are organized in brain structures You apply some meaning

More information

PSY 214 Lecture 16 (11/09/2011) (Sound, auditory system & pitch perception) Dr. Achtman PSY 214

PSY 214 Lecture 16 (11/09/2011) (Sound, auditory system & pitch perception) Dr. Achtman PSY 214 PSY 214 Lecture 16 Topic: Sound, auditory system, & pitch perception Chapter 11, pages 268-288 Corrections: None needed Announcements: At the beginning of class, we went over some demos from the virtual

More information

ENT 318 Artificial Organs Physiology of Ear

ENT 318 Artificial Organs Physiology of Ear ENT 318 Artificial Organs Physiology of Ear Lecturer: Ahmad Nasrul Norali The Ear The Ear Components of hearing mechanism - Outer Ear - Middle Ear - Inner Ear - Central Auditory Nervous System Major Divisions

More information

PSY 215 Lecture 10 Topic: Hearing Chapter 7, pages

PSY 215 Lecture 10 Topic: Hearing Chapter 7, pages PSY 215 Lecture 10 Topic: Hearing Chapter 7, pages 189-197 Corrections: NTC 09-1, page 3, the Superior Colliculus is in the midbrain (Mesencephalon). Announcements: Movie next Monday: Case of the frozen

More information

HEARING. Structure and Function

HEARING. Structure and Function HEARING Structure and Function Rory Attwood MBChB,FRCS Division of Otorhinolaryngology Faculty of Health Sciences Tygerberg Campus, University of Stellenbosch Analyse Function of auditory system Discriminate

More information

Hearing. istockphoto/thinkstock

Hearing. istockphoto/thinkstock Hearing istockphoto/thinkstock Audition The sense or act of hearing The Stimulus Input: Sound Waves Sound waves are composed of changes in air pressure unfolding over time. Acoustical transduction: Conversion

More information

Auditory Physiology Richard M. Costanzo, Ph.D.

Auditory Physiology Richard M. Costanzo, Ph.D. Auditory Physiology Richard M. Costanzo, Ph.D. OBJECTIVES After studying the material of this lecture, the student should be able to: 1. Describe the morphology and function of the following structures:

More information

Chapter 13 Physics of the Ear and Hearing

Chapter 13 Physics of the Ear and Hearing Hearing 100 times greater dynamic range than vision Wide frequency range (20 ~ 20,000 Hz) Sense of hearing Mechanical system that stimulates the hair cells in the cochlea Sensors that produce action potentials

More information

Intro to Audition & Hearing

Intro to Audition & Hearing Intro to Audition & Hearing Lecture 16 Chapter 9, part II Jonathan Pillow Sensation & Perception (PSY 345 / NEU 325) Fall 2017 1 Sine wave: one of the simplest kinds of sounds: sound for which pressure

More information

Unit VIII Problem 9 Physiology: Hearing

Unit VIII Problem 9 Physiology: Hearing Unit VIII Problem 9 Physiology: Hearing - We can hear a limited range of frequency between 20 Hz 20,000 Hz (human hearing acuity is between 1000 Hz 4000 Hz). - The ear is divided into 3 parts. Those are:

More information

Printable version - Hearing - OpenLearn - The Open University

Printable version - Hearing - OpenLearn - The Open University Skip to content Accessibility Sign in Contact Search the OU The Open University Study at the OU Research at the OU OU Community About the OU Hearing Printable page generated Saturday, 12 November 2011,

More information

Before we talk about the auditory system we will talk about the sound and waves

Before we talk about the auditory system we will talk about the sound and waves The Auditory System PHYSIO: #3 DR.LOAI ZAGOUL 24/3/2014 Refer to the slides for some photos. Before we talk about the auditory system we will talk about the sound and waves All waves have basic characteristics:

More information

Auditory Physiology PSY 310 Greg Francis. Lecture 29. Hearing

Auditory Physiology PSY 310 Greg Francis. Lecture 29. Hearing Auditory Physiology PSY 310 Greg Francis Lecture 29 A dangerous device. Hearing The sound stimulus is changes in pressure The simplest sounds vary in: Frequency: Hertz, cycles per second. How fast the

More information

PSY 310: Sensory and Perceptual Processes 1

PSY 310: Sensory and Perceptual Processes 1 Auditory Physiology PSY 310 Greg Francis Lecture 29 A dangerous device. Hearing The sound stimulus is changes in pressure The simplest sounds vary in: Frequency: Hertz, cycles per second. How fast the

More information

Structure, Energy Transmission and Function. Gross Anatomy. Structure, Function & Process. External Auditory Meatus or Canal (EAM, EAC) Outer Ear

Structure, Energy Transmission and Function. Gross Anatomy. Structure, Function & Process. External Auditory Meatus or Canal (EAM, EAC) Outer Ear Gross Anatomy Structure, Energy Transmission and Function IE N O ME 1 Structure, Function & Process 4 External Auditory Meatus or Canal (EAM, EAC) Outer third is cartilaginous Inner 2/3 is osseous Junction

More information

SPECIAL SENSES: THE AUDITORY SYSTEM

SPECIAL SENSES: THE AUDITORY SYSTEM SPECIAL SENSES: THE AUDITORY SYSTEM REVISION OF PHYSICS: WAVES A wave is an oscillation of power, sound waves have two main characteristics: amplitude, which is the maximum displacement or the power of

More information

Chapter 11: Sound, The Auditory System, and Pitch Perception

Chapter 11: Sound, The Auditory System, and Pitch Perception Chapter 11: Sound, The Auditory System, and Pitch Perception Overview of Questions What is it that makes sounds high pitched or low pitched? How do sound vibrations inside the ear lead to the perception

More information

Hearing. By Jack & Tori

Hearing. By Jack & Tori Hearing By Jack & Tori 3 Main Components of the Human Ear. Outer Ear. Middle Ear. Inner Ear Outer Ear Pinna: >Visible part of ear and ear canal -Acts as a funnel to direct sound Eardrum: >Airtight membrane

More information

BCS 221: Auditory Perception BCS 521 & PSY 221

BCS 221: Auditory Perception BCS 521 & PSY 221 BCS 221: Auditory Perception BCS 521 & PSY 221 Time: MW 10:25 11:40 AM Recitation: F 10:25 11:25 AM Room: Hutchinson 473 Lecturer: Dr. Kevin Davis Office: 303E Meliora Hall Office hours: M 1 3 PM kevin_davis@urmc.rochester.edu

More information

Hearing Sound. The Human Auditory System. The Outer Ear. Music 170: The Ear

Hearing Sound. The Human Auditory System. The Outer Ear. Music 170: The Ear Hearing Sound Music 170: The Ear Tamara Smyth, trsmyth@ucsd.edu Department of Music, University of California, San Diego (UCSD) November 17, 2016 Sound interpretation in the auditory system is done by

More information

Music 170: The Ear. Tamara Smyth, Department of Music, University of California, San Diego (UCSD) November 17, 2016

Music 170: The Ear. Tamara Smyth, Department of Music, University of California, San Diego (UCSD) November 17, 2016 Music 170: The Ear Tamara Smyth, trsmyth@ucsd.edu Department of Music, University of California, San Diego (UCSD) November 17, 2016 1 Hearing Sound Sound interpretation in the auditory system is done by

More information

College of Medicine Dept. of Medical physics Physics of ear and hearing /CH

College of Medicine Dept. of Medical physics Physics of ear and hearing /CH College of Medicine Dept. of Medical physics Physics of ear and hearing /CH 13 2017-2018 ***************************************************************** o Introduction : The ear is the organ that detects

More information

Chapter Fourteen. The Hearing Mechanism. 1. Introduction.

Chapter Fourteen. The Hearing Mechanism. 1. Introduction. Chapter Fourteen The Hearing Mechanism 1. Introduction. 2. Hearing. 3. The Ear. 4. The External Ear. 5. The Inner Ear. 6. Frequency Discrimination. 7. The Organ of Corti. 8. Tests and Exrecises. 9. References.

More information

Educational Module Tympanometry. Germany D Germering

Educational Module Tympanometry. Germany D Germering Educational Module anometry PATH medical Germany D-82110 Germering Our educational modules 1 are made for providing information on how the hearing organ works and which test procedures are used to test

More information

Learning Targets. Module 20. Hearing Explain how the ear transforms sound energy into neural messages.

Learning Targets. Module 20. Hearing Explain how the ear transforms sound energy into neural messages. Learning Targets Module 20 Hearing 20-1 Describe the characteristics of air pressure waves that we hear as sound. 20-2 Explain how the ear transforms sound energy into neural messages. 20-3 Discuss how

More information

Hearing: Physiology and Psychoacoustics

Hearing: Physiology and Psychoacoustics 9 Hearing: Physiology and Psychoacoustics Click Chapter to edit 9 Hearing: Master title Physiology style and Psychoacoustics The Function of Hearing What Is Sound? Basic Structure of the Mammalian Auditory

More information

9.01 Introduction to Neuroscience Fall 2007

9.01 Introduction to Neuroscience Fall 2007 MIT OpenCourseWare http://ocw.mit.edu 9.01 Introduction to Neuroscience Fall 2007 For information about citing these materials or our Terms of Use, visit: http://ocw.mit.edu/terms. 9.01 Recitation (R02)

More information

Hearing. By: Jimmy, Dana, and Karissa

Hearing. By: Jimmy, Dana, and Karissa Hearing By: Jimmy, Dana, and Karissa Anatomy - The ear is divided up into three parts - Sound enters in through the outer ear and passes into the middle where the vibrations are received and sent to the

More information

Systems Neuroscience Oct. 16, Auditory system. http:

Systems Neuroscience Oct. 16, Auditory system. http: Systems Neuroscience Oct. 16, 2018 Auditory system http: www.ini.unizh.ch/~kiper/system_neurosci.html The physics of sound Measuring sound intensity We are sensitive to an enormous range of intensities,

More information

THE COCHLEA AND AUDITORY PATHWAY

THE COCHLEA AND AUDITORY PATHWAY Dental Neuroanatomy Suzanne S. Stensaas, PhD February 23, 2012 Reading: Waxman, Chapter 16, Review pictures in a Histology book Computer Resources: http://www.cochlea.org/ - Promenade around the Cochlea

More information

Presentation On SENSATION. Prof- Mrs.Kuldeep Kaur

Presentation On SENSATION. Prof- Mrs.Kuldeep Kaur Presentation On SENSATION Prof- Mrs.Kuldeep Kaur INTRODUCTION:- Sensation is a specialty area within Psychology that works at understanding how are senses work and how we perceive stimuli in the environment.

More information

Perception of Sound. To hear sound, your ear has to do three basic things:

Perception of Sound. To hear sound, your ear has to do three basic things: Perception of Sound Your ears are extraordinary organs. They pick up all the sounds around you and then translate this information into a form your brain can understand. One of the most remarkable things

More information

Ganglion Cells Blind Spot Cornea Pupil Visual Area of the Bipolar Cells Thalamus Rods and Cones Lens Visual cortex of the occipital lobe

Ganglion Cells Blind Spot Cornea Pupil Visual Area of the Bipolar Cells Thalamus Rods and Cones Lens Visual cortex of the occipital lobe How We See How We See Cornea Ganglion Cells whose axons form the optic nerve Blind Spot the exit point at the back of the retina Pupil which is controlled by the iris Bipolar Cells Visual Area of the Thalamus

More information

HEARING GUIDE PREPARED FOR CLINICAL PROFESSIONALS HEARING.HEALTH.MIL. HCE_ClinicalProvider-Flip_FINAL01.indb 1

HEARING GUIDE PREPARED FOR CLINICAL PROFESSIONALS HEARING.HEALTH.MIL. HCE_ClinicalProvider-Flip_FINAL01.indb 1 HEARING GUIDE PREPARED FOR CLINICAL PROFESSIONALS HCE_ClinicalProvider-Flip_FINAL01.indb 1 TEMPORAL MUSCLE TEMPORAL BONE EXTERNAL AUDITORY CANAL MALLEUS INCUS STAPES SEMICUIRCULAR CANALS COCHLEA VESTIBULAR

More information

ID# Exam 2 PS 325, Fall 2003

ID# Exam 2 PS 325, Fall 2003 ID# Exam 2 PS 325, Fall 2003 As always, the Honor Code is in effect and you ll need to write the code and sign it at the end of the exam. Read each question carefully and answer it completely. Although

More information

PSY 214 Lecture # (11/9/2011) (Sound, Auditory & Speech Perception) Dr. Achtman PSY 214

PSY 214 Lecture # (11/9/2011) (Sound, Auditory & Speech Perception) Dr. Achtman PSY 214 PSY 214 Lecture 16 Topic: Sound, Auditory System & Speech Perception Chapter 11, pages 270-289 Corrections: None Announcements: CD is available outside Dr Achtman s office if you would like to see demonstrations

More information

Otoconia: Calcium carbonate crystals Gelatinous mass. Cilia. Hair cells. Vestibular nerve. Vestibular ganglion

Otoconia: Calcium carbonate crystals Gelatinous mass. Cilia. Hair cells. Vestibular nerve. Vestibular ganglion VESTIBULAR SYSTEM (Balance/Equilibrium) The vestibular stimulus is provided by Earth s, and. Located in the of the inner ear, in two components: 1. Vestibular sacs - gravity & head direction 2. Semicircular

More information

How Do Our Ears Work? Quiz

How Do Our Ears Work? Quiz The Marvelous Ear How Do Our Ears Work? Quiz 1. How do humans hear sounds? 2. How does human hearing work? Sketch and label the system. 3. Do you know any sensors that detect sound and how they might do

More information

THE EAR AND HEARING Be sure you have read and understand Chapter 16 before beginning this lab. INTRODUCTION: hair cells outer ear tympanic membrane

THE EAR AND HEARING Be sure you have read and understand Chapter 16 before beginning this lab. INTRODUCTION: hair cells outer ear tympanic membrane BIOLOGY 211: HUMAN ANATOMY & PHYSIOLOGY ****************************************************************************************************** THE EAR AND HEARING ******************************************************************************************************

More information

Chapter 17, Part 2! The Special Senses! Hearing and Equilibrium!

Chapter 17, Part 2! The Special Senses! Hearing and Equilibrium! Chapter 17, Part 2! The Special Senses! Hearing and Equilibrium! SECTION 17-5! Equilibrium sensations originate within the inner ear, while hearing involves the detection and interpretation of sound waves!

More information

Chapter 17, Part 2! Chapter 17 Part 2 Special Senses! The Special Senses! Hearing and Equilibrium!

Chapter 17, Part 2! Chapter 17 Part 2 Special Senses! The Special Senses! Hearing and Equilibrium! Chapter 17, Part 2! The Special Senses! Hearing and Equilibrium! SECTION 17-5! Equilibrium sensations originate within the inner ear, while hearing involves the detection and interpretation of sound waves!

More information

Lecture 6 Hearing 1. Raghav Rajan Bio 354 Neurobiology 2 January 28th All lecture material from the following links unless otherwise mentioned:

Lecture 6 Hearing 1. Raghav Rajan Bio 354 Neurobiology 2 January 28th All lecture material from the following links unless otherwise mentioned: Lecture 6 Hearing 1 All lecture material from the following links unless otherwise mentioned: 1. http://wws.weizmann.ac.il/neurobiology/labs/ulanovsky/sites/neurobiology.labs.ulanovsky/files/uploads/purves_ch12_ch13_hearing

More information

The Ear. The ear can be divided into three major parts: the outer ear, the middle ear and the inner ear.

The Ear. The ear can be divided into three major parts: the outer ear, the middle ear and the inner ear. The Ear The ear can be divided into three major parts: the outer ear, the middle ear and the inner ear. The Ear There are three components of the outer ear: Pinna: the fleshy outer part of the ear which

More information

Hearing: the function of the outer, the middle and inner ear. Hearing tests. The auditory pathways

Hearing: the function of the outer, the middle and inner ear. Hearing tests. The auditory pathways Hearing: the function of the outer, the middle and inner ear. Hearing tests. The auditory pathways Dr. Gabriella Kékesi 74. Hearing: the function of the outer, the middle and inner ear. Hearing tests.

More information

Sound Waves. Sensation and Perception. Sound Waves. Sound Waves. Sound Waves

Sound Waves. Sensation and Perception. Sound Waves. Sound Waves. Sound Waves Sensation and Perception Part 3 - Hearing Sound comes from pressure waves in a medium (e.g., solid, liquid, gas). Although we usually hear sounds in air, as long as the medium is there to transmit the

More information

ID# Final Exam PS325, Fall 1997

ID# Final Exam PS325, Fall 1997 ID# Final Exam PS325, Fall 1997 Good luck on this exam. Answer each question carefully and completely. Keep your eyes foveated on your own exam, as the Skidmore Honor Code is in effect (as always). Have

More information

THE MECHANICS OF HEARING

THE MECHANICS OF HEARING CONTENTS The mechanics of hearing Hearing loss and the Noise at Work Regulations Loudness and the A weighting network Octave band analysis Hearing protection calculations Worked examples and self assessed

More information

Chapter 15 Hearing & Equilibrium

Chapter 15 Hearing & Equilibrium Chapter 15 Hearing & Equilibrium ANATOMY OF THE OUTER EAR EAR PINNA is the outer ear it is thin skin covering elastic cartilage. It directs incoming sound waves to the EXTERNAL AUDITORY CANAL, which is

More information

Sound and Hearing. Decibels. Frequency Coding & Localization 1. Everything is vibration. The universe is made of waves.

Sound and Hearing. Decibels. Frequency Coding & Localization 1. Everything is vibration. The universe is made of waves. Frequency Coding & Localization 1 Sound and Hearing Everything is vibration The universe is made of waves db = 2log(P1/Po) P1 = amplitude of the sound wave Po = reference pressure =.2 dynes/cm 2 Decibels

More information

Chapter 7. Audition, the Body Senses, and the Chemical Senses. Copyright Allyn & Bacon 2004

Chapter 7. Audition, the Body Senses, and the Chemical Senses. Copyright Allyn & Bacon 2004 Chapter 7 Audition, the Body Senses, and the Chemical Senses This multimedia product and its contents are protected under copyright law. The following are prohibited by law: any public performance or display,

More information

Anatomy and Physiology of Hearing

Anatomy and Physiology of Hearing Anatomy and Physiology of Hearing The Human Ear Temporal Bone Found on each side of the skull and contains the organs for hearing and balance Divided into four major portions: - squamous - mastoid - tympanic

More information

Νευροφυσιολογία και Αισθήσεις

Νευροφυσιολογία και Αισθήσεις Biomedical Imaging & Applied Optics University of Cyprus Νευροφυσιολογία και Αισθήσεις Διάλεξη 11 Ακουστικό και Αιθουσιαίο Σύστημα (Auditory and Vestibular Systems) Introduction Sensory Systems Sense of

More information

COM3502/4502/6502 SPEECH PROCESSING

COM3502/4502/6502 SPEECH PROCESSING COM3502/4502/6502 SPEECH PROCESSING Lecture 4 Hearing COM3502/4502/6502 Speech Processing: Lecture 4, slide 1 The Speech Chain SPEAKER Ear LISTENER Feedback Link Vocal Muscles Ear Sound Waves Taken from:

More information

Anatomy of the Ear Region. External ear Middle ear Internal ear

Anatomy of the Ear Region. External ear Middle ear Internal ear Ear Lecture Objectives Make a list of structures making the external, middle, and internal ear. Discuss the features of the external auditory meatus and tympanic membrane. Describe the shape, position,

More information

Speech Generation and Perception

Speech Generation and Perception Speech Generation and Perception 1 Speech Generation and Perception : The study of the anatomy of the organs of speech is required as a background for articulatory and acoustic phonetics. An understanding

More information

THE COCHLEA AND AUDITORY PATHWAY

THE COCHLEA AND AUDITORY PATHWAY Dental Neuroanatomy Suzanne S. Stensaas, PhD April 14, 2010 Reading: Waxman, Chapter 16, Review pictures in a Histology book Computer Resources: http://www.cochlea.org/ - Promenade around the Cochlea HyperBrain

More information

What is the effect on the hair cell if the stereocilia are bent away from the kinocilium?

What is the effect on the hair cell if the stereocilia are bent away from the kinocilium? CASE 44 A 53-year-old man presents to his primary care physician with complaints of feeling like the room is spinning, dizziness, decreased hearing, ringing in the ears, and fullness in both ears. He states

More information

Chapter 3. of energy that moves through air, water and other matter, in waves of pressure.

Chapter 3. of energy that moves through air, water and other matter, in waves of pressure. Chapter 3 Human Hearing Mechanism 3.1 Introduction Audition is the scientific name for the perception of sound. Sound is a form of energy that moves through air, water and other matter, in waves of pressure.

More information

Hearing. PSYCHOLOGY (8th Edition, in Modules) David Myers. Module 14. Hearing. Hearing

Hearing. PSYCHOLOGY (8th Edition, in Modules) David Myers. Module 14. Hearing. Hearing PSYCHOLOGY (8th Edition, in Modules) David Myers PowerPoint Slides Aneeq Ahmad Henderson State University Worth Publishers, 2007 1 Hearing Module 14 2 Hearing Hearing The Stimulus Input: Sound Waves The

More information

SENSORY SYSTEM VII THE EAR PART 1

SENSORY SYSTEM VII THE EAR PART 1 SENSORY SYSTEM VII THE EAR PART 1 Waves Sound is a compression wave The Ear Ear Outer Ear Pinna Outer ear: - Made up of the pinna and the auditory canal Auditory Canal Outer Ear Pinna (also called the

More information

Ear. Utricle & saccule in the vestibule Connected to each other and to the endolymphatic sac by a utriculosaccular duct

Ear. Utricle & saccule in the vestibule Connected to each other and to the endolymphatic sac by a utriculosaccular duct Rahaf Jreisat *You don t have to go back to the slides. Ear Inner Ear Membranous Labyrinth It is a reflection of bony labyrinth but inside. Membranous labyrinth = set of membranous tubes containing sensory

More information

to vibrate the fluid. The ossicles amplify the pressure. The surface area of the oval window is

to vibrate the fluid. The ossicles amplify the pressure. The surface area of the oval window is Page 1 of 6 Question 1: How is the conduction of sound to the cochlea facilitated by the ossicles of the middle ear? Answer: Sound waves traveling through air move the tympanic membrane, which, in turn,

More information

Copyright 2009 Pearson Education, Inc.

Copyright 2009 Pearson Education, Inc. Outline Nervous System Sensory Systems I. II. III. IV. V. VI. Biol 105 Lecture 11 Chapter 9 Senses Sensory receptors Touch Vision Hearing and balance Smell Senses Sensory receptor cells Sensory receptors

More information

SOLUTIONS Homework #3. Introduction to Engineering in Medicine and Biology ECEN 1001 Due Tues. 9/30/03

SOLUTIONS Homework #3. Introduction to Engineering in Medicine and Biology ECEN 1001 Due Tues. 9/30/03 SOLUTIONS Homework #3 Introduction to Engineering in Medicine and Biology ECEN 1001 Due Tues. 9/30/03 Problem 1: a) Where in the cochlea would you say the process of "fourier decomposition" of the incoming

More information

Sound and the auditory system

Sound and the auditory system 978--521-68889-5 - Auditory Perception: An Analysis and Synthesis, Third Edition 1 Sound and the auditory system This chapter provides a brief introduction to the physical nature of sound, the manner in

More information

AUDITORY APPARATUS. Mr. P Mazengenya. Tel 72204

AUDITORY APPARATUS. Mr. P Mazengenya. Tel 72204 AUDITORY APPARATUS Mr. P Mazengenya Tel 72204 Describe the anatomical features of the external ear Describe the tympanic membrane (ear drum) Describe the walls of the middle ear Outline the structures

More information

EMANATIONS FROM RESIDUUM OSCILLATIONS IN HUMAN AUDITORY SYSTEM

EMANATIONS FROM RESIDUUM OSCILLATIONS IN HUMAN AUDITORY SYSTEM EMANATIONS FROM RESIDUUM OSCILLATIONS IN HUMAN AUDITORY SYSTEM V.S. Balaji, N.R.Raajan, S. Rakesh Kumar, Har Narayan Upadhyay School of Electrical & Electronics Engineering, SASTRA University Thanjavur,

More information

Sound and its characteristics. The decibel scale. Structure and function of the ear. Békésy s theory. Molecular basis of hair cell function.

Sound and its characteristics. The decibel scale. Structure and function of the ear. Békésy s theory. Molecular basis of hair cell function. Hearing Sound and its characteristics. The decibel scale. Structure and function of the ear. Békésy s theory. Molecular basis of hair cell function. 19/11/2014 Sound A type of longitudinal mass wave that

More information

Sound Waves. Sound and Sensa3on. Chapter 9. Sound waves are composed of compression and rarefac3on of air molecules. Domain

Sound Waves. Sound and Sensa3on. Chapter 9. Sound waves are composed of compression and rarefac3on of air molecules. Domain Chapter 9 Majority of illustra3ons in this presenta3on are from Biological Psychology 4 th edi3on ( Sinuer Publica3ons) Sound Waves Sound waves are composed of compression and rarefac3on of air molecules.

More information

Hearing. and other senses

Hearing. and other senses Hearing and other senses Sound Sound: sensed variations in air pressure Frequency: number of peaks that pass a point per second (Hz) Pitch 2 Some Sound and Hearing Links Useful (and moderately entertaining)

More information

Converting Sound Waves into Neural Signals, Part 1. What happens to initiate neural signals for sound?

Converting Sound Waves into Neural Signals, Part 1. What happens to initiate neural signals for sound? The Ear Outer Ear: Pinna. Collects sounds. Middle Ear: Chamber between eardrum and cochlea containing three tiny bones (hammer, anvil, stirrup) that concentrate the vibrations of the eardrum on the cochlea

More information

au/images/conductive-loss-new.jpg

au/images/conductive-loss-new.jpg Biology of the ear http://www.nal.gov. au/images/conductive-loss-new.jpg Agenda Pre-test Lecture Group Gesture Types of hearing losses Audiograms Views Post-test Pretest!! See how much you know Answer

More information

HEARING AND COCHLEAR IMPLANTS

HEARING AND COCHLEAR IMPLANTS HEARING AND COCHLEAR IMPLANTS FRANCIS CREIGHTON, MD NEUROTOLOGY & SKULL BASE SURGERY FELLOW JOHNS HOPKINS SCHOOL OF MEDICINE NOV 9 TH, 2017 THANKS TO: CHARLIE DELLA SANTINA, HEIDI NAKAJIMA AND DOUG MATTOX

More information

Auditory Periphery! external middle inner. stapes movement initiates a pressure wave in cochlear fluid

Auditory Periphery! external middle inner. stapes movement initiates a pressure wave in cochlear fluid Auditory Periphery! external middle inner sound causes air pressure to increase at eardrum stapes movement initiates a pressure wave in cochlear fluid VIIIth nerve conveys neural signal to cochlear nucleus

More information

Vision and Audition. This section concerns the anatomy of two important sensory systems, the visual and the auditory systems.

Vision and Audition. This section concerns the anatomy of two important sensory systems, the visual and the auditory systems. Vision and Audition Vision and Audition This section concerns the anatomy of two important sensory systems, the visual and the auditory systems. The description of the organization of each begins with

More information

THE EAR Dr. Lily V. Hughes, Audiologist

THE EAR Dr. Lily V. Hughes, Audiologist WHY AM I HERE? HEARING & THE BRAIN THE EAR Dr. Lily V. Hughes, Audiologist Fairbanks Hearing & Balance Center at the ENT Clinic 1 out of every 5 adults has hearing loss. That s more than 48 million people

More information

Hearing and Balance 1

Hearing and Balance 1 Hearing and Balance 1 Slide 3 Sound is produced by vibration of an object which produces alternating waves of pressure and rarefaction, for example this tuning fork. Slide 4 Two characteristics of sound

More information

Chapter 3: Anatomy and physiology of the sensory auditory mechanism

Chapter 3: Anatomy and physiology of the sensory auditory mechanism Chapter 3: Anatomy and physiology of the sensory auditory mechanism Objectives (1) Anatomy of the inner ear Functions of the cochlear and vestibular systems Three compartments within the cochlea and membranes

More information

The Sense Organs 10/13/2016. The Human Eye. 1. Sclera 2. Choroid 3. Retina. The eye is made up of three layers:

The Sense Organs 10/13/2016. The Human Eye. 1. Sclera 2. Choroid 3. Retina. The eye is made up of three layers: The human body gathers information from the outside world by using the five senses of: The Sense Organs 12.3 Sight Hearing Taste Smell Touch This information is essential in helping the body maintain homeostasis.

More information

Hearing Loss. How does the hearing sense work? Test your hearing

Hearing Loss. How does the hearing sense work? Test your hearing Hearing Loss You may have hearing loss and not even be aware of it. People of all ages experience gradual hearing loss, often due to the natural aging process or long exposure to loud noise. Other causes

More information

SPHSC 462 HEARING DEVELOPMENT. Overview Review of Hearing Science Introduction

SPHSC 462 HEARING DEVELOPMENT. Overview Review of Hearing Science Introduction SPHSC 462 HEARING DEVELOPMENT Overview Review of Hearing Science Introduction 1 Overview of course and requirements Lecture/discussion; lecture notes on website http://faculty.washington.edu/lawerner/sphsc462/

More information

Cochlear anatomy, function and pathology II. Professor Dave Furness Keele University

Cochlear anatomy, function and pathology II. Professor Dave Furness Keele University Cochlear anatomy, function and pathology II Professor Dave Furness Keele University d.n.furness@keele.ac.uk Aims and objectives of this lecture Focus (2) on the biophysics of the cochlea, the dual roles

More information

A&P 1. Ear, Hearing & Equilibrium Lab. Basic Concepts. These notes follow Carl s Talk at the beginning of lab

A&P 1. Ear, Hearing & Equilibrium Lab. Basic Concepts. These notes follow Carl s Talk at the beginning of lab A&P 1 Ear, Hearing & Equilibrium Lab Basic Concepts These notes follow Carl s Talk at the beginning of lab In this "Lab Exercise Guide", we will be looking at the basics of hearing and equilibrium. NOTE:

More information

The cochlea: auditory sense. The cochlea: auditory sense

The cochlea: auditory sense. The cochlea: auditory sense Inner ear apparatus 1- Vestibule macula and sacculus sensing acceleration of the head and direction of gravity 2- Semicircular canals mainly for sensing direction of rotation of the head 1 3- cochlea in

More information

Assistive Technology Project. Presented By: Rose Aldan

Assistive Technology Project. Presented By: Rose Aldan Assistive Technology Project Presented By: Rose Aldan Hearing Aid How Your Ear Works An auditory wonder Your ears appear to be relatively simple structures. But they are, in fact, only part of the complex

More information

Signals, systems, acoustics and the ear. Week 5. The peripheral auditory system: The ear as a signal processor

Signals, systems, acoustics and the ear. Week 5. The peripheral auditory system: The ear as a signal processor Signals, systems, acoustics and the ear Week 5 The peripheral auditory system: The ear as a signal processor Think of this set of organs 2 as a collection of systems, transforming sounds to be sent to

More information

SUBJECT: Physics TEACHER: Mr. S. Campbell DATE: 15/1/2017 GRADE: DURATION: 1 wk GENERAL TOPIC: The Physics Of Hearing

SUBJECT: Physics TEACHER: Mr. S. Campbell DATE: 15/1/2017 GRADE: DURATION: 1 wk GENERAL TOPIC: The Physics Of Hearing SUBJECT: Physics TEACHER: Mr. S. Campbell DATE: 15/1/2017 GRADE: 12-13 DURATION: 1 wk GENERAL TOPIC: The Physics Of Hearing The Physics Of Hearing On completion of this section, you should be able to:

More information

Music and Hearing in the Older Population: an Audiologist's Perspective

Music and Hearing in the Older Population: an Audiologist's Perspective Music and Hearing in the Older Population: an Audiologist's Perspective Dwight Ough, M.A., CCC-A Audiologist Charlotte County Hearing Health Care Centre Inc. St. Stephen, New Brunswick Anatomy and Physiology

More information

SLHS 1301 The Physics and Biology of Spoken Language. Practice Exam 2. b) 2 32

SLHS 1301 The Physics and Biology of Spoken Language. Practice Exam 2. b) 2 32 SLHS 1301 The Physics and Biology of Spoken Language Practice Exam 2 Chapter 9 1. In analog-to-digital conversion, quantization of the signal means that a) small differences in signal amplitude over time

More information

Human Acoustic Processing

Human Acoustic Processing Human Acoustic Processing Sound and Light The Ear Cochlea Auditory Pathway Speech Spectrogram Vocal Cords Formant Frequencies Time Warping Hidden Markov Models Signal, Time and Brain Process of temporal

More information

is the clear, transparent part at the front of the eye. It allows light to enter the eye and it also refracts (focuses) the light onto the retina.

is the clear, transparent part at the front of the eye. It allows light to enter the eye and it also refracts (focuses) the light onto the retina. Senses- Vision Light is a small part (1/70th) of the total electromagnetic (EM) spectrum. The EM band extends from radio waves at one extreme to x-rays at the other. The eye detects light and converts

More information

Digital Speech and Audio Processing Spring

Digital Speech and Audio Processing Spring Digital Speech and Audio Processing Spring 2008-1 Ear Anatomy 1. Outer ear: Funnels sounds / amplifies 2. Middle ear: acoustic impedance matching mechanical transformer 3. Inner ear: acoustic transformer

More information

INDH 5131 Controls of Occupational Hazards. Noise & Hearing Conservation. Part I

INDH 5131 Controls of Occupational Hazards. Noise & Hearing Conservation. Part I INDH 5131 Controls of Occupational Hazards Noise & Hearing Conservation Part I By: Magdy Akladios, PhD, PE, CSP, CPE, CSHM This Chapter in a Flash I. Historic Background II. Physics of Sound III. Physiology

More information

Hearing I: Sound & The Ear

Hearing I: Sound & The Ear Hearing I: Sound & The Ear Overview of Topics Chapter 5 in Chaudhuri Philosophical Aside: If a tree falls in the forest and no one is there to hear it... Qualities of sound energy and sound perception

More information