Chapter 18. The Nervous System. General and Special Senses. Lecture Presentation by Steven Bassett Southeast Community College

Size: px
Start display at page:

Download "Chapter 18. The Nervous System. General and Special Senses. Lecture Presentation by Steven Bassett Southeast Community College"

Transcription

1 Chapter 18 The Nervous System General and Special Senses Lecture Presentation by Steven Bassett Southeast Community College

2 Introduction Every plasmalemma functions as a receptor for the cell Plasmalemma has receptors specific for: Chemical stimuli Electrical stimuli Mechanical stimuli Not all plasmalemmae have the same receptor sites

3 Introduction Sensory information arrives at the CNS Information is picked up by sensory receptors Sensory receptors are the interface between the nervous system and the internal and external environment

4 Introduction Categories of Senses General senses Refers to temperature, pain, touch, pressure, vibration, and proprioception Special senses Refers to smell, taste, balance, hearing, and vision Special sense receptors are located in complex sense organs Examples are: eyes, ears, and taste buds

5 Receptors Each receptor has a characteristic sensitivity This leads to receptor specificity Specificity is due to the structure of the receptor

6 Receptors Examples of Specificity Free nerve endings are the simplest receptors These respond to a variety of stimuli Receptors of the retina Very specific and only respond to light The area monitored by the receptor cell is the receptive field

7 Receptors Receptive Fields Large receptive fields have receptors spread far apart, which makes it difficult to localize a stimulus Small receptive fields have receptors close together, which makes it easy to localize a stimulus

8 Figure 18.1 Receptors and Receptive Fields Receptive field 1 Receptive field 2

9 Receptors Interpretation of Sensory Information Information is relayed from the receptor to a specific neuron in the CNS Each pathway carries information concerning a specific sensation The identity of the active neuron indicates: Location of the stimulus Nature of the stimulus

10 Interpretation of Sensory Information Classification of Receptors Tonic receptors Always active Photoreceptors of the eye and receptors that constantly monitor body position Phasic receptors Normally inactive but become active when necessary (for short periods of time) Touch and pressure receptors of the skin (for example)

11 Receptors Central Processing and Adaptation Adaptation Reduction in sensitivity due to a constant stimulus Peripheral adaptation Receptors respond strongly at first and then decline Central adaptation Adaptation within the CNS Consciously aware of a stimulus, which quickly disappears

12 The General Senses Classification of the General Senses One classification scheme: Exteroceptors Provide information about the external environment Proprioceptors Provide information about the position of the body Interoceptors Provide information about the inside of the body

13 The General Senses Classification of the General Senses Another classification scheme: Nociceptors Respond to the sensation of pain Thermoreceptors Respond to changes in temperature Mechanoreceptors Activated by physical distortion of cell membranes Chemoreceptors Monitor the chemical composition of body fluids

14 The General Senses Nociceptors Known as pain receptors Associated with free nerve endings and large receptor fields This makes it difficult to pinpoint the location of the origin of the pain There are three types Receptors sensitive to extreme temperatures Receptors sensitive to mechanical damage Receptors sensitive to chemicals

15 The General Senses Nociceptors Fast pain Sensations reach the CNS fast Associated with pricking pain or cuts Slow pain Sensations reach the CNS slowly Associated with burns or aching pains Referred pain Sensations reach the spinal cord via the dorsal roots Some visceral organ pain sensations may reach the spinal cord via the same dorsal root

16 Figure 18.2 Referred Pain Heart Liver and gallbladder Stomach Small intestine Appendix Ureters Colon

17 The General Senses Thermoreceptors Found in the dermis, skeletal muscles, liver, and hypothalamus Cold receptors are more numerous than hot receptors Exist as free nerve endings These are phasic receptors These are very active when the temperature changes, but quickly adapt to a stable temperature

18 The General Senses Mechanoreceptors Receptors that are sensitive to stretch, compression, twisting, or distortion of the plasmalemmae There are three types Tactile receptors Baroreceptors Proprioceptors

19 The General Senses Mechanoreceptors Tactile receptors Provide sensations of touch, pressure, and vibrations Unencapsulated tactile receptors Free nerve endings, tactile disc, and root hair plexus Encapsulated tactile receptors Tactile corpuscle, Ruffini corpuscle, and lamellated corpuscle

20 The General Senses Mechanoreceptors Unencapsulated tactile receptors Free nerve endings are common in the dermis Tactile discs are in the stratum basale layer Root hair plexus monitors distortions and movements of the body surface

21 Figure 18.3a Tactile Receptors in the Skin Hair Merkel cells and tactile discs Tactile corpuscle Free nerve ending Ruffini corpuscle Lamellated corpuscle Root hair plexus Sensory nerves a Free nerve endings.

22 Figure 18.3b Tactile Receptors in the Skin Hair Merkel cells and tactile discs Tactile corpuscle Free nerve ending Ruffini corpuscle Lamellated corpuscle Root hair plexus Merkel cells Tactile disc Sensory nerves b Merkel cells and tactile discs.

23 Figure 18.3c Tactile Receptors in the Skin Hair Merkel cells and tactile discs Tactile corpuscle Free nerve ending Ruffini corpuscle Lamellated corpuscle Root hair plexus c Free nerve endings of root hair plexus. Sensory nerves

24 The General Senses Mechanoreceptors Encapsulated tactile receptors Tactile corpuscle Common on eyelids, lips, fingertips, nipples, and genitalia Ruffini corpuscle In the dermis, sensitive to pressure and distortion Lamellated corpuscle Consists of concentric cellular layers / sensitive to vibrations

25 Figure 18.3d Tactile Receptors in the Skin Tactile corpuscle Epidermis Hair Merkel cells and tactile discs Tactile corpuscle Free nerve ending Dermis Ruffini corpuscle Lamellated corpuscle Root hair plexus Tactile corpuscle LM x 550 Capsule Accessory cells Sensory nerves Dendrites Sensory nerve fiber d Tactile corpuscle; the capsule boundary in the micrograph is indicated by a dashed line.

26 Figure 18.3e Tactile Receptors in the Skin Hair Merkel cells and tactile discs Tactile corpuscle Free nerve ending Ruffini corpuscle Lamellated corpuscle Root hair plexus Collagen fibers Sensory nerve fiber Capsule Dendrites Sensory nerves e Ruffini corpuscle.

27 Figure 18.3f Tactile Receptors in the Skin Hair Merkel cells and tactile discs Tactile corpuscle Free nerve ending Ruffini corpuscle Lamellated corpuscle Root hair plexus Dermis Dendritic process Accessory cells (specialized fibrocytes) Concentric layers (lamellae) of collagen fibers separated by fluid Lamellated corpuscle LM x 125 Sensory nerves Concentric layers (lamellae) of collagen fibers separated by fluid Dendritic process f Lamellated corpuscle.

28 The General Senses Mechanoreceptors Baroreceptors Stretch receptors that monitor changes in the stretch of organs Location: Stomach Small intestine Urinary bladder Carotid artery Lungs Large intestine

29 Figure 18.4 Baroreceptors and the Regulation of Autonomic Functions Baroreceptors Baroreceptors of Carotid Sinus and Aortic Sinus Provide information on blood pressure to cardiovascular and respiratory control centers Baroreceptors of Lung Provide information on lung stretching to respiratory rhythmicity centers for control of respiratory rate Baroreceptors of Digestive Tract Provide information on volume of tract segments, trigger reflex movement of materials along tract Baroreceptors of Colon Provide information on volume of fecal material in colon, trigger defecation reflex Baroreceptors of Bladder Wall Provide information on volume of urinary bladder, trigger urinary reflex

30 The General Senses Mechanoreceptors Proprioceptors Monitor the position of joints Monitor tension in the tendons and ligaments Golgi tendon organs are the receptors in the tendons Monitor the length of muscle fibers upon contraction Muscle spindles are receptors in the muscles

31 The General Senses Chemoreceptors Detect small changes in the concentration of chemicals Respond to water-soluble or lipid-soluble compounds Found in respiratory centers of the: Medulla oblongata Carotid arteries Aortic arch

32 Figure 18.5 Chemoreceptors Chemoreceptive neurons Blood vessel Chemoreceptors Chemoreceptors In and Near Respiratory Centers of Medulla Oblongata Sensitive to changes in ph and P CO2 in cerebrospinal fluid Trigger reflexive adjustments in depth and rate of respiration Chemoreceptors of Carotid Bodies Sensitive to changes in ph, P CO2, and P O2 in blood Chemoreceptors of Aortic Bodies Sensitive to changes in ph, P CO2, and P O2 in blood Via cranial nerve IX Via cranial nerve X Trigger reflexive adjustments in respiratory and cardiovascular activity Carotid body LM x 1500

33 Olfaction (Smell) Olfaction The olfactory epithelium consists of: Olfactory receptors Supporting cells Basal cells Olfactory glands

34 Figure 18.6a The Olfactory Organs Olfactory Pathway Olfactory epithelium Olfactory nerve fibers (N I) Olfactory bulb Olfactory tract Central nervous system Cribriform plate Superior nasal concha Olfactory epithelium a The distribution of the olfactory receptors on the left side of the nasal septum is shown by the shading.

35 Figure 18.6b The Olfactory Organs Regenerative basal cell; divides to replace wornout olfactory receptor cells Olfactory gland To olfactory bulb Cribriform plate Lamina propria Olfactory epithelium Olfactory nerve fibers Developing olfactory receptor cell Olfactory receptor cell Supporting cell Mucous layer Knob Olfactory cilia; surfaces contain receptor proteins Substance being smelled b A detailed view of the olfactory epithelium.

36 Olfaction (Smell) Olfactory Pathways Axons leave the olfactory epithelium Pass through the cribriform foramina Synapse on neurons in the olfactory bulbs Impulses travel to the brain via CN I Arrive at the cerebral cortex, hypothalamus, and limbic system

37 Figure 18.6a The Olfactory Organs Olfactory Pathway Olfactory epithelium Olfactory nerve fibers (N I) Olfactory bulb Olfactory tract Central nervous system Cribriform plate Superior nasal concha Olfactory epithelium a The distribution of the olfactory receptors on the left side of the nasal septum is shown by the shading.

38 Olfaction (Smell) Olfactory Discrimination The epithelial receptors have different sensitivities and we therefore detect different smells Olfactory receptors can be replaced The replacement activity declines with age

39 Gustation (Taste) Gustation The tongue consists of papillae Papillae consist of taste buds There are three types of papillae Filiform Fungiform Circumvallate Taste buds consist of gustatory cells

40 Figure 18.7ab Gustatory Reception Water receptors (pharynx) Umami Taste buds Sour Circumvallate papilla Bitter Salty Sweet a Gustatory receptors are found in taste buds that form pockets in the epithelium of the fungiform and circumvallate papillae. Fungiform papilla Filiform papillae b Papillae on the surface of the tongue.

41 Gustation (Taste) Gustatory Receptors Taste buds consist of gustatory cells Each gustatory cell has a slender microvilli that extends through the taste pore into the surrounding fluid Dissolved chemicals contact the microvilli This provides a stimulus that changes the transmembrane potential of the gustatory cell Information goes to the brain for the interpretation of taste

42 Gustation (Taste) Gustatory Pathways Dissolved chemicals contact the taste hairs (microvilli) Impulses go from the gustatory cell through CN VII, IX, and X Synapse in the nucleus solitarius of the medulla oblongata Synapse in the medial lemniscus Synapse in the thalamus Information arrives at the gustatory cortex

43 Figure 18.8 Gustatory Pathways Gustatory cortex Facial nerve (N VII) Nucleus solitarius Thalamic nucleus Medial lemniscus Glossopharyngeal nerve (N IX) Vagus nerve (N X)

44 Gustation (Taste) Gustatory Discrimination We begin life with more than 10,000 taste buds The number declines rapidly by age 50 Coupled with the decline in olfactory receptors, taste diminishes as we age Threshold level is low for gustatory cells responsible for unpleasant stimuli Threshold level is high for gustatory cells responsible for pleasant stimuli

45 Gustation (Taste) Gustatory Discrimination The are four (possibly six) primary tastes sensations Sweet Salty Sour Bitter Umami Taste that is characteristic of beef and chicken broth Water Located mainly in the pharynx region

46 Equilibrium and Hearing Equilibrium and Hearing Structures of the ear are involved in balance and hearing The ear is subdivided into three regions External ear Middle ear Inner ear

47 Figure 18.9 Anatomy of the Ear External Ear Middle Ear Inner Ear Elastic cartilages Auditory ossicles Auricle Oval window Semicircular canals Petrous part of temporal bone Facial nerve (N VII) Vestibulocochlear nerve (N VIII) Bony labyrinth of inner ear Tympanic cavity Cochlea To nasopharynx Auditory tube External acoustic meatus Tympanic membrane Round window Vestibule

48 Equilibrium and Hearing The External Ear Consists of: Auricle (pinna) External acoustic meatus Tympanic membrane Ceruminous glands Produces cerumen (earwax)

49 Figure 18.9 Anatomy of the Ear External Ear Middle Ear Inner Ear Elastic cartilages Auditory ossicles Auricle Oval window Semicircular canals Petrous part of temporal bone Facial nerve (N VII) Vestibulocochlear nerve (N VIII) Bony labyrinth of inner ear Tympanic cavity Cochlea To nasopharynx Auditory tube External acoustic meatus Tympanic membrane Round window Vestibule

50 Equilibrium and Hearing The Middle Ear Consists of: Tympanic cavity Auditory ossicles Malleus, incus, and stapes Auditory tube (pharyngotympanic tube) Muscles: Tensor tympani Stapedius

51 Figure 18.9 Anatomy of the Ear External Ear Middle Ear Inner Ear Elastic cartilages Auditory ossicles Auricle Oval window Semicircular canals Petrous part of temporal bone Facial nerve (N VII) Vestibulocochlear nerve (N VIII) Bony labyrinth of inner ear Tympanic cavity Cochlea To nasopharynx Auditory tube External acoustic meatus Tympanic membrane Round window Vestibule

52 Figure 18.10a The Middle Ear Auditory tube Auditory ossicles Tympanic membrane External acoustic meatus Tympanic cavity (middle ear) Inner ear a Inferior view of the right temporal bone drawn, as if transparent, to show the location of the middle and inner ear

53 Figure 18.10b The Middle Ear Temporal bone (petrous part) Malleus Stabilizing ligament Chorda tympani nerve (cut), a branch of N VII External acoustic meatus Tympanic cavity (middle ear) Tympanic membrane (tympanum) b Structures within the middle ear cavity Incus Base of stapes at oval window Tensor tympani muscle Stapes Round window Auditory tube Stapedius muscle

54 Figure 18.10c The Middle Ear Incus Malleus c The isolated auditory ossicles Points of attachment to tympanic membrane Stapes Base of stapes

55 Figure 18.10d The Middle Ear Malleus Tendon of tensor tympani muscle Malleus attached to tympanic membrane Inner surface of tympanic membrane Incus Base of stapes at oval window Stapes Stapedius muscle d The tympanic membrane and auditory ossicles as seen through a fiber-optic tube inserted along the auditory canal and into the middle ear cavity

56 Equilibrium and Hearing The Inner Ear Consists of: Receptors housed in membranous labyrinth (within the bony labyrinth) Bony labyrinth Vestibule Semicircular canals Cochlea Utricle Saccule

57 Figure 18.9 Anatomy of the Ear External Ear Middle Ear Inner Ear Elastic cartilages Auditory ossicles Auricle Oval window Semicircular canals Petrous part of temporal bone Facial nerve (N VII) Vestibulocochlear nerve (N VIII) Bony labyrinth of inner ear Tympanic cavity Cochlea To nasopharynx Auditory tube External acoustic meatus Tympanic membrane Round window Vestibule

58 Figure 18.12a Semicircular Canals and Ducts Semicircular ducts Semicircular canal Anterior Lateral Posterior Vestibule Cristae within ampullae Maculae KEY Endolymphatic sac Membranous labyrinth Bony labyrinth Cochlea a Utricle Saccule Vestibular duct Cochlear duct Anterior view of the bony labyrinth cut away to show the semicircular canals and the enclosed semicircular ducts of the membranous labyrinth. Tympanic duct Organ of Corti

59 Equilibrium and Hearing The Vestibular Complex and Equilibrium The vestibular complex is the part of inner ear that provides equilibrium sensations by detecting rotation, gravity, and acceleration Consists of: Semicircular canals Utricle Saccule

60 Figure 18.12a Semicircular Canals and Ducts Semicircular ducts Semicircular canal Anterior Lateral Posterior Vestibule Cristae within ampullae Maculae KEY Endolymphatic sac Membranous labyrinth Bony labyrinth Cochlea a Utricle Saccule Vestibular duct Cochlear duct Anterior view of the bony labyrinth cut away to show the semicircular canals and the enclosed semicircular ducts of the membranous labyrinth. Tympanic duct Organ of Corti

61 Equilibrium and Hearing The Vestibular Complex and Equilibrium The semicircular canals Each semicircular canal encases a duct The beginning of each duct is the ampulla Within each ampulla is a crista with hair cells Each hair cell contains a kinocilium and stereocilia These are embedded in gelatinous material called the cupula The movement of the body causes movement of fluid in the canal, which in turn causes movement of the cupula and hair cells, which the brain detects

62 Equilibrium and Hearing The Vestibular Complex and Equilibrium When you rotate your head: The endolymph in the semicircular canals begins to move This causes the bending of the kinocilium and stereocilia This bending causes depolarization of the associated sensory nerve

63 Equilibrium and Hearing The Vestibular Complex and Equilibrium When you rotate your head: When you rotate your head to the right, the hair cells are bending to the left (due to movement of the endolymph) When you move in a circle and then stop abruptly, the endolymph moves back and forth causing the hair cells to bend back and forth resulting in confusing signals, thus dizziness

64 Equilibrium and Hearing The Vestibular Complex and Equilibrium The utricle and saccule The utricle and saccule are connected to the ampulla and to each other and to the fluid within the cochlea Hair cells of the utricle and saccule are in clusters called maculae Hair cells are embedded in gelatinous material consisting of statoconia (calcium carbonate crystals) Gelatinous material and statoconia collectively are called an otolith

65 Figure The Function of the Semicircular Ducts, Part II Anterior semicircular duct for yes Lateral semicircular duct for no Posterior semicircular duct for tilting head a Location and orientation of the membranous labyrinth within the petrous parts of the temporal bones b A superior view showing the planes of sensitivity for the semicircular ducts

66 Figure 18.13a The Function of the Semicircular Ducts, Part I Semicircular ducts Anterior Posterior Lateral Ampulla Vestibular branch (N VIII) Cochlea Endolymphatic sac Endolymphatic duct Utricle Maculae Saccule a Anterior view of the maculae and semicircular ducts of the right side.

67 Figure 18.13ab The Function of the Semicircular Ducts, Part I Semicircular ducts Anterior Posterior Lateral Ampulla Vestibular branch (N VIII) Cochlea Endolymphatic sac Endolymphatic duct Utricle Maculae Saccule a Anterior view of the maculae and semicircular ducts of the right side. Ampulla filled with endolymph Cupula Hair cells Crista Supporting cells Sensory nerve b A section through the ampulla of a semicircular duct.

68 Figure 18.13b The Function of the Semicircular Ducts, Part I Ampulla filled with endolymph Cupula Hair cells Crista Supporting cells Sensory nerve b A section through the ampulla of a semicircular duct.

69 Figure 18.13c The Function of the Semicircular Ducts, Part I Direction of duct rotation Direction of relative endolymph movement Direction of duct rotation c Semicircular duct Cupula At rest Endolymph movement along the length of the duct moves the cupula and stimulates the hair cells.

70 Figure 18.13d The Function of the Semicircular Ducts, Part I Displacement in this direction stimulates hair cell Displacement in this direction inhibits hair cell Kinocilium Stereocilia Hair cell Supporting cell Sensory nerve ending d Structure of a typical hair cell showing details revealed by electron microscopy. Bending the stereocilia toward the kinocilium depolarizes the cell and stimulates the sensory neuron. Displacement in the opposite direction inhibits the sensory neuron.

71 Equilibrium and Hearing The Vestibular Complex and Equilibrium When you move up or down (elevator movement): Otoliths rest on top of the maculae When moving upward, the otoliths press down on the macular surface When moving downward, the otoliths lift off the macular surface When you tilt side to side: When tilting to one side, the otoliths shift to one side of the macular surface

72 Figure 18.15a The Maculae of the Vestibule Otolith Gelatinous material Statoconia Hair cells Nerve fibers a Detailed structure of a sensory macula

73 Figure 18.15ab The Maculae of the Vestibule Statoconia Otolith a Gelatinous material Statoconia Hair cells Nerve fibers Detailed structure of a sensory macula Otolith b A scanning electron micrograph showing the crystalline structure of otoliths

74 Figure 18.15c The Maculae of the Vestibule 1 Head in Neutral Position 2 Gravity Head Tilted Posteriorly Gravity Receptor output increases Otolith moves downhill, distorting hair cell processes c Diagrammatic view of changes in otolith position during tilting of the head

75 Equilibrium and Hearing Pathways for Vestibular Sensations Sensory fibers form the vestibular branch of the vestibulocochlear nerve Synapse within the vestibular nuclei Located between the pons and medulla oblongata

76 Figure Neural Pathways for Equilibrium Sensations Semicircular canals Vestibular ganglion Red nucleus N III N IV To superior colliculus and relay to cerebral cortex Vestibular branch N VI Vestibular nucleus Vestibule To cerebellum Cochlear branch N XI Vestibulocochlear nerve (N VIII) Vestibulospinal tracts

77 Equilibrium and Hearing Pathways for Vestibular Sensations The vestibular nuclei: Integrate sensory information from each side of the head Sends information to: Cerebellum Cerebral cortex Motor nuclei within the brain stem and spinal cord Cranial nerves involved are: III, IV, VI, and XI

78 Figure Neural Pathways for Equilibrium Sensations Semicircular canals Vestibular ganglion Red nucleus N III N IV To superior colliculus and relay to cerebral cortex Vestibular branch N VI Vestibular nucleus Vestibule To cerebellum Cochlear branch N XI Vestibulocochlear nerve (N VIII) Vestibulospinal tracts

79 Equilibrium and Hearing Hearing The cochlea: Consists of snail-shaped spirals Spirals coil around a central area called the modiolus Within the modiolus are sensory neurons The sensory neurons are associated with CN VIII Organ of Corti

80 Figure 18.9 Anatomy of the Ear External Ear Middle Ear Inner Ear Elastic cartilages Auditory ossicles Auricle Oval window Semicircular canals Petrous part of temporal bone Facial nerve (N VII) Vestibulocochlear nerve (N VIII) Bony labyrinth of inner ear Tympanic cavity Cochlea To nasopharynx Auditory tube External acoustic meatus Tympanic membrane Round window Vestibule

81 Equilibrium and Hearing The Cochlea (continued) Each spiral consists of three layers Scala vestibuli (vestibular duct): consists of perilymph Scala tympani (tympanic duct): consists of perilymph Scala media (cochlear duct): consists of endolymph / this layer is between the scala vestibuli and scala tympani

82 Equilibrium and Hearing The Cochlea (continued) There is a basilar membrane between each layer The scala vestibuli and scala tympani are connected at the apical end of the cochlea Sense organs rest on the basilar membrane within the scala media

83 Figure 18.17a The Cochlea and Organ of Corti Round window Stapes at oval window Cochlear duct Vestibular duct Tympanic duct Cochlear branch Vestibular branch Vestibulocochlear nerve (N VIII) a Structure of the cochlea in partial section KEY Semicircular canals From oval window to tip of spiral From tip of spiral to round window

84 Figure 18.17b The Cochlea and Organ of Corti Apical turn Vestibular membrane Tectorial membrane Basilar membrane From oval window Spiral ganglion Modiolus To round window Vestibulocochlear nerve (N VIII) Middle turn Vestibular duct (scala vestibuli contains perilymph) Organ of Corti Cochlear duct (scala media contains endolymph) Basal turn Tympanic duct (scala tympani contains perilymph) Temporal bone (petrous part) Cochlear branch b Structure of the cochlea within the temporal bone showing the turns of the vestibular duct, cochlear duct, and tympanic duct

85 Equilibrium and Hearing The Cochlea The Organ of Corti Also known as the spiral organ Rests on the basilar membrane between the scala media and the scala tympani Hair cells are in contact with an overlying tectorial membrane This membrane is attached to the lining of the scala media Sound waves ultimately cause a distortion of the tectorial membrane, thus stimulating the organ of Corti

86 Figure 18.17b The Cochlea and Organ of Corti Apical turn Vestibular membrane Tectorial membrane Basilar membrane From oval window Spiral ganglion Modiolus To round window Vestibulocochlear nerve (N VIII) Middle turn Vestibular duct (scala vestibuli contains perilymph) Organ of Corti Cochlear duct (scala media contains endolymph) Basal turn Tympanic duct (scala tympani contains perilymph) Temporal bone (petrous part) Cochlear branch b Structure of the cochlea within the temporal bone showing the turns of the vestibular duct, cochlear duct, and tympanic duct

87 Figure 18.17d The Cochlea and Organ of Corti Bony cochlear wall Vestibular duct Vestibular membrane Cochlear duct Tectorial membrane Spiral ganglion Basilar membrane Tympanic duct Organ of Corti d Three-dimensional section showing the detail of the cochlear chambers, tectorial membrane, and organ of Corti Cochlear branch of N VIII

88 Figure 18.17e The Cochlea and Organ of Corti Tectorial membrane Cochlear duct (scala media) Vestibular membrane Tectorial membrane Outer hair cell e Basilar membrane Inner hair cell Nerve fibers Diagrammatic and histological sections through the receptor hair cell complex of the organ of Corti Tympanic duct (scala tympani) Basilar membrane Hair cells of organ of Corti Spiral ganglion cells of cochlear nerve Organ of Corti LM x 125

89 Equilibrium and Hearing Sound Detection Sound waves enter the external acoustic meatus The tympanic membrane vibrates Causes the vibration of the ossicles The stapes vibrates against the oval window of the scala tympani Perilymph begins to move

90 Figure 18.9 Anatomy of the Ear External Ear Middle Ear Inner Ear Elastic cartilages Auditory ossicles Auricle Oval window Semicircular canals Petrous part of temporal bone Facial nerve (N VII) Vestibulocochlear nerve (N VIII) Bony labyrinth of inner ear Tympanic cavity Cochlea To nasopharynx Auditory tube External acoustic meatus Tympanic membrane Round window Vestibule

91 Equilibrium and Hearing Sound Detection As the perilymph moves: Pressure is put on the scala media This pressure distorts the hair cells of the organ of Corti This distortion depolarizes the neurons Nerve signals are sent to the brain via CN VIII

92 Equilibrium and Hearing Auditory Pathways Stimulation of hair cells in the cochlea Sensory neurons carry the sound information from N VIII to the cochlear nuclei Information travels to the inferior colliculi of the midbrain

93 Equilibrium and Hearing Auditory Pathways (continued) The inferior colliculi causes the rotation of the head in the direction of the sound Information goes to the medial geniculate nucleus Information goes to the auditory cortex of the temporal lobe

94 Figure Pathways for Auditory Sensations 1 Stimulation of hair cells at a specific location along the basilar membrane activates sensory neurons. To ipsilateral auditory cortex Thalamus Highfrequency sounds 6 Projection fibers then deliver the information to specific locations within the auditory cortex of the temporal lobe. Low-frequency sounds Cochlea Low-frequency sounds High-frequency sounds Vestibular branch 4 5 Ascending acoustic information goes to the medial geniculate nucleus. The inferior colliculi direct a variety of unconscious motor responses to sounds. 2 Sensory neurons carry the sound information in the cochlear branch of the vestibulocochlear nerve (N VIII) to the cochlear nuclei. Vestibulocochlear nerve (N VIII) Cochlear nucleus To reticular formation and motor nuclei of cranial nerves Superior olivary nucleus 3 Information ascends from the cochlear nuclei to the inferior colliculi of the midbrain. KEY First-order neuron Second-order neuron Third-order neuron Fourth-order neuron Motor output to spinal cord through the tectospinal tracts

95 Vision Accessory Structures of the Eye Palpebrae (eyelids) Medial and lateral canthus Connect the eyelids at the corners of the eye Palpebral fissure Area between the eyelid Eyelashes Contain root hair plexus, which triggers the blinking reflex

96 Vision Accessory Structures of the Eye (continued) Conjunctiva Epithelial lining of the eyelid Glands Glands of Zeis, tarsal glands, lacrimal gland, lacrimal caruncle

97 Figure 18.19a Accessory Structures of the Eye, Part I Eyelashes Palpebra Lateral canthus Sclera Corneal limbus Pupil Palpebral fissure Medial canthus Lacrimal caruncle a Superficial anatomy of the right eye and its accessory structures

98 Figure 18.19b Accessory Structures of the Eye, Part I Tendon of superior oblique muscle Lacrimal gland (orbital portion) Tarsal plates Levator palpebrae superioris muscle Orbital fat Palpebral fissure Lacrimal sac Orbicularis oculi (cut) b Diagrammatic representation of a superficial dissection of the right orbit

99 Figure 18.19c Accessory Structures of the Eye, Part I Superior rectus muscle Lacrimal gland ducts Lacrimal gland Lateral canthus Lower eyelid Inferior rectus muscle Inferior oblique muscle Tendon of superior oblique muscle Lacrimal punctum Superior lacrimal canaliculus Medial canthus Inferior lacrimal canaliculus Lacrimal sac Nasolacrimal duct Inferior nasal concha Opening of nasolacrimal duct c Diagrammatic representation of a deeper dissection of the right eye showing its position within the orbit and its relationship to accessory structures, especially the lacrimal apparatus

100 Vision Accessory Structures of the Eye Eyelids Also known as palpebrae Connected at the corners called medial and lateral canthus Eyelashes are along the palpebral borders Eyelashes are associated with sebaceous glands Tarsal glands are located along the inner lining of the eyelids They secrete lipid products that prevent the eyelids from sticking together

101 Vision Accessory Structures of the Eye Eyelids Conjunctiva Covers the inside lining of the eyelids and the outside lining of the eye Fluid production helps prevent these layers from becoming dry Palpebral conjunctiva (Inner lining of the eyelids) Ocular conjunctiva (Outer lining of the eyelids)

102 Figure 18.19a Accessory Structures of the Eye, Part I Eyelashes Palpebra Lateral canthus Sclera Corneal limbus Pupil Palpebral fissure Medial canthus Lacrimal caruncle a Superficial anatomy of the right eye and its accessory structures

103 Vision Accessory Structures of the Eye Eyelids All of the glands are for protection or lubrication Glands of Zeis: sebaceous glands / associated with eyelashes Tarsal glands: secrete a lipid-rich product / keeps the eyelids from sticking together / located along the inner margin of the eyelids Lacrimal glands: produce tears / located at the superior, lateral portion of the eye Lacrimal caruncle glands: produce thick secretions / located within the canthus areas

104 Vision Accessory Structures of the Eye Eyelids An infection of the tarsal gland may result in a cyst An infection of any of the other glands may result in a sty

105 Vision Accessory Structures of the Eye The Lacrimal Apparatus Produces, distributes, and removes tears The lacrimal apparatus consists of: Lacrimal glands (produce tears) Lacrimal canaliculi Lacrimal sac Nasolacrimal duct

106 Figure 18.19c Accessory Structures of the Eye, Part I Superior rectus muscle Lacrimal gland ducts Lacrimal gland Lateral canthus Lower eyelid Inferior rectus muscle Inferior oblique muscle Tendon of superior oblique muscle Lacrimal punctum Superior lacrimal canaliculus Medial canthus Inferior lacrimal canaliculus Lacrimal sac Nasolacrimal duct Inferior nasal concha Opening of nasolacrimal duct c Diagrammatic representation of a deeper dissection of the right eye showing its position within the orbit and its relationship to accessory structures, especially the lacrimal apparatus

107 Vision Accessory Structures of the Eye The Lacrimal Apparatus Tears are produced by the lacrimal glands Flow over the ocular surface Flow into the nasolacrimal canal (foramen) This foramen enters into the nasal cavity Therefore, when you sob heavily, tears flow across your eye and down your face and also through the nasolacrimal canal into your nose and out, resulting in a runny nose

108 Vision The Eye Consist of: Sclera Cornea Pupil Iris Lens Anterior cavity Posterior cavity Three tunics: (1) fibrous tunic, (2) vascular tunic, and (3) neural tunic Retina

109 Figure 18.21b Sectional Anatomy of the Eye Posterior cavity (Vitreous chamber filled with the vitreous body) Fovea Ora serrata Fornix Palpebral conjunctiva Ocular conjunctiva Ciliary body Anterior chamber (filled with aqueous humor) Lens Pupil Central retinal artery and vein Optic nerve (N II) Optic disc b Retina Choroid Sclera Major anatomical landmarks and features in a diagrammatic view of the left eye Cornea Iris Posterior chamber (filled with aqueous humor) Corneal limbus Suspensory ligaments

110 Figure 18.21ab Sectional Anatomy of the Eye Fibrous tunic (sclera) Vascular tunic (choroid) Neural tunic (retina) Posterior cavity (Vitreous chamber filled with the vitreous body) Ora serrata Fornix Palpebral conjunctiva Ocular conjunctiva Ciliary body Fovea Anterior chamber (filled with aqueous humor) Lens a The three layers, or tunics, of the eye Central retinal artery and vein Pupil Cornea Iris Optic nerve (N II) Optic disc Retina Choroid Sclera Posterior chamber (filled with aqueous humor) Corneal limbus Suspensory ligaments b Major anatomical landmarks and features in a diagrammatic view of the left eye

111 Vision The Eyes The Fibrous Tunic (outermost layer) Makes up the sclera and cornea The cornea is modified sclera Provides some degree of protection Provides attachment sites for extra-ocular muscles Contains structures associated with focusing

112 Figure The Lens and Chambers of the Eye Sclera Ciliary body Ciliary processes Canal of Schlemm Anterior cavity Anterior chamber Posterior chamber Posterior cavity Lens Pupil Iris Neural tunic (retina) Neural layer Pigmented layer Posterior cavity Vascular tunic Choroid Ciliary body Iris Anterior cavity Fibrous tunic Cornea Sclera Suspensory ligaments Pupillary sphincter muscle Pupillary dilator muscle Cornea Ciliary muscle a The lens is suspended between the posterior cavity and the posterior chamber of the anterior cavity. b Its position is maintained by the suspensory ligaments that attach the lens to the ciliary body.

113 Vision The Eyes The Vascular Tunic (middle layer) Consists of blood vessels, lymphatics, and intrinsic eye muscles Regulates the amount of light entering the eye Secretes and reabsorbs aqueous fluid (aqueous humor) Controls the shape of the lens Includes the iris, ciliary body, and the choroid

114 Figure The Lens and Chambers of the Eye Sclera Ciliary body Ciliary processes Canal of Schlemm Anterior cavity Anterior chamber Posterior chamber Posterior cavity Lens Pupil Iris Neural tunic (retina) Neural layer Pigmented layer Posterior cavity Vascular tunic Choroid Ciliary body Iris Anterior cavity Fibrous tunic Cornea Sclera Suspensory ligaments Pupillary sphincter muscle Pupillary dilator muscle Cornea Ciliary muscle a The lens is suspended between the posterior cavity and the posterior chamber of the anterior cavity. b Its position is maintained by the suspensory ligaments that attach the lens to the ciliary body.

115 Vision The Eyes The Vascular Tunic The iris Consists of blood vessels, pigment, and smooth muscles The pigment creates the color of the eye The smooth muscles contract to change the diameter of the pupil

116 Vision The Eyes The Vascular Tunic The ciliary body The ciliary bodies consist of ciliary muscles connected to suspensory ligaments, which are connected to the lens The choroid Highly vascularized The innermost portion of the choroid attaches to the outermost portion of the retina

117 Vision The Eyes The Neural Tunic (inner layer) Also called the retina Made of two layers Pigmented layer outer layer Neural layer inner layer Retina cells Rods (night vision) Cones (color vision)

118 Figure The Lens and Chambers of the Eye Sclera Ciliary body Ciliary processes Canal of Schlemm Anterior cavity Anterior chamber Posterior chamber Posterior cavity Lens Pupil Iris Neural tunic (retina) Neural layer Pigmented layer Posterior cavity Vascular tunic Choroid Ciliary body Iris Anterior cavity Fibrous tunic Cornea Sclera Suspensory ligaments Pupillary sphincter muscle Pupillary dilator muscle Cornea Ciliary muscle a The lens is suspended between the posterior cavity and the posterior chamber of the anterior cavity. b Its position is maintained by the suspensory ligaments that attach the lens to the ciliary body.

119 Figure 18.23a Retinal Organization Horizontal cell Cone Rod Choroid Pigmented layer of retina Rods and cones Amacrine cell Bipolar cells Ganglion cells LIGHT a Nuclei of ganglion cells Nuclei of rods and cones Nuclei of bipolar cells The retina LM x 75 Histological organization of the retina. Note that the photoreceptors are located closest to the choroid rather than near the vitreous chamber.

120 Figure 18.23b Retinal Organization PIGMENT EPITHELIUM Melanin granules OUTER SEGMENT Visual pigments in membrane discs INNER SEGMENT Location of major organelles and metabolic operations such as photopigment synthesis and ATP production Discs Connecting stalks Mitochondria Cone Golgi apparatus Nuclei Rods Synapses with bipolar cells b Bipolar cell Diagrammatic view of the fine structure of rods and cones, based on data from electron microscopy. LIGHT

121 Vision The Eyes The Neural Tunic (inner layer) Retinal organization There are rods and cones all over the retina 100% cones in the fovea centralis area The best color vision is when an object is focused on the fovea centralis 0% rods or cones in the optic disc area If an object is focused on this area, vision does not occur Also known as the blind spot

122 Vision The Chambers of the Eye Anterior cavity Anterior chamber Posterior chamber Filled with fluid called aqueous humor Posterior cavity Vitreous chamber Filled with fluid called vitreous body

123 Figure 18.21a-d Sectional Anatomy of the Eye Fibrous tunic (sclera) Vascular tunic (choroid) Neural tunic (retina) Posterior cavity (Vitreous chamber filled with the vitreous body) Fovea Ora serrata Fornix Palpebral conjunctiva Ocular conjunctiva Ciliary body Anterior chamber (filled with aqueous humor) Lens a The three layers, or tunics, of the eye Central retinal artery and vein Optic nerve (N II) Optic disc b Retina Choroid Sclera Major anatomical landmarks and features in a diagrammatic view of the left eye Pupil Cornea Iris Posterior chamber (filled with aqueous humor) Corneal limbus Suspensory ligaments Optic nerve (N II) Dura mater Retina Choroid Sclera c Pupillary dilator muscles (radial) Pupil Pupillary constrictor muscles (sphincter) Constrictors contract Dilators contract The action of pupillary muscles and changes in pupillary diameter d Posterior cavity (vitreous chamber) Sagittal section through the eye Ora serrata Conjunctiva Cornea Lens Anterior chamber Iris Posterior chamber Suspensory ligaments Ciliary body

124 Vision The Chambers of the Eye Aqueous humor Secreted by cells at the ciliary body area Enters the posterior chamber (posterior of the iris) Flows through the pupil area Enters the anterior chamber Flows through the canal of Schlemm Enters into venous circulation

125 Figure The Circulation of Aqueous Humor Cornea Pupil Anterior cavity Anterior chamber Posterior chamber Ciliary process Suspensory ligaments Pigmented epithelium Lens Posterior cavity (vitreous chamber) Canal of Schlemm Body of iris Conjunctiva Ciliary body Sclera Choroid Retina

126 Vision The Chambers of the Eye Vitreous body Gelatinous material in the posterior chamber Supports the shape of the eye Supports the position of the lens Supports the position of the retina Aqueous humor can flow across the vitreous body and over the retina

127 Figure 18.21d Sectional Anatomy of the Eye Optic nerve (N II) Dura mater Retina Choroid Sclera Ora serrata Conjunctiva Posterior cavity (vitreous chamber) Cornea Lens Anterior chamber Iris Posterior chamber Suspensory ligaments Ciliary body d Sagittal section through the eye

128 Vision Aqueous Humor If this fluid cannot drain through the canal of Schlemm, pressure builds up This is glaucoma Vitreous Body If this fluid is not of the right consistency, the pressure is reduced against the retina The retina may detach from the posterior wall (detached retina)

129 Vision The Lens Focuses the image on the photoreceptors of the retina Consists of concentric layers of cells Changes shape due to: Tension in suspensory ligaments Contraction and relaxation of ciliary muscles

130 Figure 18.21b Sectional Anatomy of the Eye Posterior cavity (Vitreous chamber filled with the vitreous body) Fovea Ora serrata Fornix Palpebral conjunctiva Ocular conjunctiva Ciliary body Anterior chamber (filled with aqueous humor) Lens Pupil Central retinal artery and vein Optic nerve (N II) Optic disc b Retina Choroid Sclera Major anatomical landmarks and features in a diagrammatic view of the left eye Cornea Iris Posterior chamber (filled with aqueous humor) Corneal limbus Suspensory ligaments

131 Figure The Circulation of Aqueous Humor Cornea Pupil Anterior cavity Anterior chamber Posterior chamber Ciliary process Suspensory ligaments Pigmented epithelium Lens Posterior cavity (vitreous chamber) Canal of Schlemm Body of iris Conjunctiva Ciliary body Sclera Choroid Retina

132 Vision Visual Pathways Light waves pass through the cornea Pass through the anterior chamber Pass through the pupil Pass through the posterior chamber Pass through the lens The lens focuses the image on some part of the retina This creates a depolarization of the neural cells Signal is transmitted to the brain via CN II

133 Figure 18.21e Sectional Anatomy of the Eye Visual axis Anterior cavity Posterior chamber Anterior chamber Edge of pupil Cornea Iris Suspensory ligament of lens Lacrimal punctum Lacrimal caruncle Nose Corneal limbus Conjunctiva Lower eyelid Medial canthus Ciliary processes Lens Lateral canthus Ciliary body Ora serrata Sclera Choroid Fovea Retina Ethmoidal labyrinth Posterior cavity Lateral rectus muscle Medial rectus muscle Optic disc Optic nerve (N II) Central artery and vein e Section through the eye Orbital fat

134 Vision Visual Pathways The retina (continued) The cones require light to be stimulated (that s why we see color) At night (still has to be at least a small amount of light), the cones deactivate and the rods begin to be activated (that s why we can see at night but we can t determine color at night)

135 Vision Visual Pathways Cortical Integration Information arrives at the visual cortex of the occipital lobes There is a crossover of information at the optic chiasm region

136 Figure Anatomy of the Visual Pathways, Part II LEFT SIDE RIGHT SIDE Left eye only Binocular vision Right eye only Optic nerve (N II) Optic chiasm Optic tract Other hypothalamic nuclei, pineal gland, and reticular formation Suprachiasmatic nucleus Lateral geniculate nucleus Superior colliculus Lateral geniculate nucleus Projection fibers (optic radiation) LEFT CEREBRAL HEMISPHERE Visual cortex of cerebral hemispheres RIGHT CEREBRAL HEMISPHERE

The Nervous System: General and Special Senses Pearson Education, Inc.

The Nervous System: General and Special Senses Pearson Education, Inc. 18 The Nervous System: General and Special Senses Introduction Sensory information arrives at the CNS Information is picked up by sensory receptors Sensory receptors are the interface between the nervous

More information

Taste buds Gustatory cells extend taste hairs through a narrow taste pore

Taste buds Gustatory cells extend taste hairs through a narrow taste pore The Special Senses Objectives Describe the sensory organs of smell, and olfaction. Identify the accessory and internal structures of the eye, and explain their function. Explain how light stimulates the

More information

The Senses. Chapter 10 7/8/11. Introduction

The Senses. Chapter 10 7/8/11. Introduction Chapter 10 The Senses Introduction A. Sensory receptors detect changes in the environment and stimulate neurons to send nerve impulses to the brain. B. A sensation is formed based on the sensory input.

More information

Introduction. Senses our perception of what is out there 2 groups. General senses Special senses

Introduction. Senses our perception of what is out there 2 groups. General senses Special senses Introduction Senses our perception of what is out there 2 groups General senses Special senses Central Processing and Adaptation Adaptation the loss of sensitivity after continuous stimulation Tonic receptors

More information

SPECIAL SENSES PART I: OLFACTION & GUSTATION

SPECIAL SENSES PART I: OLFACTION & GUSTATION SPECIAL SENSES PART I: OLFACTION & GUSTATION 5 Special Senses Olfaction Gustation Vision Equilibrium Hearing Olfactory Nerves Extend through cribriform plate into nasal cavity on both sides of nasal septum

More information

Sensory system. Dr. Carmen E. Rexach Anatomy 35 Mt San Antonio College

Sensory system. Dr. Carmen E. Rexach Anatomy 35 Mt San Antonio College Sensory system Dr. Carmen E. Rexach Anatomy 35 Mt San Antonio College Sensory receptors Detect stimuli Classified by structure Origin Distribution Modality Structural Classification naked nerve endings

More information

Chapter 10. The Senses

Chapter 10. The Senses Chapter 10 The Senses 1 Introduction A. Sensory receptors detect changes in the environment and stimulate neurons to send nerve impulses to the brain. B. A sensation is formed based on the sensory input.

More information

o A cushion of fat surrounds most of the eye

o A cushion of fat surrounds most of the eye Name Period SPECIAL SENSES The Senses of touch o Temperature o Pressure o Pain o Smell o Taste o Sight o Hearing o Equilibrium The Eye and Vision are in the eyes has over a o Most of the eye is enclosed

More information

o A cushion of fat surrounds most of the eye

o A cushion of fat surrounds most of the eye Name Period SPECIAL SENSES The Senses General senses of touch o Temperature o Pressure o Pain Special senses o Smell o Taste o Sight o Hearing o Equilibrium The Eye and Vision 70 percent of all sensory

More information

Copyright 2009 Pearson Education, Inc.

Copyright 2009 Pearson Education, Inc. Outline Nervous System Sensory Systems I. II. III. IV. V. VI. Biol 105 Lecture 11 Chapter 9 Senses Sensory receptors Touch Vision Hearing and balance Smell Senses Sensory receptor cells Sensory receptors

More information

Special Senses. Accessory Structures of the Eye. The Eye and Vision. Accessory Structures of the Eye. Accessory Structures of the Eye

Special Senses. Accessory Structures of the Eye. The Eye and Vision. Accessory Structures of the Eye. Accessory Structures of the Eye 8 PART A Special Senses PowerPoint Lecture Slide Presentation by Jerry L. Cook, Sam Houston University ESSENTIALS OF HUMAN ANATOMY & PHYSIOLOGY EIGHTH EDITION ELAINE N. MARIEB The Senses General senses

More information

Chapter 17, Part 2! The Special Senses! Hearing and Equilibrium!

Chapter 17, Part 2! The Special Senses! Hearing and Equilibrium! Chapter 17, Part 2! The Special Senses! Hearing and Equilibrium! SECTION 17-5! Equilibrium sensations originate within the inner ear, while hearing involves the detection and interpretation of sound waves!

More information

Chapter 17, Part 2! Chapter 17 Part 2 Special Senses! The Special Senses! Hearing and Equilibrium!

Chapter 17, Part 2! Chapter 17 Part 2 Special Senses! The Special Senses! Hearing and Equilibrium! Chapter 17, Part 2! The Special Senses! Hearing and Equilibrium! SECTION 17-5! Equilibrium sensations originate within the inner ear, while hearing involves the detection and interpretation of sound waves!

More information

Chapter 15 Lecture Outline

Chapter 15 Lecture Outline Chapter 15 Lecture Outline See separate PowerPoint slides for all figures and tables preinserted into PowerPoint without notes. Copyright 2016 McGraw-Hill Education. Permission required for reproduction

More information

GENERAL REFLEX ARC. Sense Organs. Lecture Overview. Senses. Melissa Gonzales McNeal 1

GENERAL REFLEX ARC. Sense Organs. Lecture Overview. Senses. Melissa Gonzales McNeal 1 Nervous System Central Nervous System Peripheral Nervous System Sense Organs One definition of man is an intelligence served by organs Ralph Waldo Emerson Brain Spinal Cord Cranial Nerves Anatomical Classification

More information

AUDITORY APPARATUS. Mr. P Mazengenya. Tel 72204

AUDITORY APPARATUS. Mr. P Mazengenya. Tel 72204 AUDITORY APPARATUS Mr. P Mazengenya Tel 72204 Describe the anatomical features of the external ear Describe the tympanic membrane (ear drum) Describe the walls of the middle ear Outline the structures

More information

Olfaction. The Special Senses. The Special Senses. Olfaction. The Ethmoid. Olfactory Receptors. The five special senses are

Olfaction. The Special Senses. The Special Senses. Olfaction. The Ethmoid. Olfactory Receptors. The five special senses are The Special Senses The Special Senses Chapter 14 in Open Stax Chapter 17 in Martini The five special senses are Olfaction Gustation Equilibrium Hearing Vision Olfaction Olfaction The sense of smell, or

More information

The white of the eye and the part that maintains its shape is know n as the:

The white of the eye and the part that maintains its shape is know n as the: Scrub In The white of the eye and the part that maintains its shape is know n as the: a. Cornea b. Pupil c. Retina d. Sclera The structure that is found in the ear and contains the organ of hearing is

More information

THE SPECIAL SENSES. Introduction Vision

THE SPECIAL SENSES. Introduction Vision THE SPECIAL SENSES Introduction Vision RECEPTORS Structures designed to respond to stimuli Variable complexity RECEPTORS: GENERAL PROPERTIES Transducers Receptor Potential Generator Potential RECEPTORS

More information

Essentials of Human Anatomy & Physiology. Chapter 8. Special Senses. Slides Lecture Slides in PowerPoint by Jerry L.

Essentials of Human Anatomy & Physiology. Chapter 8. Special Senses. Slides Lecture Slides in PowerPoint by Jerry L. Essentials of Human Anatomy & Physiology Elaine N. Marieb Seventh Edition Chapter 8 Special Senses Slides 8.1 8.19 Lecture Slides in PowerPoint by Jerry L. Cook Special Senses Title Somatosensation Essential

More information

20-20,000 Hertz range of human hearing

20-20,000 Hertz range of human hearing 20-20,000 Hertz range of human hearing accommodation automatic adjustment in focal length of the lens of the eye; changing the shape of the lens aqueous humor Watery fluid in the anterior chambers of the

More information

Head: Special Senses. Taste Smell Vision Hearing/Balance

Head: Special Senses. Taste Smell Vision Hearing/Balance Head: Special Senses Taste Smell Vision Hearing/Balance TASTE: how does it work? Taste buds on tongue on fungiform papillae ( mushroom-like projections) Each bud contains several cell types in microvilli

More information

Special Senses. Mechanoreception Electroreception Chemoreception Others

Special Senses. Mechanoreception Electroreception Chemoreception Others Special Senses Mechanoreception Electroreception Chemoreception Others Recall our receptor types Chemically regulated: Respond to particular chemicals Voltage regulated: respond to changing membrane potential

More information

Chapter 18 Senses SENSORY RECEPTION 10/21/2011. Sensory Receptors and Sensations. Sensory Receptors and Sensations. Sensory Receptors and Sensations

Chapter 18 Senses SENSORY RECEPTION 10/21/2011. Sensory Receptors and Sensations. Sensory Receptors and Sensations. Sensory Receptors and Sensations SENSORY RECEPTION Chapter 18 Senses s convert stimulus energy to action potentials s 1. Are specialized cells, or 2. Specialized endings that detect stimuli All stimuli are forms of energy s in eyes detect

More information

Chap Senses. 1. Give an example of something a general sensory receptor would detect.

Chap Senses. 1. Give an example of something a general sensory receptor would detect. Carl Christensen, PhD Chap. 17 - Senses Bio. 2304 Human Anatomy 1. Give an example of something a general sensory receptor would detect. 2. Classification of Sensory Receptors a. mechanoreceptors b. thermoreceptors

More information

The Special Senses. Smell, taste, vision, hearing and equilibrium Housed in complex sensory organs

The Special Senses. Smell, taste, vision, hearing and equilibrium Housed in complex sensory organs The Special Senses Smell, taste, vision, hearing and equilibrium Housed in complex sensory organs Chemical Senses Interaction of molecules with receptor cells Olfaction (smell) and gustation (taste) Both

More information

The Senses Help to maintain homeostasis General senses receptors located throughout the body

The Senses Help to maintain homeostasis General senses receptors located throughout the body The Senses Help to maintain homeostasis General senses receptors located throughout the body Within the skin, organs & joints Sense of touch Special senses receptors in the head Sight Smell Taste Hearing

More information

For this lab you will use parts of Exercise #18 in your Wise lab manual. Please be sure to read those sections before coming to lab

For this lab you will use parts of Exercise #18 in your Wise lab manual. Please be sure to read those sections before coming to lab Bio 322 Human Anatomy Objectives for the laboratory exercise The Eye and Ear Required reading before beginning this lab: Saladin, KS: Human Anatomy 5 th ed (2017) Chapter 17 For this lab you will use parts

More information

Unit 8: The Special Senses

Unit 8: The Special Senses Unit 8: The Special Senses I. The Senses A. General senses of touch 1. Temperature 2. Pressure 3. Pain B. Special senses 1. Smell 2. Taste 3. Sight 4. Hearing 5. Equilibrium II. The Eye and Vision A. 70%

More information

Anatomy of the Ear Region. External ear Middle ear Internal ear

Anatomy of the Ear Region. External ear Middle ear Internal ear Ear Lecture Objectives Make a list of structures making the external, middle, and internal ear. Discuss the features of the external auditory meatus and tympanic membrane. Describe the shape, position,

More information

The Special Senses. PowerPoint Lecture Presentations prepared by Jason LaPres. Lone Star College North Harris Pearson Education, Inc.

The Special Senses. PowerPoint Lecture Presentations prepared by Jason LaPres. Lone Star College North Harris Pearson Education, Inc. 17 The Special Senses PowerPoint Lecture Presentations prepared by Jason LaPres Lone Star College North Harris An Introduction to the Special Senses Five Special Senses 1. Olfaction 2. Gustation 3. Vision

More information

Senses and Sense Organs

Senses and Sense Organs Senses and Sense Organs SENSORY SYSTEMS Human experience is effected by both internal and external stimuli. Humans are able to distinguish among many different types of stimuli by means of a highly developed

More information

Equilibrium (Balance) *

Equilibrium (Balance) * OpenStax-CNX module: m63740 1 Equilibrium (Balance) * Steven Telleen Based on Sensory Perception by OpenStax This work is produced by OpenStax-CNX and licensed under the Creative Commons Attribution License

More information

Senses- Ch. 12. Pain receptors- respond to tissue damage in all tissues except in the brain

Senses- Ch. 12. Pain receptors- respond to tissue damage in all tissues except in the brain Senses- Ch. 12 5 general types of sensory neurons or receptors are known. These specialized neurons detect stimuli from the eyes, ears, nose, mouth, and skin. The stimuli are changed into electrical signals

More information

Unit 8 - The Special Senses 1

Unit 8 - The Special Senses 1 Unit 8 - The Special Senses 1 I. Unit 8: The Special Senses A. The Senses 1. General senses a) Light touch (1) Meissner's corpuscles b) Temperature c) Pressure (1) Pacinian corpuscles; also called lamellar

More information

Overview of Sensory Receptors

Overview of Sensory Receptors Sensory Systems Chapter 45 Overview of Sensory Receptors Sensory receptors provide information from our internal and external environments that is crucial for survival and success -Exteroceptors sense

More information

Essential questions. What are the structures of the sensory system? 3.03 Remember the structures of the sensory system 2

Essential questions. What are the structures of the sensory system? 3.03 Remember the structures of the sensory system 2 Essential questions What are the structures of the sensory system? 3.03 Remember the structures of the sensory system 2 The Senses Eyes Sight Ears Hearing Nose Smell Tongue Taste Skin Touch 3.03 Remember

More information

TASTE: Taste buds are the sense organs that respond to gustatory stimuli. Chemoreceptors that respond to chemicals broken down from food in the saliva

TASTE: Taste buds are the sense organs that respond to gustatory stimuli. Chemoreceptors that respond to chemicals broken down from food in the saliva UNIT 5: Nervous System- Senses Somatic Senses Somatic senses are associated with receptors in the skin, muscles, joints, and viscera (organs of the body) Include senses of touch, pressure, temperature,

More information

Principles of Anatomy and Physiology

Principles of Anatomy and Physiology Principles of Anatomy and Physiology 14 th Edition CHAPTER 17 The Special Senses Olfaction: Sense of Smell Smell and taste are chemical senses. The human nose contains 10 million to 100 million receptors

More information

4. Which letter in figure 9.1 points to the fovea centralis? Ans: b

4. Which letter in figure 9.1 points to the fovea centralis? Ans: b Chapter 9: The Sensory System 1. Proprioceptors are involved in the sense of A) pain. B) temperature. C) pressure. D) movement of limbs. 2. Which are chemoreceptors? A) taste B) olfactory C) proprioceptors

More information

Biology 218 Human Anatomy

Biology 218 Human Anatomy Chapter 22 Adapted form Tortora 10 th ed. LECTURE OUTLINE A. Special Senses 1. Olfaction: Sense of Smell (p. 672) i. The olfactory epithelium is located in the superior portion of the nasal cavity and

More information

Special Senses. The Senses. General senses. Special senses. Yong Jeong, MD, PhD Department of Bio and Brain Engineering

Special Senses. The Senses. General senses. Special senses. Yong Jeong, MD, PhD Department of Bio and Brain Engineering 8 Special Senses Yong Jeong, MD, PhD Department of Bio and Brain Engineering The Senses General senses Touch Pressure Pain Temperature Proprioception Special senses Smell Taste Sight Hearing Equilibrium

More information

Ear. Utricle & saccule in the vestibule Connected to each other and to the endolymphatic sac by a utriculosaccular duct

Ear. Utricle & saccule in the vestibule Connected to each other and to the endolymphatic sac by a utriculosaccular duct Rahaf Jreisat *You don t have to go back to the slides. Ear Inner Ear Membranous Labyrinth It is a reflection of bony labyrinth but inside. Membranous labyrinth = set of membranous tubes containing sensory

More information

4/22/16. Eye. External Anatomy of Eye. Accessory Structures. Bio 40B Dr. Kandula

4/22/16. Eye. External Anatomy of Eye. Accessory Structures. Bio 40B Dr. Kandula Eye Bio 40B Dr. Kandula External Anatomy of Eye Accessory Structures l Eyebrows l Levator Palpebrae Superioris - opens eye l Eyelashes l Ciliary glands modified sweat glands l Small sebaceous glands l

More information

Special Senses: The Eye

Special Senses: The Eye Unit 4 Special Senses: The Eye ESSENTIALS OF HUMAN ANATOMY & PHYSIOLOGY The Senses General senses of touch Temperature Pressure Pain Special senses Smell Taste Sight Hearing Equilibrium The Eye and Vision

More information

Sensory Systems. BIOLOGY OF HUMANS Concepts, Applications, and Issues. Judith Goodenough Betty McGuire

Sensory Systems. BIOLOGY OF HUMANS Concepts, Applications, and Issues. Judith Goodenough Betty McGuire BIOLOGY OF HUMANS Concepts, Applications, and Issues Fifth Edition Judith Goodenough Betty McGuire 9 Sensory Systems Lecture Presentation Anne Gasc Hawaii Pacific University and University of Hawaii Honolulu

More information

Special Senses. Chapter 17

Special Senses. Chapter 17 Special Senses Chapter 17 Overview of Special Senses Special senses: Sense of smell.olfaction. Sense of taste.gustation. Sense of sight.vision. Sense of hearing and balance.auditory and equilibrium. Visual

More information

Chapter 17: The Special Senses

Chapter 17: The Special Senses Chapter 17: The Special Senses I. An Introduction to the Special Senses, p. 550 The state of our nervous systems determines what we perceive. 1. For example, during sympathetic activation, we experience

More information

SOCM EAP The General and Special Senses PFN: SOMAPL19. Terminal Learning Objective. References. Hours: 2.0

SOCM EAP The General and Special Senses PFN: SOMAPL19. Terminal Learning Objective. References. Hours: 2.0 SOCM EAP The General and Special Senses PFN: SOMAPL19 Hours: 2.0 Slide 1 Terminal Learning Objective Action: Communicate knowledge of The General and Special Senses Condition: Given a lecture in a classroom

More information

Bi 121 Lab OLFACTION. olfactory bulb, olfactory nerve (=cranial nerve I), olfactory foramina, olfactory epithelium

Bi 121 Lab OLFACTION. olfactory bulb, olfactory nerve (=cranial nerve I), olfactory foramina, olfactory epithelium Bi 121 Lab Week 9: THE SPECIAL SENSES The special senses include smell, taste, vision, hearing, and balance. In this laboratory exercise, we will look at many of the structures that provide for these senses.

More information

The Special Senses: Part A

The Special Senses: Part A PowerPoint Lecture Slides prepared by Janice Meeking, Mount Royal College CHAPTER 15 The Special Senses: Part A Warm Up What is the function of the eyeball? List any structures of the eyeball that you

More information

The Special Senses. Chapter 17

The Special Senses. Chapter 17 The Special Senses Chapter 17 Objective Describe the structure of vertebrate sensory organs and relate structure to function in vertebrate sensory systems. The 5 Special Senses 1. Olfaction 2. Gustation

More information

THE SPECIAL SENSES (1) THE CHEMICAL SENSES: TASTE (GUSTATION) AND SMELL (OLFACTION)

THE SPECIAL SENSES (1) THE CHEMICAL SENSES: TASTE (GUSTATION) AND SMELL (OLFACTION) THE SPECIAL SENSES Senses allow the body to maintain homeostasis by constantly receiving information regarding internal and external environmental changes. There are many ways we sense things, but there

More information

Neural Integration I: Sensory Pathways and the Somatic Nervous System

Neural Integration I: Sensory Pathways and the Somatic Nervous System 15 Neural Integration I: Sensory Pathways and the Somatic Nervous System PowerPoint Lecture Presentations prepared by Jason LaPres Lone Star College North Harris An Introduction to Sensory Pathways and

More information

Chapter 7. Audition, the Body Senses, and the Chemical Senses. Copyright Allyn & Bacon 2004

Chapter 7. Audition, the Body Senses, and the Chemical Senses. Copyright Allyn & Bacon 2004 Chapter 7 Audition, the Body Senses, and the Chemical Senses This multimedia product and its contents are protected under copyright law. The following are prohibited by law: any public performance or display,

More information

Activity 1: Anatomy of the Eye and Ear Lab

Activity 1: Anatomy of the Eye and Ear Lab Activity 1: Anatomy of the Eye and Ear Lab 1. Launch the view! Launch Human Anatomy Atlas. Navigate to Quizzes/Lab Activities, find the Eye and Ear Lab section. Launch Augmented Reality mode and scan the

More information

Chapter 16B. The Special Senses. The Special Senses. Olfactory Epithelium. Chemical Senses

Chapter 16B. The Special Senses. The Special Senses. Olfactory Epithelium. Chemical Senses The Special Senses Chapter 16B Smell, taste, vision, hearing and equilibrium Housed in complex sensory organs The Special Senses 1 2 Chemical Senses Interaction of molecules with chemoreceptor cells Olfaction

More information

a. The neural layer possesses an optic disc (blind spot), where the optic nerve exits the eye, and lacks photoreceptors. b. Lateral to the blind spot

a. The neural layer possesses an optic disc (blind spot), where the optic nerve exits the eye, and lacks photoreceptors. b. Lateral to the blind spot The Special Senses Outline PART 1 THE EYE AND VISION (pp. 545 565; Figs. 15.1 15.19) 15.1 The eye has three layers, a lens, and humors and is surrounded by accessory structures (pp. 549 557; Figs. 15.1

More information

Essentials of Human Anatomy and Physiology, 11e (Marieb) Chapter 8 Special Senses. 8.1 Multiple Choice Part I Questions

Essentials of Human Anatomy and Physiology, 11e (Marieb) Chapter 8 Special Senses. 8.1 Multiple Choice Part I Questions Essentials of Human Anatomy and Physiology, 11e (Marieb) Chapter 8 Special Senses 8.1 Multiple Choice Part I Questions Using Figure 8.1, identify the following: 1) The auricle (pinna) is indicated by.

More information

Unit VIII Problem 9 Anatomy of The Ear

Unit VIII Problem 9 Anatomy of The Ear Unit VIII Problem 9 Anatomy of The Ear - The ear is an organ with 2 functions: Hearing. Maintenance of equilibrium/balance. - The ear is divided into 3 parts: External ear. Middle ear (which is also known

More information

Special Senses PART A

Special Senses PART A 8 Special Senses PART A PowerPoint Lecture Slide Presentation by Jerry L. Cook, Sam Houston University ESSENTIALS OF HUMAN ANATOMY & PHYSIOLOGY EIGHTH EDITION ELAINE N. MARIEB The Senses General senses

More information

Gathering information the sensory systems; Vision

Gathering information the sensory systems; Vision Visual System Gathering information the sensory systems; Vision The retina is the light-sensitive receptor layer at the back of the eye. - Light passes through the cornea, the aqueous chamber, the lens,

More information

-Detect heat or cold and help maintain body temperature

-Detect heat or cold and help maintain body temperature Sensory Receptors -Transduce stimulus energy and transmit signals to the central nervous system -Reception occurs when a receptor detectd a stimulus -Perception occurs in the brain as this information

More information

Special Senses Sight Smell Taste Hearing and balance. Touch, not special, and not here (Ch 13)

Special Senses Sight Smell Taste Hearing and balance. Touch, not special, and not here (Ch 13) Special Senses Sight Smell Taste Hearing and balance Touch, not special, and not here (Ch 13) Eye, matey. Eye and Associated Structures 70% of all body sensory receptors are in the eye About half of the

More information

C h a p t e r PowerPoint Lecture Slides prepared by Jason LaPres North Harris College Houston, Texas

C h a p t e r PowerPoint Lecture Slides prepared by Jason LaPres North Harris College Houston, Texas C h a p t e r 15 The Nervous System: The Brain and Cranial Nerves PowerPoint Lecture Slides prepared by Jason LaPres North Harris College Houston, Texas Copyright 2009 Pearson Education, Inc., publishing

More information

Biology. Slide 1 of 49. End Show. Copyright Pearson Prentice Hall

Biology. Slide 1 of 49. End Show. Copyright Pearson Prentice Hall Biology 1 of 49 2 of 49 Sensory Receptors Neurons that react directly to stimuli from the environment are called sensory receptors. Sensory receptors react to stimuli by sending impulses to other neurons

More information

SENSE ORGANS SENSE ORGANS

SENSE ORGANS SENSE ORGANS SENSE ORGANS SENSE ORGANS Sense organs are special structures which provide us the ability of perceiving the environment. We have 5 sense organs which include eyes, ears, skin, tongue and nose. We see

More information

Sense of Vision. Chapter 8. The Eye and Vision. The Eye Orbit. Eyebrows, Eyelids, Eyelashes. Accessory Organs 5/3/2016.

Sense of Vision. Chapter 8. The Eye and Vision. The Eye Orbit. Eyebrows, Eyelids, Eyelashes. Accessory Organs 5/3/2016. Sense of Vision Chapter 8 Special Senses The Eye and Vision 70 percent of all sensory receptors are in the eyes Each eye has over 1 million nerve fibers Protection for the eye Most of the eye is enclosed

More information

The olfactory epithelium is located at the roof of the nasal cavity. Nasal conchae cause turbulance of incoming air

The olfactory epithelium is located at the roof of the nasal cavity. Nasal conchae cause turbulance of incoming air Special Senses I. Olfaction II. Gustation A. Anatomy and general info The olfactory epithelium is located at the roof of the nasal cavity Nasal conchae cause turbulance of incoming air Olfactory glands

More information

Chapter 17 The Special Senses Lecture Outline

Chapter 17 The Special Senses Lecture Outline Chapter 17 The Special Senses Lecture Outline Five special senses Olfaction = smell Gustation = taste Vision = sight Hearing Equilibrium Special sensory receptors: 1. Distinct cells 2. Complex organ /

More information

Otoconia: Calcium carbonate crystals Gelatinous mass. Cilia. Hair cells. Vestibular nerve. Vestibular ganglion

Otoconia: Calcium carbonate crystals Gelatinous mass. Cilia. Hair cells. Vestibular nerve. Vestibular ganglion VESTIBULAR SYSTEM (Balance/Equilibrium) The vestibular stimulus is provided by Earth s, and. Located in the of the inner ear, in two components: 1. Vestibular sacs - gravity & head direction 2. Semicircular

More information

Human Biology 175 Lecture Notes: Special Senses Section 1 Eye

Human Biology 175 Lecture Notes: Special Senses Section 1 Eye Human Biology 175 Lecture Notes: Special Senses Section 1 Eye A) Accessory Eye Structures 1) Protects 2) a) mucous membrane covers anterior sclera and inner eyelid b) lubricate/rinse the surface c) Conjunctivitis:

More information

Biology. A Guide to the Natural World. Chapter 27 Lecture Outline Communication and Control 1: The Nervous System. Fifth Edition.

Biology. A Guide to the Natural World. Chapter 27 Lecture Outline Communication and Control 1: The Nervous System. Fifth Edition. Biology A Guide to the Natural World Chapter 27 Lecture Outline Communication and Control 1: The Nervous System Fifth Edition David Krogh The Nervous System Nervous tissue is composed of two kinds of cells:

More information

SPECIAL SENSES. Anatomy & Physiology

SPECIAL SENSES. Anatomy & Physiology SPECIAL SENSES Anatomy & Physiology BELL WORK: DEFINE LACRIMAL ACHROMATIC OTOSCOPE TENNITIS VERTIGO STANDARD 25) Define key terms associated with vision disorders, ear disorders, nose disorders, and mouth

More information

Special Senses. Unit 6.7 (6 th Edition) Chapter 7.7 (7 th Edition)

Special Senses. Unit 6.7 (6 th Edition) Chapter 7.7 (7 th Edition) Special Senses Unit 6.7 (6 th Edition) Chapter 7.7 (7 th Edition) 1 Learning Objectives Identify the five special senses. Identify the four general senses. Trace the pathway of light rays as they pass

More information

The Organs of Special Senses

The Organs of Special Senses 8 The Organs of Special Senses Special senses are those other than touch, pain, temperature, and proprioception. Vision, hearing, and equilibrium are the special senses discussed in this chapter. The Eye

More information

2. WINDOWS OF KNOWLEDGE

2. WINDOWS OF KNOWLEDGE CONTENT 2. WINDOWS OF KNOWLEDGE Vision - The protective measures of eyes. - Structure of human eye, Working of eye lens, - Photo receptors in the retina, Sense of vision. - Disorders & diseases of eyes,

More information

7/24/2018. Special Senses. Special sensory receptors. Vision - 70% of body's sensory receptors in eye Taste Smell Hearing Equilibrium.

7/24/2018. Special Senses. Special sensory receptors. Vision - 70% of body's sensory receptors in eye Taste Smell Hearing Equilibrium. Special Senses Special sensory receptors Distinct, localized receptor cells in head Vision - 70% of body's sensory receptors in eye Taste Smell Hearing Equilibrium Sense of Vision Ora serrata Ciliary body

More information

Presentation On SENSATION. Prof- Mrs.Kuldeep Kaur

Presentation On SENSATION. Prof- Mrs.Kuldeep Kaur Presentation On SENSATION Prof- Mrs.Kuldeep Kaur INTRODUCTION:- Sensation is a specialty area within Psychology that works at understanding how are senses work and how we perceive stimuli in the environment.

More information

BIOH111. o Cell Module o Tissue Module o Skeletal system o Muscle system o Nervous system o Endocrine system o Integumentary system

BIOH111. o Cell Module o Tissue Module o Skeletal system o Muscle system o Nervous system o Endocrine system o Integumentary system BIOH111 o Cell Module o Tissue Module o Skeletal system o Muscle system o Nervous system o Endocrine system o Integumentary system Endeavour College of Natural Health endeavour.edu.au 1 Textbook and required/recommended

More information

Chapter 15 Hearing & Equilibrium

Chapter 15 Hearing & Equilibrium Chapter 15 Hearing & Equilibrium ANATOMY OF THE OUTER EAR EAR PINNA is the outer ear it is thin skin covering elastic cartilage. It directs incoming sound waves to the EXTERNAL AUDITORY CANAL, which is

More information

The Sensory Systems. Lesson 7.1: The Eye Lesson 7.2: The Ear Lesson 7.3: Smell and Taste

The Sensory Systems. Lesson 7.1: The Eye Lesson 7.2: The Ear Lesson 7.3: Smell and Taste 7 The Sensory Systems Lesson 7.1: The Eye Lesson 7.2: The Ear Lesson 7.3: Smell and Taste Chapter 7: The Sensory Systems Lesson 7.1 The Eye The Eye anatomy of the eye external internal vision injuries,

More information

The cochlea: auditory sense. The cochlea: auditory sense

The cochlea: auditory sense. The cochlea: auditory sense Inner ear apparatus 1- Vestibule macula and sacculus sensing acceleration of the head and direction of gravity 2- Semicircular canals mainly for sensing direction of rotation of the head 1 3- cochlea in

More information

Unit VIII Problem 8 Anatomy: Orbit and Eyeball

Unit VIII Problem 8 Anatomy: Orbit and Eyeball Unit VIII Problem 8 Anatomy: Orbit and Eyeball - The bony orbit: it is protecting our eyeball and resembling a pyramid: With a base directed: anterolaterally. And an apex directed: posteromedially. Notes:

More information

Physiology Unit 2 SENSORY PHYSIOLOGY

Physiology Unit 2 SENSORY PHYSIOLOGY Physiology Unit 2 SENSORY PHYSIOLOGY In Physiology Today Sensory System Sensory information Conscious sensations Unconscious sensations Sensory processing Transferring stimulus energy into a graded potential

More information

Nervous System Integumentary System Skeletal System Muscular System Circulatory System

Nervous System Integumentary System Skeletal System Muscular System Circulatory System Nervous System Integumentary System Skeletal System Muscular System Circulatory System Respiratory System Digestive System Excretory System Endocrine System Reproductive System Lymphatic/Immune Systems

More information

Collin County Community College. BIOL 2401 : Anatomy/ Physiology PNS

Collin County Community College. BIOL 2401 : Anatomy/ Physiology PNS Collin County Community College BIOL 2401 : Anatomy/ Physiology PNS Peripheral Nervous System (PNS) PNS all neural structures outside the brain and spinal cord Includes sensory receptors, peripheral nerves,

More information

Chapter 18. The Senses SENSORY RECEPTION. Introduction: Superhuman Senses. Introduction: Superhuman Senses

Chapter 18. The Senses SENSORY RECEPTION. Introduction: Superhuman Senses. Introduction: Superhuman Senses Introduction: Superhuman Senses Chapter 18 The Senses! Three senses found in some animals but not humans Echolocation locating objects by detecting echoes of emitted sound waves Electroreception ability

More information

Neural Integration I: Sensory Pathways and the Somatic Nervous System

Neural Integration I: Sensory Pathways and the Somatic Nervous System C h a p t e r 15 Neural Integration I: Sensory Pathways and the Somatic Nervous System PowerPoint Lecture Slides prepared by Jason LaPres Lone Star College - North Harris Copyright 2009 Pearson Education,

More information

DATE: NAME: CLASS: Chapter 12 Test

DATE: NAME: CLASS: Chapter 12 Test Multiple Choice Questions Decide which of the choices best completes the statement or answers the question. Locate that question number on the separate answer sheet provided. Use the procedure described

More information

The Senses Title Page

The Senses Title Page Suggestion: change the view to 100%. The Senses Title Page Jim Swan These slides are from class presentations, reformatted for static viewing. The content contained in these pages is also in the Class

More information

LESSON ASSIGNMENT. After completing this lesson, you should be able to:

LESSON ASSIGNMENT. After completing this lesson, you should be able to: LESSON ASSIGNMENT LESSON 13 The Special Senses. LESSON ASSIGNMENT Paragraphs 13-1 through 13-24. LESSON OBJECTIVES After completing this lesson, you should be able to: 13-1. Identify functions of structures

More information

4/17/2019. Special Senses. Special sensory receptors. Vision - 70% of body's sensory receptors in eye Taste Smell Hearing Equilibrium

4/17/2019. Special Senses. Special sensory receptors. Vision - 70% of body's sensory receptors in eye Taste Smell Hearing Equilibrium Special Senses Special sensory receptors Distinct, localized receptor cells in head Vision - 70% of body's sensory receptors in eye Taste Smell Hearing Equilibrium The Eye and Accessory Structures The

More information

Chapter 16: Sensory, Motor, and Integrative Systems. Copyright 2009, John Wiley & Sons, Inc.

Chapter 16: Sensory, Motor, and Integrative Systems. Copyright 2009, John Wiley & Sons, Inc. Chapter 16: Sensory, Motor, and Integrative Systems Sensation n Conscious and subconscious awareness of changes in the external or internal environment. n Components of sensation: Stimulation of the sensory

More information

THE COCHLEA AND AUDITORY PATHWAY

THE COCHLEA AND AUDITORY PATHWAY Dental Neuroanatomy Suzanne S. Stensaas, PhD February 23, 2012 Reading: Waxman, Chapter 16, Review pictures in a Histology book Computer Resources: http://www.cochlea.org/ - Promenade around the Cochlea

More information

The Ear The ear consists of : 1-THE EXTERNAL EAR 2-THE MIDDLE EAR, OR TYMPANIC CAVITY 3-THE INTERNAL EAR, OR LABYRINTH 1-THE EXTERNAL EAR.

The Ear The ear consists of : 1-THE EXTERNAL EAR 2-THE MIDDLE EAR, OR TYMPANIC CAVITY 3-THE INTERNAL EAR, OR LABYRINTH 1-THE EXTERNAL EAR. The Ear The ear consists of : 1-THE EXTERNAL EAR 2-THE MIDDLE EAR, OR TYMPANIC CAVITY 3-THE INTERNAL EAR, OR LABYRINTH 1-THE EXTERNAL EAR Made of A-AURICLE B-EXTERNAL AUDITORY MEATUS A-AURICLE It consists

More information

ACTIVITIES. Complete Diagrams PNS 18 and 19 Complete PNS 23 Worksheet 3 #1 only Complete PNS 24 Practice Quiz

ACTIVITIES. Complete Diagrams PNS 18 and 19 Complete PNS 23 Worksheet 3 #1 only Complete PNS 24 Practice Quiz ACTIVITIES Complete Diagrams PNS 18 and 19 Complete PNS 23 Worksheet 3 #1 only Complete PNS 24 Practice Quiz THE SPECIAL SENSES Introduction Vision RECEPTORS Structures designed to respond to stimuli Variable

More information

A&P 1. Ear, Hearing & Equilibrium Lab. Basic Concepts. These notes follow Carl s Talk at the beginning of lab

A&P 1. Ear, Hearing & Equilibrium Lab. Basic Concepts. These notes follow Carl s Talk at the beginning of lab A&P 1 Ear, Hearing & Equilibrium Lab Basic Concepts These notes follow Carl s Talk at the beginning of lab In this "Lab Exercise Guide", we will be looking at the basics of hearing and equilibrium. NOTE:

More information

Group D: Central nervous system yellow

Group D: Central nervous system yellow Group D: Central nervous system yellow Central nervous system 1. General structure of nervous system (neuron, glia, synapsis, mediators, receptors) Main points: types of neurons and glial cells, synapses,

More information

Classifying receptors

Classifying receptors Sense organs Specialized nerves that detect changes in external environment Translate via nerve impulses to CNS Classifying receptors Chemoreceptors Electroreceptors Mechanoreceptors Photo (radiation)

More information