THE INFLUENCE OF INSULIN ON GLYCOGEN DISTRIBU- TION IN MARINE FISHES

Size: px
Start display at page:

Download "THE INFLUENCE OF INSULIN ON GLYCOGEN DISTRIBU- TION IN MARINE FISHES"

Transcription

1 THE INFLUENCE OF INSULIN ON GLYCOGEN DISTRIBU- TION IN MARINE FISHES BY R. W. ROOT, F. G. HALL, AND I. E. GRAY (From the Zoological Laboratory of Duke University, Durham, North Carolina) (Received for publication, January 19, 1931) INTRODUCTION The problem of the mechanism of insulin action has received considerable attention in the past few years. Explanations have been sought in several ways, particularly through the study of the effect of insulin on blood sugar, glycogen distribution, the respiratory quotient, and, more recently, on the intermediary metabolism of the carbohydrates. A few investigators have also been concerned with the influence of insulin on protein, fat, and mineral metabolism. An excellent review of literature up to 1926 has been given by Macleod (1). The more recent work has been summarized by the same author in a series of lectures delivered before the London Hospital (2). Cori and Cori, Macleod and his coworkers, and Lesser and collaborators have made many significant contributions to the specific problem of the influence of insulin on glycogen distribution. Their work has been restricted almost entirely to mammals. We find this same thing to be true of the contributions of other workers. The data obtained have been more or less conflicting, and we believe that it can be safely stated that we have not yet arrived at a point where final conclusions can be drawn. The whole insulin problem is complicated by the fact that the physiological response of animals to insulin seems to differ according to whether they are diabetic, starved, or are absorbing carbohydrates. There seems, also, to be an additional factor, that of the general metabolism of the experimental animals. These, and perhaps other complications, are no doubt responsible in a large measure for the several conflicting theories of the action of insulin. Goldblatt classifies the prevalent theories in a recent paper (3). 27

2 28 Insulin and Glycogen Distribution In view of the more or less conflicting results that have been obtained in mammals, it was thought advisable to attempt a study on some cold-blooded animal, in which the general metabolic activity is considerably slower. Accordingly fishes were chosen and a series of experiments on them conducted. We feel that the lower metabolism of fishes makes them more favorable for this study than mammals in that changes due to the action of insulin take place more slowly and the details can be more easily detected. The work was carried out during the summer of 1929 at the United States Fisheries Laboratory at Woods Hole, Massachusetts. We are especially grateful to Dr. 0. E. Sette for placing the facilities of the laboratory at our disposal. Procedure In a previous paper, Gray and Hall (4) have shown that insulin shock may be easily produced in species of active fishes. However in sluggish forms there is little external evidence of the action of insulin as convulsions. It was also shown that in fishes a much larger dosage is necessary to produce convulsions and lowering of blood sugar concentration than is required for mammals. Since the scup, Stenotomus chrysops, L., was used in these previous studies, and much information concerning its reaction to insulin had already been obtained, this fish was chosen as the experimental animal. The fishes were either taken from commercial traps or caught by hook and line and brought to the laboratory, where they were kept in hatching boxes for about 24 hours before using. These boxes were supplied with an abundance of running sea water to prevent any asphyxial conditions. The practice of keeping the fishes in these boxes for some time before use is necessary to insure more constant physiological conditions and less individual variation (5). The fishes were divided into two groups and an attempt was made to have animals of about the same weight in each group. The average weight of the animals was about 250 gm. One group was used as a control. At a set time 10 units of insulin (Lilly) were injected intraperitoneally into each of the animals in the experimental group. The control animals were handled in two ways: they were either injected with a volume of physiological saline equal to the volume of insulin, or they were

3 Root, Hall, and Gray 29 left alone until killed for blood sugar and glycogen determinations. The reasons for the injection of saline will be brought out later. After recorded intervals, following the injection with insulin, one fish from the experimental and one from the control group were used for blood sugar and glycogen determinations. The fishes were quickly removed from the hatching boxes and blood from the severed caudal artery collected in oxalated tubes. The spinal cord was then severed just back of the brain to prevent muscular movements, and the body cavity opened. The liver was removed in toto by grasping it with forceps at its point of attachment and immediately dropped into a tared flask containing the proper amount of hot 60 per cent KOH. After this a strip of muscle was taken from one side of the animal and dropped into another tared flask containing hot KOH. The entire operation consumed less than 2 minutes. The weight of the liver and muscle was determined by reweighing the tared flasks on precision balances. The weight of the entire fish was determined by weighing the remains and adding to the result the weight of liver, muscle, and blood removed. The blood sugar was determined according to the Folin modification of the Folin-Wu method (6); the glycogen according to the well known method of Pfhiger (7). Instead of the glycogen being read directly with a polariscope it was inverted to glucose with 2.2 per cent HCl and the glucose determined by the Hagedorn- Jensen method (8). The results were expressed in terms of glycogen by using the formula, glycogen = glucose X Animals were bled and analyses were made on the lst, 2nd, 3rd, 4th, 5th, 6th, Sth, loth, 12th, and 14th hours after the injection of insulin. The data obtained from the analyses of several repeated series were then graphed to show the relation of the blood sugar, muscle, and liver glycogen in the insulinized animals to the same constituents in uninsulinized controls. Results Fig. 1 summarizes the results obtained in this study. The data from the insulinized fishes are expressed in percentage variation from normal concentrations found in the controls. These figures are plotted against time after the fishes were given insulin. Each curve is a composite of results obtained from 32 individuals. The average normal concentration of the liver glycogen was found to

4 30 Insulin and Glycogen Distribution be mg. per gm. of liver, of muscle glycogen mg. per gm. of muscle, of blood sugar 46 mg. per 100 cc. of blood. In the insulinized fishes the blood sugar concentration is above normal Time. \n houis after in jectlon FIG. 1. The influence of insulin on carbohydrate distribution in the scup for a period of 3 hours after the insulin injection. This period of hyperglycemia is followed by prolonged hypoglycemia, the blood sugar falling to a very low level. The liver glycogen decreases in

5 Root, Hall, and Gray concentration from the start, and continues to decrease until only about 5 per cent of the normal amount remains in the liver. The muscle glycogen, on the other hand, rises gradually upon injection of insulin, and reaches the peak of its concentration between the 4th and 5th hours after the injection; there then follows a very decisive drop in concentration. The sudden drop occurs at a time when convulsive symptoms are noted in the animals. The lowest level of concentration is found at the 10th hour after insulin administration; from that point on to the 14th hour the concentration increases again until it is approximately normal. DISCUSSION The results indicate that insulin effects a marked change in the distribution of glycogen in the scup. Concomitant with the drop in liver glycogen and blood sugar there is a rise in muscle glycogen, indicating that insulin may bring about an excessive storage of muscle glycogen at the expense of liver glycogen and blood sugar. It is impossible to say that all the carbohydrate thrown out of the liver and blood is accounted for by storage in the muscles. A considerable part of it may have been oxidized, or have been taken care of in some other manner. The hyperglycemia observed following immediately after the insulin injections is of interest. It was thought that this might be a result of the act of injecting the fishes. As a control some of the fishes were injected with a volume of physiological saline equal to the volume of insulin given the experimental animals. The results were not entirely negative. A slight hyperglycemia followed in the control animals, but it was never as marked as in the experimental animals. It appeared that the insulin did have a definite hyperglycemic effect, We suggest the following interpretation of this situation. The injected insulin stimulates liver glycogenolysis. Immediately following administration of insulin, on account of the high initial concentration of liver glycogen, a large quantity of sugar is supplied to the blood. For a time more sugar is acquired by the blood than is removed by the tissues through oxidative and other processes. However, as the glycogen concentration of the liver gradually decreases, less and less sugar is supplied by the liver, until finally a stage is reached where the supply no longer exceeds the demand and hypoglycemia sets in.

6 32 Insulin and Glycogen Distribution Collens and Murlin (9) working with dogs found that portal injection of insulin caused a marked hyperglycemia within 5 minutes after the injection. The hyperglycemia lasted for only a short time and was followed by the usual hypoglycemia. They attributed the temporary hyperglycemia to rapid initial glycogenolysis in the liver. The concentration of muscle glycogen appears to be a sensitive indicator of the convulsive stage in insulinized fishes. It will be noted from Fig. 1 that muscle glycogen concentration gradually increased for about 6 hours after insulin injection and then suddenly dropped. This drop occurred at a time when convulsive symptoms were noted in the fishes. At that time they would swim with great rapidity, going in extremely haphazard fashion, and striking the sides of the tank. This period of rapid propulsion was followed by a quiescent period, with the fishes resting bellies upward. At the 10th hour the fishes were in the most pronounced stage of convulsions, and the lowest muscle glycogen concentrations were then recorded. At the 12th and 14th hours the fishes showed only slight convulsions and higher muscle glycogen concentrations. At the same time however, blood sugar and liver glycogen do not increase in concentration, in fact the blood sugar concentration drops even lower than it was at the 10th hour. Thus it is difficult to say whether fishes at the 12th and 14th hours were past the critical stage of insulin convulsion, or were merely less susceptible to the insulin than fishes at the 10th hour. One might think that there would be a rise in blood sugar if the fishes were recovering from the effects of the insulin. If our interpretation rested only on external evidence and the determination of the muscle glycogen concentration, we might say that the fishes were recovering from insulin shock; but the blood sugar concentration does not indicate such a situation. On the other hand, perhaps, in cases of recovery from insulin shock, muscle glycogen recovers before liver glycogen and blood sugar. If this were true our interpretation would seem consistent. Cori and Cori (lo), who have worked extensively on rats, came to the conclusion that there is a. cycle of the glucose molecule in the body. They think that insulin is of significance in that it accelerates the cycle in the direction of blood glucose to muscle glycogen. Acceleration in this direction leads to hypoglycemia,

7 Root, Hall, and Gray 33 and, secondarily, to a depletion of the glycogen stores of the liver. Barbour et al. (ll), working with the standard white rat, concluded that large doses of insulin injected into fed rats have an inhibitory effect on glycogen formation in the liver, at the same time increasing glycogen in the muscles, the total gained by the muscles being of about the same magnitude as that lost in the liver. Smaller doses, while having the same effect on the liver glycogen, produce no demonstrable change in muscle glycogen. In fasted rats they found that insulin always caused a decrease in both liver and muscle glycogen, but before there was any demonstrable recovery in blood sugar the liver glycogen concentration returned to, or about, the general level. Choi (12) found that muscle glycogen increased when glucose and insulin were injected together. Markowitz et al. (13), working with the dog, found that a rise in muscle glycogen could not be demonstrated in dogs with excised liver and pancreas. If insulin was injected, or if the liver alone was excised the muscle glycogen increased. We feel that Markowitz and his coworkers have performed a critical experiment, in that they demonstrate, in a seemingly irrefragible manner, the ability of insulin to bring about the storage of glycogen in the muscles. We cite the previous experiments for the purpose of illustrating the general agreement of the results we have obtained with fishes with those obtained with mammals. Our results also agree with von Issekutz and Vegh (14), and with Takuwa (15), who worked with turtles. They found a decrease in liver glycogen after the injection of insulin. Conclusions derived from studies on the action of insulin have been very conflicting. Some authors have obtained results that appear to be quite contradictory to those obtained by others. Obviously, our results cannot be in agreement with all. Rather than review all of the contradictory interpretations of insulin action the reader is referred to Macleod (1, 2). Especial mention, however, should be made of a paper by Goldblatt (16). This author worked with young rabbits and obtained results that led him to conclude that the action of insulin is to lock glycogen in the liver. We did not find evidence of such a phenomenon in the scup. Consequently, we are somewhat skeptical of Goldblatt s interpretation, not only on account of our inability to confirm his conclusion, but also because of evidence presented by other investigators.

8 Insulin and Glycogen Distribution In conclusion we would like to suggest a possible explanation to account for the conflicting evidence as to the action of insulin which seems to prevail at the present time. Practically all of the work concerned with the mechanism of insulin action has been carried on with homeothermic animals and scarcely any with poikilothermic animals. The metabolism of a homeothermic animal is much more rapid than that of a poikilothermic animal. Changes go on so rapidly in mammals that some of them may be missed entirely. As proof of the more rapid action of insulin in the homeotherms, we point out that l$ units of insulin per kilo of body weight injected into a rabbit will bring on convulsions in about 5 hours, while the fishes used by us were receiving about 40 units of insulin per kilo of body weight and yet convulsions did not occur until 8 to 10 hours after they were injected. We feel that, due to the slower metabolism, a poikilotherm is more favorable to employ in the study of insulin action. The results are brought to us in the form of a slow motion picture, and the details of the action can be studied with greater facility. SUMMARY 1. Massive injections of insulin (about 40 units per kilo of body weight) elicit a marked change in glycogen distribution in normal fasting scup. 2. Following the injection glycogen is thrown out of the liver, and after a transient hyperglycemia, pronounced hypoglycemia occurs. Concomitant with the drop in liver glycogen concentration and blood sugar concentration, there is a rise in muscle glycogen until convulsive symptoms appear in the animals. The concentration of muscle glycogen then falls rapidly. 3. It appears that insulin causes an increase in storage of muscle glycogen at the expense of liver glycogen and blood sugar. BIBLIOGRAPHY 1. Macleod, J. J. R., Carbohydrate metabolism and insulin, London and New York (1926). 2. Macleod, J. J. R., Lancet, 2, 1 (1929). 3. Goldblatt, M. W., B&hem. J., 23, 243 (1929). 4. Gray, I. E., and Hall, F. G., Bid. Bull., 68, 217 (1930). 5. Hall, F. G., Gray, I. E., and Lepkovsky, S., J. Bid. Chem., 67, 549 (1926).

9 Root, Hall, and Gray Folin, O., J. Biol. Chem., 82,83 (1929). 7. Pfliiger, E., Arch. ges. Physiol., 129, 362 (1909). 8. Hagedorn, H. C., and Jensen, B. N., Biochem. Z., 136, 46 (1923). 9. Collens, W. S., and Murlin, J. R., Proc. Sot. Exp. Biol. and Med., 26, 485 (1929). 10. Cori, C. F., and Cori, G. T., J. Biol. Chem., 81, 389 (1929). 11. Barbour, A. D., Chaikoff, I. L., Macleod, J. J. R., and Orr, M.D., Am. J. Physiol., 80,243 (1927). 12. Choi, Y. O., Am. J. Physiol., 83,406 (1927). 13. Markowitz, J., Mann, F. C., and Bollman, J. L., Am. J. Physiol., 87, 566 (1929). 14. von Issekutz, B., and Vegh, F., Biochem. Z., 192,383 (1928). 15. Takuwa, M., Mitt. med. Akad. Kioto, 3, pt. 4 (1929). 16. Goldblatt, M. W., Biochem. J., 23, 83 (1929).

10 THE INFLUENCE OF INSULIN ON GLYCOGEN DISTRIBUTION IN MARINE FISHES R. W. Root, F. G. Hall and I. E. Gray J. Biol. Chem. 1931, 91: Access the most updated version of this article at Alerts: When this article is cited When a correction for this article is posted Click here to choose from all of JBC's alerts This article cites 0 references, 0 of which can be accessed free at #ref-list-1

THE FATE OF SUGAR IN THE ANIMAL

THE FATE OF SUGAR IN THE ANIMAL THE FATE OF SUGAR IN THE ANIMAL BODY. III. THE RATE OF GLYCOGEN FORMATION IN THE LIVER OF NORMAL AND INSULINIZED RATS DURING THE ABSORP- TION OF GLUCOSE, FRUCTOSE, AND GALACTOSE. BY CARL F. CORI. (From

More information

METABOLIC RATE, BLOOD SUGAR AND THE UTILIZATION OF CARBOHYDRATE

METABOLIC RATE, BLOOD SUGAR AND THE UTILIZATION OF CARBOHYDRATE METABOLIC RATE, BLOOD SUGAR AND THE UTILIZATION OF CARBOHYDRATE H. T. EDWARDS, R. MARGARIA AND D. B. DILL From the Fatigue Laboratory, Morgan Hall, Harvard University, Boston Received for publication January

More information

CURVE OF SUGAR EXCRETION IN SEVERE DIABETES.

CURVE OF SUGAR EXCRETION IN SEVERE DIABETES. CURVE OF SUGAR EXCRETION IN SEVERE DIABETES. BY HANNAH FELSHER. (From the Otho S. A. Sprague Memorial Institute Laboratory oj Clinical Research, Rush Medical College, Chicago.) (Received for publication,

More information

(Received for publication, May 28, 1946)

(Received for publication, May 28, 1946) REMOVAL OF PLASMA PHOSPHOLIPIDES AS A FUNCTION OF THE LIVER: THE EFFECT OF EXCLUSION OF THE LIVER ON THE TURNOVER RATE OF PLASMA PHOSPHOLIPIDES AS MEASURED WITH RADIOACTIVE PHOSPHORUS BY C. ENTENMAN, I.

More information

THE CALORIGENIC ACTION OF EPINEPHRINE IN FROGS BEFORE AND AFTER HEPATECTOMY. (From the State Institute for the Study of Malignant Disease, Buflalo)

THE CALORIGENIC ACTION OF EPINEPHRINE IN FROGS BEFORE AND AFTER HEPATECTOMY. (From the State Institute for the Study of Malignant Disease, Buflalo) THE CALORIGENIC ACTION OF EPINEPHRINE IN FROGS BEFORE AND AFTER HEPATECTOMY BY CARL F. CORI AND K. W. BUCHWALD (From the State Institute for the Study of Malignant Disease, Buflalo) (Received for publication,

More information

RELATIONS BETWEEN INSULIN AND PITUITARY HORMONES IN AMINO ACID METABOLISM

RELATIONS BETWEEN INSULIN AND PITUITARY HORMONES IN AMINO ACID METABOLISM RELATIONS BETWEEN INSULIN AND PITUITARY HORMONES IN AMINO ACID METABOLISM BY WILLIAM D. LOTSPEICH* WITH THE TECHNICAL ASSISTANCE OF JOAN B. SHELTON (From the Department of Physiology, Syracuse University

More information

IS CHOLINE THE FACTOR IN THE PANCREAS THAT PREVENTS FATTY LIVERS IN DEPANCREATIZED DOGS MAINTAINED WITH INSULIN?

IS CHOLINE THE FACTOR IN THE PANCREAS THAT PREVENTS FATTY LIVERS IN DEPANCREATIZED DOGS MAINTAINED WITH INSULIN? IS CHOLINE THE FACTOR IN THE PANCREAS THAT PREVENTS FATTY LIVERS IN DEPANCREATIZED DOGS MAINTAINED WITH INSULIN? BY C. ENTENMAN AND I. L. CHAIKOFF (From the Division of Physiology, University of California

More information

disturbance. mellitus, are known to result in, or be associated with, a disturbance study has, recently, been made (1). In a comprehensive study,

disturbance. mellitus, are known to result in, or be associated with, a disturbance study has, recently, been made (1). In a comprehensive study, BLOOD SUGAR TIME CURVES BY I. M. RABINOWITCH (From the Department of Metabolism, Montreal General Hospital, Montreal, Canada) (Received for publication May 2, 926) Blood sugar time curves, or what are

More information

THE DIABETOGENIC HORMONE OF THE PITUITARY GLAND

THE DIABETOGENIC HORMONE OF THE PITUITARY GLAND VOL. XIII, i JANUARY, 96 THE DIABETOGENIC HORMONE OF THE PITUITARY GLAND BY DAVID SLOME. (From the Department of Social Biology, the University of London, and the Buckston Browne Research Farm, Royal College

More information

STUDIES IN BLOOD DIASTASE. FACTORS WHICH CAUSE. The effects of the following procedures on the blood diastase have

STUDIES IN BLOOD DIASTASE. FACTORS WHICH CAUSE. The effects of the following procedures on the blood diastase have STUDIES IN BLOOD DIASTASE. FACTORS WHICH CAUSE VARIATIONS IN THE AMOUNT OF DIASTASE IN THE BLOOD. By CHARLES REID and B. NARAYANA. From the Department of Physiology, Prince of Wales Medical College, Patna.

More information

A MICRO TIME METHOD FOR DETERMINATION OF REDUCING SUGARS, AND ITS APPLICATION TO ANALYSIS OF BLOOD AND URINE.

A MICRO TIME METHOD FOR DETERMINATION OF REDUCING SUGARS, AND ITS APPLICATION TO ANALYSIS OF BLOOD AND URINE. A MICRO TIME METHOD FOR DETERMINATION OF REDUCING SUGARS, AND ITS APPLICATION TO ANALYSIS OF BLOOD AND URINE. BY JAMES A. HAWKINS. (From Ike Hospital of The Rockefeller Institute for Medical Research,

More information

College of Medicine, Newcastle-on-Tyne.)

College of Medicine, Newcastle-on-Tyne.) INTERRELATION OF PARATHYROIDS, SUPRA- RENALS AND PANCREAS. BY G. A. CLARK. (From the Physiological Laboratory, Durham University College of Medicine, Newcastle-on-Tyne.) THAT the parathyroid glands have

More information

A STUDY OF THE CONCENTRATION AND PROPERTIES OF TWO AMYLASES OF BARLEY MALT

A STUDY OF THE CONCENTRATION AND PROPERTIES OF TWO AMYLASES OF BARLEY MALT A STUDY OF THE CONCENTRATION AND PROPERTIES OF TWO AMYLASES OF BARLEY MALT BY M. L. CALDWELL AND S. E. DOEBBELING (From the Department of Chemistry, Columbia University, New York) (Received for publication,

More information

Shortly after the discovery of insulin, investigators

Shortly after the discovery of insulin, investigators THE GLUCAGON CONTENT OF CRYSTALLINE INSULIN PREPARATIONS By A. STAUB AND OTTO K. BEHRENS WITH THE TECHNICAL ASSISTANCE OF J. T. ELLIS AND R. W. KENNEDY (From the Lilly Research Laboratories, Indianapolis,

More information

EFFECT OF SUCCINATE, FUMARATE, AND OXALACETATE ON KETONE BODY PRODUCTION BY LIVER SLICES FROM NON-DIABETIC AND DIABETIC RATS*

EFFECT OF SUCCINATE, FUMARATE, AND OXALACETATE ON KETONE BODY PRODUCTION BY LIVER SLICES FROM NON-DIABETIC AND DIABETIC RATS* EFFECT OF SUCCINATE, FUMARATE, AND OXALACETATE ON KETONE BODY PRODUCTION BY LIVER SLICES FROM NON-DIABETIC AND DIABETIC RATS* BY CLARISSA H. BEATTY, EDWARD S. WEST, AND ROSE MARY BOCEK (From the Department

More information

THE SPARING ACTION OF FAT ON VITAMIN B

THE SPARING ACTION OF FAT ON VITAMIN B THE SPARING ACTION OF FAT ON VITAMIN B VI. THE INFLUENCE OF THE LEVELS OF PROTEIN AND VITAMIN G BY HERBERT M. EVANS, SAMUEL LEPKOVSKY, AND ELIZABETH A. MURPHY (From the Institute of Experimental Biology,

More information

GLUCOSE is the most important diffusible substance in the blood which

GLUCOSE is the most important diffusible substance in the blood which ON THE ACTION OF PHLORHIZIN ON THE KIDNEY. By E. B. MAYRS. (From the Department of Pharmacology, Edinburgh.) GLUCOSE is the most important diffusible substance in the blood which is completely held back

More information

accompanied by a more rapid flow of secretion. But after administration

accompanied by a more rapid flow of secretion. But after administration 612.34: 612.352.1 THE EFFECT OF INJECTED INSULIN ON THE STORAGE OF GLYCOGEN IN THE PANCREAS AND LIVER. By CATHERINE 0. HEBB. From the Department of Physiology, McGill University, Montreal, Canada. (Received

More information

STUDIES ON THE MECHANISM OF NITROGEN STORAGE

STUDIES ON THE MECHANISM OF NITROGEN STORAGE STUDIES ON THE MECHANISM OF NITROGEN STORAGE VI. RATE OF PROTEIN SYNTHESIS AND SIZE OF THE NITROGEN POOL* BY PAUL D. BARTLETT AND OLIVER H. GAEBLER WITH THE TECHNICAL ASSISTANCE OF BEVERLY CADY (From the

More information

Relation between Blood Sugar and Tissue Sugar 1

Relation between Blood Sugar and Tissue Sugar 1 Relation between Blood Sugar and Tissue Sugar 1 By Svein Lunde Sveinsson (From the Physiological nstitute of the University of Oslo) (With figure in the text) When working with balance experiments concerning

More information

RADIOACTIVE PHOSPHORUS AS AN INDICATOR OF PHOSPHOLIPID METABOLISM

RADIOACTIVE PHOSPHORUS AS AN INDICATOR OF PHOSPHOLIPID METABOLISM RADIOACTIVE PHOSPHORUS AS AN INDICATOR OF PHOSPHOLIPID METABOLISM XI. THE INFLUENCE OF METHIONINE, CYSTINE, AND CYSTEINE UPON THE PHOSPHOLIPID TURNOVER IN THE LIVER* BY I. PERLMAN, N. STILLMAN, AND I.

More information

(Received 4 July 1938)

(Received 4 July 1938) 431 J. Physiol. (I939) 95, 43I438 6I2.352.12:6I2.89 BLOODSUGAR VARIATIONS IN NORMAL AND IN SYMPATHECTOMIZED DOGS BY L. BROUHA,1 W. B. CANNON AND D. B. DILL From the Fatigue Laboratory, Morgan Hall, and

More information

CHANGES IN PHOSPHATE AND CARBOHYDRATE METABOLISM IN SHOCK

CHANGES IN PHOSPHATE AND CARBOHYDRATE METABOLISM IN SHOCK CHANGES IN PHOSPHATE AND CARBOHYDRATE METABOLISM IN SHOCK BY E. S. GORANSON,* J. E. HAMILTON, AND R. E. HAIST (From the Department of Physiology, University of Toronto, Toronto, Canada) (Received for publication,

More information

THE EFFECT OF ANTICOAGULANTS ON DETERMINA- TIONS OF INORGANIC PHOSPHATE AND PROTEIN IN PLASMA BY OLIVER HENRY GAEBLER

THE EFFECT OF ANTICOAGULANTS ON DETERMINA- TIONS OF INORGANIC PHOSPHATE AND PROTEIN IN PLASMA BY OLIVER HENRY GAEBLER THE EFFECT OF ANTICOAGULANTS ON DETERMINA TIONS OF INORGANIC PHOSPHATE AND PROTEIN IN PLASMA BY OLIVER HENRY GAEBLER (From the Department of Laboratories, Henry Ford Hospital, Detroit) (Received for publication,

More information

THE CARBOHYDRATE METABOLISM OF TUMORS.

THE CARBOHYDRATE METABOLISM OF TUMORS. THE CARBOHYDRATE METABOLISM OF TUMORS. II. CHANGES IN THE SUGAR, LACTIC ACID, AND CO COMBINING POWER OF BLOOD PASSING THROUGH A TUMOR. BY CARL F. CORI AND GERTY T. CORI. (From the State Institute for ihe

More information

BY W. W. SWANSON. (Prom the Biochemical Laboratory, Department of Physiology, University of Minnesota, Minneapolis.)

BY W. W. SWANSON. (Prom the Biochemical Laboratory, Department of Physiology, University of Minnesota, Minneapolis.) THE EFFECT OF SODIUM BENZOATE INGESTION UPON THE COMPOSITION OF THE BLOOD AND URINE WITH ESPECIAL REFERENCE TO THE POSSIBLE SYNTHESIS OF GLYCINE IN THE BODY. PRELIMINARY PAPER. BY W. W. SWANSO (Prom the

More information

INFLUENCE OF TEMPERATURE ON THE AMYLASES OF COLD- AND WARM-BLOODED ANIMALS

INFLUENCE OF TEMPERATURE ON THE AMYLASES OF COLD- AND WARM-BLOODED ANIMALS 10 INFLUENCE OF TEMPERATURE ON THE AMYLASES OF COLD- AND WARM-BLOODED ANIMALS BY C. L. SMITH, PH.D. Department of Zoology, Liverpool University (Received a6 March 1937) (With Three Text-figures) I. INTRODUCTION

More information

THE ACTION OF INSULIN ON THE PERFUSED MAMMALIAN LIVER. Hampstead, London, N.W. 3.)

THE ACTION OF INSULIN ON THE PERFUSED MAMMALIAN LIVER. Hampstead, London, N.W. 3.) THE ACTION OF INSULIN ON THE PERFUSED MAMMALIAN LIVER. BY R. BODO AND H. P. MARKS. (From the National Institute for Medical Research, Hampstead, London, N.W. 3.) INTRODUCTION. THE striking reappearance

More information

The respiratory quotient is the relation by volume of the carbon dioxide DEXTROSE AND LE VULOSE IN HUMANS

The respiratory quotient is the relation by volume of the carbon dioxide DEXTROSE AND LE VULOSE IN HUMANS 415 THE METABOLIC EFFECT OF ENEMA TA OF ALCOHOL, DEXTROSE AND LE VULOSE IN HUMANS By THORNZ, M. CARPZNTBR NUTRITION LABORATORY OF THU CARNEGIS INSTITUTION OF WASHINGTON, BOSTON, MASS. Communicated April

More information

THE RELATION OF HYPERGLYCEMIA TO THE RELATIVE BLOOD VOLUME, CHLORINE CONCENTRATION, AND CHLORINE DISTRIBUTION IN THE BLOOD OF DOGS.

THE RELATION OF HYPERGLYCEMIA TO THE RELATIVE BLOOD VOLUME, CHLORINE CONCENTRATION, AND CHLORINE DISTRIBUTION IN THE BLOOD OF DOGS. Published Online: 1 July, 1925 Supp Info: http://doi.org/10.1084/jem.42.1.89 Downloaded from jem.rupress.org on September 28, 2018 THE RELATION OF HYPERGLYCEMIA TO THE RELATIVE BLOOD VOLUME, CHLORINE CONCENTRATION,

More information

Experiments were carried out then with the object of producing complete disappearance of the A

Experiments were carried out then with the object of producing complete disappearance of the A Relation of Glucagon to A Cells of the Pancreas*. (22339) SERGIO A. BENCOSME AND J. FREI. (Introduced by J.S.L. Browne Departament of pathology, Queen`s University, Kingston, Ontario, Canada. In spite

More information

THE EFFECT OF FLUORINE UPON THE PHOSPHATASE CONTENT OF PLASMA, BONES, AND TEETH OF ALBINO RATS

THE EFFECT OF FLUORINE UPON THE PHOSPHATASE CONTENT OF PLASMA, BONES, AND TEETH OF ALBINO RATS THE EFFECT OF FLUORINE UPON THE PHOSPHATASE CONTENT OF PLASMA, BONES, AND TEETH OF ALBINO RATS BY MARGARET CAMMACK SMITH AND EDITH M. LANTZ (From the Department oj Nutrition, Agricultural Experiment Station,

More information

TEMPORARY INHIBITION OF TRYPSIN*

TEMPORARY INHIBITION OF TRYPSIN* TEMPORARY INHIBITION OF TRYPSIN* BY M. LASKOWSKI AND FENG CHI WU (From the Department oj Biochemistry, Marquette University School of Medicine, Milwaukee, Wisconsin) (Received for publication, April 30,

More information

5.0 HORMONAL CONTROL OF CARBOHYDRATE METABOLISM

5.0 HORMONAL CONTROL OF CARBOHYDRATE METABOLISM 5.0 HORMONAL CONTROL OF CARBOHYDRATE METABOLISM Introduction: Variety of hormones and other molecules regulate the carbohydrates metabolism. Some of these have already been cited in previous sections.

More information

The absorption of water from the whole stomach. or one of its parts has not been demonstrated. Many years ago Pavlov showed that water was a

The absorption of water from the whole stomach. or one of its parts has not been demonstrated. Many years ago Pavlov showed that water was a GASTRIC SECRETION. III. THE ABSORPTION OF HEAVY WATER FROM POUCHES OF THE BODY AND ANTRUM OF THE STOMACH OF THE DOG By OLIVER COPE, HESTER BLATT, AND MARGARET R. BALL (From the Surgical Research Laboratories

More information

THE METABOLISM OF SULFUR.

THE METABOLISM OF SULFUR. THE METABOLISM OF SULFUR. XVI. DIETARY FACTORS IN RELATION TO THE CHEMICAL COMPOSITION OF THE HAIR OF THE YOUNG WHITE RAT. BY HOWARD D. LIGHTBODY AND HOWARD B. LEWIS. (From the Laboratory of Physiological

More information

THE INHIBITION OF URICASE BY XANTHINE

THE INHIBITION OF URICASE BY XANTHINE THE INHIBITION OF URICASE BY XANTHINE BY JOHN F. VAN PILSUM [From the Deparfment of Biological Chemistry, University of Utah College of Medicine, Salt Lake City, Utah, and the Department of Biochemistry,

More information

6I I:6I hypophysectomy. This diminution of diabetes is shown particularly as. hypophysectomized or totally decerebrated [Houssay and

6I I:6I hypophysectomy. This diminution of diabetes is shown particularly as. hypophysectomized or totally decerebrated [Houssay and 6I2.466.6I:6I2.492.5 KETOSIS IN THE PANCREATIC AND PHLORRHIZIN DIABETES OF HYPOPHYSECTOMIZED DOGS. BY CIRO T. RIETTI. (Institute of Physiology, Faculty of Medicine, Buenos Ayres.) IN the hypophysectomized

More information

INSULIN AND THE SUPRARENAL GLAND OF THE RABBIT

INSULIN AND THE SUPRARENAL GLAND OF THE RABBIT Brit. J. Phawmacol. (1951), 6, 289. INSULIN AND THE SUPRARENAL GLAND OF THE RABBIT BY From the Pharmacological Laboratory, University of St. Andrews, Medical School, Dundee (Received February 2, 1951)

More information

THE EFFECT OF THE INGESTION OF A LARGE AMOUNT OF FAT AND OF A BALANCED MEAL ON THE BLOOD LIPIDS OF NORMAL MAN*

THE EFFECT OF THE INGESTION OF A LARGE AMOUNT OF FAT AND OF A BALANCED MEAL ON THE BLOOD LIPIDS OF NORMAL MAN* THE EFFECT OF THE INGESTION OF A LARGE AMOUNT OF FAT AND OF A BALANCED MEAL ON THE BLOOD LIPIDS OF NORMAL MAN* BY EVELYN B. MAN AND EDWIN F. GILDEA (From the Laboratory of Physiological Chemistry and the

More information

METABOLISM OF TESTOSTERONE BY LIVERS OF DIFFERENT SPECIES OF ANIMALS* Salt Lake City)

METABOLISM OF TESTOSTERONE BY LIVERS OF DIFFERENT SPECIES OF ANIMALS* Salt Lake City) METABOLISM OF TESTOSTERONE BY LIVERS OF DIFFERENT SPECIES OF ANIMALS* BY LEO T. SAMUELS, MAX L. SWEAT, BLAINE H. LEVEDAHL, M. M. POTTNER, AND M. L. HELMREICH (From the Department of Biological Chemistry,

More information

PHYSIOLOGICAL DISTURBANCES DURING EXPERIMENTAL

PHYSIOLOGICAL DISTURBANCES DURING EXPERIMENTAL PHYSIOLOGICAL DISTURBANCES DURING EXPERIMENTAL DIPHTHERITIC INTOXICATION. III. RESPIRATORY QUOTIENTS AND METABOLIC RATE 1 By HERMAN YANNET AND WALTER GOLDFARB (From the Department of Pediatrics and Physiology,

More information

J. Physiol. (I938) 94, I2.352.i2:635.34

J. Physiol. (I938) 94, I2.352.i2:635.34 249 J. Physiol. (I938) 94, 249-255 6I2.352.i2:635.34 EFFECTS OF CABBAGE EXTRACTS ON CARBOHYDRATE METABOLISM BY A. D. MACDONALD AND LEO WISLICKI From the Department of Pharmacology, The University of Manchester

More information

:6I2.352.I2:6I observations of Ahlgren (3), who found that pituitary extract increases

:6I2.352.I2:6I observations of Ahlgren (3), who found that pituitary extract increases 612.492.8:6I2.352.I2:6I6.37-089.87 THE ACTION OF EXTRACT OF PITUITARY ON THE BLOOD SUGAR AFTER PANCREATECTOMY. BY C. G. IMRIE. (Department of Physiology, The University, Sheffield.) THE experiments about

More information

substance or substances the glycogen of the heart is derived. The

substance or substances the glycogen of the heart is derived. The 612.173: 612.396.112 THE SOURCE OF THE HEART GLYCOGEN. By J. YULE BOGUE, C. LOVATT EVANS, and R. A. GREGORY.' From the Department of Physiology, Biochemistry, and Pharmacology, University College, London.

More information

THE INHIBITION OF CHOLINESTERASE BY PHYSOSTIGMINE AND PROSTIGMINE

THE INHIBITION OF CHOLINESTERASE BY PHYSOSTIGMINE AND PROSTIGMINE THE INHIBITION OF CHOLINESTERASE BY PHYSOSTIGMINE AND PROSTIGMINE BY G. S. EADIE (From the Department of Physiology and Pharmacology, Duke University School of Medicine, Durham, North Carolina) (Received

More information

Since, for many months after section of the right vagus in the neck,

Since, for many months after section of the right vagus in the neck, THE INFLUENCE OF THE VAGUS ON THE ISLETS OF LANGERHANS. Part II. The effect of cutting the vagus upon sugar tolerance. BY G. A. CLARK. (From the Physiological Laboratory, Sheffield University.) IN Part

More information

SINCE the glucose excreted by the fasted depancreatised dog must, in

SINCE the glucose excreted by the fasted depancreatised dog must, in THE EFFECT OF SHIVERING ON THE RESPIRATORY QUOTIENT IN PANCREATIC DIABETES. By I. L. CHAIKOFF and J. J. R. MACLEOD. From the Department of Physiology, University of Toronto, Canada. (Received for publication

More information

disappeared, whereas if the carbohydrate were replaced by fat instead

disappeared, whereas if the carbohydrate were replaced by fat instead THE INFLUENCE OF CARBOHYDRATE AND FAT ON PROTEIN METABOLISM. IIL-THE EFFECT OF PHLORIDZIN GLYCOSURIA1. BY E. P. CATHCART AND M. ROSS TAYLOR. University of Glasgow. ONE of us (E. P. C.) has brought forward

More information

THE EFFECT OF TITANIUM ON THE OXIDATION OF SULFHYDRYL GROUPS BY VARIOUS TISSUES

THE EFFECT OF TITANIUM ON THE OXIDATION OF SULFHYDRYL GROUPS BY VARIOUS TISSUES THE EFFECT OF TITANIUM ON THE OXIDATION OF SULFHYDRYL GROUPS BY VARIOUS TISSUES BY FREDERICK BERNHEIM AND MARY L. C. BERNHEIM (From the Departments oj Physiology and Pharmacology and Biochemistry, Duke

More information

: /18

: /18 612.461.23: 616-001.17/18 SOME OBSERVATIONS ON THE COMPARATIVE EFFECTS OF COLD AND BURNS ON PROTEIN METABOLISM IN RATS. By G. H. LATHE 1 and R. A. PETERS. From the Department of Biochemistry, Oxford. (Received

More information

THE MAINTENANCE OF A NORMAL PLASMA PROTEIN CONCENTRATION IN SPITE OF REPEATED PROTEIN LOSS BY BLEEDING

THE MAINTENANCE OF A NORMAL PLASMA PROTEIN CONCENTRATION IN SPITE OF REPEATED PROTEIN LOSS BY BLEEDING Published Online: 1 May, 1932 Supp Info: http://doi.org/1.184/jem.55.5.683 Downloaded from jem.rupress.org on September 3, 218 THE MAINTENANCE OF A NORMAL PLASMA PROTEIN CONCENTRATION IN SPITE OF REPEATED

More information

METABOLISM OF d-mannohepttjlose. EXCRETION OF THE SUGAR AFTER EATING AVOCADO

METABOLISM OF d-mannohepttjlose. EXCRETION OF THE SUGAR AFTER EATING AVOCADO METABOLISM OF d-mannohepttjlose. EXCRETION OF THE SUGAR AFTER EATING AVOCADO BY N. R. BLATHERWICK, HARDY W. LARSON, AND SUSAN D. SAWYER (From the Biochemical Laboratory of the Metropolitan Life Insurance

More information

THE EFFECT OF HIGH TEMPERATURES ON THE NUTRITIVE VALUE OF FOODS.

THE EFFECT OF HIGH TEMPERATURES ON THE NUTRITIVE VALUE OF FOODS. THE EFFECT OF HIGH TEMPERATURES ON THE NUTRITIVE VALUE OF FOODS. BY ALBERT G. HOGAN. (From the Department of Chemistry, Kansas Agricultural Experiment Station, Manhattan.) (Received for publication, March

More information

'the perfusion of the cat's lung a cannula was tied into the left auricle and :547.78I.5

'the perfusion of the cat's lung a cannula was tied into the left auricle and :547.78I.5 280 576.809.73:547.78I.5 LIBERATION OF HISTAMINE FROM THE PERFUSED LUNG BY STAPHYLOCOCCAL TOXIN BY W. FELDBERG AND E. V. KEOGH1 From The Walter and Eliza Hall Institute, Melbourne (Received 5 March 1937)

More information

(1) in their work on hvperthyroidism, and Linder, Hiller and Van Slyke (2) on nephritis. Finley and Rabinowitch (3) and more recently

(1) in their work on hvperthyroidism, and Linder, Hiller and Van Slyke (2) on nephritis. Finley and Rabinowitch (3) and more recently SIMULTANEOUS RESPIRATORY EXCHANGE AND BLOOD SUGAR TIME CURVES OBTAINED IN DIABETIC AND NON DIABETIC INDIVIDUALS FOLLOWING INGESTION OF GLUCOSE By I. M. RABINOWITCH WITH THE ASSISTANCE OF ALTHEA B. FRITH

More information

II. THE EFFECT OF THE INGESTION OF GLYCINE ON THE EXCRETION OF ENDOGENOUS URIC ACID.

II. THE EFFECT OF THE INGESTION OF GLYCINE ON THE EXCRETION OF ENDOGENOUS URIC ACID. PURINE METABOLISM. II. THE EFFECT OF THE INGESTION OF GLYCINE ON THE EXCRETION OF ENDOGENOUS URIC ACID. BY A. A. CHRISTMAN AND E. C. MOSIER. (From the Laboratory of Physiological Chemistry, Medical School,

More information

Hemoglobin regeneration as influenced by diet and other factors*

Hemoglobin regeneration as influenced by diet and other factors* G E O R G E H. WH I P P L E Hemoglobin regeneration as influenced by diet and other factors* Nobel Lecture, December 12, 1934 Experiments usually have a past history or a genealogical sequence, and it

More information

EXPERIMENTAL EVIDENCE SUPPORTING THE CONCEPTION OF ADAPTATION ENERGY

EXPERIMENTAL EVIDENCE SUPPORTING THE CONCEPTION OF ADAPTATION ENERGY EXPERIMENTAL EVIDENCE SUPPORTING THE CONCEPTION OF ADAPTATION ENERGY HANS SELYE Fro,m the Department of Anatomy, Histology and Embryology, McGill University, Montreal, Canada Received for publication May

More information

PYRROLE AS A CATALYST FOR CERTAIN BIOLOGICAL OXIDATIONS

PYRROLE AS A CATALYST FOR CERTAIN BIOLOGICAL OXIDATIONS PYRROLE AS A CATALYST FOR CERTAIN BIOLOGICAL OXIDATIONS BY FREDERICK BERNHEIM AND MARY L. C. BERNHEIM* (From the Departments of Physiology and Biochemistry, Duke University School of Medicine, Durham)

More information

Diet Prevents Polio by Benjamin P. Sandler, M.D., and published in 1951 by the Lee Foundation for Nutritional Research, Milwaukee, WI

Diet Prevents Polio by Benjamin P. Sandler, M.D., and published in 1951 by the Lee Foundation for Nutritional Research, Milwaukee, WI The following is a chapter from the book Diet Prevents Polio written by Benjamin P. Sandler, M.D., and published in 1951, at the height of the polio epidemic. Dr. Sandler received his degree in medicine

More information

(From the Department of Pathology, Duke University School of Medicine, Durham, North Carolina)

(From the Department of Pathology, Duke University School of Medicine, Durham, North Carolina) THE EFFECT OF UNDERNOURISHMENT ON THE SUSCEPTI- BILITY OF THE RABBIT TO INFECTION WITH VACCINIA* BY DOUGLAS H. SPRUNT, M.D. (From the Department of Pathology, Duke University School of Medicine, Durham,

More information

(12). Because of its potential toxicity epinephrine

(12). Because of its potential toxicity epinephrine GLUCAGON-INDUCED HYPERGLYCEMIA AS AN INDEX OF LIVER FUNCTION 1, 2 By THEODORE B. VAN ITALLIE3 AND WILLIAM B. A. BENTLEY (From the Department of Medicine, St. Luke's Hospital, New York, N. Y.) (Submitted

More information

A MODIFIED FOLIN AND WU BLOOD SUGAR METHOD.

A MODIFIED FOLIN AND WU BLOOD SUGAR METHOD. A MODIFIED FOLIN AND WU BLOOD SUGAR METHOD. BY VERA E. ROTHBERG AND FRANK A. EVANS. (From the William H. Singer Memorial Research Laboratory, Pittsburgh.) (Received for publication, August 7, 1923.) In

More information

from 60 to 2000 units with an average dose of 593 units for each treatment. On each treatment day the patient,

from 60 to 2000 units with an average dose of 593 units for each treatment. On each treatment day the patient, THE EFFECT OF GLUCAGON ON THE BLOOD GLUCOSE LEVEL AND THE CLINICAL STATE IN THE PRESENCE OF MARKED INSULIN HYPOGLYCEMIA 1 2 By JEROME L. SCHULMAN AND STANLEY E. GREBEN (From the Department of Psychiatry

More information

PHOSPHORUS CONTENT OF THE BLOOD IN DIABETES

PHOSPHORUS CONTENT OF THE BLOOD IN DIABETES 10 BLOOD PHOSPHORUS IN HEALTH AND DISEASE: IV-THE PHOSPHORUS CONTENT OF THE BLOOD IN DIABETES MELLITUS F B BYROM From the Dunn Laboratories, London Hospital Received for publication November 24th, 1928

More information

INTRODUCTION. IN a previous paper(l) we have been able to show that adrenaline may

INTRODUCTION. IN a previous paper(l) we have been able to show that adrenaline may REVERSAL OF THE ACTION OF ADRENALINE. BY B. A. McSWINEY AND G. L. BROWN. (From the Department of Physiology, University of Manchester.) INTRODUCTION. IN a previous paper(l) we have been able to show that

More information

University College, London.)

University College, London.) 6I2.I2I:547.472*3 LACTIC ACID FORMATION AND REMOVAL WITH CHANGE OF BLOOD REACTION. BY M. GRACE EGGLETON1 AND C. LOVATT EVANS. (From the Department of Physiology and Biochemistry, University College, London.)

More information

below. METHODS GALACTOSE ABSORPTION FROM THE SURVIVING SMALL INTESTINE OF THE RAT

below. METHODS GALACTOSE ABSORPTION FROM THE SURVIVING SMALL INTESTINE OF THE RAT 224 J. Physiol. (I953) II9, 224-232 GALACTOSE ABSORPTION FROM THE SURVIVING SMALL INTESTINE OF THE RAT BY R. B. FISHER AND D. S. PARSONS From the Department of Biochemistry, University of Oxford (Received

More information

man of the effects of diabetes and of insulin on the maximum ability of the tubules to reabsorb glucose.

man of the effects of diabetes and of insulin on the maximum ability of the tubules to reabsorb glucose. EFFECT OF DIABETES AND INSULIN ON THE MAXIMUM CA- PACITY OF THE RENAL TUBULES TO REABSORB GLUCOSE t By SAUL J. FARBER, EUGENE Y. BERGER, AND DAVID P. EARLE (From the Department of Medicine, New York University

More information

The average potassium content during the last 5. solids. This average decrease of 2.2 meq. per 100. initial potassium content of the arteries.

The average potassium content during the last 5. solids. This average decrease of 2.2 meq. per 100. initial potassium content of the arteries. THE EFFECT OF NOR-EPINEPHRINE ON THE ELECTROLYTE COMPOSITION OF ARTERIAL SMOOTH MUSCLE' By LOUIS TOBIAN 2 AND ADACIE FOX (From the Departments of Pharmacology and Internal Medicine, Southwesters Medical

More information

Furthermore, added choline may exert relatively little effect when. naturally occurring lipotropic factors are present in appreciable amounts

Furthermore, added choline may exert relatively little effect when. naturally occurring lipotropic factors are present in appreciable amounts 343 6I2.352.2:547.922 THE EFFECTS OF CHOLESTEROL AND CHOLINE ON LIVER FAT BY C. H. BEST AND JESSIE H. RIDOUT (From the School of Hygiene, University of Toronto) (Received January 27, 1936) THE results

More information

blood-vessels of the isolated perfused lungs of the rat. Both Hirakawa

blood-vessels of the isolated perfused lungs of the rat. Both Hirakawa 547.435-292: 547.781.5: 577.174.5: 612.215 THE ACTION OF ADRENALINE, ACETYLCHOLINE, AND HIS- TAMINE ON THE LUNGS OF THE RAT. By P. FoGGIE. From the Physiology Department, University of Edinburgh. (Received

More information

A NEW method for evaluating the toxicity of roentgen contrast media

A NEW method for evaluating the toxicity of roentgen contrast media EVALUATION OF ROENTGEN CONTRAST AGENTS USED IN CEREBRAL ARTERIOGRAPHY II. APPLICATION OF A NEW METHOD* G. T. TINDALL, M.D., P. D. KENAN, B.S., R. L. PHILLIPS, M.D., G. MARGOLIS, M.D., AND K. S. GRIMSON,

More information

(From the Laboratories of The Rockefdler Institute for Medical Research) Material and Methods

(From the Laboratories of The Rockefdler Institute for Medical Research) Material and Methods BIOMETRY OF CALCIUM, INORGANIC PHOSPHORUS, CHOLESTEROL, AND LECITHIN IN THE BLOOD OF RABBITS IV. E~'FECTS OF A MALIGNANT TuuoR BY ALVIN R. HARNES, M.D. (From the Laboratories of The Rockefdler Institute

More information

CAROTENE AND XANTHOPHYLL AS SOURCES OF VITA- MIN A FOR THE GROWING CHICK*

CAROTENE AND XANTHOPHYLL AS SOURCES OF VITA- MIN A FOR THE GROWING CHICK* CAROTENE AND XANTHOPHYLL AS SOURCES OF VITA- MIN A FOR THE GROWING CHICK* BY 0. L. KLINE, M. 0. SCHULTZE, AND E. B. HART (From the Department of Agricultural Chemistry, University of Wisconsin, Madison)

More information

Using a technique by which it is possible to study gastro-intestinal absorption

Using a technique by which it is possible to study gastro-intestinal absorption 531 J. Physiol. (I956) I34, 53I-537 THE ABSORPTION OF GLUCOSE BY THE INTACT RAT BY P. C. REYNELL AND G. H. SPRAY From the Nuffield Department of Clinical Medicine, University of Oxford (Received 30 May

More information

5 Homeostasis and response higher (import)

5 Homeostasis and response higher (import) 5 Homeostasis and response higher (import) Name: Class: Date: Time: 53 minutes Marks: 53 marks Comments: Page of 7 Describe how the brain is informed of the image detected by the retina................

More information

Lactic Acid Training The Most Effective (and Hardest) Fat Loss Training Methods You re Not Using

Lactic Acid Training The Most Effective (and Hardest) Fat Loss Training Methods You re Not Using Lactic Acid Training The Most Effective (and Hardest) Fat Loss Training Methods You re Not Using By John Romaniello Fat loss training programs are a dime a dozen; and although most of them seem to be moderately

More information

Smith, Miller and Grab er(4) state that the maintenance of an efficient

Smith, Miller and Grab er(4) state that the maintenance of an efficient THE SIGNIFICANCE OF THE DIASTOLIC AND SYSTOLIC BLOOD-PRESSURES FOR THE MAINTENANCE OF THE CORONARY CIRCULATION. BY G. V. ANREP AND B. KING. (From the Physiological Laboratory, Cambridge.) IT is generally

More information

PURIFICATION OF PROTHROMBIN AND THROMBIN : CHEMICAL PROPERTIES OF PURIFIED PREPARATIONS*

PURIFICATION OF PROTHROMBIN AND THROMBIN : CHEMICAL PROPERTIES OF PURIFIED PREPARATIONS* PURIFICATION OF PROTHROMBIN AND THROMBIN : CHEMICAL PROPERTIES OF PURIFIED PREPARATIONS* BY WALTER H. SEEGERS (Prom the Department of Pathology, State University of Zowa, Iowa City) (Received for publication,

More information

CAROTENASE. THE TRANSFORMATION OF CAROTENE TO VITAMIN A IN VITRO *

CAROTENASE. THE TRANSFORMATION OF CAROTENE TO VITAMIN A IN VITRO * CAROTENASE. THE TRANSFORMATION OF CAROTENE TO VITAMIN A IN VITRO * BY H. S. OLCOTT Ai id D. C. MCCANN (From the Laboratories of Biochemistry and Analytical Chemistry, State University of Iowa, Iowa City)

More information

ON THE FATTY ACIDS ESSENTIAL IN NUTRITION. III*

ON THE FATTY ACIDS ESSENTIAL IN NUTRITION. III* ON THE FATTY ACIDS ESSENTIAL IN NUTRITION. III* BY GEORGE 0. BURR, MILDRED M. BURR, AND ELMER S. MILLER (From the Department of Botany, University of Minnesota, Minneapolis) (Received for publication,

More information

Unit 2: Cellular Chemistry, Structure, and Physiology Module 2: Cellular Chemistry

Unit 2: Cellular Chemistry, Structure, and Physiology Module 2: Cellular Chemistry Unit 2: Cellular Chemistry, Structure, and Physiology Module 2: Cellular Chemistry NC Essential Standard: 1.2.1 Explain how cells use buffers to regulate cell ph 4.1.1 Compare the structure and functions

More information

WELS~~~~ THE mode of action of acetyl choline upon the isolated ventricular strip

WELS~~~~ THE mode of action of acetyl choline upon the isolated ventricular strip THE ANTAGONISM OF ACETYL CHOLINE BY ATROPINE. BY A. J. CLARK. (From the Pharmacological Department, University College, London.) THE mode of action of acetyl choline upon the isolated ventricular strip

More information

Overton,1 who has worked exhaustively at the subject, looked upon. considered by some to be due to the state of the fluid originally in the

Overton,1 who has worked exhaustively at the subject, looked upon. considered by some to be due to the state of the fluid originally in the THE EFFECTS OF TEMPERATURE ON THE OSMOTIC PROPER- TIES OF MUSCLE. By D. H. DE SOUZA. (From the Physiological Laboratory, University of Sheffield.) (With six diagrams in the text.) (Received for publication

More information

Clearly the best method of deciding whether the liver is at fault. mammals excision of the liver is, unfortunately, such a difficult and

Clearly the best method of deciding whether the liver is at fault. mammals excision of the liver is, unfortunately, such a difficult and CARBOHYDRATE METABOLISM IN DUCKS. BY G. B. FLEMING. (From the Physiology Department, University of Glasgow.) THE following investigation was undertaken in the attempt to throw light on the seat of the

More information

norepinephrinee." 2 PNMT activity is stimulated by certain adrenocortical markedly,3' 4 but can be restored to normal by the administration of

norepinephrinee. 2 PNMT activity is stimulated by certain adrenocortical markedly,3' 4 but can be restored to normal by the administration of IMPAIRED SECRETION OF EPINEPHRINE IN RESPONSE TO INSULIN AMONG HYPOPHYSECTOMIZED DOGS* BY RICHARD J. WURTMAN, ALFRED CASPER, LARISSA A. POHORECKY, AND FREDERIC C. BARTTER DEPARTMENT OF NUTRITION AND FOOD

More information

k2= 27r/X2, and Z1 = pici/si, Z2 = P2C2/S2. The quantity Z is recognized

k2= 27r/X2, and Z1 = pici/si, Z2 = P2C2/S2. The quantity Z is recognized VOL. 20, 1934 PHYSIOLOGY: BORSOOK AND KEIGHLEY 179 where 11 and 14 are the respective lengths of the layers k1 = 27r/Xi and k2= 27r/X2, and Z1 = pici/si, Z2 = P2C2/S2. The quantity Z is recognized as the

More information

6I2.744.I5: e3. sufficiently high'. There exists in such cases a certain concentration of the. by direct analysis.

6I2.744.I5: e3. sufficiently high'. There exists in such cases a certain concentration of the. by direct analysis. 194 THE DIFFUSION OF ACTATE INTO AND FROM MUSCE. BY S. C. DEVADATTA. 6I2.744.I5:547.472e3 (From the Department of Physiology, Edinburgh University.) CERTAIN constituents of the voluntary muscles of the

More information

Blood Sugar Screening Levels*

Blood Sugar Screening Levels* April, 1951 A Preliminary Report on a Study of Blood Sugar Screening Levels HUGH L. C. WILKERSON, M.D., F.A.P.H.A., AND BARBARA GLENN Chief; and Statistician, Diabetes Branch, Division of Chronic Diseases,

More information

THE EFFECT OF DENATURATION ON THE VISCOSITY OF PROTEIN SYSTEMS BY M. L. ANSON A~D A. E. MIRSKY. (Accepted for publication, December 2, 1931)

THE EFFECT OF DENATURATION ON THE VISCOSITY OF PROTEIN SYSTEMS BY M. L. ANSON A~D A. E. MIRSKY. (Accepted for publication, December 2, 1931) THE EFFECT OF DENATURATION ON THE VISCOSITY OF PROTEIN SYSTEMS BY M. L. ANSON A~D A. E. MIRSKY (From tke Laboratories of The Rockefeller Institute for Medical Research, Princeton, N. Y., and the ttospital

More information

E n e r g y S o u r c e s

E n e r g y S o u r c e s 1 E n e r g y S o u r c e s When you turn the ignition key in your car, some source of fuel (gas, diesel, or fermented organic manure) must be delivered to the engine for it to fire. Even though the spark

More information

SOME OBSERVATIONS UPON SODIUM ALGINATE. By 0. M. SOLANDT. From the Physiological Laboratory, Cambridge.

SOME OBSERVATIONS UPON SODIUM ALGINATE. By 0. M. SOLANDT. From the Physiological Laboratory, Cambridge. 582.6 SOME OBSERVATIONS UPON SODIUM ALGINATE. By 0. M. SOLANDT. From the Physiological Laboratory, Cambridge. (Received for publication 13th December 1940.) ALGINIC acid was discovered by Stanford in 1883

More information

STUDIES ON THE CALCIUM-PROTEIN RELATIONSHIP WITH THE AID OF THE ULTRACENTRIFUGE

STUDIES ON THE CALCIUM-PROTEIN RELATIONSHIP WITH THE AID OF THE ULTRACENTRIFUGE STUDIES ON THE CALCIUM-PROTEIN RELATIONSHIP WITH THE AID OF THE ULTRACENTRIFUGE II. OBSERVATIONS ON SERUM BY STEPHAN LUDEWIG, ALFRED CHANUTIN, AND A. V. MASKETt (From the Biochemical Laboralory, University

More information

Effects of Starvation on Glycogen Contents of Heart, Skeletal Muscle and Liver in Several Mammals

Effects of Starvation on Glycogen Contents of Heart, Skeletal Muscle and Liver in Several Mammals Effects of Starvation on Glycogen Contents of Heart, Skeletal Muscle and Liver in Several Mammals Mitsuto MATSUMOTO and Tatsuo HAMADA National Institute of Animal Industry, Tsukuba Norindanchi P. O. Box

More information

Anaerobic Pathways. Glycolysis

Anaerobic Pathways. Glycolysis Anaerobic Pathways Glycolysis Glucose + 2 ATP 4 ATP + 2 Pyruvate No oxygen required Fairly low energy yield Lactate byproduct Resting levels low Tolerances 40 mmole/kg in humans, 200 mmole/kg in sea turtles

More information

: : (From the Department of Physiology, University of Toronto.)

: : (From the Department of Physiology, University of Toronto.) 94 612.352.2:547.435:612.34.089.87 CHOLINE AND LIVER FAT IN DIABETIC DOGS. BY C. H. BEST, G. C. FERGUSON AND J. M. HERSHEY. (From the Department of Physiology, University of Toronto.) IN the first completely

More information

indirectly through its nerve, its contraction is not simultaneous all over but

indirectly through its nerve, its contraction is not simultaneous all over but 466 J. Physiol. (I957) I39, 466-473 ALTERNATING RELAXATION HEAT IN MUSCLE TWITCHES BY A. V. HILL AND J. V. HOWARTH From the Physiological Laboratory, University College London (Received 31 July 1957) When

More information

The rate at which blood glucose concentration changes is affected by the food eaten.

The rate at which blood glucose concentration changes is affected by the food eaten. Insulin controls blood glucose concentration. The rate at which blood glucose concentration changes is affected by the food eaten. In an experiment a person who does not have diabetes ate two slices of

More information