MOLECULAR SIZE, ELECTRICAL CHARGE, AND SHAPE DETERMINE THE FILTERABILITY OF SOLUTES ACROSS THE GLOMERULAR FILTRATION BARRIER

Size: px
Start display at page:

Download "MOLECULAR SIZE, ELECTRICAL CHARGE, AND SHAPE DETERMINE THE FILTERABILITY OF SOLUTES ACROSS THE GLOMERULAR FILTRATION BARRIER"

Transcription

1 MOLECULAR SIZE, ELECTRICAL CHARGE, AND SHAPE DETERMINE THE FILTERABILITY OF SOLUTES ACROSS THE GLOMERULAR FILTRATION BARRIER The glomerular filtration barrier consists of three elements: (1) endothelial cells, (2) the glomerular basement membrane, and (3) epithelial podocytes (Figure). The latter two layers are covered with negative charges.

2 Table 33-2 summarizes the permselectivity of the glomerular barrier for different solutes, as estimated by the ratio of solute concentration in the ultrafiltrate versus the plasma (UFx/Px). The ratio UFx/Px, also known as the sieving coefficient for the solute X (i.e. concentration in ultrafiltrate divided by mean of concentrations in pre and post filter blood) depends on molecular weight and effective molecular radius. Investigators have used two approaches to estimate UFx/Px. The first, which is valid for all solutes, is the micropuncture technique. Sampling fluid from Bowman s space yields a direct measurement of UFx, from which we can compute UFx/Px. The second approach, which is only valid for solutes that the kidney neither absorbs nor secretes, is to compute the clearance ratio, the ratio of the clearances of X (Cx) and inulin (Cin). Substances of low molecular weight (less than 5500 Da) and small effective molecular radius such as water, urea, glucose, and inulin appear in the filtrate in the same concentration as in plasma (UFx/Px equals 1). In these instances, there is no sieving of the contents of the fluid moving through the glomerular pores, so that the water moving through the filtration slits by convection carries the solutes with it. As a result, the concentration of the solute in the filtrate is the same as in bulk plasma. The situation is different for substances with a molecular weight that is above approximately 14 kda, such as lysozyme. Larger and larger macromolecules are increasingly restricted from passage, so that only traces of plasma albumin (69 kda) are normally present in the glomerular filtrate. In addition to molecular weight and radius, electrical charge also makes a major contribution to the permselectivity of the glomerular barrier. Figure 334A is a plot of

3 the clearance ratio for uncharged, positively charged, and negatively charged dextran molecules of varying molecular size. Figure 334A Two conclusions can be drawn from these data. First, neutral dextrans below an effective molecular radius of 2 nm pass readily across the glomerular barrier. For dextrans with a larger radius, the clearance ratio decreases with an increase in molecular size, so that passage ceases when the radius exceeds 4.2 nm. Second, anionic dextrans (i.e., dextran sulfates) are restricted from filtration, whereas cationic dextrans (i.e., diethylaminoethyl dextrans) pass more readily into the filtrate. For negatively charged dextrans, the relationship between charge and filterability is characterized by a left shift of the curve relating molecular size to clearance ratio, whereas the opposite is true for positively charged dextrans. The previously discussed results suggest that the glomerular filtration barrier carries a net negative charge that restricts the movement of anions but enhances the movement of cations. In experimental glomerulonephritis, in which the glomerular barrier loses its negative charge, the permeability of the barrier to negatively charged macromolecules is enhanced. Figure 334B compares clearance ratios of dextran sulfate in normal rats and in rats with nephrotoxic serum nephritis.

4 Figure 334B Clearance ratios of dextran sulfate are uniformly greater in the animals with nephritis. Thus, the disease process destroys negative charges in the filtration barrier and accelerates the passage of negatively charged dextrans. Because albumin is also negatively charged at physiological ph, loss of negative charge in the glomerular barrier probably contributes in an important way to the development of albuminuria in the early stages of renal diseases such as glomerulonephritis. Finally, the shape of macromolecules also affects the permselectivity of the glomerular barrier. Rigid or globular molecules have lower clearance ratios (i.e., sieving coefficients) than molecules of a similar which are highly deformable. RENAL BLOOD FLOW Renal blood flow (RBF) is approximately 1 liter /min out of the total cardiac output of 5 liters/min. Normalized for weight, this blood flow amounts to approximately 350 ml/min for each 100 g of tissue, which is sevenfold higher than the normalized blood flow to the brain. Renal plasma flow (RPF) is [Equation 33-5]: Given a hematocrit of 0.40, the normal RPF is approximately 600 ml/min. Equation 33-6: RPF = GFR / FF Because the normal GFR is approximately 125 ml/min and the normal RPF is approximately 600 ml/min, the normal (filtration fraction) FF is approximately 0.2. Because GFR saturates at high values of RPF, FF is greater at low plasma flows than it is at high plasma flows.

5 The dependence of GFR on plasma flow through the glomerular capillaries is similar to the dependence of alveolar O2 and CO2 transport on pulmonary blood flow. INCREASED GLOMERULAR PLASMA FLOW LEADS TO AN INCREASE IN GFR At low glomerular plasma flow, filtration equilibrium occurs halfway down the capillary. At higher plasma flow (i.e., normal for humans), the profile of net ultrafiltration forces (PUF) along the glomerular capillary stretches out considerably to the right so that the point of equilibrium would be reached at a site actually beyond the end of the capillary. Failure to reach equilibrium (filtration disequilibrium) occurs because the increased delivery of plasma to the capillary outstrips the ability of the filtration apparatus to remove fluid and simultaneously increase capillary oncotic pressure. As a result, rises more slowly along the length of the capillary. The shift of filtration equilibrium toward the efferent arteriole has two important consequences. First, as one progresses along the capillary, PUF (and hence filtration) remains greater. Second, filtration occurs along a greater stretch of the glomerular capillary, thereby increasing the useful surface area for filtration. Thus, the end of the capillary that is wasted at low plasma flow rates really is in reserve to contribute at higher rates. A further increase in plasma flow stretches out the profile even more, so that PUF is even higher at each point along the capillary (see Fig.336C) Figure 336C Single-nephron glomerular filtration rate (SNGFR) is the sum of individual filtration events along the capillary. Thus, SNGFR is proportional to the yellow area that represents the product of PUF and effective (i.e., non-wasted) length along the capillary. Because the yellow areas progressively increase from Figure 336A to Figure 336C, SNGFR increases with glomerular plasma flow. However, this increase is not linear. Compared with the normal situation, the GFR summed for both kidneys increases only moderately with increasing RPF, but decreases greatly with decreasing RPF (see Fig. 336D). The relationship between GFR and RPF also defines a parameter known as the

6 filtration fraction (FF), which is the volume of filtrate that forms from a given volume of plasma entering the glomeruli: Figure 336D The hydrostatic pressure in the glomerular capillary favors glomerular ultrafiltration, (whereas the oncotic pressures in the capillary and the hydrostatic pressure in bowman space oppose it as is the case for filtration in other capillary beds glomerular ultrafiltration depends on the product of the ultrafiltration coefficient (kf ) and net starling forces. Figure 335A provides a schematic overview of the driving forces affecting ultrafiltration. PGC is the hydrostatic pressure in the glomerular capillary, which favors ultrafiltration. PBS is the hydrostatic pressure in Bowman s space, which opposes ultrafiltration. is the oncotic pressure in the glomerular capillary, which opposes ultra-filtration. Finally, is the oncotic pressure of the filtrate in Bowman s space, which favors ultrafiltration. Thus, tw oforces favor filtration (PGC and ), and two oppose it (PBS and ).

7 The net driving force favoring ultrafiltration (PUF) at any point along the glomerular capillaries is the difference between the hydrostatic pressure difference and the oncotic pressure difference between the capillary and Bowman s space. Thus, the glomerular filtration rate is proportional to the net hydrostatic force (PGC - PBS) minus the net oncotic force. The first term of the hydrostatic pressure difference is the pressure in the capillary lumen (PGC). As we will see later, the unique arrangement in which afferent and efferent arterioles flank the glomerular capillary keep PGC at approximately 50 mm Hg, a value that is twice as high as in most other capillaries. Moreover, direct measurements of pressure in rodents show that PGC decays very little between the afferent and efferent ends of glomerular capillaries. The second term of the hydrostatic pressure difference is the hydrostatic pressure in Bowman s space (PBS). This pressure is approximately 10 mm Hg, and does not vary along the capillary. As far as the oncotic driving forces are concerned, the first term is the oncotic pressure in Bowman s space ( ), which is very small. The oncotic pressure in the glomerular capillary ( ) starts off at 25 mm Hg at the beginning of the capillary. As a consequence of the continuous production of a protein-free glomerular filtrate, the oncotic pressure of the fluid left behind in the glomerular capillary progressively rises along the capillary. Compares the two forces favoring ultrafiltration (PGC and ) with the two forces opposing ultrafil-tration (PBS and ) and shows how they vary along the glomerular capillary. The rapid increase in the oncotic pressure of capillary blood ( ) is the major reason why the forces favoring and opposing filtration may balance each other at a point some distance before the end of the glomerular capillary. Beyond this point, PUF is zero and the system is said to be in filtration equilibrium (i.e., no further filtration) Equation 33-4 GFR = Kf [(P GC P BS ) (π GC π BS )] P GC : glomerular hydrostatic pressure P BS : Bowman's capsule hydrostatic pressure π GC : glomerular capillary colloid osmotic pressure π BS : Bowman's capsule osmotic pressure

8 Kf in Equation 33-4 is the product of the hydraulic conductivity of the capillary (Lp) and the effective surface area available for filtration (Sf). We use Kf because it is experimentally difficult to assign values to either Lp or Sf. Whereas PUF is of similar order of magnitude in glomerular and systemic capillaries, the value of Kf of the glomerular filtration barrier exceeds by more than an order of magnitude the Kf of all other systemic capillary beds combined. This difference in Kf values underlies the tremendous difference in filtration, approximately 180 liters /day in the kidneys (which receive approximately 20% of the cardiac output) com-pared with approximately 20 liters /day in the combined arteriolar ends of capillary beds in the rest of the body (which receive the other 80%). Of course, approximately 17 liters/day is reabsorbed at the venular end of these systemic capillaries owing to Starling forces, so that the net formation of lymph is approximately 3 liters /day. Alterations in the glomerular capillary surface area owing to changes in mesangialcell contractility can produce substantial changes in the Sf component of Kf. These cells respond to extrarenal hormones such as systemically circulating angiotensin II, arginine vasopressin, and parathyroid hormone. Mesangial cells also produce several vasoactive agents, such as prostaglandins and angiotensin II.

Glomerular filtration rate (GFR)

Glomerular filtration rate (GFR) LECTURE NO (2) Renal Physiology Glomerular filtration rate (GFR) Faculty Of Medicine Dept.Of Physiology The glomerulus Is a tuft of capillaries enclosed within a Bowman capsule. It is supplied by an afferent

More information

MAJOR FUNCTIONS OF THE KIDNEY

MAJOR FUNCTIONS OF THE KIDNEY MAJOR FUNCTIONS OF THE KIDNEY REGULATION OF BODY FLUID VOLUME REGULATION OF OSMOTIC BALANCE REGULATION OF ELECTROLYTE COMPOSITION REGULATION OF ACID-BASE BALANCE REGULATION OF BLOOD PRESSURE ERYTHROPOIESIS

More information

By: Dr. Foadoddini Department of Physiology & Pharmacology Birjand University of Medical Sciences. Body fluids and.

By: Dr. Foadoddini Department of Physiology & Pharmacology Birjand University of Medical Sciences. Body fluids and. By: Dr. Foadoddini Department of Physiology & Pharmacology Birjand University of Medical Sciences Body fluids and Renal physiology 25 Volume and Osmolality of Extracellular and Intracellular Fluids

More information

LECTURE 25: FILTRATION AND CLEARANCE NEPHRON FILTRATION

LECTURE 25: FILTRATION AND CLEARANCE NEPHRON FILTRATION LECTURE 25: FILTRATION AND CLEARANCE NEPHRON FILTRATION 1. Everything in the plasma is filtered except large proteins and red blood cells. The filtrate in Bowman s capsule is an isosmotic fluid that is

More information

Filtration and Reabsorption Amount Filter/d

Filtration and Reabsorption Amount Filter/d Renal Physiology 2011 Lisa M. Harrison-Bernard, PhD Contact me at lharris@lsuhsc.edu Renal Physiology Lecture 3 Renal Clearance and Glomerular Filtration Filtration and Reabsorption Amount Filter/d Amount

More information

Ch 19: The Kidneys. Functional unit of kidneys:?? Developed by John Gallagher, MS, DVM

Ch 19: The Kidneys. Functional unit of kidneys:?? Developed by John Gallagher, MS, DVM Ch 19: The Kidneys Homeostatic regulation of ECF volume and BP Osmolarity 290 mosm Ion balance Na+ and K+, etc. ph (acid-base balance Excretion of wastes & foreign substances Hormone production EPO Renin

More information

Chapter 1 RENAL HAEMODYNAMICS AND GLOMERULAR FILTRATION

Chapter 1 RENAL HAEMODYNAMICS AND GLOMERULAR FILTRATION 3 Chapter 1 RENAL HAEMODYNAMICS AND GLOMERULAR FILTRATION David Shirley, Giovambattista Capasso and Robert Unwin The kidney has three homeostatic functions that can broadly be described as excretory, regulatory

More information

Lecture-2 Review of the previous lecture:

Lecture-2 Review of the previous lecture: Lecture-2 Review of the previous lecture: -Kidney s function is to clean the blood by the removing of the waste plus adding some valuable substances -kidney failure will lead to death for many reasons,

More information

The functions of the kidney:

The functions of the kidney: The functions of the kidney: After reading this lecture you should be able to.. 1. List the main functions of the kidney. 2. Know the basic physiological anatomy of the kidney and the nephron 3. Describe

More information

RENAL PHYSIOLOGY, HOMEOSTASIS OF FLUID COMPARTMENTS (1)

RENAL PHYSIOLOGY, HOMEOSTASIS OF FLUID COMPARTMENTS (1) RENAL PHYSIOLOGY, HOMEOSTASIS OF FLUID COMPARTMENTS (1) Dr. Attila Nagy 2017 Functional role of the kidney 1.Homeostasis of fluid compartments (isosmia, isovolemia, isoionia, isohydria,) 2. Elimination

More information

PHSI2006/2906: Integrated Physiology B

PHSI2006/2906: Integrated Physiology B PHSI2006/2906: Integrated Physiology B TOPIC 1: RESPIRATION 1. The Mechanics of Breathing...2 2. Work of Breathing....5 3. Pulmonary Gas Exchange.. 10 4. Transport of Oxygen...16 5. Control of Respiration...20

More information

Collin County Community College RENAL PHYSIOLOGY

Collin County Community College RENAL PHYSIOLOGY Collin County Community College BIOL. 2402 Anatomy & Physiology WEEK 12 Urinary System 1 RENAL PHYSIOLOGY Glomerular Filtration Filtration process that occurs in Bowman s Capsule Blood is filtered and

More information

Basic Functions of the Kidneys

Basic Functions of the Kidneys Dr. Adelina Vlad Basic Functions of the Kidneys Eliminate plasma METABOLIC WASTE PRODUCTS and FOREIGN COMPOUNDS The kidney are the primary means for eliminating metabolic waste products (urea, creatinine,

More information

The principal functions of the kidneys

The principal functions of the kidneys Renal physiology The principal functions of the kidneys Formation and excretion of urine Excretion of waste products, drugs, and toxins Regulation of body water and mineral content of the body Maintenance

More information

Introduction to the kidney: regulation of sodium & glucose. Dr Nick Ashton Senior Lecturer in Renal Physiology Faculty of Biology, Medicine & Health

Introduction to the kidney: regulation of sodium & glucose. Dr Nick Ashton Senior Lecturer in Renal Physiology Faculty of Biology, Medicine & Health Introduction to the kidney: regulation of sodium & glucose Dr Nick Ashton Senior Lecturer in Renal Physiology Faculty of Biology, Medicine & Health Objectives Overview of kidney structure & function Glomerular

More information

BIPN100 F15 Human Physiology (Kristan) Problem Set #8 Solutions p. 1

BIPN100 F15 Human Physiology (Kristan) Problem Set #8 Solutions p. 1 BIPN100 F15 Human Physiology (Kristan) Problem Set #8 Solutions p. 1 1. a. Proximal tubule. b. Proximal tubule. c. Glomerular endothelial fenestrae, filtration slits between podocytes of Bowman's capsule.

More information

014 Chapter 14 Created: 9:25:14 PM CST

014 Chapter 14 Created: 9:25:14 PM CST 014 Chapter 14 Created: 9:25:14 PM CST Student: 1. Functions of the kidneys include A. the regulation of body salt and water balance. B. hydrogen ion homeostasis. C. the regulation of blood glucose concentration.

More information

KD02 [Mar96] [Feb12] Which has the greatest renal clearance? A. PAH B. Glucose C. Urea D. Water E. Inulin

KD02 [Mar96] [Feb12] Which has the greatest renal clearance? A. PAH B. Glucose C. Urea D. Water E. Inulin Renal Physiology MCQ KD01 [Mar96] [Apr01] Renal blood flow is dependent on: A. Juxtaglomerular apparatus B. [Na+] at macula densa C. Afferent vasodilatation D. Arterial pressure (poorly worded/recalled

More information

Functions of the kidney

Functions of the kidney Physiology of Urinary tract Kidney, Ureter, Urinary bladder Urethra Kidney function Excretion Physiology of volume regulation Functions of the kidney Excretion of dangerous substances endogenous (metabolites):

More information

Copyright 2009 Pearson Education, Inc. Copyright 2009 Pearson Education, Inc. Figure 19-1c. Efferent arteriole. Juxtaglomerular apparatus

Copyright 2009 Pearson Education, Inc. Copyright 2009 Pearson Education, Inc. Figure 19-1c. Efferent arteriole. Juxtaglomerular apparatus /6/0 About this Chapter Functions of the Kidneys Anatomy of the urinary system Overview of kidney function Secretion Micturition Regulation of extracellular fluid volume and blood pressure Regulation of

More information

Functional morphology of kidneys Clearance

Functional morphology of kidneys Clearance Functional morphology of kidneys Clearance Assoc. Prof. MUDr. Markéta Bébarová, Ph.D. Department of Physiology Faculty of Medicine, Masaryk University This presentation includes only the most important

More information

Physiology Lecture 2. What controls GFR?

Physiology Lecture 2. What controls GFR? Physiology Lecture 2 Too much blood is received by the glomerular capillaries, this blood contains plasma, once this plasma enters the glomerular capillaries it will be filtered to bowman s space. The

More information

Ch 17 Physiology of the Kidneys

Ch 17 Physiology of the Kidneys Ch 17 Physiology of the Kidneys Review Anatomy on your own SLOs List and describe the 4 major functions of the kidneys. List and explain the 4 processes of the urinary system. Diagram the filtration barriers

More information

BCH 450 Biochemistry of Specialized Tissues

BCH 450 Biochemistry of Specialized Tissues BCH 450 Biochemistry of Specialized Tissues VII. Renal Structure, Function & Regulation Kidney Function 1. Regulate Extracellular fluid (ECF) (plasma and interstitial fluid) through formation of urine.

More information

Glomerular Capillary Blood Pressure

Glomerular Capillary Blood Pressure Glomerular Capillary Blood Pressure Fluid pressure exerted by blood within glomerular capillaries Depends on Contraction of the heart Resistance to blood flow offered by afferent and efferent arterioles

More information

Renal Quiz - June 22, 21001

Renal Quiz - June 22, 21001 Renal Quiz - June 22, 21001 1. The molecular weight of calcium is 40 and chloride is 36. How many milligrams of CaCl 2 is required to give 2 meq of calcium? a) 40 b) 72 c) 112 d) 224 2. The extracellular

More information

RENAL PHYSIOLOGY, HOMEOSTASIS OF FLUID COMPARTMENTS (1)

RENAL PHYSIOLOGY, HOMEOSTASIS OF FLUID COMPARTMENTS (1) RENAL PHYSIOLOGY, HOMEOSTASIS OF FLUID COMPARTMENTS (1) Dr. Attila Nagy 2017 Functional roles of the kidney 1.Homeostasis of fluid compartments (isosmia, isovolemia, isoionia, isohydria,) 2. Elimination

More information

QUIZ/TEST REVIEW NOTES SECTION 1 RENAL PHYSIOLOGY FILTRATION [THE KIDNEYS/URINARY SYSTEM] CHAPTER 19 CHAPTER 19

QUIZ/TEST REVIEW NOTES SECTION 1 RENAL PHYSIOLOGY FILTRATION [THE KIDNEYS/URINARY SYSTEM] CHAPTER 19 CHAPTER 19 QUIZ/TEST REVIEW NOTES SECTION 1 RENAL PHYSIOLOGY FILTRATION [THE KIDNEYS/URINARY SYSTEM] CHAPTER 19 CHAPTER 19 Learning Objectives: Differentiate the following processes: filtration, reabsorption, secretion,

More information

PROBLEM SET 7.1 FLUID VOLUMES, GLOMERULAR FILTRATION AND CLEARANCE

PROBLEM SET 7.1 FLUID VOLUMES, GLOMERULAR FILTRATION AND CLEARANCE PROBLEM SET 7.1 FLUID VOLUMES, GLOMERULAR FILTRATION AND CLEARANCE ANSWER KEY 1. The time course of decay of plasma [inulin] shown in Fig. 6.1.1 can be simultaneously used to determine the ECF volume and

More information

Nephron Anatomy Nephron Anatomy

Nephron Anatomy Nephron Anatomy Kidney Functions: (Eckert 14-17) Mammalian Kidney -Paired -1% body mass -20% blood flow (Eckert 14-17) -Osmoregulation -Blood volume regulation -Maintain proper ion concentrations -Dispose of metabolic

More information

NROSCI/BIOSC 1070 and MSNBIO 2070 Exam # 2 October 25, 2013 Total POINTS: % of grade in class

NROSCI/BIOSC 1070 and MSNBIO 2070 Exam # 2 October 25, 2013 Total POINTS: % of grade in class NROSCI/BIOSC 1070 and MSNBIO 2070 Exam # 2 October 25, 2013 Total POINTS: 100 20% of grade in class 1) During exercise, plasma levels of Renin increase moderately. Why should Renin levels be elevated during

More information

Chapter 25 The Urinary System

Chapter 25 The Urinary System Chapter 25 The Urinary System 10/30/2013 MDufilho 1 Kidney Functions Removal of toxins, metabolic wastes, and excess ions from the blood Regulation of blood volume, chemical composition, and ph Gluconeogenesis

More information

Physio 12 -Summer 02 - Renal Physiology - Page 1

Physio 12 -Summer 02 - Renal Physiology - Page 1 Physiology 12 Kidney and Fluid regulation Guyton Ch 20, 21,22,23 Roles of the Kidney Regulation of body fluid osmolarity and electrolytes Regulation of acid-base balance (ph) Excretion of natural wastes

More information

RNPDC CCNP Anatomy and Physiology: Renal System Pre-Quiz 2015

RNPDC CCNP Anatomy and Physiology: Renal System Pre-Quiz 2015 RNPDC CCNP Anatomy and Physiology: Renal System Pre-Quiz 2015 1. In which abdominal cavity do the kidneys lie? a) Peritoneum. b) Anteperitoneal. c) Retroperitoneal. d) Parietal peritoneal 2. What is the

More information

Human Urogenital System 26-1

Human Urogenital System 26-1 Human Urogenital System 26-1 Urogenital System Functions Filtering of blood, Removal of wastes and metabolites Regulation of blood volume and composition concentration of blood solutes ph of extracellular

More information

Renal-Related Questions

Renal-Related Questions Renal-Related Questions 1) List the major segments of the nephron and for each segment describe in a single sentence what happens to sodium there. (10 points). 2) a) Describe the handling by the nephron

More information

Renal physiology D.HAMMOUDI.MD

Renal physiology D.HAMMOUDI.MD Renal physiology D.HAMMOUDI.MD Functions Regulating blood ionic composition Regulating blood ph Regulating blood volume Regulating blood pressure Produce calcitrol and erythropoietin Regulating blood glucose

More information

The kidneys are excretory and regulatory organs. By

The kidneys are excretory and regulatory organs. By exercise 9 Renal System Physiology Objectives 1. To define nephron, renal corpuscle, renal tubule, afferent arteriole, glomerular filtration, efferent arteriole, aldosterone, ADH, and reabsorption 2. To

More information

Renal Physiology Intro to CRRT Concepts. Catherine Jones September 2017

Renal Physiology Intro to CRRT Concepts. Catherine Jones September 2017 Renal Physiology Intro to CRRT Concepts Catherine Jones September 2017 Learning Outcomes To revise anatomy & physiology of kidney in health: To understand basic principles of continuous renal replacement

More information

Na + Transport 1 and 2 Linda Costanzo, Ph.D.

Na + Transport 1 and 2 Linda Costanzo, Ph.D. Na + Transport 1 and 2 Linda Costanzo, Ph.D. OBJECTIVES: After studying this lecture, the student should understand: 1. The terminology applied to single nephron function, including the meaning of TF/P

More information

Microcirculation and Edema. Faisal I. Mohammed MD, PhD.

Microcirculation and Edema. Faisal I. Mohammed MD, PhD. Microcirculation and Edema Faisal I. Mohammed MD, PhD. Objectives: Point out the structure and function of the microcirculation. Describe how solutes and fluids are exchang in capillaries. Outline what

More information

BIOH122 Human Biological Science 2

BIOH122 Human Biological Science 2 BIOH122 Human Biological Science 2 Session 17 Urinary System 2 Glomerular Filtration Bioscience Department Endeavour College of Natural Health endeavour.edu.au Session Plan o Overview of Renal Physiology

More information

RENAL PHYSIOLOGY WESTMEAD PRIMARY EXAM

RENAL PHYSIOLOGY WESTMEAD PRIMARY EXAM RENAL PHYSIOLOGY WESTMEAD PRIMARY EXAM RENAL PHYSIOLOGY - ANATOMY Glomerulus + renal tubule Each kidney has 1.3 million nephrons Cortical nephrons (85%) have shorter Loop of Henle than Juxtamedullary nephrons

More information

Microcirculation and Edema- L1 L2

Microcirculation and Edema- L1 L2 Microcirculation and Edema- L1 L2 Faisal I. Mohammed MD, PhD. University of Jordan 1 Objectives: Point out the structure and function of the microcirculation. Describe how solutes and fluids are exchanged

More information

Running head: NEPHRON 1. The nephron the functional unit of the kidney. [Student Name] [Name of Institute] Author Note

Running head: NEPHRON 1. The nephron the functional unit of the kidney. [Student Name] [Name of Institute] Author Note Running head: NEPHRON 1 The nephron the functional unit of the kidney [Student Name] [Name of Institute] Author Note NEPHRON 2 The nephron the functional unit of the kidney The kidney is an important excretory

More information

Answers and Explanations

Answers and Explanations Answers and Explanations 1. The answer is D [V B 4 b]. Distal K + secretion is decreased by factors that decrease the driving force for passive diffusion of K + across the luminal membrane. Because spironolactone

More information

I. General Features of Renal Function -Objectives II. Blood Flow and Filtration -Objectives III. Tubular Anatomy and Function -Objectives IV.

I. General Features of Renal Function -Objectives II. Blood Flow and Filtration -Objectives III. Tubular Anatomy and Function -Objectives IV. ORGANIZATION This syllabus is divided into ten sections or topics. Each section is divided into objectives. On the contents page, clicking on the section title takes you directly to that section. Clicking

More information

Renal Physiology - Lectures

Renal Physiology - Lectures Renal Physiology 2011 Lisa M. Harrison-Bernard, PhD lharris@lsuhsc.edu Renal Physiology - Lectures Physiology of Body Fluids 2. Structure & Function of the Kidneys 3. Renal Clearance & Glomerular Filtration

More information

Renal Disease and PK/PD. Anjay Rastogi MD PhD Division of Nephrology

Renal Disease and PK/PD. Anjay Rastogi MD PhD Division of Nephrology Renal Disease and PK/PD Anjay Rastogi MD PhD Division of Nephrology Drugs and Kidneys Kidney is one of the major organ of drug elimination from the human body Renal disease and dialysis alters the pharmacokinetics

More information

Body fluid volume is small (~5L (blood + serum)) Composition can change rapidly e.g. due to increase in metabolic rate

Body fluid volume is small (~5L (blood + serum)) Composition can change rapidly e.g. due to increase in metabolic rate Renal physiology The kidneys Allow us to live on dry land. Body fluid volume is small (~5L (blood + serum)) Composition can change rapidly e.g. due to increase in metabolic rate Kidneys maintain composition

More information

BIOL2030 Human A & P II -- Exam 6

BIOL2030 Human A & P II -- Exam 6 BIOL2030 Human A & P II -- Exam 6 Name: 1. The kidney functions in A. preventing blood loss. C. synthesis of vitamin E. E. making ADH. B. white blood cell production. D. excretion of metabolic wastes.

More information

** TMP mean page 340 in 12 th edition. Questions 1 and 2 Use the following clinical laboratory test results for questions 1 and 2:

** TMP mean page 340 in 12 th edition. Questions 1 and 2 Use the following clinical laboratory test results for questions 1 and 2: QUESTION Questions 1 and 2 Use the following clinical laboratory test results for questions 1 and 2: Urine flow rate = 1 ml/min Urine inulin concentration = 100 mg/ml Plasma inulin concentration = 2 mg/ml

More information

Vertebrates possess kidneys: internal organs which are vital to ion and water balance and excretion.

Vertebrates possess kidneys: internal organs which are vital to ion and water balance and excretion. The Kidney Vertebrates possess kidneys: internal organs which are vital to ion and water balance and excretion. The kidney has 6 roles in the maintenance of homeostasis. 6 Main Functions 1. Ion Balance

More information

Renal Blood flow; Renal Clearance. Dr Sitelbanat

Renal Blood flow; Renal Clearance. Dr Sitelbanat Renal Blood flow; Renal Clearance Dr Sitelbanat Objectives At the end of this lecture student should be able to describe: Renal blood flow Autoregulation of GFR and RBF Regulation of GFR The Calcuation

More information

CAPILLARY FLUID EXCHANGE

CAPILLARY FLUID EXCHANGE CAPILLARY FLUID EXCHANGE Aubrey E. Taylor and Timothy M. Moore Department of Physiology, University of South Alabama, College of Medicine, Mobile, Alabama 36688-0002 AM. J. PHYSIOL. 277 (ADV. PHYSIOL.

More information

A. Correct! Flushing acids from the system will assist in re-establishing the acid-base equilibrium in the blood.

A. Correct! Flushing acids from the system will assist in re-establishing the acid-base equilibrium in the blood. OAT Biology - Problem Drill 16: The Urinary System Question No. 1 of 10 1. Which of the following would solve a drop in blood ph? Question #01 (A) Decreased retention of acids. (B) Increased excretion

More information

Urinary Physiology. Chapter 17 Outline. Kidney Function. Chapter 17

Urinary Physiology. Chapter 17 Outline. Kidney Function. Chapter 17 Urinary Physiology Chapter 17 Chapter 17 Outline Structure and Function of the Kidney Glomerular Filtration Reabsorption of Salt and Water Renal Plasma Clearance Renal Control of Electrolyte and Acid-Base

More information

** Accordingly GFR can be estimated by using one urine sample and do creatinine testing.

** Accordingly GFR can be estimated by using one urine sample and do creatinine testing. This sheet includes the lecture and last year s exam. When a patient goes to a clinic, we order 2 tests: 1) kidney function test: in which we measure UREA and CREATININE levels, and electrolytes (Na+,

More information

Last lec we have studied what controls GFR; either high or low GFR are bad and how to measure GFR. Today we will talk about the tubules.

Last lec we have studied what controls GFR; either high or low GFR are bad and how to measure GFR. Today we will talk about the tubules. Last lec we have studied what controls GFR; either high or low GFR are bad and how to measure GFR. Today we will talk about the tubules. In the tubules first thing we have urine formation; which is the

More information

Urine Formation. Urinary Physiology Urinary Section pages Urine Formation. Glomerular Filtration 4/24/2016

Urine Formation. Urinary Physiology Urinary Section pages Urine Formation. Glomerular Filtration 4/24/2016 Urine Formation Urinary Physiology Urinary Section pages 9-17 Filtrate Blood plasma minus most proteins Urine

More information

Glomerular Filtration Graphics are used with permission of: Pearson Education Inc., publishing as Benjamin Cummings (http://www.aw-bc.

Glomerular Filtration Graphics are used with permission of: Pearson Education Inc., publishing as Benjamin Cummings (http://www.aw-bc. Glomerular Filtration Graphics are used with permission of: Pearson Education Inc., publishing as Benjamin Cummings (http://www.aw-bc.com) Page 1. Introduction Formation of urine by the kidney involves

More information

Urinary System. consists of the kidneys, ureters, urinary bladder and urethra

Urinary System. consists of the kidneys, ureters, urinary bladder and urethra Urinary System 1 Urinary System consists of the kidneys, ureters, urinary bladder and urethra 2 Location of Kidneys The kidneys which are positioned retroperitoneally lie on either side of the vertebral

More information

Excretion Chapter 29. The Mammalian Excretory System consists of. The Kidney. The Nephron: the basic unit of the kidney.

Excretion Chapter 29. The Mammalian Excretory System consists of. The Kidney. The Nephron: the basic unit of the kidney. Excretion Chapter 29 The Mammalian Excretory System consists of The Kidney 1. Vertebrate kidneys perform A. Ion balance B. Osmotic balance C. Blood pressure D. ph balance E. Excretion F. Hormone production

More information

RENAL PHYSIOLOGY. Physiology Unit 4

RENAL PHYSIOLOGY. Physiology Unit 4 RENAL PHYSIOLOGY Physiology Unit 4 Renal Functions Primary Function is to regulate the chemistry of plasma through urine formation Additional Functions Regulate concentration of waste products Regulate

More information

You should know the T max for any substance that you use and for PAH ; T max = mg / min

You should know the T max for any substance that you use and for PAH ; T max = mg / min Tubular function - What is clearance? o clearance referred to the theoretical volume of plasma from which a substance is cleared ( cleaned ) over a period of time and so its unit would be ((ml/min)) -

More information

Physiology of Blood Purification: Dialysis & Apheresis. Outline. Solute Removal Mechanisms in RRT

Physiology of Blood Purification: Dialysis & Apheresis. Outline. Solute Removal Mechanisms in RRT Physiology of Blood Purification: Dialysis & Apheresis Jordan M. Symons, MD University of Washington School of Medicine Seattle Children s Hospital Outline Physical principles of mass transfer Hemodialysis

More information

= (6000 ml air / min * 0.04 ml CO 2 / ml air) / 54 ml CO 2 / dl plasma

= (6000 ml air / min * 0.04 ml CO 2 / ml air) / 54 ml CO 2 / dl plasma Bio390 thanks to Dr. J.F. Anderson, Dept Zoology Univ. of Florida, Gainesville RENAL PROBLEMS Calculate the rate of pulmonary clearance of CO 2 given the following information. Cardiac Output: 4.8 L 6

More information

Chapter 23. Composition and Properties of Urine

Chapter 23. Composition and Properties of Urine Chapter 23 Composition and Properties of Urine Composition and Properties of Urine (1 of 2) urinalysis the examination of the physical and chemical properties of urine appearance - clear, almost colorless

More information

Physiology of Excretory Systems

Physiology of Excretory Systems Physiology of Excretory Systems Fig 12-2 (a) Urea is formed by the ornithine-urea cycle in most vertebrates. Because ATP is required for the first step, nitrogen excretion in ureotelic animals is more

More information

BIOL 2402 Renal Function

BIOL 2402 Renal Function BIOL 2402 Renal Function Dr. Chris Doumen Collin County Community College 1 Renal Clearance and GFR Refers to the volume of blood plasma from which a component is completely removed in one minute by all

More information

Renal physiology II. Basic renal processes. Dr Alida Koorts BMS

Renal physiology II. Basic renal processes. Dr Alida Koorts BMS Renal physiology II Basic renal processes Dr Alida Koorts BMS 7-12 012 319 2921 akoorts@medic.up.ac.za Basic renal processes 1. filtration 2. reabsorption 3. secretion Glomerular filtration The filtration

More information

osmoregulation mechanisms in gills, salt glands, and kidneys

osmoregulation mechanisms in gills, salt glands, and kidneys Ionic & Osmotic Homeostasis osmoregulation mechanisms in gills, salt glands, and kidneys extracellular intracellular 22 23 Salt Secretion: recycle Figure in Box 26.2 Hill et al. 2004 active Down electrochemical

More information

Pressure Diuresis 9 Sample Student Essays

Pressure Diuresis 9 Sample Student Essays Pressure Diuresis 9 Sample Student Essays Below please find assembled consecutively in one document the brief analyses submitted by nine students in Mammalian Physiology 08 to the Teach Yourself Pressure

More information

Clearance and Reabsorption. Use the following data to answer these questions. a. plasma flow rate in the afferent arterioles:

Clearance and Reabsorption. Use the following data to answer these questions. a. plasma flow rate in the afferent arterioles: Bio390 thanks to Dr. J.F. Anderson, Dept Zoology Univ. of Florida, Gainesville Clearance and Reabsorption Use the following data to answer these questions. renal inulin clearance: [inulin] arterial plasma

More information

Renal Physiology II Tubular functions

Renal Physiology II Tubular functions Renal Physiology II Tubular functions LO. 42, 43 Dr. Kékesi Gabriella Basic points of renal physiology 1. Glomerular filtration (GF) a) Ultrafiltration 2. Tubular functions active and passive a) Reabsorption

More information

2- Maintain the proper balance between water and. 3- Maintain the proper acid base balance. glucose by gluconeogenesis. pressure

2- Maintain the proper balance between water and. 3- Maintain the proper acid base balance. glucose by gluconeogenesis. pressure Filter ~180 liters of blood plasma daily, allowing toxins, metabolic wastes, and excess ions to leave the body in urine 1 Regulate volume and chemical composition of the blood 2 Maintain the proper balance

More information

URINARY SYSTEM. Primary functions. Major organs & structures

URINARY SYSTEM. Primary functions. Major organs & structures URINARY SYSTEM Primary functions Excretion of metabolic wastes Regulation of water and ion balances Regulation of blood pressure Vitamin D activation Regulation of rbc s (erythropoietin) Gluconeogenesis

More information

RENAL SYSTEM 2 TRANSPORT PROPERTIES OF NEPHRON SEGMENTS Emma Jakoi, Ph.D.

RENAL SYSTEM 2 TRANSPORT PROPERTIES OF NEPHRON SEGMENTS Emma Jakoi, Ph.D. RENAL SYSTEM 2 TRANSPORT PROPERTIES OF NEPHRON SEGMENTS Emma Jakoi, Ph.D. Learning Objectives 1. Identify the region of the renal tubule in which reabsorption and secretion occur. 2. Describe the cellular

More information

mid ihsan (Physiology ) GFR is increased when A -Renal blood flow is increased B -Sym. Ganglion activity is reduced C-A and B **

mid ihsan (Physiology ) GFR is increased when A -Renal blood flow is increased B -Sym. Ganglion activity is reduced C-A and B ** (Physiology ) mid ihsan GFR is increased when A -Renal blood flow is increased B -Sym. Ganglion activity is reduced C-A and B ** Colloid pressure in the efferent arteriole is: A- More than that leaving

More information

Renal Physiology. April, J. Mohan, PhD. Lecturer, Physiology Unit, Faculty of Medical Sciences, U.W.I., St Augustine.

Renal Physiology. April, J. Mohan, PhD. Lecturer, Physiology Unit, Faculty of Medical Sciences, U.W.I., St Augustine. Renal Physiology April, 2011 J. Mohan, PhD. Lecturer, Physiology Unit, Faculty of Medical Sciences, U.W.I., St Augustine. Office : Room 105, Physiology Unit. References: Koeppen B.E. & Stanton B.A. (2010).

More information

Regulation of fluid and electrolytes balance

Regulation of fluid and electrolytes balance Regulation of fluid and electrolytes balance Three Compartment Fluid Compartments Intracellular = Cytoplasmic (inside cells) Extracellular compartment is subdivided into Interstitial = Intercellular +

More information

The topic of normal vascular and glomerular anatomy is introduced

The topic of normal vascular and glomerular anatomy is introduced Normal Vascular and Glomerular Anatomy Arthur H. Cohen Richard J. Glassock The topic of normal vascular and glomerular anatomy is introduced here to serve as a reference point for later illustrations of

More information

Renal Physiology - Lectures

Renal Physiology - Lectures Renal Physiology - Lectures Physiology of Body Fluids PROBLEM SET, RESEARCH ARTICLE Structure & Function of the Kidneys Renal Clearance & Glomerular Filtration PROBLEM SET Regulation of Renal Blood Flow

More information

Urinary system. Kidney anatomy Renal cortex Renal. Nephrons

Urinary system. Kidney anatomy Renal cortex Renal. Nephrons Urinary system Aids homeostasis by removing cellular wastes and foreign compounds, and maintains salt and water balance of plasma Kidney anatomy Renal cortex Renal pelvis Renal medulla Cortex Ureter Medulla

More information

describe the location of the kidneys relative to the vertebral column:

describe the location of the kidneys relative to the vertebral column: Basic A & P II Dr. L. Bacha Chapter Outline (Martini & Nath 2010) list the three major functions of the urinary system: by examining Fig. 24-1, list the organs of the urinary system: describe the location

More information

Microcirculation. Lecture Block 11 (contributions from Brett Burton)

Microcirculation. Lecture Block 11 (contributions from Brett Burton) Lecture Block 11 (contributions from Brett Burton) Elements of Arterioles, capillaries, venules Structure and function: transport Fluid balance Lymph system Vessels of the Circulatory System Diameter Aorta

More information

Renal Physiology. April, J. Mohan, PhD. Lecturer, Physiology Unit, Faculty of Medical Sciences, U.W.I., St Augustine.

Renal Physiology. April, J. Mohan, PhD. Lecturer, Physiology Unit, Faculty of Medical Sciences, U.W.I., St Augustine. Renal Physiology April, 2011 J. Mohan, PhD. Lecturer, Physiology Unit, Faculty of Medical Sciences, U.W.I., St Augustine. Office : Room 105, Physiology Unit. References: Koeppen B.E. & Stanton B.A. (2010).

More information

Kidney Physiology. Mechanisms of Urine Formation TUBULAR SECRETION Eunise A. Foster Shalonda Reed

Kidney Physiology. Mechanisms of Urine Formation TUBULAR SECRETION Eunise A. Foster Shalonda Reed Kidney Physiology Mechanisms of Urine Formation TUBULAR SECRETION Eunise A. Foster Shalonda Reed The purpose of tubular secrection To dispose of certain substances that are bound to plasma proteins. To

More information

Lecture 4. Use of clearance methods to quantify kidney functions:

Lecture 4. Use of clearance methods to quantify kidney functions: Lecture 4 Why does the colloid osmotic pressure increase throughout the glomeruar capillaries whereas it doesn t increase significantly throughout any other systemic capillary? The cardiac output equals

More information

Actualités néphrologiques Jean Hamburger 23 Avril Marie Courbebaisse, Service de Physiologie Hôpital Européen Georges Pompidou, Paris

Actualités néphrologiques Jean Hamburger 23 Avril Marie Courbebaisse, Service de Physiologie Hôpital Européen Georges Pompidou, Paris Single nephron GFR Actualités néphrologiques Jean Hamburger 23 Avril 2018 Marie Courbebaisse, Service de Physiologie Hôpital Européen Georges Pompidou, Paris Introdution Glomerular filtration and SNGFR

More information

2) This is a Point and Click question. You must click on the required structure.

2) This is a Point and Click question. You must click on the required structure. Class: A&P2-1 Description: Test: Excretory Test Points: 144 Test Number: 28379 Printed: 31-March-10 12:03 1) This is a Point and Click question. You must click on the required structure. Click on the Bowman's

More information

SHORT ANSWER. Write the word or phrase that best completes each statement or answers the question.

SHORT ANSWER. Write the word or phrase that best completes each statement or answers the question. Exam Name SHORT ANSWER. Write the word or phrase that best completes each statement or answers the question. Figure 25.1 Using Figure 25.1, match the following: 1) Glomerulus. 2) Afferent arteriole. 3)

More information

URINARY SYSTEM. Urinary System

URINARY SYSTEM. Urinary System URINARY SYSTEM Urinary System Kidney Functions Excretion Regulation of blood volume and pressure Regulation of electrolyte and ph levels Kidney Structure Gross Anatomy Fibrous Capsule Renal Cortex Renal

More information

Urinary bladder provides a temporary storage reservoir for urine

Urinary bladder provides a temporary storage reservoir for urine Urinary System Organs Kidney Filters blood, allowing toxins, metabolic wastes, and excess ions to leave the body in urine Urinary bladder provides a temporary storage reservoir for urine Paired ureters

More information

RENAL PHYSIOLOGY DR.CHARUSHILA RUKADIKAR ASSISTANT PROFESSOR PHYSIOLOGY

RENAL PHYSIOLOGY DR.CHARUSHILA RUKADIKAR ASSISTANT PROFESSOR PHYSIOLOGY RENAL PHYSIOLOGY DR.CHARUSHILA RUKADIKAR ASSISTANT PROFESSOR PHYSIOLOGY GROSS ANATOMY Location *Bean-shaped *Retroperitoneal *At level of T12 L1 vertebrae. *The right kidney lies slightly inferior to left

More information

1. Urinary System, General

1. Urinary System, General S T U D Y G U I D E 16 1. Urinary System, General a. Label the figure by placing the numbers of the structures in the spaces by the correct labels. 7 Aorta 6 Kidney 8 Ureter 2 Inferior vena cava 4 Renal

More information

Lecture 16: The Nephron

Lecture 16: The Nephron Lecture 16: The Nephron Reading: OpenStax A&P Text Chapter 25 Primary functions of the kidneys 1. Regulating osmolarity (blood concentration!) A. Regulating blood pressure B. Maintaining ion balance C.

More information