Chapter 10. Introduction to Nutrition and Metabolism, 3 rd edition David A Bender Taylor & Francis Ltd, London 2002

Save this PDF as:
 WORD  PNG  TXT  JPG

Size: px
Start display at page:

Download "Chapter 10. Introduction to Nutrition and Metabolism, 3 rd edition David A Bender Taylor & Francis Ltd, London 2002"

Transcription

1 Chapter 10 Introduction to Nutrition and Metabolism, 3 rd edition David A Bender Taylor & Francis Ltd, London 2002 Chapter 10: Integration and Control of Metabolism Press the space bar or click the mouse to build each slide; when each slide is complete a hand will appear in the lower right corner to indicate that the next click will take you to the next slide. You are welcome to use or adapt this presentation for use in teaching, with due acknowledgement, but you may not publish it in any form without written permission.

2 Mechanisms of metabolic control Mechanisms of metabolic control Intra-cellular mechanisms instantaneous availability of substrates inhibition by end-products Inter-cellular (hormonal) mechanisms changed activity of existing enzymes fast acting changed amount of enzyme slow acting tissue selectivity amplification of hormone signal mechanism for termination or reversal

3 rate of reaction The effect of substrate concentration on the rate of activity The effect of substrate concentration on the rate of activity - 1 Enzyme is ± saturated rate of reaction ± constant Enzyme unsaturated rate of reaction increases with increasing substrate concentration of substrate

4 rate of reaction The effect of substrate concentration on the rate of activity The effect of substrate concentration on the rate of activity - 2 V max the maximum rate of reaction when the enzyme is saturated ½ V max K m = concentration of substrate to give ½ V max concentration of substrate

5 rate of reaction The effect of substrate concentration on the rate of activity The effect of substrate concentration on the rate of activity - 3 A P high K m low K m B X concentration of substrate Q R Y Z

6 rate of reaction The effect of substrate concentration on the rate of activity cooperative binding (allosteric enzyme) Cooperative binding (allosteric enzyme) - 1 substrate concentration

7 rate of reaction The effect of substrate concentration on the rate of activity cooperative binding (allosteric enzyme) cooperative activation binding (allosteric enzyme) - 2 lower [S] required for activity inhibition higher [S] required for activity substrate concentration

8 glucose glucose-6-phosphate glycogen fructose-6-phosphate Inhibition of phosphofructokinase ATP by endproducts of glycolysis citrate fructose-1,6-bisphosphate phosphoenolpyruvate phospho-enolpyruvate pyruvate amino acids Inhibition of phosphofructokinase by end-products of glycolysis acetyl CoA fatty acids, ketones, amino acids oxaloacetate citrate ADP amino acids ATP

9 relative activity Substrate dependence of phosphofructokinase 100 Substrate dependence of phosphofructokinase low [ATP] physiological [ATP] [fructose 6-phosphate], mmol /L

10 relative activity As ADP accumulates in the cell 2 x ADP ATP + AMP AMP reverses the inhibition of phosphofructokinase by ATP hence immediate increase in glycolysis Fructokinase activity with and without 5 AMP no AMP + AMP [ATP], mmol /L

11 Regulation of phosphofructokinase by fructose 2,6-bisphosphate Regulation of phosphofructokinase by fructose 2,6- bisphosphate fructose 6-phosphate fructose 1,6-bisphosphate P CH 2 CH 2 fructose bisphosphatase P CH 2 CH 2 P phosphofructokinase kinase phosphatase glucagon P CH 2 CH 2 P fructose 2,6-bisphosphate

12 Substrate cycling permits faster and more sensitive regulation Substrate cycling permits faster and more sensitive regulation H HC HC CH 2 C CH CH 2 P fructose 6-phosphate phosphofructokinase ADP ATP H H 3 P H C 4 fructose 1,6 CH 2 P bisphosphatase fructose 1,6-bisphosphate H CH 2 C CH C P

13 Fast hormone responses phosphorylation and dephosphorylation of serine Fast hormone responses phosphorylation and dephosphorylation of serine H P HN CH 2 CH C ATP ADP HN CH 2 CH C H 2 H 3 P 4 HN CH 2 CH C serine protein kinase phosphoserine phosphoprotein phosphatase

14 Fast hormone responses phosphorylation and dephosphorylation of tyrosine Fast hormone responses phosphorylation and dephosphorylation of tyrosine H P HN CH 2 CH C ATP ADP HN CH 2 CH C H 2 H 3 P 4 HN CH 2 CH C tyrosine protein kinase phosphotyrosine phosphoprotein phosphatase

15 Modification of enzyme activity by phosphorylation and dephosphorylation Modification of enzyme activity by phosphorylation and dephosphorylation In the control of glycogen synthesis or utilization: In response to adrenaline or glucagon: The active form of glycogen synthase is inactivated by phosphorylation phosphorylated glycogen synthase is inactive but is activated by glucose 6-phosphate The inactive form of glycogen phosphorylase is activated by phosphorylation phosphorylated glycogen phosphorylase is maximally active but is inhibited by ATP, glucose and glucose 6-phosphate

16 Control of glycogen synthesis response to glucagon Control and adrenaline of glycogen synthesis ATP ADP protein kinase activated by camp active glycogen synthase inactive (phosphorylated) glycogen synthase phosphoprotein phosphatase but activated by glucose 6-phosphate phosphate response to insulin

17 Control of glycogen utilization response to glucagon Control and adrenaline of glycogen utilization ATP ADP protein kinase activated by camp inactive glycogen phosphorylase active (phosphorylated) glycogen phosphorylase phosphoprotein phosphatase but inhibited by ATP, glucose, glucose 6-phosphate phosphate response to insulin

18 Fast-acting hormones the rôle of G-proteins Fast-acting hormones the rôle of G-proteins b a GDP g

19 Fast-acting hormones the rôle of G-proteins hormone b a GDP g

20 Fast-acting hormones the rôle of G-proteins hormone b a GDP g

21 Fast-acting hormones the rôle of G-proteins hormone b a GDP GTP g GTP GDP

22 Fast-acting hormones the rôle of G-proteins hormone b a GDP GTP g

23 Fast-acting hormones the rôle of G-proteins g b a GDP GTP effector formation of intracellular second messenger

24 Fast-acting hormones the rôle of G-proteins H 2 H 3 P 4 slowly a GDP GTP effector formation of intracellular second messenger

25 Fast-acting hormones the rôle of G-proteins a GDP GTP effector

26 Fast-acting hormones the rôle of G-proteins b a GDP GTP g effector

27 Formation of cyclic AMP as a second messenger NH 2 N N N N Formation of cyclic AMP as a second messenger CH 2 P P P adenosine triphosphate (ATP) adenylate cyclase N NH 2 N N N CH 2 P pyrophosphate H 2 N NH 2 N N N CH 2 P cyclic adenosine monophosphate (camp) phosphodiesterase adenosine monophosphate (AMP)

28 Phosphatidyl inositol in transmembrane signalling Phosphatidyl inositol in transmembrane signalling 1 CH 2 CH phosphatidylinositol (PI) CH 2 2 x ATP PI kinase P 2 x ADP CH 2 CH phosphatidylinositol bisphosphate (PIP 2 ) CH 2 P P P

29 Phosphatidyl inositol in transmembrane signalling Phosphatidyl inositol in transmembrane signalling 2 CH 2 CH phosphatidylinositol bisphosphate (PIP 2 ) H 2 hormone-sensitive phospholipase C CH 2 P P P diacylglycerol + inositol trisphosphate (IP 3 ) P P CH 2 CH CH 2 P

30 camp and IP 3 bind to, and activate, protein kinases Activated protein kinases phosphorylate proteins camp and IP 3 bind to, and activate, protein kinases H P ADP CH 2 HN CH 2 CH C ATP HN CH C protein kinase serine phosphoserine these may be either the final target enzymes, or intermediate protein kinases that then phosphorylate the target enzyme

31 Amplification of the fast-acting hormone signal For as long Amplification as hormone is of bound the fast-acting to receptor hormone signal it will recruit and activate G-protein abg complexes many active G-protein complexes for 1 mol of hormone For as long as Ga has GTP bound it will activate the effector (adenylate cyclase or phospholipase) many mol of camp or IP 3 per mol active Ga For as long as camp or IP 3 is bound to protein kinase it will phosphorylate the target protein many mol of protein phosphorylated per mol camp or IP 3 For as long as enzyme is phosphorylated it will catalyse conversion of many ( ) mol of substrate /second

32 A model of steroid (slow-acting) hormone action A model of steroid (slow-acting) hormone action Hormone enters cell, diffuses into nucleus and binds to receptor protein activated receptor dimerises and binds to DNA hormone response element Active receptor dimer on hormone response element increases transcription of mrna

33 Amplification of the slow-acting hormone signal For as long Amplification as hormone is of bound the slow-acting to receptor hormone signal it will enhance transcription of the target gene many mol of mrna for 2 mol of hormone For as long as mrna survives in the cytosol it will it will be translated many times over many mol of enzyme per mol of mrna For as long as enzyme molecule survives in the cell it will catalyse conversion of many ( ) mol of substrate /second

34 Why don t all cells respond to a hormone? Why don t all cells respond to a hormone? In order to respond to a fast-acting hormone the cell must have cell-surface receptors for that hormone In order to respond to a slow-acting hormone the cell must have nuclear receptors for that hormone

35 How can cells respond differently to the same hormone? How can cells respond differently to the same hormone? Different cell surface receptors for the same hormone may activate different effectors (adenylate cyclase, phospholipase) Different cells have different protein kinases which phosphorylate different target enzymes Different cells contain different enzymes that are targets for phosphorylation (ie not all cells have all enzymes) In order to respond to a slow-acting hormone the gene with the hormone response element must be expressed in that cell Different nuclear receptors for the same hormone may bind to different hormone response elements, associated with different genes

36 Regulation of adipose tissue metabolism plasma lipoprotein fed state glucose lipoprotein lipase Regulation insulin of adipose tissue metabolism adrenaline noradrenaline glucagon glucose fatty acids camp acetyl CoA fatty acyl CoA triacylglycerol fatty acids + glycerol hormone-sensitive lipase fasting state free fatty acids bound to albumin glycerol for gluconeogenesis

37 Use of fuels by exercising muscle fatty acids Use of fuels by exercising muscle glycogen moderate exercise triacylglycerol glucose fatty acids vigorous exercise triacylglycerol glucose

38 glucose insulin Control of muscle fuel utilization Control of muscle fuel utilization phosphofructokinase AMP ATP hexokinase glucose glucose-6-p fructose-6-p fructose-bis-p glucose-1-p glycogen phosphorylase ATP phosphoenolpyruvate pyruvate kinase glycogen oxaloacetate citrate acetyl CoA pyruvate pyruvate dehydrogenase alanine camp Ca ++ NADH adrenaline nerve stimulation fatty acids and ketones alanine

39 Control of blood glucose by insulin and glucagon Control of blood glucose by insulin and glucagon In the fed state insulin is secreted by the b-cells of pancreatic islets of Langerhans stimulates synthesis of metabolic fuel reserves lowers circulating glucose In the fasting state glucagon is secreted by the a-cells of pancreatic islets of Langerhans stimulates mobilization of metabolic fuel reserves raises circulating glucose

40 Actions of insulin and glucagon increased by insulin Actions of insulin and glucagon liver fatty acid synthesis glycogen synthesis protein synthesis decreased by insulin liver ketogenesis gluconeogenesis increased by glucagon liver ketogenesis gluconeogenesis adipose tissue glucose transport fatty acid synthesis adipose tissue lipolysis adipose tissue (lipolysis) muscle glucose transport glycogen synthesis protein synthesis

41 Diabetes mellitus failure of glycaemic control measurement of plasma or urine glucose Diabetes mellitus failure of glycaemic control: measurement of plasma or urine glucose HC Cu ++ (red-brown precipitate) Cu 2 C H HC CH HC alkaline copper reagent H HC CH HC Alkaline copper reagent only semiquantitative detects any reducing sugar HC CH 2 glucose oxidase HC CH 2 glucose gluconate 2 H 2 2 ABTS (colourless) peroxidase Glucose oxidase can be quantitative specific for glucose false negative with vitamin C H 2 oxidised ABTS (blue)

42 plasma glucose, mmol /L Diabetes mellitus failure of glycaemic control glucose Glucose tolerance tolerance test response test response to 1g glucose to 1g glucose /kg body /kg weight body weight diabetic control time (hours)

43 Diabetes mellitus failure of glycaemic control Insulin-dependent Types (type I and I) diabetes II diabetes mellitus commonly juvenile onset failure to secrete insulin may be auto-immune disease keto-acidosis with hyperglycaemia common always requires insulin injection Non-insulin-dependent (type II) diabetes commonly adult onset often associated with obesity normal or high secretion of insulin resistance of tissues to insulin action keto-acidosis rare may be treated with dietary restriction and insulin secretagogues / oral hypoglycaemic agents better glycaemic control by insulin injection

44 Diabetes mellitus consequences of poor glycaemic control Diabetes mellitus consequences of poor glycaemic control neuropathy (nerve damage) impotence is commonly a presenting symptom cataracts damage to the protein a-crystallin in the lens kidney damage (nephropathy) arthritis damage to collagen in joints capillary damage circulatory defects and damage to retina abnormal plasma lipoprotein metabolism increased risk of cardiovascular disease

45 Mechanisms of damage in hyperglycaemia HC Mechanisms of damage in hyperglycaemia CH - sorbitol 2 HC H CH HC HC CH 2 aldose reductase HC H CH HC HC CH 2 glucose sorbitol aldose reductase has a high K m so is only significantly active at high concentrations of glucose sorbitol accumulates in tissues and can disturb control of intracellular osmotic pressure

46 Mechanisms of damage in hyperglycaemia HC Mechanisms HC of damage in hyperglycaemia glycation of proteins H CH HC HC CH 2 non-enzymic glycation of proteins R NH C CH NH 2 amino terminal of protein non-enzymic reaction H R HC HC CH HC HC NH C CH N CH 2 Schiff base rearrangement H H 2 R C C CH HC HC NH C CH NH CH 2 amino ketone

47 Glycated proteins in diabetes include: Glycated proteins in diabetes haemoglobin A (forming haemoglobin A 1c ) albumin apolipoprotein B in plasma lipoproteins a-crystallin in the lens collagen in joints and connective tissue Measurement of haemoglobin A 1c provides a way of assessing glycaemic control over a period of ~ 1 3 months

48 Methods of measuring insulin Methods of measuring insulin Biological assay in vivo reduction in blood glucose in a rabbit after a dose of insulin this was the original definition of a unit of insulin Biological assay in vitro stimulation of glucose oxidation in muscle traditionally rat diaphragm Radio-immunoassay binding to anti-insulin antibodies

49 B chain A chain Insulin synthesis and secretion Insulin consists of Insulin 2 peptide synthesis chains and ( A and secretion B) and 30 amino acids long = 51 amino acids M r ~ 6000 It is coded for by a single gene with 330 base pairs this would give 110 amino acids There is a 72 base-pair (24 amino acid) signal sequence at the 5 end of the gene = 86 amino acids M r ~ 9000

50 B chain A chain B chain A chain signal peptide Insulin synthesis and secretion 24 amino acids Insulin synthesis and secretion = 51 amino acids C peptide endoplasmic reticulum Golgi 110 amino acids 86 amino acids 35 amino acids

51 End Introduction to Nutrition and Metabolism, 3 rd edition David A Bender Taylor & Francis Ltd, London 2002 Chapter 10: Integration and Control of Metabolism End of presentation The radio-immunoassay simulation on the CD accompanies this Chapter

number Done by Corrected by Doctor Nayef Karadsheh

number Done by Corrected by Doctor Nayef Karadsheh number 13 Done by Asma Karameh Corrected by Saad hayek Doctor Nayef Karadsheh Gluconeogenesis This lecture covers gluconeogenesis with aspects of: 1) Introduction to glucose distribution through tissues.

More information

CHE 242 Exam 3 Practice Questions

CHE 242 Exam 3 Practice Questions CHE 242 Exam 3 Practice Questions Glucose metabolism 1. Below is depicted glucose catabolism. Indicate on the pathways the following: A) which reaction(s) of glycolysis are irreversible B) where energy

More information

Cell Communication. Chapter 11. PowerPoint Lectures for Biology, Seventh Edition. Lectures by Chris Romero. Neil Campbell and Jane Reece

Cell Communication. Chapter 11. PowerPoint Lectures for Biology, Seventh Edition. Lectures by Chris Romero. Neil Campbell and Jane Reece Chapter 11 Cell Communication PowerPoint Lectures for Biology, Seventh Edition Neil Campbell and Jane Reece Lectures by Chris Romero Overview: The Cellular Internet Cell-to-cell communication Is absolutely

More information

Chapter 11. Cell Communication

Chapter 11. Cell Communication Chapter 11 Cell Communication Overview: The Cellular Internet Cell-to-cell communication Is absolutely essential for multicellular organisms Concept 11.1: External signals are converted into responses

More information

CARBOHYDRATE METABOLISM 1

CARBOHYDRATE METABOLISM 1 CARBOHYDRATE METABOLISM 1 web 2017 József Mandl Strategy of metabolism 1 Strategy of metabolism to extract energy ( hydrogen ) from the environment to store the energy excess to store hydrogen CH 3 O 2

More information

Cell Communication. Chapter 11. Biology Eighth Edition Neil Campbell and Jane Reece. PowerPoint Lecture Presentations for

Cell Communication. Chapter 11. Biology Eighth Edition Neil Campbell and Jane Reece. PowerPoint Lecture Presentations for Chapter 11 Cell Communication PowerPoint Lecture Presentations for Biology Eighth Edition Neil Campbell and Jane Reece Lectures by Chris Romero, updated by Erin Barley with contributions from Joan Sharp

More information

Resp & Cell Comm Review

Resp & Cell Comm Review Resp & Cell Comm Review Two main catabolic processes: fermentation: partial degradation of sugars in the absence of oxygen. cellular respiration: uses oxygen to complete the breakdown of many organic molecules.

More information

Signal Transduction Cascades

Signal Transduction Cascades Signal Transduction Cascades Contents of this page: Kinases & phosphatases Protein Kinase A (camp-dependent protein kinase) G-protein signal cascade Structure of G-proteins Small GTP-binding proteins,

More information

By: Dr Hadi Mozafari 1

By: Dr Hadi Mozafari 1 By: Dr Hadi Mozafari 1 Gluconeogenesis is the process of converting noncarbohydrate precursors to glucose or glycogen. The major substrates are the glucogenic amino acids, and lactate, glycerol, and propionate.

More information

0.40. Biochemistry of Carbohydrates

0.40. Biochemistry of Carbohydrates 0.40 Biochemistry of Carbohydrates Biochemistry of Carbohydrates ATP ADP Glycolysis The Breakdown of Glucose Primary Energy Source of Cells Central Metabolic Pathway All Reactions Occur in Cytoplasm Two

More information

number Done by Corrected by Doctor

number Done by Corrected by Doctor number 12 Done by Baraa Ayed Corrected by Mamoon Mohammad Alqtamin Doctor Nayef Karadsheh Lactate production 1 P a g e Advantages of producing lactate Lactate is produced anaerobically to meet the following

More information

Glycolysis. Intracellular location Rate limiting steps

Glycolysis. Intracellular location Rate limiting steps Glycolysis Definition Fx Fate Site Intracellular location Rate limiting steps Regulation Consume ATP Subs level phosphoryla tion Key reactions control points Nb Oxidation of glucose to give pyruvate (

More information

number Done by Corrected by Doctor Faisal Al-Khatibe

number Done by Corrected by Doctor Faisal Al-Khatibe number 24 Done by Mohammed tarabieh Corrected by Doctor Faisal Al-Khatibe 1 P a g e *Please look over the previous sheet about fatty acid synthesis **Oxidation(degradation) of fatty acids, occurs in the

More information

Regulation of Glucose Metabolism by Intracellular Compounds

Regulation of Glucose Metabolism by Intracellular Compounds Regulation of Metabolism by Intracellular ompounds Hexokinase ( ) -6- H ribose-5- or fructose-6- -6-phosphate () ( ) H -6-phosphate GI GM UD-glucose pyrophosphorylase 1-phosphate UD- hosphorylase synthase

More information

G-Protein Signaling. Introduction to intracellular signaling. Dr. SARRAY Sameh, Ph.D

G-Protein Signaling. Introduction to intracellular signaling. Dr. SARRAY Sameh, Ph.D G-Protein Signaling Introduction to intracellular signaling Dr. SARRAY Sameh, Ph.D Cell signaling Cells communicate via extracellular signaling molecules (Hormones, growth factors and neurotransmitters

More information

Fatty Acid and Triacylglycerol Metabolism 1

Fatty Acid and Triacylglycerol Metabolism 1 Fatty Acid and Triacylglycerol Metabolism 1 Mobilization of stored fats and oxidation of fatty acids Lippincott s Chapter 16 What is the first lecture about What is triacylglycerol Fatty acids structure

More information

Metabolism Gluconeogenesis/Citric Acid Cycle

Metabolism Gluconeogenesis/Citric Acid Cycle Metabolism Gluconeogenesis/Citric Acid Cycle BIOB111 CHEMISTRY & BIOCHEMISTRY Session 21 Session Plan Gluconeogenesis Cori Cycle Common Metabolic Pathway The Citric Acid Cycle Stoker 2014, p859 Gluconeogenesis

More information

Points 1. Following is the overall reaction catalyzed by the Calvin-Benson cycle:

Points 1. Following is the overall reaction catalyzed by the Calvin-Benson cycle: BCH 4054 February 22, 2002 HOUR TEST 2 NAME_ Points 1. Following is the overall reaction catalyzed by the Calvin-Benson cycle: CO 2 + 3ATP + 2NADPH 1/3 glyceraldehyde-3-p + 3ADP + 2NADP + Give the structures

More information

ANSC 619 PHYSIOLOGICAL CHEMISTRY OF LIVESTOCK SPECIES. Carbohydrate Metabolism

ANSC 619 PHYSIOLOGICAL CHEMISTRY OF LIVESTOCK SPECIES. Carbohydrate Metabolism ANSC 619 PHYSIOLOGICAL CHEMISTRY OF LIVESTOCK SPECIES I. Glycolysis A. Pathway Regulation of glycolysis Hexokinase: Activated by glucose. Inhibited by G6P. 6-Phosphofructokinase: Inhibited by ATP, especially

More information

4. Which step shows a split of one molecule into two smaller molecules? a. 2. d. 5

4. Which step shows a split of one molecule into two smaller molecules? a. 2. d. 5 1. Which of the following statements about NAD + is false? a. NAD + is reduced to NADH during both glycolysis and the citric acid cycle. b. NAD + has more chemical energy than NADH. c. NAD + is reduced

More information

The molecule that serves as the major source of readily available body fuel is: a. fat. b. glucose. c. acetyl CoA. d. cellulose.

The molecule that serves as the major source of readily available body fuel is: a. fat. b. glucose. c. acetyl CoA. d. cellulose. The molecule that serves as the major source of readily available body fuel is: a. fat. b. glucose. c. acetyl CoA. d. cellulose. Dietary fats are important because: a. they keep blood pressure normal.

More information

Energy stores in different organs for a 155 lb male, in Calories

Energy stores in different organs for a 155 lb male, in Calories Energy stores in different organs for a 155 lb male, in Calories Organ Glucose/ Glycogen Triacyl Glycerols* Liver 400 450 400 Brain 8 0 0 Mobile Proteins Muscle 1,200 450 24,000 Adipose Tissue 80 135,000

More information

Chapter 15 Homework Assignment

Chapter 15 Homework Assignment Chapter 15 Homework Assignment The following problems will be due once we finish the chapter: 3, 5, 6, 8, 9 Chapter 15 1 Regulation of Metabolic Pathways Dynamic Steady State Fuels, such as glucose, enter

More information

Multiple choice: Circle the best answer on this exam. There are 12 multiple choice questions, each question is worth 3 points.

Multiple choice: Circle the best answer on this exam. There are 12 multiple choice questions, each question is worth 3 points. CHEM 4420 Exam 4 Spring 2015 Dr. Stone Page 1 of 6 Name Use complete sentences when requested. There are 120 possible points on this exam. Therefore there are 20 bonus points. Multiple choice: Circle the

More information

Enzymes Part III: regulation II. Dr. Mamoun Ahram Summer, 2017

Enzymes Part III: regulation II. Dr. Mamoun Ahram Summer, 2017 Enzymes Part III: regulation II Dr. Mamoun Ahram Summer, 2017 Advantage This is a major mechanism for rapid and transient regulation of enzyme activity. A most common mechanism is enzyme phosphorylation

More information

Metabolism. Chapter 5. Catabolism Drives Anabolism 8/29/11. Complete Catabolism of Glucose

Metabolism. Chapter 5. Catabolism Drives Anabolism 8/29/11. Complete Catabolism of Glucose 8/29/11 Metabolism Chapter 5 All of the reactions in the body that require energy transfer. Can be divided into: Cell Respiration and Metabolism Anabolism: requires the input of energy to synthesize large

More information

Cell Communication. Chapter 11. Biology. Eighth Edition Neil Campbell and Jane Reece. PowerPoint Lecture Presentations for

Cell Communication. Chapter 11. Biology. Eighth Edition Neil Campbell and Jane Reece. PowerPoint Lecture Presentations for Chapter 11 Cell Communication PowerPoint Lecture Presentations for Biology Eighth Edition Neil Campbell and Jane Reece Lectures by Chris Romero, updated by Erin Barley with contributions from Joan Sharp

More information

Photosynthesis in chloroplasts. Cellular respiration in mitochondria ATP. ATP powers most cellular work

Photosynthesis in chloroplasts. Cellular respiration in mitochondria ATP. ATP powers most cellular work Light energy ECOSYSTEM CO + H O Photosynthesis in chloroplasts Cellular respiration in mitochondria Organic molecules + O powers most cellular work Heat energy 1 becomes oxidized (loses electron) becomes

More information

Biochemistry. Metabolism

Biochemistry. Metabolism Biochemistry Metabolism 07.11.2017 27.11.2017 Gluconeogenesis Gerhild van Echten-Deckert Tel. 73 2703 E-mail: g.echten.deckert@uni-bonn.de www.limes-institut-bonn.de Gluconeogenesis Glycolysis 7 glycolytic

More information

GLYCOLYSIS Generation of ATP from Metabolic Fuels

GLYCOLYSIS Generation of ATP from Metabolic Fuels GLYCOLYSIS Generation of ATP from Metabolic Fuels - Catabolic process degradative pathway - Energy stored in sugars (carbohydrates) released to perform biological work - Transforms GLUCOSE to PYRUVATE

More information

Lecture 34. Carbohydrate Metabolism 2. Glycogen. Key Concepts. Biochemistry and regulation of glycogen degradation

Lecture 34. Carbohydrate Metabolism 2. Glycogen. Key Concepts. Biochemistry and regulation of glycogen degradation Lecture 34 Carbohydrate Metabolism 2 Glycogen Key Concepts Overview of Glycogen Metabolism Biochemistry and regulation of glycogen degradation Biochemistry and regulation of glycogen synthesis What mechanisms

More information

Photosynthesis in chloroplasts CO2 + H2O. Cellular respiration in mitochondria ATP. powers most cellular work. Heat energy

Photosynthesis in chloroplasts CO2 + H2O. Cellular respiration in mitochondria ATP. powers most cellular work. Heat energy Figure 9-01 LE 9-2 Light energy ECOSYSTEM Photosynthesis in chloroplasts CO2 + H2O Cellular respiration in mitochondria Organic + O molecules 2 powers most cellular work Heat energy LE 9-UN161a becomes

More information

Chapter 20. Cell - Cell Signaling: Hormones and Receptors. Three general types of extracellular signaling. endocrine signaling. paracrine signaling

Chapter 20. Cell - Cell Signaling: Hormones and Receptors. Three general types of extracellular signaling. endocrine signaling. paracrine signaling Chapter 20 Cell - Cell Signaling: Hormones and Receptors Three general types of extracellular signaling endocrine signaling paracrine signaling autocrine signaling Endocrine Signaling - signaling molecules

More information

2013 W. H. Freeman and Company. 12 Signal Transduction

2013 W. H. Freeman and Company. 12 Signal Transduction 2013 W. H. Freeman and Company 12 Signal Transduction CHAPTER 12 Signal Transduction Key topics: General features of signal transduction Structure and function of G protein coupled receptors Structure

More information

NAME KEY ID # EXAM 3a BIOC 460. Wednesday April 10, Please include your name and ID# on each page. Limit your answers to the space provided!

NAME KEY ID # EXAM 3a BIOC 460. Wednesday April 10, Please include your name and ID# on each page. Limit your answers to the space provided! EXAM 3a BIOC 460 Wednesday April 10, 2002 Please include your name and ID# on each page. Limit your answers to the space provided! 1 1. (5 pts.) Define the term energy charge: Energy charge refers to the

More information

Both pathways start with Glucose as a substrate but they differ in the product.

Both pathways start with Glucose as a substrate but they differ in the product. Glycosis:may occur either with the presence or absence of -Glucose-.So with oxygen we have Aerobic glycolysis-, without the participation of oxygen Anaerobic glycolysis-(it occur in certain places) where

More information

I tried to put as many questions as possible, but unfortunately only answers were found without the questions.

I tried to put as many questions as possible, but unfortunately only answers were found without the questions. I tried to put as many questions as possible, but unfortunately only answers were found without the questions. These are some questions from doctor2015 med exam : 1. One of them isn t acute phase protein

More information

Aerobic Respiration. The four stages in the breakdown of glucose

Aerobic Respiration. The four stages in the breakdown of glucose Aerobic Respiration The four stages in the breakdown of glucose 1 I. Aerobic Respiration Why can t we break down Glucose in one step? (Flaming Gummy Bear) Enzymes gently lower the potential energy until

More information

CHAPTER 16. Glycolysis

CHAPTER 16. Glycolysis CHAPTER 16 Glycolysis Net reaction of Glycolysis Converts: 1 Glucose Hexose stage 2 pyruvate - Two molecules of ATP are produced - Two molecules of NAD + are reduced to NADH Triose stage Glucose + 2 ADP

More information

Aerobic Fate of Pyruvate. Chapter 16 Homework Assignment. Chapter 16 The Citric Acid Cycle

Aerobic Fate of Pyruvate. Chapter 16 Homework Assignment. Chapter 16 The Citric Acid Cycle Chapter 16 Homework Assignment The following problems will be due once we finish the chapter: 1, 3, 7, 10, 16, 19, 20 Additional Problem: Write out the eight reaction steps of the Citric Acid Cycle, using

More information

Chapter 13 Carbohydrate Metabolism

Chapter 13 Carbohydrate Metabolism Chapter 13 Carbohydrate Metabolism Chapter bjectives: Learn about Blood glucose. Learn about the glycolysis reaction pathways and the regulation of glycolysis. Learn about the fates of pyruvate under various

More information

Glycolysis. Color index: Doctors slides Notes and explanations Extra information Highlights. Biochemistry Team 437

Glycolysis. Color index: Doctors slides Notes and explanations Extra information Highlights. Biochemistry Team 437 Glycolysis Color index: Doctors slides Notes and explanations Extra information Highlights Biochemistry Team 437 ﺑ ﺳ م ﷲ اﻟرﺣﻣن اﻟرﺣﯾم Objectives: Recognize glycolysis as the major oxidative pathway of

More information

What is the function (purpose) of this system? (clue: one word)

What is the function (purpose) of this system? (clue: one word) Endocrine System: Overview What is the function (purpose) of this system? (clue: one word) Communication! The role of hormones is to provide communication between cells (tissues and organs). There are

More information

MULTIPLE CHOICE QUESTIONS

MULTIPLE CHOICE QUESTIONS MULTIPLE CHOICE QUESTIONS 1. Which of the following statements concerning anabolic reactions is FALSE? A. They are generally endergonic. B. They usually require ATP. C. They are part of metabolism. D.

More information

Fatty Acid and Triacylglycerol Metabolism 1

Fatty Acid and Triacylglycerol Metabolism 1 Fatty Acid and Triacylglycerol Metabolism 1 Mobilization of stored fats and oxidation of fatty acids Lippincott s Chapter 16 What is the first lecture about What is triacylglycerol Fatty acids structure

More information

Hormones and Signal Transduction. Dr. Kevin Ahern

Hormones and Signal Transduction. Dr. Kevin Ahern Dr. Kevin Ahern Signaling Outline Signaling Outline Background Signaling Outline Background Membranes Signaling Outline Background Membranes Hormones & Receptors Signaling Outline Background Membranes

More information

BCMB 3100 Fall 2013 Exam III

BCMB 3100 Fall 2013 Exam III BCMB 3100 Fall 2013 Exam III 1. (10 pts.) (a.) Briefly describe the purpose of the glycerol dehydrogenase phosphate shuttle. (b.) How many ATPs can be made when electrons enter the electron transport chain

More information

Oxidation of Long Chain Fatty Acids

Oxidation of Long Chain Fatty Acids Oxidation of Long Chain Fatty Acids Dr NC Bird Oxidation of long chain fatty acids is the primary source of energy supply in man and animals. Hibernating animals utilise fat stores to maintain body heat,

More information

Biochemistry of carbohydrates

Biochemistry of carbohydrates Biochemistry of carbohydrates الفريق الطبي األكاديمي Done By: - Hanan Jamal لكية الطب البرشي البلقاء التطبيقية / املركز 6166 6102/ In the last lecture we talked about Pyruvate, pyruvate is a central intermediate;

More information

anabolic pathways- Catabolic Amphibolic

anabolic pathways- Catabolic Amphibolic METABOLISM Introduction The fate of dietary components after digestion and absorption constitute metabolism regulated by metabolic pathway 3 types: anabolic pathways- Synthesis of compound e.g. synthesis

More information

Cellular Communication

Cellular Communication Cellular Communication But before we get into that What have we learned about so far? Energy and Matter Why do living things need energy? Grow Reproduce Maintain homeostasis Cellular signaling Cells communicate

More information

Lecture 36: Review of membrane function

Lecture 36: Review of membrane function Chem*3560 Lecture 36: Review of membrane function Membrane: Lipid bilayer with embedded or associated proteins. Bilayers: 40-70% neutral phospholipid 10-20% negative phospholipid 10-30% cholesterol 10-30%

More information

Biol220 Cell Signalling Cyclic AMP the classical secondary messenger

Biol220 Cell Signalling Cyclic AMP the classical secondary messenger Biol220 Cell Signalling Cyclic AMP the classical secondary messenger The classical secondary messenger model of intracellular signalling A cell surface receptor binds the signal molecule (the primary

More information

Bio 366: Biological Chemistry II Test #1, 100 points (7 pages)

Bio 366: Biological Chemistry II Test #1, 100 points (7 pages) Bio 366: Biological Chemistry II Test #1, 100 points (7 pages) READ THIS: Take a numbered test and sit in the seat with that number on it. Remove the numbered sticker from the desk, and stick it on the

More information

Krebs Cycle. Dr. Leena S Barhate

Krebs Cycle. Dr. Leena S Barhate Krebs Cycle Dr. Leena S Barhate Acknowledgement www.worldofteaching.com www2.fiu.edu/~bch3033/handouts/lh6ch16t CA.ppt www.uh.edu/sibs/faculty/glegge/lecture_23a. ppt cronus.uwindsor.ca/units/biochem/web/bioch

More information

Cell Communication. Chapter 11. Biology. Eighth Edition Neil Campbell and Jane Reece. PowerPoint Lecture Presentations for

Cell Communication. Chapter 11. Biology. Eighth Edition Neil Campbell and Jane Reece. PowerPoint Lecture Presentations for Chapter 11 Cell Communication PowerPoint Lecture Presentations for Biology Eighth Edition Neil Campbell and Jane Reece Lectures by Chris Romero, updated by Erin Barley with contributions from Joan Sharp

More information

Transport. Oxidation. Electron. which the en the ETC and. of NADH an. nd FADH 2 by ation. Both, Phosphorylation. Glycolysis Glucose.

Transport. Oxidation. Electron. which the en the ETC and. of NADH an. nd FADH 2 by ation. Both, Phosphorylation. Glycolysis Glucose. Electron Transport Chain and Oxidation Phosphorylation When one glucose molecule is oxidized to six CO 2 molecules by way of glycolysiss and TCA cycle, considerable amount of energy (ATP) is generated.

More information

Biology 638 Biochemistry II Exam-1

Biology 638 Biochemistry II Exam-1 Biology 638 Biochemistry II Exam-1 Using the following values, answer questions 1-3. ATP + H 2 O ADP + P i ΔG = -30 kj/mol Creatine-phosphate + H 2 O Creatine + P i ΔG = -12 kj/mol ½O 2 + 2H + + 2e - H

More information

Metabolism. Metabolic pathways. BIO 5099: Molecular Biology for Computer Scientists (et al) Lecture 11: Metabolic Pathways

Metabolism. Metabolic pathways. BIO 5099: Molecular Biology for Computer Scientists (et al) Lecture 11: Metabolic Pathways BIO 5099: Molecular Biology for Computer Scientists (et al) Lecture 11: Metabolic Pathways http://compbio.uchsc.edu/hunter/bio5099 Larry.Hunter@uchsc.edu Metabolism Metabolism is the chemical change of

More information

Physiological Chemistry II Exam IV Dr. Melissa Kelley April 13, 2004

Physiological Chemistry II Exam IV Dr. Melissa Kelley April 13, 2004 Name Write your name on the back of the exam Physiological Chemistry II Exam IV Dr. Melissa Kelley April 13, 2004 This examination consists of forty-four questions, each having 2 points. The remaining

More information

Pharmacodynamics. OUTLINE Definition. Mechanisms of drug action. Receptors. Agonists. Types. Types Locations Effects. Definition

Pharmacodynamics. OUTLINE Definition. Mechanisms of drug action. Receptors. Agonists. Types. Types Locations Effects. Definition Pharmacodynamics OUTLINE Definition. Mechanisms of drug action. Receptors Types Locations Effects Agonists Definition Types Outlines of Pharmacodynamics Antagonists Definition Types Therapeutic Index Definition

More information

Carbohydrate Metabolism 2 Supplemental Reading

Carbohydrate Metabolism 2 Supplemental Reading Carbohydrate Metabolism 2 Supplemental Reading Key Concepts - Overview of glycogen metabolism - Biochemistry and regulation glycogen degradation - Biochemistry and regulation of glycogen synthesis - Control

More information

Lecture 5: Cell Metabolism. Biology 219 Dr. Adam Ross

Lecture 5: Cell Metabolism. Biology 219 Dr. Adam Ross Lecture 5: Cell Metabolism Biology 219 Dr. Adam Ross Cellular Respiration Set of reactions that take place during the conversion of nutrients into ATP Intricate regulatory relationship between several

More information

number Done by Corrected by Doctor

number Done by Corrected by Doctor number 20 Done by Corrected by Rana Ghassan Doctor Only 4 questions in the mid-term exam are based on the 4 lectures to be given by Dr Faisal. Dr Faisal will give us 10 lectures, the first 4 are included

More information

Chapter 9. Cellular Respiration and Fermentation

Chapter 9. Cellular Respiration and Fermentation Chapter 9 Cellular Respiration and Fermentation Energy flows into an ecosystem as sunlight and leaves as heat Photosynthesis generates O 2 and organic molecules, which are used in cellular respiration

More information

Lecture 16. Finish lipid metabolism (Triglycerides, Isoprenoids/Steroids, Glyoxylate cycle) Amino acid metabolism (Urea cycle) Google Man III

Lecture 16. Finish lipid metabolism (Triglycerides, Isoprenoids/Steroids, Glyoxylate cycle) Amino acid metabolism (Urea cycle) Google Man III Lecture 16 Finish lipid metabolism (Triglycerides, Isoprenoids/Steroids, Glyoxylate cycle) Amino acid metabolism (Urea cycle) Google Man III The Powertrain of Human Metabolism (verview) CARBHYDRATES PRTEINS

More information

HORMONES (Biomedical Importance)

HORMONES (Biomedical Importance) hormones HORMONES (Biomedical Importance) Hormones are the chemical messengers of the body. They are defined as organic substances secreted into blood stream to control the metabolic and biological activities.

More information

Lipid Metabolism. Catabolism Overview

Lipid Metabolism. Catabolism Overview Lipid Metabolism Pratt & Cornely, Chapter 17 Catabolism Overview Lipids as a fuel source from diet Beta oxidation Mechanism ATP production Ketone bodies as fuel 1 High energy More reduced Little water

More information

Close to site of release (at synapse); binds to receptors in

Close to site of release (at synapse); binds to receptors in Chapter 18: The Endocrine System Chemical Messengers 1. Neural 2. Endocrine 3. Neuroendocrine 4. Paracrine 5. Autocrine Endocrine System --Endocrine and nervous systems work together --Endocrine vs. Nervous

More information

Cellular Respiration: Harvesting Chemical Energy

Cellular Respiration: Harvesting Chemical Energy Chapter 9 Cellular Respiration: Harvesting Chemical Energy PowerPoint Lecture Presentations for Biology Eighth Edition Neil Campbell and Jane Reece Lectures by Chris Romero, updated by Erin Barley with

More information

Endocrine Notes Mrs. Laux AP Biology I. Endocrine System consists of endocrine glands (ductless), cells, tissues secrete hormones

Endocrine Notes Mrs. Laux AP Biology I. Endocrine System consists of endocrine glands (ductless), cells, tissues secrete hormones I. Endocrine System consists of endocrine glands (ductless), cells, tissues secrete hormones regulates metabolism, fluid balance, growth, reproduction A. Hormones 1. chemical signals-cell to cell communication

More information

ANSC/NUTR 618 Lipids & Lipid Metabolism

ANSC/NUTR 618 Lipids & Lipid Metabolism I. Overall concepts A. Definitions ANC/NUTR 618 Lipids & Lipid Metabolism 1. De novo synthesis = synthesis from non-fatty acid precursors a. Carbohydrate precursors (glucose, lactate, and pyruvate) b.

More information

Anaerobic Pathways. Glycolysis

Anaerobic Pathways. Glycolysis Anaerobic Pathways Glycolysis Glucose + 2 ATP 4 ATP + 2 Pyruvate No oxygen required Fairly low energy yield Lactate byproduct Resting levels low Tolerances 40 mmole/kg in humans, 200 mmole/kg in sea turtles

More information

Citric Acid Cycle: Central Role in Catabolism. Entry of Pyruvate into the TCA cycle

Citric Acid Cycle: Central Role in Catabolism. Entry of Pyruvate into the TCA cycle Citric Acid Cycle: Central Role in Catabolism Stage II of catabolism involves the conversion of carbohydrates, fats and aminoacids into acetylcoa In aerobic organisms, citric acid cycle makes up the final

More information

BIOCHEMISTRY. Glycolysis. by Dr Jaya Vejayan Faculty of Industrial Sciences & Technology

BIOCHEMISTRY. Glycolysis. by Dr Jaya Vejayan Faculty of Industrial Sciences & Technology BIOCHEMISTRY Glycolysis by Dr Jaya Vejayan Faculty of Industrial Sciences & Technology email: jayavejayan@ump.edu.my Chapter Description Overview This chapter is related to carbohydrate catabolism. It

More information

Biology 638 Biochemistry II Exam-2

Biology 638 Biochemistry II Exam-2 Biology 638 Biochemistry II Exam-2 Biol 638, Exam-2 (Code-1) 1. Assume that 16 glucose molecules enter into a liver cell and are attached to a liner glycogen one by one. Later, this glycogen is broken-down

More information

2/25/2015. Anaerobic Pathways. Glycolysis. Alternate Endpoints. Gluconeogenesis fate of end products

2/25/2015. Anaerobic Pathways. Glycolysis. Alternate Endpoints. Gluconeogenesis fate of end products Anaerobic Pathways Glycolysis Glucose + 2 ATP 4 ATP + 2 Pyruvate No oxygen required Fairly low energy yield Lactate byproduct Resting levels low Tolerances 40 mmole/kg in humans, 200 mmole/kg in sea turtles

More information

Cellular Respiration. Overview of Cellular Respiration. Lecture 8 Fall Overview of Cellular Respiration. Overview of Cellular Respiration

Cellular Respiration. Overview of Cellular Respiration. Lecture 8 Fall Overview of Cellular Respiration. Overview of Cellular Respiration Overview of Cellular Respiration 1 Cellular Respiration Lecture 8 Fall 2008 All organisms need ATP to do cellular work Cellular Respiration: The conversion of chemical energy of carbon compounds into another

More information

BIOSYNTHESIS OF FATTY ACIDS. doc. Ing. Zenóbia Chavková, CSc.

BIOSYNTHESIS OF FATTY ACIDS. doc. Ing. Zenóbia Chavková, CSc. BIOSYNTHESIS OF FATTY ACIDS doc. Ing. Zenóbia Chavková, CSc. The pathway for the of FAs is not the reversal of the oxidation pathway Both pathways are separated within different cellular compartments In

More information

TCA CYCLE (Citric Acid Cycle)

TCA CYCLE (Citric Acid Cycle) TCA CYCLE (Citric Acid Cycle) TCA CYCLE The Citric Acid Cycle is also known as: Kreb s cycle Sir Hans Krebs Nobel prize, 1953 TCA (tricarboxylic acid) cycle The citric acid cycle requires aerobic conditions!!!!

More information

How Cells Release Chemical Energy. Chapter 8

How Cells Release Chemical Energy. Chapter 8 How Cells Release Chemical Energy Chapter 8 Impacts, Issues: When Mitochondria Spin Their Wheels More than forty disorders related to defective mitochondria are known (such as Friedreich s ataxia); many

More information

Cellular Messengers. Intracellular Communication

Cellular Messengers. Intracellular Communication Cellular Messengers Intracellular Communication Most common cellular communication is done through extracellular chemical messengers: Ligands Specific in function 1. Paracrines Local messengers (neighboring

More information

Development of Complex Curricula for Molecular Bionics and Infobionics Programs within a consortial* framework**

Development of Complex Curricula for Molecular Bionics and Infobionics Programs within a consortial* framework** PETER PAZMANY UNIVERSITY SEMMELWEIS UNIVERSITY Development of Complex Curricula for Molecular Bionics and Infobionics Programs within a consortial* framework** Consortium leader PETER PAZMANY UNIVERSITY

More information

CELLULAR RESPIRATION SUMMARY EQUATION. C 6 H 12 O 6 + O 2 6CO2 + 6H 2 O + energy (ATP) STEPWISE REDOX REACTION

CELLULAR RESPIRATION SUMMARY EQUATION. C 6 H 12 O 6 + O 2 6CO2 + 6H 2 O + energy (ATP) STEPWISE REDOX REACTION CELLULAR RESPIRATION SUMMARY EQUATION C 6 H 12 O 6 + O 2 6CO2 + 6H 2 O + energy (ATP) STEPWISE REDOX REACTION Oxidation: partial or complete loss of electrons Reduction: partial or complete gain of electrons

More information

Principles of cell signaling Lecture 4

Principles of cell signaling Lecture 4 Principles of cell signaling Lecture 4 Johan Lennartsson Molecular Cell Biology (1BG320), 2014 Johan.Lennartsson@licr.uu.se 1 Receptor tyrosine kinase-induced signal transduction Erk MAP kinase pathway

More information

Properties of Allosteric Enzymes

Properties of Allosteric Enzymes Properties of Allosteric Enzymes (1) An allosteric enzyme possesses at least spatially distinct binding sites on the protein molecules the active or the catalytic site and the regulator or the allosteric

More information

Dr. Abir Alghanouchi Biochemistry department Sciences college

Dr. Abir Alghanouchi Biochemistry department Sciences college Dr. Abir Alghanouchi Biochemistry department Sciences college Under aerobic conditions, pyruvate(the product of glycolysis) passes by special pyruvatetransporter into mitochondria which proceeds as follows:

More information

Cell responses to environment-- Signals

Cell responses to environment-- Signals Cell responses to environment-- Signals Signal transduction can coordinate: Development Formation of tissues Timing of cell division Direction of cell enlargement Size and shape of organs Responses to

More information

Cellular Respiration: Harvesting Chemical Energy

Cellular Respiration: Harvesting Chemical Energy Chapter 9 Cellular Respiration: Harvesting Chemical Energy You should be able to: 1. Explain how redox reactions are involved in energy exchanges. Name and describe the three stages of cellular respiration;

More information

Fatty acid breakdown

Fatty acid breakdown Fatty acids contain a long hydrocarbon chain and a terminal carboxylate group. Most contain between 14 and 24 carbon atoms. The chains may be saturated or contain double bonds. The complete oxidation of

More information

Unit 2: Metabolic Processes

Unit 2: Metabolic Processes How is energy obtained biologically? Recall: Red Ox Reactions Unit 2: Metabolic Processes Oxidation Is the chief mechanism by which chemical potential energy is released This energy comes from reduced

More information

Metabolism: From Food to Life

Metabolism: From Food to Life CHAPTER 7 Metabolism: From Food to Life Chapter Summary Metabolism is the sum total of all chemical and physical processes by which the body catabolizes and anabolizes molecules. Metabolic pathways are

More information

Exercise Physiology: Theory and Application to Fitness and Performance By Scott Powers & Edward Howley

Exercise Physiology: Theory and Application to Fitness and Performance By Scott Powers & Edward Howley Exercise Physiology: Theory and Application to Fitness and Performance By Scott Powers & Edward Howley Ch 5 Cell Signaling and the Hormonal Responses to Exercise Summary Created by Dan Hechler Class Lecture

More information

KEY CONCEPT QUESTIONS IN SIGNAL TRANSDUCTION

KEY CONCEPT QUESTIONS IN SIGNAL TRANSDUCTION Signal Transduction - Part 2 Key Concepts - Receptor tyrosine kinases control cell metabolism and proliferation Growth factor signaling through Ras Mutated cell signaling genes in cancer cells are called

More information

MCB*4010 Midterm Exam / Winter 2008

MCB*4010 Midterm Exam / Winter 2008 MCB*4010 Midterm Exam / Winter 2008 Name: ID: Instructions: Answer all 4 questions. The number of marks for each question indicates how many points you need to provide. Write your answers in point form,

More information

Chem Lecture 8 Carbohydrate Metabolism Part I: Glycolysis

Chem Lecture 8 Carbohydrate Metabolism Part I: Glycolysis Chem 352 - Lecture 8 Carbohydrate Metabolism Part I: Glycolysis Introduction Carbohydrate metabolism involves a collection of pathways. Glycolysis Hexoses 3-Carbon molecules Gluconeogenesis 3-Carbon molecules

More information

Integration of Metabolism

Integration of Metabolism Integration of Metabolism Our bodies are an integrated system of organs, each with its own requirements for nourishment and energy utilization. In spite of this, our tissues share a common circulation

More information

Phosphorylase and the Origin of Reversible Protein Phosphorylation Prof. Edmond Fischer

Phosphorylase and the Origin of Reversible Protein Phosphorylation Prof. Edmond Fischer hosphorylase and the Origin University of Washington, Seattle, USA 1 55 years ago Endocrinology was well-established, but remained in the phenomenological level Insulin was known as the message sent by

More information

AMINO ACID METABOLISM. Sri Widia A Jusman Dept. of Biochemistry & Molecular Biology FMUI

AMINO ACID METABOLISM. Sri Widia A Jusman Dept. of Biochemistry & Molecular Biology FMUI AMINO ACID METABOLISM Sri Widia A Jusman Dept. of Biochemistry & Molecular Biology FMUI Amino acids derived from dietary protein absorbed from intestine through blood taken up by tissues used for biosynthesis

More information