Body condition in Svalbard reindeer and the use of blood parameters as indicators of condition and fitness

Size: px
Start display at page:

Download "Body condition in Svalbard reindeer and the use of blood parameters as indicators of condition and fitness"

Transcription

1 1566 Body condition in Svalbard reindeer and the use of blood parameters as indicators of condition and fitness Jos M. Milner, Audun Stien, R. Justin Irvine, Steve D. Albon, Rolf Langvatn, and Erik Ropstad Abstract: Body condition is an important determinant of ecological fitness but is difficult to measure in field studies of live animals. Live mass and subcutaneous fat are often used as proxies for body condition and related to fitness. We investigated the relationship between blood-chemistry parameters and live mass and back-fat thickness and assessed their usefulness as predictors of ecological fitness in a wild arctic ungulate population, Svalbard reindeer (Rangifer tarandus platyrhynchus). Female reindeer were sampled in late winter between 1995 and 2002 and concentrations of blood parameters were related to subsequent survival and successful calving. There was marked annual variation in all blood parameters, live mass, and back-fat thickness, reflecting variation in weather and food availability. At the individual level, variation in blood-parameter concentrations was not closely related to variation in live mass or back-fat thickness, instead reflecting shorter term nutritional status. Blood parameters could therefore provide useful additional information, enhancing the predictive power of fitness models based on live mass. The urea:creatinine ratio significantly improved adult survival models, while β-hydroxybutyric acid and creatinine concentrations were significant predictors of calving success. The applications for blood parameters in ecological investigations look promising and should be tested more widely in other field studies. Résumé : La condition physique est un important facteur déterminant du fitness écologique, mais elle est difficile à évaluer en nature chez des animaux vivants. La masse vive et la graisse sous-cutanée dorsale servent souvent de mesures de remplacement et elles sont alors mises en relation avec le fitness. Nous avons déterminé la relation entre les paramètres chimiques du sang, d une part, et la masse vive et la graisse sous-cutanée dorsale, d autre part, et évalué leur utilité comme variables prédictives du fitness écologique chez une population sauvage d ongulés de l Arctique, les rennes de Svalbard (Rangifer tarandus platyrhynchus). Des prélèvement effectués chez les femelles en fin d hiver de 1995 à 2002 ont permis de relier les concentrations des paramètres sanguins à la survie subséquente et au succès de la mise bas. Il y a, au cours de l année, une importante variation de tous les paramètres sanguins, de la masse vive et de la graisse dorsale qui reflète les changements du climat et de la disponibilité de nourriture. Au niveau de l individu, la variation des paramètres sanguins n est pas fortement reliée aux variations de la masse vive ni de la graisse dorsale; elle reflète plutôt le statut nutritionnel à court terme. Les paramètres sanguins peuvent donc fournir des renseignements additionnels qui permettent d améliorer le pouvoir de prédiction des modèles de fitness basés sur la masse vive. L addition du rapport urée:créatinine améliore de façon significative les modèles de survie des adultes, alors que les concentrations d acide β-hydroxybutyrique et de créatinine sont des variables prédictives significatives du succès de la mise bas. L utilisation des paramètres sanguins dans les études écologiques semble donc prometteuse et devrait être évaluée sur une plus grande échelle dans d autres recherches en nature. [Traduit par la Rédaction] Milner et al Introduction Body condition encompasses aspects of individual quality such as health, competitive ability, and nutritional status, and is consequently an important determinant of ecological fitness. Although rarely defined explicitly, body condition generally refers to the size of energy stores, such as fat or protein reserves, but these are difficult to measure in live animals (Green 2001). Few studies have therefore been able to demonstrate directly the relationship between energy reserves and fitness in live animals (but see Newton 1993; Atkinson and Ramsay 1995; Gerhart et al. 1997; Keech et al. Received 25 February Accepted 13 August Published on the NRC Research Press Web site at on 10 October J.M. Milner, 1,2 R.J. Irvine, and S.D. Albon. Centre for Ecology and Hydrology, Hill of Brathens, Banchory, AB31 4BW, U.K. A. Stien. Department of Biology, University of Tromsø, N-9037, Tromsø, Norway. R. Langvatn. University Centre on Svalbard (UNIS), N-9170, Longyearbyen, Norway. E. Ropstad. Norwegian College of Veterinary Medicine, Ullevålsveien 72, P.O. Box 8146, N-0033, Oslo, Norway. 1 Corresponding author ( jos.milner@sue.hihm.no). 2 Present address: Hedmark University College, Evenstad, NO 2480, Koppang, Norway. Can. J. Zool. 81: (2003) doi: /Z03-152

2 Milner et al ). Instead, body mass, a composite of condition and body size, is often used as an indicator of condition, and numerous studies have shown it to influence survival (e.g., King et al. 1991; Festa-Bianchet et al. 1997; Milner et al. 1999) and reproductive success (e.g., Gaillard et al. 1992; Festa-Bianchet et al. 1998; Clutton-Brock et al. 1996; Overdorff et al. 1999). Many other studies, across a range of taxa, have demonstrated relationships between bodycondition indices and fitness parameters (e.g., Wauters and Dhondt 1995; Bonnet and Naulleau 1996; Civantos and Forsman 2000). However, condition indices based on external morphology, such as mass:length ratios or residuals from regressions of length on mass, though widely used, are often flawed because of imperfect correlations and nonlinear relationships between variables (Green 2001; Hayes and Shonkwiler 2001). Furthermore, the choice of methods used to calculate indices may lead to different conclusions being drawn (Hayes and Shonkwiler 2001). The thickness of subcutaneous back fat is a measure of body condition that has often been used in cervids (Langvatn 1977), and is also a useful and accurate predictor of total fat in a variety of domestic and wild ruminants (e.g., Berg and Butterfield 1976; Reimers and Ringberg 1983; Stephenson et al. 1998; Cook et al. 2001). However, back fat is not easy to measure in live animals and is often based on subjective evaluations (Gerhart et al. 1996b), although technological advances have made the use of ultrasound scanning a viable alternative (Stephenson et al. 1998; Starck et al. 2001; Stien et al. 2002). Blood- and urine-chemistry parameters provide an alternative method of assessing the condition of individuals. This method is commonly used in human and veterinary medicine, but is seldom used in ecological studies of wild ungulates (but see Warren et al. 1982; DelGiudice et al. 1990, 1991; Cook et al. 2001; Säkkinen et al. 2001). However, blood- and urine-chemistry parameters differ from body mass and back-fat thickness as indicators of nutritional condition. While body mass and back-fat thickness reflect an animal s nutritional status over the previous weeks and months, blood- and urine-chemistry parameters may respond to the animal s physiological state in minutes. In addition, the concentrations of the different substances in the blood are generally strictly regulated by complex physiological mechanisms that may only allow individuals under extreme stress to be identified. Although the relationship between some serum- and urine-chemistry indices and body condition has been assessed for elk (Cook et al. 2001), the potential for most blood parameters to be used as indicators of future fitness of ungulates in the wild has not been evaluated. Northern ungulates are adapted to wide seasonal variation in food availability and quality. They show various behavioural, morphological, and physiological responses to periodic undernutrition, such as reduced metabolic rates in winter, cyclical deposition and mobilization of lipid reserves, and, under severe nutritional restriction, use of endogenous protein as an alternative energy source (Nilssen et al. 1984; Gerhart et al. 1996a). Arctic ungulates such as reindeer and caribou (Rangifer tarandus) occur at the northern limit of terrestrial life and, as a consequence of the extreme environment, the relationship between their condition and fitness might be expected to be particularly pronounced. Svalbard reindeer (Rangifer tarandus platyrhynchus) have unusually large fat reserves in autumn (Reimers et al. 1982; Tyler 1987a) and show seasonal changes in body mass of 40% 55%, which are unparalleled among ungulates (Reimers and Ringberg 1983). However, their fat reserves can only provide a maximum of 25% of their winter energy expenditure (Tyler 1987a). The remainder must be provided by the diet, which is dominated by poor-quality fibrous vascular plants (Mathiesen et al. 2000), or through catabolism of body protein (Reimers et al. 1982; Adamczewski and Hudson 1993). In some years, extreme winter conditions cause severe malnutrition and starvation, leading to the dieoff of a high proportion of individuals (Reimers et al. 1982; Aanes et al. 2000; Solberg et al. 2001), followed by extremely low summer calving success. This has important consequences for the dynamics of Svalbard reindeer populations (Reimers et al. 1982; Solberg et al. 2001; Albon et al. 2002). In this study we investigated whether blood-chemistry parameters could be used to evaluate late-winter body condition and predict future fitness in wild female reindeer on Svalbard. Our first aim was to describe the annual variation in a range of blood parameters that are potential indicators of condition, taking into account age and pregnancy status. Secondly, we assessed how these parameters relate to conventional measures of body condition by exploring their relationship with live mass and subcutaneous back-fat thickness in live animals. Finally, we assessed the usefulness of these parameters as predictors of future fitness at the individual level, particularly survival to the end of winter and successful calving in the subsequent summer. Methods Study area and reindeer population The study was carried out in the Colesdalen Semmeldalen Reindalen valley system of Nordenskiöldland, Spitsbergen ( N, E), which has a population of about 1500 reindeer (Environmental Department, Governor of Svalbard s Office). Approximately 25% of the females were marked with individually numbered ear tags (Allflex Europe (U.K.) Ltd., Hawick, U.K.) and neckmarker straps fitted with numbered sleeves (Dalton Supplies Limited, Henley-on-Thames, U.K.). Of these individuals, many were known-age animals, particularly in the latter years of the study. Marked adults and female calves were caught by net from snow-scooters, weighed, measured, and blood-sampled in late winter (late April early May) each year between 1995 and 2002 (Albon et al. 2002; Stien et al. 2002). Captured reindeer were restrained by hand without using sedatives or medication. Blood samples were collected from the jugular vein with evacuated heparinized tubes (Venoject, Leuven, Belgium). Live body mass was measured using a spring balance ( kg; Salter Industries, West Bromwich, U.K.). Since 1998, subcutaneous back fat on the rump has been measured using a real-time portable ultrasound scanner (Scanner 100 linear, 5-MHz transducer, Pie Medical, Maastricht, the Netherlands) with the animals in lateral recumbency (Stien et al. 2003). Fat layers less than

3 1568 Can. J. Zool. Vol. 81, 2003 about 4 mm thick could not be detected (Stien et al. 2003; see also Stephenson et al. 1998). Pregnancy status was determined by ultrasound scanning of the bare skin of the udder (Scanner 100, linear 3.5-MHz transducer, Pie Medical) and using the progesterone concentration in blood samples (Russell et al. 1998; Ropstad et al. 1999). Ultrasound diagnosis also allowed the status of the foetus (dead or alive) to be determined. However, the total number of individuals scanned was lower than the number diagnosed using progesterone (861 individuals compared with 1093), so for most analyses, pregnancy diagnosis was based on the latter. Total handling time was less than 20 min per individual. Mortality of any sampled individuals that occurred between April May and the summer (June August) was determined by the recovery of their carcass during summer censuses. These were carried out on foot, scanning for marked animals and carcasses with binoculars and telescope, between 25 June and 25 August each year. Survival was confirmed by subsequent live observations. The calving success of pregnant sampled animals was determined by the presence or absence of a calf accompanying a relocated sampled animal during the summer censuses. Peak calving occurred during the first 2 weeks of June (Tyler 1987b), so the timing of censuses allowed neonatal mortality to occur prior to the assessment of calving success. Svalbard is free from predators, so survival is largely dependent on food availability and weather, while fecundity is also regulated by parasites (Albon et al. 2002). Blood parameters and laboratory analysis Blood plasma was separated by centrifugation within 2 8 h and stored at 20 C prior to analysis. Plasma samples were analysed to determine the concentrations of various blood parameters including glucose, β-hydroxybutyric acid (β-ohb), asparate aminotransferase (AST), total protein, albumin, urea, and creatinine in all years from 1996 to 2002, except creatinine in Concentrations of cortisol and progesterone were also measured in each year between 1995 and Progesterone concentrations greater than 7 nmol/l were used as an indicator of pregnancy (Ropstad et al. 1999). Glucose and β-ohb, a ketone synthesized during fasting (Bruss 1989), are indicators of energy balance and carbohydrate metabolism. The blood glucose concentration is under strict hormonal control, but during fasting it decreases, triggering lipolysis and the subsequent formation of β-ohb (Kaneko 1989). Therefore, β-ohb is an indicator of increased fat breakdown. AST is an enzyme associated with the breakdown of muscle, but also indicates soft-tissue damage, especially in hepatic tissue (Kaneko 1989). Together, albumin and globulin account for most of the protein in the blood. Although globulin levels reflect the amount of immunoglobulins produced by the immune system rather than nutritional status, they are strongly correlated with albumin level. Albumin and total protein, as well as urea, are indicators of protein supply and its metabolism. Low levels of albumin and total protein indicate dietary-protein depletion and undernutrition, while high concentrations of urea may reflect an increase in protein catabolism associated with starvation (Kaneko 1989). Similarly, creatinine is an endproduct of muscle metabolism, and its concentration varies with muscle mass (Rodwell 2000). Both urea and creatinine are related to kidney function and the glomerular filtration rate, which decreases when protein intake is low. The urea:creatinine ratio has the effect of correcting the urea concentration for variation in the glomerular filtration rate (Säkkinen et al. 2001). Plasma glucose, β-ohb, AST, total protein, albumin, urea, and creatinine were analysed at the Central Laboratory, Norwegian School of Veterinary Science, Oslo. The analyses were performed on a Technichon Axon TM System (Bayer, Tarrytown, N.Y., U.S.A). Each specimen was analysed with appropriate use of control sera (Precinorm E, Boehringer Ingelheim Diagnostics, Indianapolis, Ind., U.S.A.; Seronorm TM, Sero A/S, Asker, Norway). During the period from 1995 to 1999, plasma progesterone was measured by ELISA kits utilizing an enhanced chemiluminescense technique (Amerlite, Kodak Clinical Diagnostics, Amersham, U.K. (Ropstad et al. 1999)). From 2000 onwards progesterone levels were determined by radioimmunoassay using a Spectra kit (Orion, Diagnostica, Espoo, Finland). The assay was done according to kit instructions and was validated with reindeer plasma by demonstrating parallelism between dilutions of plasma samples and the standard curve. The interassay coefficients of variation for samples with 1.25, 19.13, and 44.1 nmol/l were 8.8%, 7.6%, and 5.9%, respectively. Plasma cortisol was measured by radioimmunoassay according to Simensen et al. (1978), with the following modifications: 20 µl of plasma was boiled in 500 µl of 0.75% trichloroacetic acid and 0.225% NaOH for 10 min. After adding antiserum and 3 H-cortisol, the sample was incubated for 1hatroom temperature, then overnight at 4 C. The phosphate buffer used for incubation contained 0.2% bovine serum albumin. The antiserum (No. F3 314) was obtained from Endocrine Science Products, Tarzana, Calif., U.S.A. The assay was validated for use with reindeer plasma by demonstrating parallelism between dilutions of plasma samples and the standard curve. Assay sensitivity was 2.48 nmol/l. The interassay coefficients of variation for samples with 13.4, 48.5, and nmol cortisol/l were 9.6%, 6.2%, and 9.1%, respectively. Statistical analysis Between-year variation in blood parameters and measures of body size and condition was investigated using general linear models (McCullagh and Nelder 1989). Variation with respect to age and pregnancy was also investigated. Female Svalbard reindeer reach mature body size by about 3 years of age (Fig. 1a), but since there is relatively little difference in most blood parameters between 2-year-olds and older individuals (see Fig. 1) and these animals are difficult to distinguish in the field, 2-year-olds were pooled with fully grown adults. In most analyses, older adults (aged 7 years and over) were not distinguished from other adults because many were individuals of unknown age, giving only a small sample of known-age old females (75 captures in total). To determine the effectiveness of blood parameters as fitness predictors, logistic regression analysis was used to fit a probability curve through the binomially distributed survival data (0 died, 1 survived) and calving data (0 calf not observed, 1 calf survived) using the logit link function (McCullagh and Nelder 1989). For the survival analysis, only animals with known survival outcomes from capture

4 Milner et al Fig. 1. Age-specific mean live mass (a), back-fat thickness (b), and plasma concentrations of β-ohb (c), glucose (d), AST (e), and creatinine (f) in female Svalbard reindeer (Rangifer tarandus platyrhynchus) in April May, averaged across years. Error bars show ±1 SE. Means for pregnant ( ) and nonpregnant ( ) females are plotted separately where there are significant differences.

5 1570 Can. J. Zool. Vol. 81, 2003 in April May to the subsequent summer (June August) were included, and for the calving analysis, only animals pregnant in April May with a known outcome of the subsequent calving were included. Blood parameters were fitted into survival and calving models, taking account of year, sampling date, pregnancy status, live mass, and back-fat thickness where necessary. Nonsignificant terms were sequentially dropped. Calving success showed a strong effect of year-to-year variation and so was remodelled using a generalized linear mixed model in which year was fitted as a random effect (McCullagh and Nelder 1989). β-ohb and AST levels were log e -transformed before analysis. Linear regression was used to correct for decreasing trends in back-fat thickness and creatinine concentration with sampling date (Säkkinen et al. 2001). Residuals from the fitted line were added to the value for the mean catch date, 25 April (fitted back-fat thickness = CD; fitted creatinine concentration = CD, where CD is catch date in days from 1 April). Since glucose levels were affected by the stress of capture and handling, they were corrected for the effect of cortisol (an indicator of stress) by using a smoothing spline with 2 degrees of freedom to model the nonlinear relationship between these two blood parameters. Glucose concentrations were adjusted to a cortisol concentration of 2 ng/ml, associated with a lowstress situation. Results Variation in concentrations of blood parameters at the population level At the population level, a number of blood parameters could be used to identify years or groups of individuals in which average body condition was relatively good or poor, variation that was also well described by average live mass and back-fat thickness. There was highly significant betweenyear variation in all parameters measured (Table 1). The lowest mean body masses and glucose, total protein, and albumin concentrations and the highest β-ohb, urea, and AST concentrations (including five extreme values ranging from 416 to 1245 U/L) were all recorded in 1996, a year with severe winter conditions and relatively high mortality (Solberg et al. 2001; Albon et al. 2002). Similarly, there was high mortality in 2002 and most parameters showed their secondlowest values in that year (Table 1). By contrast, body masses, back-fat thickness, and glucose, total protein, albumin, and creatinine concentrations were, on average, highest and AST and β-ohb concentrations (only in pregnant females) were lowest in 2001, when mortality was also lowest. The strong covariance between years gave rise to high correlation coefficients for between-year variation between annual means of blood parameters, live mass, and back-fat measures (e.g., r > 0.7 between live mass and all bloodparameter concentrations except creatinine concentration (r = 0.40)). There was also significant variation in some parameters with respect to pregnancy status and age. Pregnant females were significantly heavier and had significantly thicker layers of back fat than nonpregnant animals (Table 1, Figs. 1a and 1b). However, with the exception of β-ohb, blood parameters did not vary significantly between pregnant and nonpregnant animals (Table 1). β-ohb was present at higher concentrations in pregnant than in nonpregnant females (Fig. 1c). Like nonpregnant females, calves and yearlings had little back fat compared with pregnant adults (Fig. 1b). While animals reached their maximum adult body mass at 3 years of age, most blood parameters had stabilized at adult levels in yearlings or 2-year-olds. Concentrations of all blood parameters except AST differed significantly in calves from those in yearlings and adults. Concentrations of glucose (F [1,983] = 8.49, P = 0.004; Fig. 1d), total protein (F [1,1007] = 38.19, P < 0.001), albumin (F [1,1009] = , P < 0.001), and creatinine (F [1,831] = , P < 0.001; Fig. 1 f ) were lower in calves than in adults, while concentrations of urea (F [1,1003] = 12.04, P < 0.001) and, when pregnancy was controlled for, β-ohb (F [1,1002] = 8.97, P = 0.003) were higher in calves. The difference was particularly marked for creatinine (Fig. 1 f ) and albumin concentrations. Within adults, significantly lower concentrations of glucose (F [1,320] = 13.18, P < 0.001; Fig. 1d), albumin (F [1,320] = 15.82, P < 0.001), and creatinine (F [1,264] = 6.13, P = 0.014; Fig. 1 f ) and significantly higher concentrations of AST (F [1,321] = 5.83, P = 0.016; Fig. 1e) were detected in adults aged 7 years or older than in prime-age (2 7 years old) adults. Old animals also had significantly less back fat than prime-age adults (F [1,242] = 5.21, P = 0.023; Fig. 1b). Relationship between blood-parameter concentrations and individual condition Within years and classes of animals, there was considerable individual variation in concentrations of blood parameters (Figs. 2 and 3). This variation was less closely related to back-fat thickness and live mass than was annual variation. Glucose concentration, while statistically significant, only explained 1.0% of the variation in back-fat thickness after variation due to year, pregnancy status, and sampling date had been accounted for (Fig. 2a). Similarly, log e β-ohb concentration explained only 4.5%, albumin concentration 3.4%, and log e AST concentration 3.2% of variation, while total protein, urea, and creatinine concentrations explained no significant variation in back-fat thickness (Fig. 2). However, a large proportion of the adults sampled (31%) had back-fat thickness less than the detection limit of the ultrasound equipment (~4 mm), yet had a wide range of bloodparameter concentrations, including individuals with extreme values (Fig. 2). This suggested that blood parameters were more sensitive than back-fat thickness to variation in body condition among poor-condition animals. Back-fat thickness was strongly related to live mass (explaining 17% of the variation in live mass after between-year variation was controlled for), but again the blood-parameter concentrations explained little variation. Albumin, total protein and urea concentrations, all indicators of protein metabolism, explained only 5.9%, 2.6%, and 2.5% of the variation in live mass, respectively, once variation due to year and pregnancy were controlled for. No other parameters showed a significant relationship with live mass (Fig. 3). Blood-parameter concentrations as fitness predictors Of the adults caught in April May that were subsequently resighted or found dead in the summer (n = 629), only 11 died during the latter part of the winter (5 in 1996 and 6 in

6 Milner et al Table 1. Between-year variation in fitness measures, live mass, back-fat thickness, and plasma concentrations of glucose, β-ohb, AST, total protein, albumin, urea, and creatinine measured in April May, for adult female Svalbard reindeer (Rangifer tarandus platyrhynchus) aged 2 years or older Pregnancy rate (%)*** 65.0±7.6 (40) 64.9±5.6 (74) 87.7±3.7 (81) 92.1±2.3 (140) 88.5±2.8 (131) 66.4±4.5 (113) 91.7±3.0 (84) 56.8±4.7 (111) Survival rate (%)*** 100.0±0 (34) 92.6±6.9 (68) 100.0±0 (78) 100.0±0 (134) 100.0±0 (121) 100.0±0 (90) 100.0±0 (59) 86.7±11.8 (45) Successful calving (%)*** 85.0±13.4 (20) 7.7±7.7 (13) 87.5±11.3 (32) 90.5±8.7 (74) 89.9±9.2(79) 64.1±23.6 (39) 86.5±12.0 (37) 25.0±19.6 (24) Live mass (kg)*** Nonpregnant 46.4±0.8 (14) 36.9±0.8 (26) 43.8±1.3 (10) 48.3±1.4 (11) 50.7±0.9 (15) 45.6±0.7 (38) 52.4±1.4 (7) 40.3±0.6 (48) Pregnant 56.1±0.8 (26) 42.0±0.6 (48) 52.2±0.5 (71) 54.6±0.4 (129) 54.8±0.4 (116) 52.0±0.4 (75) 57.6±0.5 (77) 46.0±0.5 (63) Back-fat thickness (mm)*** Nonpregnant 6.3±2.4 (11) 12.8±1.4 (15) 3.0±1.1 (21) 18.5±2.5 (2) 0.6±0.4 (48) Pregnant 12.7±0.7 (127) 12.5±0.5 (110) 5.2±1.2 (33) 14.1±0.8 (60) 2.8±0.7 (63) Glucose concn. (mmol/l)*** 5.5±0.2 (74) 6.3±0.1 (69) 6.9±0.1 (143) 7.2±0.1 (131) 6.9±0.1 (113) 8.1±0.1 (84) 6.3±0.1 (111) β-ohb concn. (mmol/l)*** Nonpregnant 0.70±0.08 (26) 0.38±0.04 (8) 0.42±0.06 (11) 0.34±0.02 (14) 0.34±0.01 (38) 0.36±0.02 (7) 0.40±0.02 (48) Pregnant 1.27±0.17 (48) 0.80±0.08 (60) 0.65±0.03 (129) 0.62±0.03 (116) 0.70±0.04 (75) 0.57±0.02 (77) 0.79±0.09 (63) AST concn. (U/L)*** 153.1±22.1 (74) 127.2±5.6 (69) 128.6±3.6 (143) 132.7±3.5 (131) 143.1±3.6 (114) 118.4±4.1 (84) 149.9±5.6 (111) Total protein concn. (g/l)*** 51.6±0.5 (73) 56.3±0.4 (69) 57.2±0.3 (143) 57.3±0.4 (131) 55.0±0.4 (114) 58.2±0.4 (84) 51.9±0.4 (111) Albumin (g/l)*** 31.2±0.3 (73) 35.5±0.3 (69) 35.7±0.2 (143) 35.2±0.2 (131) 33.6±0.2 (114) 38.4±0.2 (84) 32.8±0.3 (111) Urea (mmol/l)*** 6.23±0.12 (74) 5.94±0.16 (69) 5.34±0.10 (143) 4.22±0.10 (131) 5.33±0.10 (114) 4.64±0.14 (84) 6.01±0.14 (111) Creatinine (µmol/l)*** 188.8±2.9 (73) 177.0±1.8 (69) 177.8±1.4 (143) 174.7±1.3 (131) 189.8±1.9 (84) 188.1±2.5 (111) Note: Pregnancy rates are based on progesterone concentrations. Rates of survival and successful calving were determined between April May and August (see the text). Values are given as the mean ± standard error, with the sample size in parentheses. The significance of between-year variation is shown (***, P < 0.001).

7 1572 Can. J. Zool. Vol. 81, 2003 Fig. 2. Relationship between back-fat thickness and plasma concentrations of glucose (a), β-ohb (b), albumin (c), urea (d), creatinine (e), and AST ( f ) in adult female reindeer aged 2 years and older, measured in April May, all years pooled. Pregnant ( ) and nonpregnant ( ) females had significantly different β-ohb concentrations. 2002; Table 1). Live mass was the best predictor of adult survival. However, animals with high urea concentrations, in addition to low live mass, had low survival probabilities. The urea:creatinine ratio was a better predictor than urea concentration on its own, and together with live mass explained approximately 46% of the total deviance in survival (Table 2, Fig. 4). Pregnancy status did not directly affect the probability of survival (χ 1 2 = 3.38, P = 0.07), although, on average, pregnant females had higher body masses (Table 1) and consequently better survival probabilities. Pregnant females also had more back fat than nonpregnant females, but back-fat thickness was not significantly related to survival (P > 0.05; Table 2). No other blood parameters were related to survival (P > 0.05; Table 2). The percentage of pregnant females that calved successfully varied between years from 8% in 1996 to 91% in 1998 (Table 1; see also Albon et al. 2002). Similar between-year variability was noted from summer helicopter counts conducted in seven valleys, including the study area, over the same time period (Environmental Department, Governor of Svalbard s Office). Once the random between-year variation had been controlled for, the best predictors of successful calving were live mass and log e β-ohb and creatinine concentrations (Table 3). Females that calved successfully were significantly heavier and had higher β-ohb and lower creatinine concentrations in late winter than those that lost their calves (Fig. 5). The low β-ohb concentration associated with unsuccessful calving was also evident in the subsample of pregnant females that were carrying a dead foetus in late winter (17 of 36 pregnant females scanned using ultrasound in 1996, 2 of 60 in 1997, and 5 of 62 in 2002). These individuals had β-ohb concentrations similar to those found in nonpregnant females (Fig. 6). No other blood-parameter concentrations differed significantly between females carrying a live and a dead foetus. The between-year variation in calving success covaried with mean annual live mass, calving success being lower in years of low average body mass. The total model explained 40% of the deviance in calving success, of which the fixed-effect variables explained 14%. Although back-fat thickness did not explain any significant variation in calving success (Table 3), an index for the presence or absence of fat and its interaction with live mass were significantly related to the probability of successful calving (χ 2 2 = 3.39, P = 0.034) in a model based on the 4 years in which data were available for both back-fat thickness and creatinine concentration. There was no significant year effect, so a conventional logistic regression model was used. Females with no fat had lower

8 Milner et al Fig. 3. Relationship between live mass and plasma concentrations of glucose (a), β-ohb (b), albumin (c), urea (d), creatinine (e), and AST (f) in adult female reindeer aged 2 years and older, measured in April May, all years pooled. Pregnant ( ) and nonpregnant ( ) females had significantly different β-ohb concentrations. calving success, but as live mass increased, the probability of successful calving increased more steeply in these animals than in animals with fat. Discussion The blood parameters measured in this study showed similar patterns between years in their average concentrations, suggesting that they could all be used to monitor betweenyear variation in body condition at the population level. However, average values of the simple measure live mass followed the same pattern and provide a more straightforward means of assessing population condition. The value of using blood parameters appears to be in explaining additional variation in fitness at the individual level, over and above that which can be explained by live mass. Blood metabolites, particularly glucose, urea, β-ohb, and, to a lesser extent, proteins, reflect short-term nutritional status, whereas individual condition measured by body mass or back-fat thickness reflects nutritional supply in the previous weeks or months (Cook et al. 2001). The relationships between the blood parameters and back-fat thickness and live mass were weak within years, but if they are measuring different states, this is perhaps not surprising. Furthermore, blood parameters are regulated within a relatively narrow range (Kaneko 1989) and are only likely to show a response to starvation when an animal reaches a very high level of nutritional stress, whereas body mass and back-fat thickness change continuously as an animal approaches such a state. Blood parameters are therefore likely to be useful for detecting individuals that have already reached a critical nutritional state. Measurements of back-fat thickness are of little use at this end of the condition distribution, since individuals in very poor condition have no detectable back fat (Stephenson et al. 1998, 2002; Cook et al. 2001; see also Stien et al. 2003). The blood parameters investigated in this study were those that could reflect nutritional status (urea), energy (glucose and β-ohb), and protein metabolism (albumin, total protein, and urea), and liver (AST) and kidney (urea and creatinine) function. Liver-function parameters were included because the liver is where most metabolic processes take place, while kidney function, particularly the filtration rate, is also indicative of individual condition. In general, the range of bloodparameter concentrations we measured broadly agrees with other published data for reindeer and caribou in late winter (Hyvärinen et al. 1975; Larsen et al. 1985a, 1985b; Bubenik et al. 1998; Säkkinen et al. 2001) and expectations from domestic ruminants (Kaneko 1989). However, annual variation was marked and revealed suboptimal concentrations in some years. Although average glucose concentrations were above levels indicative of hypoglycaemia (concentrations below

9 1574 Can. J. Zool. Vol. 81, 2003 Table 2. Factors explaining variation in the survival of adult female reindeer (aged 2 years and older; n = 489), with logistic regression parameter estimates and standard errors. Term df deviance P Estimate SE Intercept Live mass < Urea:creatinine ratio < Pregnancy * 1.01 log(ast concn.) Total protein concn Year Glucose concn Albumin concn log(β-ohb concn.) Back-fat thickness Note: Only significant terms (shown in boldface type) were included in the final model. P values were estimated by assuming the change in deviance ( deviance) caused by including the term, and followed a χ 2 distribution. deviance for nonsignificant terms was calculated as the change from the best fit model (shown in boldface type). Total deviance was *Estimated change in log(odds) from nonpregnant to pregnant animals. Fig. 4. Observed relationship between urea:creatine ratio and live mass in adult females that survived ( ) and died ( ) between late winter and summer, together with lines showing the survival probabilities predicted by the model. 4 mmol/l), some individuals were hypoglycaemic in poor years. The mean total protein concentrations measured in the best years, although comparable to those measured in Finnish reindeer herds (Hyvärinen et al. 1975), corresponded to the lower range found in domestic ruminants (Kaneko 1989), and decreased a further 20% in bad years. Since plasma proteins are carriers of essential nutrients, hormones, and metabolites and are used as nutrients themselves, we might have expected proteins such as albumin to be more closely related to fitness parameters. Concentrations of the liver enzyme AST indicated that there was some change in liver function or liver damage associated with malnutrition

10 Milner et al Table 3. Fixed effects explaining variation in successful calving by adult females (aged 2 years and older) diagnosed as being pregnant in spring (n = 259), with mixed-effects logistic regression parameter estimates and standard errors. Term Wald s statistic df P Estimate SE Intercept Live mass < log( -OHB concn.) Creatinine concn Glucose concn log(ast concn.) Total protein concn Albumin concn Urea concn Back-fat thickness Note: Only significant terms (shown in boldface type) were included in the final model and the other variables were evaluated by adding them to this model. P values were estimated by assuming that Wald s statistic followed a F [1] distribution. The estimated variance component for the random year effect in the final model was Fig. 5. Predicted probability of successful calving in relation to live mass and β-ohb concentration in adult female reindeer diagnosed in late winter as being pregnant. or starvation in reindeer in some years. The mean AST concentrations in bad years were comparable to ketotic levels recorded in dairy cows (Ropstad et al. 1989). The fact that these blood parameters were unrelated to survival or calving success indicates that Svalbard reindeer are well adapted to huge annual fluctuations in protein supply. The reduced concentrations of glucose, albumin, and creatinine and elevated levels of AST detected in blood samples from adults aged 7 years and older suggest that older animals were in poorer condition. Poor nutrition in this age class may be due to tooth wear and the indirect effects of being less able to compete for good feeding sites. The blood parameters that differed in concentration between older and prime-aged adults reflected a more catabolic metabolism among the relatively undernourished older adults. Live mass was a good predictor of both adult survival and successful calving, as expected from numerous field studies of ungulates (e.g., Gaillard et al. 1992; Jorgenson et al. 1993; Clutton-Brock et al. 1996; Festa-Bianchet et al. 1998). However, because blood parameters measure something

11 1576 Can. J. Zool. Vol. 81, 2003 Fig. 6. Concentration of β-ohb in adult females diagnosed by ultrasound as being not pregnant, pregnant with a live foetus, or pregnant with a dead foetus in April May. Sample sizes are shown for each class. Data from all years are pooled. slightly different, they have the potential to add information and predictive power. The adult-survival model was improved by including the urea:creatinine ratio. By using this ratio, urea concentration was corrected for variation in the glomerular filtration rate of the kidneys (Säkkinen et al. 2001). Elevated urea levels arising during periods of restricted food intake and low dietary protein content may result from energy intake being insufficient for rumen microbes to transfer nitrogen to protein or may be due to muscle catabolism. Such levels have been reported in both white-tailed deer (Odocoileus virginianus, Warren et al. 1982) and reindeer (Säkkinen et al. 2001). Increased urea concentrations in April May probably reflect very serious malnutrition followed by the breakdown of body proteins required for the maintenance of life. Concentrations of β- OHB, associated with fat breakdown, were generally highest under the most nutritionally stressful conditions, such as those occurring during pregnancy and in the severest winters, but high β-ohb concentrations were not indicative of mortality. It has been suggested that the production of β- OHB during fasting may have evolved as a survival mechanism (Bruss 1989). After live mass was accounted for, calving success was best predicted by the plasma concentrations of β-ohb and creatinine. Contrary to expectation (see above), the probability of successful calving increased with the β-ohb concentration. We speculate that the significantly higher β-ohb concentrations in females that produced a viable calf might reflect a greater maternal investment in the foetus. Calving success showed greater variation between years than did survival. This is what would be expected from the general observation that, in ungulate populations, adult females show little year-to-year variation in survival and moderate variation in fecundity (Gaillard et al. 2000). The greater fat depth we observed in pregnant than in nonpregnant females agrees with the findings of Tyler (1987a), Gerhart et al. (1997), and Keech (2000) for reindeer, caribou, and Alaskan moose (Alces alces), respectively, and suggests that reproductive success is related to body condition during the autumn rut (Cameron et al. 1993). Russell et al. (1998) also found that embryonic mortality early in pregnancy was higher in leaner, lighter female caribou. Similarly, maternal condition, measured by rump-fat thickness, influenced reproductive success in moose, with fatter animals having a higher probability of twinning, earlier birth dates, heavier offspring, and higher calf-survival rates (Testa and Adams 1998; Keech et al. 2000). In our study, back-fat thickness was more closely related to live mass than any other parameter, but consequently added little to the predictive power of fitness models that also included live mass. An index for presence or absence of back fat was nonetheless related to calving success, despite the relatively large number of individuals with little or no remaining subcutaneous fat in late winter. Few, if any, other studies have looked at the relationships between blood-parameter concentrations and ecological fitness. Our results show that while live mass is a good predictor of fitness for Svalbard reindeer, its predictive powers could be enhanced by using the concentrations of some blood parameters. Late-winter measures of back-fat thickness were less useful fitness predictors in this system, although in studies in less extreme environments, or at other times of the year, back-fat measurements have the potential to give added information. Our study is also unique in terms of the number of animals caught and sampled in the wild. Nonetheless, the sample size of animals not surviving the winter was small, so the robustness of our model predictions will require further validation. In studies where animals are caught and weighed, it is relatively easy to take a blood sample and the laboratory protocols for measuring these parameters are well established. We suggest that there may be useful applications for blood parameters in ecological investigations and these should be tested more widely in other field studies.

12 Milner et al Acknowledgments We are grateful to the Governor of Svalbard for permission to work on Spitsbergen, and for the support of his environmental staff, particularly Jon Ove Scheie and Øystein Overrein. Essential logistical support and equipment was provided by the Norwegian Polar Institute and UNIS. Irma Oskam, Jan Lyche, Inge Engeland, and numerous volunteers provided assistance with the fieldwork. Their effort is greatly appreciated. Hanne Morberg, Stein Istre Thoresen, and the technical staff at the Central Laboratory, Norwegian School of Veterinary Science, analysed blood metabolites and Ellen Dahl analysed plasma progesterone and cortisol concentrations. The work was funded both by the Research Council of Norway (TERRØK program and Arktisk Lys program ) and the U.K. Natural Environment Research Council ( ; GR3/10811). References Aanes, R., Sæther, B.-E., and Øritsland, N.A Fluctuations of an introduced population of Svalbard reindeer: the effects of density dependence and climatic variation. Ecography, 23: Adamczewski, J.Z., and Hudson, R.J Winter energy balance and activity of female caribou on Coats Island, Northwest Territories: the relative importance of foraging and body reserves. Can. J. Zool. 71: Albon, S.D., Stien, A., Irvine, R.J., Langvatn, R., Ropstad, E., and Halvorsen, O The role of parasites in the dynamics of a reindeer population. Proc. R. Soc. Lond. B Biol. Sci. 269: Atkinson, S.N., and Ramsay, M.A The effects of prolonged fasting of the body-composition and reproductive success of female polar bears (Ursus maritimus). Funct. Ecol. 9: Berg, R.T., and Butterfield, R.M New concepts of cattle growth. Sidney University Press, Sidney, Australia. Bonnet, X., and Naulleau, G Are body reserves important for reproduction in male dark green snakes (Colubridae: Coluber viridiflavus)? Herpetologica, 52: Bruss, M.L Ketogenesis and ketosis. In Clinical biochemistry of domestic animals. Edited by J.J. Kaneko. Academic Press, San Diego. pp Bubenik, G.A., Schams, D., White, R.G., Rowell, J., Blake, J., and Bartos, L Seasonal levels of metabolic hormones and substrates in male and female reindeer (Rangifer tarandus). Comp. Biochem. Physiol. C, 120: Cameron, R.D., Smith, W.T., Fancy, S.G., Gerhart, K.L., and White, R.G Calving success of female caribou in relation to body weight. Can. J. Zool. 71: Civantos, E., and Forsman, A Determinants of survival in juvenile Psammodromus algirus lizards. Oecologia, 124: Clutton-Brock, T.H., Stevenson, I.R., Marrow, P., MacColl, A.D., Houston, A.I., and McNamara, J.M Population fluctuations, reproductive costs and life-history tactics in female Soay sheep. J. Anim. Ecol. 65: Cook, R.C., Cook, J.G., Murray, D.L., Zager, P., Johnson, B.K., and Gratson, M.W Development of predictive models of nutritional condition for Rocky Mountain elk. J. Wildl. Manag. 65: DelGiudice, G.D., Mech, D.L., and Seal, U.S Effects of winter undernutrition on body composition and physiological profiles of white-tailed deer. J. Wildl. Manag. 54: DelGiudice, G.D., Peterson, R.O., and Seal, U.S Differences in urinary chemistry profiles of moose on Isle Royale during winter. J. Wildl. Manag. 27: Festa-Bianchet, M., Jorgenson, J.T., Bérubé, C.H., Portier, C., and Wishart, W.D Body mass and survival of bighorn sheep. Can. J. Zool. 75: Festa-Bianchet, M., Gaillard, J.-M., and Jorgenson, J.T Mass- and density-dependent reproductive success and reproductive costs in a capital breeder. Am. Nat. 152: Gaillard, J.-M., Sempere, A.J., Boutin, J.M., Vanlaere, G., and Boisaubert, B Effects of age and body weight on the proportion of females breeding in a population of roe deer (Capreolus capreolus). Can. J. Zool. 70: Gaillard, J.-M., Festa-Bianchet, M., Yoccoz, N.G., Loison, A., and Toigo, C Temporal variation in fitness components and populaton dynamics of large herbivores. Annu. Rev. Ecol. Syst. 31: Gerhart, K.L., White, R.G., Cameron, R.D., and Russell, D.E. 1996a. Body composition and nutrient reserves of arctic caribou. Can. J. Zool. 74: Gerhart, K.L., White, R.G., Cameron, R.D., and Russell, D.E. 1996b. Estimating fat content of caribou from body condition scores. J. Wildl. Manag. 60: Gerhart, K.L., Russell, D.E., van de Wetering, D., White, R.G., and Cameron, R.D Pregnancy in adult caribou (Rangifer tarandus): evidence of lactational infertility. J. Zool. (Lond.), 242: Green, A.J Mass/length residuals: measures of body condition or generators of spurious results? Ecology, 82: Hayes, J.P., and Shonkwiler, J.S Morphometric indicators of body condition: worthwhile or wishful thinking? In Body composition analysis of animals. Edited by J.R. Speakman. Cambridge University Press, Cambridge. pp Hyvärinen, H., Helle, T., Väyrynen, R., and Väyrynen, P Seasonal and nutritional effects on serum proteins and urea concentration in the reindeer (Rangifer tarandus tarandus). Br. J. Nutr. 33: Jorgenson, J.T., Festa-Bianchet, M., Lucherini, M., and Wishart, W.D Effects of body size, population density, and maternal characteristics on age at first reproduction in bighorn ewes. Can. J. Zool. 71: Kaneko, J.J Clinical biochemistry of domestic animals. Academic Press, San Diego. Keech, M.A., Bowyer, R.T., Ver Hoef, J.M., Boertje, R.D., Dale, B.W., and Stephenson, T.R Life-history consequences of maternal condition in Alaskan moose. J. Wildl. Manag. 64: King, W.J., Festa-Bianchet, M., and Hatfield, S.E Determinants of reproductive success in female Columbian ground squirrels. Oecologia, 86: Langvatn, R Criteria of physical condition, growth, and development in Cervidae. Nordic Council for Wildlife Research, Stockholm. Larsen, T.S., Lagercrantz, H., Riemersma, R.A., and Blix, A.S. 1985a. Seasonal changes in blood lipids, adrenaline, noradrenaline, glucose and insulin in Norwegian reindeer. Acta Physiol. Scand. 124: Larsen, T.S., Nilsson, N.O., and Blix, A.S. 1985b. Effects of prolonged food restriction on some aspects of lipid metabolism in Norwegian and Svalbard reindeer. Acta Physiol. Scand. 124: Mathiesen, S.D., Sormo, W., Haga, O.E., Norberg, H.J., Utsi, T.H.A., and Tyler, N.J.C The oral anatomy of Arctic ru-

13 1578 Can. J. Zool. Vol. 81, 2003 minants: coping with season changes. J. Zool. (Lond.), 251: McCullagh, P., and Nelder, J.A Generalized linear models. Chapman and Hall, London. Milner, J.M., Elston, D.A., and Albon, S.D Estimating the contributions of population density and climatic fluctuations to interannual variation in survival of Soay sheep. J. Anim. Ecol. 68: Newton, S.F Body condition of a small passerine bird ultrasonic assessment and significance in overwinter survival. J. Zool. (Lond.), 229: Nilssen, K.J., Sundsfjord, J.A., and Blix, A.S Regulation of metabolic rate in Svalbard and Norwegian reindeer. Am. J. Physiol. 247: R837 R841. Overdorff, D.J., Merenlender, A.M., Talata, P., Telo, A., and Forward, Z.A Life history of Eulemur fulvus rufus from in southeastern Madagascar. Am. J. Phys. Anthropol. 108: Reimers, E., and Ringberg, T Seasonal changes in body weights of Svalbard reindeer from birth to maturity. Acta Zool. Fenn. 175: Reimers, E., Ringberg, T., and Sorumgard, R Body composition of Svalbard reindeer. Can. J. Zool. 60: Rodwell, V.W Conversion of amino acids to specialized products. In Harper s biochemistry. Edited by R.K. Murray, D.K. Granner, P.A. Mayes, and V.W. Rodwell. 25th ed. Appleton & Lange, Stamford, Conn. pp Ropstad, E., Halse, K., and Refsdal, A.O Variations in parameters of liver function and plasma progesterone related to underfeeding and ketosis in a dairy herd. Acta Vet. Scand. 30: Ropstad, E., Johansen, O., King, C., Dahl, E., Albon, S.D., Langvatn, R., Irvine, R.J., Halvorsen, O., and Sasser, G Comparison of plasma progesterone, transrectal ultrasound and pregnancy specific proteins (PSPB) used for pregnancy diagnosis in reindeer. Acta Vet. Scand. 40: Russell, D.E., Gerhart, K.L., White, R.G., and van de Wetering, D Detection of early pregnancy in caribou: evidence for embryonic mortality. J. Wildl. Manag. 62: Säkkinen, H., Stien, A., Holand, Ø., Hove, K., Eloranta, E., Saarela, S., and Ropstad, E Plasma urea, creatinine, and urea/creatinine ratio in reindeer (Rangifer tarandus tarandus), and in Svalbard reindeer (Rangifer tarandus platyrhynchus) during defined feeding conditions and in the field. Physiol. Biochem. Zool. 74: Simensen, E., Olson, L.D., Vanjonack, W.J., Johnson, H.D., and Ryan, M.P Determination of corticosterone concentration in plasma of turkeys using radioimmunoassay. Poult. Sci. 57: Solberg, E.J., Jordhoy, P., Strand, O., Aanes, R., Loison, A., Saether, B.-E., and Linnell, J.D.C Effects of densitydependence and climate on the dynamics of a Svalbard reindeer population. Ecography, 24: Starck, J.M., Dietz, M.W., and Piersma, T The assessment of body composition and other parameters by ultrasound scanning. In Body composition analysis of animals. Edited by J.R. Speakman. Cambridge University Press, Cambridge. pp Stephenson, T.R., Hundertmark, K.J., Schwartz, C.C., and van Ballenberghe, V Predicting body fat and body mass in moose with ultrasonography. Can. J. Zool. 76: Stephenson, T.R., Bleich, V.C., Pierce, B.M., and Mulcahy, G.P Validation of mule deer body composition using in vivo and post-mortem indices of nutritional condition. Wildl. Soc. Bull. 30: Stien, A., Irvine, R.J., Ropstad, E., Halvorsen, O., Langvatn, R., and Albon, S.D The impact of gastrointestinal nematodes on wild reindeer: experimental and cross-sectional studies. J. Anim. Ecol. 71: Stien, A., Irvine, R.J., Langvatn, R., and Ropstad, E Evaluation of ultrasound scanning as a method for measuring subcutaneous fat in Svalbard reindeer. Rangifer, 23. In press. Testa, J.W., and Adams, G.P Body condition and adjustments to reproductive effort in female moose (Alces alces). J. Mammal. 79: Tyler, N.J.C. 1987a. Body composition and energy balance of pregnant and non-pregnant Svalbard reindeer during winter. Symp. Zool. Soc. Lond. No. 57. pp Tyler, N.J.C. 1987b. Natural limitation of the abundance of the high Arctic Svalbard reindeer. Ph.D thesis, University of Cambridge, Cambridge. Warren, R.J., Kirkpatrick, R.L., Oelschlaeger, A., Scanlon, P.F., Webb, K.E., and Whelan, J.B Energy, protein and seasonal influences on white-tailed deer fawn nutritional indicies. J. Wildl. Manag. 46: Wauters, L.A., and Dhondt, A.A Lifetime reproductive success and its correlates in female Eurasian red squirrels. Oikos, 72:

H. Säkkinen 1, * A. Stien 2 Ø. Holand 3 K. Hove 3 E. Eloranta 4 S. Saarela 1 E. Ropstad 5 1

H. Säkkinen 1, * A. Stien 2 Ø. Holand 3 K. Hove 3 E. Eloranta 4 S. Saarela 1 E. Ropstad 5 1 907 Plasma Urea, Creatinine, and Urea : Creatinine Ratio in Reindeer (Rangifer tarandus tarandus) and in Svalbard Reindeer (Rangifer tarandus platyrhynchus) during Defined Feeding Conditions and in the

More information

Modeling energy and protein reserves in support of gestation and lactation: glucose as a limiting metabolite in caribou and reindeer

Modeling energy and protein reserves in support of gestation and lactation: glucose as a limiting metabolite in caribou and reindeer 13 th Arctic Ungulate Conference Yellowknife, Canada 22-26 August, 2011 Brief Communication Modeling energy and protein reserves in support of gestation and lactation: glucose as a limiting metabolite

More information

The mating strategy of female Svalbard reindeer (Rangifer tarandus platyrhynchus) Máret Johansdatter Heatta

The mating strategy of female Svalbard reindeer (Rangifer tarandus platyrhynchus) Máret Johansdatter Heatta The mating strategy of female Svalbard reindeer (Rangifer tarandus platyrhynchus) Máret Johansdatter Heatta Northern populations and ecosystems. Master s thesis (BIO 3910) Faculty of Science. Departement

More information

Rangifer Health & Body Condition Monitoring MANUAL

Rangifer Health & Body Condition Monitoring MANUAL Rangifer Health & Body Condition Monitoring MANUAL Circum Arctic Rangifer Monitoring and Assessment (CARMA) Network November 2008 EDITORS: Anne Gunn Wendy Nixon CONTRIBUTORS: Barry Adams Jan Adamczewski

More information

VARIATION IN THE BLOOD CHEMICAL CONSTITUENTS OF REINDEER Significance of season, nutrition and other extrinsic and intrinsic factors

VARIATION IN THE BLOOD CHEMICAL CONSTITUENTS OF REINDEER Significance of season, nutrition and other extrinsic and intrinsic factors VARIATION IN THE BLOOD CHEMICAL CONSTITUENTS OF REINDEER Significance of season, nutrition and other extrinsic and intrinsic factors HANNELE SÄKKINEN Faculty of Science, Department of Biology, University

More information

Evaluation of Models to Estimate Urinary Nitrogen and Expected Milk Urea Nitrogen 1

Evaluation of Models to Estimate Urinary Nitrogen and Expected Milk Urea Nitrogen 1 J. Dairy Sci. 85:227 233 American Dairy Science Association, 2002. Evaluation of Models to Estimate Urinary Nitrogen and Expected Milk Urea Nitrogen 1 R. A. Kohn, K. F. Kalscheur, 2 and E. Russek-Cohen

More information

Carsten C.F. Walker, BS, 1,2 * and Michael L. Schlegel, PhD, PAS, Dipl ACAS-Nutrition 2

Carsten C.F. Walker, BS, 1,2 * and Michael L. Schlegel, PhD, PAS, Dipl ACAS-Nutrition 2 CASE STUDY: RELATIONSHIP BETWEEN WEIGHT GAIN AND OFFSPRING SEX IN AFRICAN BUSH ELEPHANTS (LOXODONTA AFRICANA AFRICANA) AT THE SAN DIEGO ZOO SAFARI PARK Carsten C.F. Walker, BS, 1,2 * and Michael L. Schlegel,

More information

Food and snow intake, body mass and rumen function in reindeer fed lichen and subsequently starved for 4 days

Food and snow intake, body mass and rumen function in reindeer fed lichen and subsequently starved for 4 days Food and snow intake, body mass and rumen function in reindeer fed lichen and subsequently starved for 4 days T. H. Aagnes* and S. D. Mathiesen Department of Arctic Biology and Institute of Medical Biology,

More information

Assessing dental wear in reindeer using geometric morphometrical methods

Assessing dental wear in reindeer using geometric morphometrical methods Brief communication Assessing dental wear in reindeer using geometric morphometrical methods Rolf Rødven 1,3, Nigel G. Yoccoz 1, Rolf A. Ims 1 & Øystein Wiig 2 1 Department of Biology, University of Tromsø,

More information

Body Condition Scoring Your Cow Herd

Body Condition Scoring Your Cow Herd Body Condition Scoring Your Cow Herd 04-Aug-06 Importance of Body Condition Scoring to Cattle Producers Body condition is an expression of the amount of body fat that an animal is carrying. It is a one

More information

Concentrations of Luteinizing Hormone and Ovulatory Responses in Dairy Cows Before Timed Artificial Insemination

Concentrations of Luteinizing Hormone and Ovulatory Responses in Dairy Cows Before Timed Artificial Insemination Concentrations of Luteinizing Hormone and Ovulatory Responses in Dairy Cows Before Timed Artificial Insemination S. L. Pulley, D. H. Keisler, S. L. Hill, and J. S. Stevenson Summary The objective of this

More information

MEASUREMENTS OF PROTEIN METABOLISM

MEASUREMENTS OF PROTEIN METABOLISM TOPIC 2. MEASUREMENTS OF PROTEIN METABOLISM Protein metabolism proceeds at orderly rates in relation to the biological functions involved. The basis for the requirement of protein traces back to the losses

More information

Use of Glucagon to Prevent and Treat Fatty Liver in Transition Dairy Cows

Use of Glucagon to Prevent and Treat Fatty Liver in Transition Dairy Cows Animal Industry Report AS 650 ASL R1903 2004 Use of Glucagon to Prevent and Treat Fatty Liver in Transition Cows Donald C. Beitz Jerry W. Young Arnold R. Hippen Rafael A. Nafikov Recommended Citation Beitz,

More information

Metabolic Disease and the Role of Nutrition

Metabolic Disease and the Role of Nutrition Metabolic Disease and the Role of Nutrition Robert J. Van Saun, DVM, MS, PhD Professor/Extension Veterinarian Department of Veterinary & Biomedical Sciences Pennsylvania State University Presentation Outline

More information

PIONEER FEEDS DAIRY CATTLE AND CALF FEEDING TECHNICAL INFORMATION.

PIONEER FEEDS DAIRY CATTLE AND CALF FEEDING TECHNICAL INFORMATION. PIONEER FEEDS DAIRY CATTLE AND CALF FEEDING TECHNICAL INFORMATION. 1. STAGES IN LACTATION PERIOD IN DAIRY COWS The lactation period is divided into four phases based on the cow s physiological cycle and

More information

Relations between Plasma Acetate, 3-Hydroxybutyrate, FFA, Glucose Levels and Energy Nutrition in Lactating Dairy Cows

Relations between Plasma Acetate, 3-Hydroxybutyrate, FFA, Glucose Levels and Energy Nutrition in Lactating Dairy Cows Relations between Plasma Acetate, 3-Hydroxybutyrate, FFA, Glucose Levels and Energy Nutrition in Lactating Dairy Cows Hiroshi SATO *, Mitsuto MATSUMOTO ** and Shogo HANASAKA Tohoku National Agricultural

More information

Feeding dry cows - down but not out

Feeding dry cows - down but not out Feeding dry cows - down but not out Jon Moorby and Richard Dewhurst Growth 54 Replenishing fat reserves 55 Replenishing protein reserves and preparing for lactation 56 Rumen development and feed intake

More information

SUPPLEMENTAL CHOLINE FOR PREVENTION AND ALLEVIATION OF FATTY LIVER IN DAIRY CATTLE

SUPPLEMENTAL CHOLINE FOR PREVENTION AND ALLEVIATION OF FATTY LIVER IN DAIRY CATTLE SUPPLEMENTAL CHOLINE FOR PREVENTION AND ALLEVIATION OF FATTY LIVER IN DAIRY CATTLE Ric R. Grummer and Reinaldo Cooke Department of Dairy Science University of Wisconsin-Madison rgrummer@wisc.edu Fatty

More information

Biochemical indicators of condition, nutrition and nitrogen excretion in caribou

Biochemical indicators of condition, nutrition and nitrogen excretion in caribou The Sixth North American Caribou Workshop, Prince George, British Columbia, Canada, 1-4 March, 1994. Biochemical indicators of condition, nutrition and nitrogen excretion in caribou Ray Case Wildlife Management

More information

Nitrogen allocation to offspring and milk production in a capital breeder

Nitrogen allocation to offspring and milk production in a capital breeder Ecology, 94(8), 2013, pp. 1815 1827 Ó 2013 by the Ecological Society of America Nitrogen allocation to offspring and milk production in a capital breeder JOËLLE TAILLON, 1,3 PERRY S. BARBOZA, 2 1 AND STEEVE

More information

The Diploma in Ruminant Nutrition

The Diploma in Ruminant Nutrition Further Information on the Modules that Make Up The Diploma in Ruminant Nutrition Taken from the Module Descriptors Ruminant Animal Production and the Feed Industry A4057 Academic Level 4 Rationale and

More information

Milk Protein. Item Average milk composition % Water Lactose 4.90 Fat 3.70 True Protein 3.00 Crude Protein 3.10 Casein 2.60 Ash.80 Other.

Milk Protein. Item Average milk composition % Water Lactose 4.90 Fat 3.70 True Protein 3.00 Crude Protein 3.10 Casein 2.60 Ash.80 Other. Milk Protein As component pricing based on solids not fat and/or protein becomes more a standard in the industry, production of milk components, particularly protein, will receive more emphasis. In addtion,

More information

Genetic Evaluation for Ketosis in the Netherlands Based on FTIR Measurements

Genetic Evaluation for Ketosis in the Netherlands Based on FTIR Measurements Abstract Genetic Evaluation for Ketosis in the Netherlands Based on FTIR Measurements J.J. Vosman, G. de Jong, H. Eding and H. Knijn CRV, P.O. Box 454, 6800 AL Arnhem, The Netherlands E-mail: Jorien.Vosman@crv4all.com

More information

Contrasting body condition of migratory caribou femalecalf pairs at calving and weaning

Contrasting body condition of migratory caribou femalecalf pairs at calving and weaning Contrasting body condition of migratory caribou femalecalf pairs at calving and weaning Joëlle Taillon 1 (joelle.taillon@bio.ulaval.ca), V. Brodeur 2, M. Festa-Bianchet 4, S. D. Côté 1 1 Université Laval,

More information

Body Condition Monitoring. Data to Herd Productivity. Christine Cuyler PhD Greenland Institute of Natural Resources,

Body Condition Monitoring. Data to Herd Productivity. Christine Cuyler PhD Greenland Institute of Natural Resources, Body Condition Monitoring Data to Herd Productivity Christine Cuyler PhD Greenland Institute of Natural Resources, www.natur.gl 1 Body Condition Not just Back-Fat 2 Measures of Body Condition Body Mass

More information

Trace Element Deficiencies in Heifers

Trace Element Deficiencies in Heifers Trace Element Deficiencies in Heifers This Infosheet covers The trace elements (minerals) most likely to be deficient in New Zealand heifers i.e. selenium and copper, and those which may sometimes be deficient,

More information

E CoSCIENCE. Advances in the nutritional ecology of cervids at different scales 1. Introduction. Small-scale mechanistic studies

E CoSCIENCE. Advances in the nutritional ecology of cervids at different scales 1. Introduction. Small-scale mechanistic studies E CoSCIENCE 10 (4): 395-411 (2003) Advances in the nutritional ecology of cervids at different scales 1 Katherine L. PARKER, Natural Resources and Environmental Studies, University of Northern British

More information

Classification of Nutrients

Classification of Nutrients Classification of Nutrients Nutrients; Definition and Classification Nutrients Any chemical compound/substance having specific function in the nutritive support of animal life 20 Elements make 40 nutrient

More information

INCLUSION OF FAT IN DIETS FOR EARLY LACTATING HOLSTEIN COWS. J. E. Shirley and M. E. Scheffel

INCLUSION OF FAT IN DIETS FOR EARLY LACTATING HOLSTEIN COWS. J. E. Shirley and M. E. Scheffel Dairy Day 1995 INCLUSION OF FAT IN DIETS FOR EARLY LACTATING HOLSTEIN COWS J. E. Shirley and M. E. Scheffel Summary Twenty-four Holstein cows were used to study the effect of dietary fat on milk production

More information

Accelerating Embryonic Growth During Incubation Following Prolonged Egg Storage 2. Embryonic Growth and Metabolism 1

Accelerating Embryonic Growth During Incubation Following Prolonged Egg Storage 2. Embryonic Growth and Metabolism 1 Accelerating Embryonic Growth During Incubation Following Prolonged Egg Storage 2. Embryonic Growth and Metabolism 1 V. L. Christensen, 2 J. L. Grimes, M. J. Wineland, and G. S. Davis Department of Poultry

More information

Nutritional Condition of Northern Yellowstone Elk

Nutritional Condition of Northern Yellowstone Elk University of Nebraska - Lincoln DigitalCommons@University of Nebraska - Lincoln USGS Northern Prairie Wildlife Research Center Wildlife Damage Management, Internet Center for 2004 Nutritional Condition

More information

Basic Cow Nutrition. Dr. Matt Hersom 1

Basic Cow Nutrition. Dr. Matt Hersom 1 Basic Cow Nutrition Dr. Matt Hersom 1 1 Assistant Professor, Department of Animal Sciences, Gainesville, FL Introduction The cow is our basic production unit and most important employee of the beef enterprise.

More information

Quick Start. Cornell Net Carbohydrate and Protein System for Sheep

Quick Start. Cornell Net Carbohydrate and Protein System for Sheep Quick Start Cornell Net Carbohydrate and Protein System for Sheep The Cornell Net Carbohydrate and Protein System (CNCPS) for Sheep is a feeding system derived from the CNCPS for cattle (Fox et al., 2003).

More information

Age and sex specific allometric growth of antlers in Rangifer tarandus: variability in the pattern of resource allocation. Natalka A.

Age and sex specific allometric growth of antlers in Rangifer tarandus: variability in the pattern of resource allocation. Natalka A. Age and sex specific allometric growth of antlers in Rangifer tarandus: variability in the pattern of resource allocation Natalka A. Melnycky A Thesis in The Department of Biology Presented in the Partial

More information

Concentrations of luteinizing hormone and ovulatory responses in dairy cows before timed artificial insemination

Concentrations of luteinizing hormone and ovulatory responses in dairy cows before timed artificial insemination Kansas Agricultural Experiment Station Research Reports Volume 0 Issue Dairy Research (98-0) Article 8 0 Concentrations of luteinizing hormone and ovulatory responses in dairy cows before timed artificial

More information

T 3, and guidance for maintaining snakes. Cobra groups: 12 adult cobras (6 males, 6. females) were captured in May 1987,

T 3, and guidance for maintaining snakes. Cobra groups: 12 adult cobras (6 males, 6. females) were captured in May 1987, 1990 by Asiatic Herpetological Research April 1990 Asiatic Herpetological Research Vol.3, pp. 46-51 Relationships Between Serum T 4, Cortisol and the Metabolism of Chemical Energy Sources in the Cobra

More information

Seasonal changes in weight, condition and nutrition of free-ranging and captive muskox females

Seasonal changes in weight, condition and nutrition of free-ranging and captive muskox females Paper presented at The First Arctic Ungulate Conference, Nuuk, Greenland, 3-8 September, 1991. Expanded abstract Seasonal changes in weight, condition and nutrition of free-ranging and captive muskox females

More information

Understanding the effect of gender and age on the pattern of fat deposition in cattle.

Understanding the effect of gender and age on the pattern of fat deposition in cattle. Understanding the effect of gender and age on the pattern of fat deposition in cattle. A.K. Pugh 1 *, B. McIntyre 2, G. Tudor 3, & D.W. Pethick 1 1 Division of Veterinary & Biomedical Sciences, Murdoch

More information

The effects of adult removal on dispersal of yearling yellow-bellied marmots

The effects of adult removal on dispersal of yearling yellow-bellied marmots The effects of adult removal on dispersal of yearling yellow-bellied marmots ALISON K. BRODY AND KENNETH B. ARMITAGE' Department of Systematics and Ecology, University of Kansas, Lawrence, KS, U.S.A. 66045

More information

Effects of a late snowstorm and rain on survival and reproductive success in Columbian ground squirrels (Spermophilus columbianus)

Effects of a late snowstorm and rain on survival and reproductive success in Columbian ground squirrels (Spermophilus columbianus) Effects of a late snowstorm and rain on survival and reproductive success in Columbian ground squirrels (Spermophilus columbianus) Peter Neuhaus, Ron Bennett, and Anne Hubbs 879 Abstract: Body mass changes,

More information

Goat Nutrition Dr Julian Waters Consultant Nutritionist

Goat Nutrition Dr Julian Waters Consultant Nutritionist Goat Nutrition Dr Julian Waters Consultant Nutritionist Agenda Ruminant Digestive Systems Basic Nutrition Energy & Protein Other Nutrients Rearing Kids Does Pregnancy Lactation Bucks Minerals & Issues

More information

SEXUAL SEGREGATION RESULTS IN DIFFERENCES IN CONTENT AND QUALITY OF BISON (BOS BISON) DIETS

SEXUAL SEGREGATION RESULTS IN DIFFERENCES IN CONTENT AND QUALITY OF BISON (BOS BISON) DIETS Journal of Mammalogy, 82(2):407 413, 2001 SEXUAL SEGREGATION RESULTS IN DIFFERENCES IN CONTENT AND QUALITY OF BISON (BOS BISON) DIETS DIANE M. POST,* TRENT S. ARMBRUST, EVA A. HORNE, AND JACOB R. GOHEEN

More information

(a) (i) Explain the relationship between the air temperature and the body temperature for lizard B (1)

(a) (i) Explain the relationship between the air temperature and the body temperature for lizard B (1) Q1. Lizards are reptiles. The graph shows the results of an investigation into the relationship between air temperature and body temperature for two lizards living in different habitats. The investigation

More information

1950s 1 st calf from surgical ET Frozen semen LN 2

1950s 1 st calf from surgical ET Frozen semen LN 2 1 Fertility and Reproduction Advances 1950s 1 st calf from surgical ET Frozen semen LN 2 Progestins used to synchronize estrus 2 Fertility and Reproduction Advances 1950s 1 st calf from surgical ET Frozen

More information

Amino Acids in Dairy Nutrition Where Do They Fit?

Amino Acids in Dairy Nutrition Where Do They Fit? Amino Acids in Dairy Nutrition Where Do They Fit? T. R. Overton and L. E. Chase Department of Animal Science Cornell University As our understanding of the biology underlying specifics of protein nutrition

More information

Requirements for maintenance and live weight gain of moose and wapiti calves during winter

Requirements for maintenance and live weight gain of moose and wapiti calves during winter Requirements for maintenance and live weight gain of moose and wapiti calves during winter Normand Cool 1 & Robert J. Hudson 2 * 1 Elk Island National Park, Fort Saskatchewan Canada T8L 2N7 2 Renewable

More information

Basic Nutrient Requirements of Beef Cows 1

Basic Nutrient Requirements of Beef Cows 1 AN190 1 Matt Hersom 2 Introduction Meeting the basic nutrient requirements of beef cows is a key component of meeting cow herd production and profitability goals for the beef cattle enterprise. Adequate

More information

Feeding the Suckler Cow by Siobhan Kavanagh, Mark McGee, Liam Fitzgerald

Feeding the Suckler Cow by Siobhan Kavanagh, Mark McGee, Liam Fitzgerald Section 6 by Siobhan Kavanagh, Mark McGee, Liam Fitzgerald Introduction Suckler herds produce the majority of stock destined for beef production (though weaned animals are also sourced from dairy herds).

More information

Physiological and Metabolic Bases for Energy Expenditures IE = RE + HE + FE + GE + UE

Physiological and Metabolic Bases for Energy Expenditures IE = RE + HE + FE + GE + UE Physiological and Metabolic Bases for Energy Expenditures H d E,, Heat of Digestion Nutrition 202 Animal Energetics R. D. Sainz Lecture 06 IE = RE + HE + FE + GE + UE HE = H e E+ H d E+ H r E+ H j E+ H

More information

Physiological and Metabolic Bases for Energy Expenditures. H d E,, Heat of Digestion IE = RE + HE + FE + GE + UE. H d E

Physiological and Metabolic Bases for Energy Expenditures. H d E,, Heat of Digestion IE = RE + HE + FE + GE + UE. H d E Physiological and Metabolic Bases for Energy Expenditures H d E,, Heat of Digestion Nutrition 202 Animal Energetics R. D. Sainz Lecture 06 IE = RE + HE + FE + GE + UE HE = H e E+ H d E+ H r E+ H j E+ H

More information

From genetic to phenotypic trends

From genetic to phenotypic trends From genetic to phenotypic trends Susanne Hermesch Animal Genetics and Breeding Unit, University of New England, Armidale, NSW 2351 Optimal improvement of performance The performance of pigs is influenced

More information

Studies on Some Serum Constituents of Dairy Cows in Saudi Arabia

Studies on Some Serum Constituents of Dairy Cows in Saudi Arabia Scientific Journal of King Faisal University (Basic and Applied Sciences) Vol.9 No.2 1429 (2008) Studies on Some Serum Constituents of Dairy Cows in Saudi Arabia Dept. of Clinical Studies, College of Veterinary

More information

Managing Cows in Early Lactatoin. Glanbia Early Lactation Management

Managing Cows in Early Lactatoin. Glanbia Early Lactation Management Managing Cows in Early Lactatoin Glanbia Early Lactation Management Feed a high NE diet. Monitor BCS max 0.5 loss in 2 months. Monitor MILK PROTEIN %. Early warning system! Correct ration Build up concentrates

More information

Calf Notes.com. happens to the rest of the protein? It s an interesting observation and may provide some insights into the newborn calf s metabolism.

Calf Notes.com. happens to the rest of the protein? It s an interesting observation and may provide some insights into the newborn calf s metabolism. Calf Notes.com Calf Note 168 Where does the protein go? Introduction Colostrum is special stuff. The composition of maternal colostrum (MC) is profoundly different from that of milk; it s so different

More information

Sleeping distance in relation to sexual state

Sleeping distance in relation to sexual state Original article Sleeping distance in relation to sexual state in the Arctic blue fox H Korhonen S Alasuutari 1Fur Farming Research Station, Agricultural Research Centre of Finland, SF 69100 Kannus; 2Muddusjarvi

More information

Physiology of hibernation,

Physiology of hibernation, Physiology of hibernation, aestivation and diapause. BIOS 0903A; Gr. A BAT This is a specialized type of adipose tissue often reddish brown BAT receive a rich supply of blood vessels and are well innervated

More information

MANAGING THE DAIRY COW DURING THE DRY PERIOD

MANAGING THE DAIRY COW DURING THE DRY PERIOD Department of Animal Science MANAGING THE DAIRY COW DURING THE DRY PERIOD Dairy Cattle Production 342-450A Page 1 of 11 Background The dry period is a critical period for the health, production and reproduction

More information

The Influence of Amaferm on Swine Breeding Performance. Thesis. Partial Fulfillment of Requirements for Undergraduate Research Distinction

The Influence of Amaferm on Swine Breeding Performance. Thesis. Partial Fulfillment of Requirements for Undergraduate Research Distinction The Influence of on Swine Breeding Performance Thesis Partial Fulfillment of Requirements for Undergraduate Research Distinction By Melinda Blake Hess The Ohio State University 2014 Project Advisor: Dr.

More information

Nutrient Requirements of Beef Cattle E-974

Nutrient Requirements of Beef Cattle E-974 Nutrient Requirements of Beef Cattle E-974 Department of Animal Science Oklahoma Cooperative Extension Service Division of Agricultural Sciences and Natural Resources Oklahoma State University David Lalman

More information

Nutrition and Parturition Date Effects on Elk: Potential Implications for Research and Management

Nutrition and Parturition Date Effects on Elk: Potential Implications for Research and Management Cook et al. 1 Nutrition and Parturition Date Effects on Elk: Potential Implications for Research and Management John G. Cook 1, Bruce K. Johnson, Rachel C. Cook, Robert A. Riggs, Tim DelCurto, Larry D.

More information

Nutritional Condition Indices for Elk: The Good (and Less Good), The Bad, and The Ugly

Nutritional Condition Indices for Elk: The Good (and Less Good), The Bad, and The Ugly Cook et al. 1 Nutritional Condition Indices for Elk: The Good (and Less Good), The Bad, and The Ugly Rachel C. Cook 1, John G. Cook, Dennis L. Murray, Pete Zager, Bruce K. Johnson, and Michael W. Gratson

More information

Basic Requirements. Meeting the basic nutrient requirements

Basic Requirements. Meeting the basic nutrient requirements Basic Requirements It is imperative that cattle producers have an adequate understanding of the basic nutrient requirements of the cow herd to make informed and effective nutrition-related decisions. Meeting

More information

Veterinary Science Preparatory Training for the Veterinary Assistant. Floron C. Faries, Jr., DVM, MS

Veterinary Science Preparatory Training for the Veterinary Assistant. Floron C. Faries, Jr., DVM, MS Veterinary Science Preparatory Training for the Veterinary Assistant Floron C. Faries, Jr., DVM, MS Nutrition & Management of Livestock Floron C. Faries, Jr., DVM, MS Objectives Discuss sources of forages,

More information

L. E. Phillip, M.V. Simpson, E. S. Idziak H and S.F. Kubow*

L. E. Phillip, M.V. Simpson, E. S. Idziak H and S.F. Kubow* Ruminal and metabolic effects of pure lignin in sheep fed low and high fibre diets. L. E. Phillip, M.V. Simpson, E. S. Idziak H and S.F. Kubow* Introduction Previous studies with cattle indicated that

More information

Cortisol (Sheep) ELISA Kit

Cortisol (Sheep) ELISA Kit Cortisol (Sheep) ELISA Kit Catalog Number KA0919 96 assays Version: 03 Intended for research use only www.abnova.com Table of Contents Introduction... 3 Intended Use... 3 Background... 3 Principle of the

More information

Abraxis Progesterone (bovine) ELISA Kit

Abraxis Progesterone (bovine) ELISA Kit Abraxis Progesterone (bovine) ELISA Kit Enzyme immunoassay for the quantitative determination of progesterone in bovine milk/serum/plasma samples PN5081M 96 Tests For Research Use Only. Not for use in

More information

Overwinter changes in urea nitrogenxreatinine and cortisolxreatinine ratios in urine from Banks Island Peary caribou

Overwinter changes in urea nitrogenxreatinine and cortisolxreatinine ratios in urine from Banks Island Peary caribou The Eight North American Caribou Workshop, Whitehorse, Yukon, Canada, 20-24 April, 1998. Overwinter changes in urea nitrogenxreatinine and cortisolxreatinine ratios in urine from Banks Island Peary caribou

More information

Influenze ed effetti di CRYSTALYX sul metabolismo ruminale. Gerald Krabbe, Product Manager CRYSTALYX Products GmbH

Influenze ed effetti di CRYSTALYX sul metabolismo ruminale. Gerald Krabbe, Product Manager CRYSTALYX Products GmbH Influenze ed effetti di CRYSTALYX sul metabolismo ruminale Gerald Krabbe, Product Manager CRYSTALYX Products GmbH Contents What is CRYSTALYX? Successful international brand Mode of production Mode

More information

BEC FEED SOLUTIONS NEW ZEALAND Ltd

BEC FEED SOLUTIONS NEW ZEALAND Ltd BEC FEED SOLUTIONS NEW ZEALAND Ltd Proudly sponsor Dr Alessandro Mereu Yara Feed Phosphates July 2017 NZARN Meeting www.becfeed.co.nz Phosphorus metabolism in cattle: principles and interactions with Ca

More information

A Factorial Approach to Energy Supplementation for Grazing Beef Cattle

A Factorial Approach to Energy Supplementation for Grazing Beef Cattle A Factorial Approach to Energy Supplementation for Grazing Beef Cattle Matt Hersom 1 Extension Beef Cattle Specialist Department of Animal Sciences University of Florida Introduction Beef cattle production

More information

P R O D U C T R A N G E

P R O D U C T R A N G E DAIRY & BEEF P R O D U C T R A N G E Drinagh Drinagh manufactures a wide range of high quality feeds under the well known Score Drinagh Feeds brand. Accredited to the UFAS scheme our milling operation

More information

Usmc BYPASS PROTEIN SOURCES TO MINIMIZE SUPPLEMENTATION COSTS

Usmc BYPASS PROTEIN SOURCES TO MINIMIZE SUPPLEMENTATION COSTS Usmc BYPASS PROTEIN SOURCES TO MINIMIZE SUPPLEMENTATION COSTS M. & Petersen, L A Appeddu-Richards, S. Serra%o-Corona, L. Knax D. Hawkins and G. Donart Introduction Protein supplementation has been demonstrated

More information

WHY STUDY THE MAMMARY GLAND AND MILK SECRETION?

WHY STUDY THE MAMMARY GLAND AND MILK SECRETION? WHY STUDY THE MAMMARY GLAND AND MILK SECRETION? 1. Greater knowledge allows us to alter environment, nutrition, milking procedures, or general management to maximize production WHY STUDY THE MAMMARY GLAND

More information

Understanding Forage Intake in Range Animals

Understanding Forage Intake in Range Animals L-5152 1-99 Understanding Forage Intake in Range Animals Robert K. Lyons, Rick Machen, and T.D.A. Forbes* Forage quality influences the performance of range livestock and wildlife, and it is often assumed

More information

Protein & Amino Acid Metabolism

Protein & Amino Acid Metabolism Pathophysiology 101-823 Unit 4 Metabolism & Metabolic Disease Protein & Amino Acid Metabolism Paul Anderson FALL 2008 Learning Objectives 1. List the metabolic functions of proteins & amino acids. 2. Explain

More information

Chapter 11: Range Animal Nutrition

Chapter 11: Range Animal Nutrition Chapter 11: Range Animal Nutrition 1. Nutritional Components of Forages a. Protein b. Energy c. Phosphorus d. Vitamin A 2. Comparative Nutrition of Forages a. Grasses b. Forbs c. Shrubs 3. Comparative

More information

TESTING SEXUAL SEGREGATION AND AGGREGATION: OLD WAYS ARE BEST

TESTING SEXUAL SEGREGATION AND AGGREGATION: OLD WAYS ARE BEST Ecology, 88(12), 2007, pp. 3202 3208 Ó 2007 by the Ecological Society of America TESTING SEXUAL SEGREGATION AND AGGREGATION: OLD WAYS ARE BEST CHRISTOPHE BONENFANT, 1 JEAN-MICHEL GAILLARD, STE PHANE DRAY,

More information

28. Ketosis and Urea Poisoning

28. Ketosis and Urea Poisoning Module 4 Nutrition Management for Grazing Animals Learning objectives 28. Ketosis and Urea Poisoning On completion of this topic you should be able to: John Nolan Describe the management strategies available

More information

Beef Cattle Handbook

Beef Cattle Handbook Beef Cattle Handbook BCH-5450 Product of Extension Beef Cattle Resource Committee Adapted from the Cattle Producer s Library Formulating Supplements Roger Brownson, Extension Beef Cattle Specialist, Montana

More information

Animal Industry Report

Animal Industry Report Animal Industry Report AS 653 ASL R2200 2007 Acute Effects of Postpartal Subcutaneous Injection of and/or Oral Administration of on Blood Metabolites and Hormones and Liver Lipids and Glycogen of Holstein

More information

Dry Cow Nutrition. Jersey conference Brazil

Dry Cow Nutrition. Jersey conference Brazil Dry Cow Nutrition Jersey conference Brazil Energy Dairy Cow Lactation Cycle Early Lactation Mid Lactation Late Lactation Dry Period Dry Matter Intake Milk Production Body Energy Reserves Calving BCS 3.5

More information

Dietary Supplements: A Necessity or Folly?

Dietary Supplements: A Necessity or Folly? Dietary Supplements: A Necessity or Folly? Presenter: Dr. Robert Van Saun Professor of Veterinary Science Penn State University September 22, 2015 Host/Moderator: Jay Parsons This webinar is made possible

More information

Serosurvey of three virus infections in reindeer in northern Norway and Svalbard

Serosurvey of three virus infections in reindeer in northern Norway and Svalbard Serosurvey of three virus infections in reindeer in northern Norway and Svalbard S. Stuen 1, J. Krogsrud 2, B., Hyllseth 3 and N. J. C. Tyler 4 } Centre of Veterinary Medicine, N-9005 Tromsø, Norway. 2

More information

CHANGES IN SERUM LEPTIN LEVELS DURING FASTING AND FOOD LIMITATION IN STELLER SEA LIONS

CHANGES IN SERUM LEPTIN LEVELS DURING FASTING AND FOOD LIMITATION IN STELLER SEA LIONS CHANGES IN SERUM LEPTIN LEVELS DURING FASTING AND FOOD LIMITATION IN STELLER SEA LIONS (EUMETOPIAS JUBATUS). Lorrie D. Rea * 1 Tim R. Nagy 2 1 Department of Biology, University of Central Florida, Orlando,

More information

COMPARISON OF ALBUMIN MEASUREMENTS BY ELECTROPHORESIS AND THE BROMOCRESOL GREEN METHOD IN CHICKEN PLASMA

COMPARISON OF ALBUMIN MEASUREMENTS BY ELECTROPHORESIS AND THE BROMOCRESOL GREEN METHOD IN CHICKEN PLASMA ZEBRA GRANT PROJECT COMPARISON OF ALBUMIN MEASUREMENTS BY ELECTROPHORESIS AND THE BROMOCRESOL GREEN METHOD IN CHICKEN PLASMA First published in the BVZS ZooMed Bulletin, March 2007 Shona Haydon This project

More information

Introduction to MUN. What is Urea

Introduction to MUN. What is Urea Introduction to MUN What is Urea Urea is a small organic molecule composed of carbon, nitrogen, oxygen, and hydrogen. Urea is a common constituent of blood and other body fluids. Urea is formed from ammonia

More information

Animal Science: Isotopes and Nuclear Techniques

Animal Science: Isotopes and Nuclear Techniques Animal Science: Isotopes and Nuclear Techniques by John E. Vercoe In many regions of the world, animal production is limited by poor growth, reproductive performance and milk output of livestock, thus

More information

Faecal sampling as a non-invasive population monitoring and management method for reindeer and caribou. C-Jae C. Morden

Faecal sampling as a non-invasive population monitoring and management method for reindeer and caribou. C-Jae C. Morden Faecal sampling as a non-invasive population monitoring and management method for reindeer and caribou C-Jae C. Morden A Thesis in The Department of Biology Presented in Partial Fulfillment of the Requirements

More information

Determining the Cost-Effectiveness of Treating Subclinical Ketosis in Dairy Cows. Honors Research Thesis

Determining the Cost-Effectiveness of Treating Subclinical Ketosis in Dairy Cows. Honors Research Thesis Brown 1 Determining the Cost-Effectiveness of Treating Subclinical Ketosis in Dairy Cows Honors Research Thesis Presented in Partial Fulfillment of the Requirements for Graduation with Honors Research

More information

Using Models on Dairy Farms How Well Do They Work? Larry E. Chase, Ph. D. Cornell University

Using Models on Dairy Farms How Well Do They Work? Larry E. Chase, Ph. D. Cornell University Using Models on Dairy Farms How Well Do They Work? Larry E. Chase, Ph. D. Cornell University Email: lec7@cornell.edu INTRODUCTION The use of computer models as a tool used by nutritionists to evaluate

More information

Supplemental Rumen-Protected Choline and Methionine for Lactating Dairy Cows. J. Engel, M.L. Eastridge, and C.V.D.M. Ribeiro

Supplemental Rumen-Protected Choline and Methionine for Lactating Dairy Cows. J. Engel, M.L. Eastridge, and C.V.D.M. Ribeiro Supplemental Rumen-Protected Choline and Methionine for Lactating Dairy Cows J. Engel, M.L. Eastridge, and C.V.D.M. Ribeiro The Ohio State University, Columbus, OH 2 Abstract The purpose of the experiment

More information

The role of males in the dynamics of ungulate populations

The role of males in the dynamics of ungulate populations Ecology 2002 71, Blackwell Oxford, JANIM Journal 0021-8790 British 11 71 6Review Males A. 2002 Mysterud, and Ecological Article of UK Science, Animal population T. Coulson Society, Ltd Ecology dynamics

More information

EFFECTS OF SUB-LETHAL DOSES OF UREA ON PREGNANT CATTLE

EFFECTS OF SUB-LETHAL DOSES OF UREA ON PREGNANT CATTLE EFFECTS OF SUB-LETHAL DOSES OF UREA ON PREGNANT CATTLE J. W. RYLEY* and R. J. W. GARTNER* Summary Six pregnant cows received, by injection into the rumen, 0.20 to 0.30 g urea/kg body-weight at 104 to 148

More information

Five-day Resynch Programs in Dairy Cows Including Controlled Internal Drug Release at Two Stages Post- Artificial Insemination

Five-day Resynch Programs in Dairy Cows Including Controlled Internal Drug Release at Two Stages Post- Artificial Insemination Five-day Resynch Programs in Dairy Cows Including Controlled Internal Drug Release at Two Stages Post- Artificial Insemination S. L. Pulley, S. L. Hill, and J. S. Stevenson Summary Two experiments were

More information

Sexual size dimorphism in garter snakes (Thamnophis sirtalis), water snakes. (Nerodia sipedon) and black ratsnakes (Elaphe obsoleta) Karen Elgee

Sexual size dimorphism in garter snakes (Thamnophis sirtalis), water snakes. (Nerodia sipedon) and black ratsnakes (Elaphe obsoleta) Karen Elgee Sexual size dimorphism in garter snakes (Thamnophis sirtalis), water snakes (Nerodia sipedon) and black ratsnakes (Elaphe obsoleta) By Karen Elgee Thesis submitted to the Department of Biology in partial

More information

Setting Yourself Up for Success with Amino Acid Balancing

Setting Yourself Up for Success with Amino Acid Balancing Setting Yourself Up for Success with Amino Acid Balancing Jessica Tekippe 1 Ajinomoto Heartland Inc. Introduction - Why Protein Nutrition is Important Of the nitrogen fed to dairy cows, only 21 to 38 percent

More information

Relationships of Scrotal Circumference to Puberty and Subsequent Reproductive Performance in Male and Female Offspring

Relationships of Scrotal Circumference to Puberty and Subsequent Reproductive Performance in Male and Female Offspring Relationships of Scrotal ircumference to uberty and Subsequent Reproductive erformance in Male and Female Offspring J.S. Brinks olorado State University, Fort ollins Reproductive efficiency, obtained through

More information

Forage Quality and Livestock Nutrition on Pasture. Patrick Davis, Ph. D. Johnson County MU Extension Livestock Specialist

Forage Quality and Livestock Nutrition on Pasture. Patrick Davis, Ph. D. Johnson County MU Extension Livestock Specialist Forage Quality and Livestock Nutrition on Pasture Patrick Davis, Ph. D. Johnson County MU Extension Livestock Specialist Topics Ruminant Nutrition Factors Effecting Forage Quality Nutrient requirements

More information

Economics and Effects of Accelerated Calf Growth Programs

Economics and Effects of Accelerated Calf Growth Programs Economics and Effects of Accelerated Calf Growth Programs A. J. Heinrichs 1 and S.L. Gelsinger Department of Animal Science, The Pennsylvania State University Introduction Feeding the dairy calf and heifer

More information

Utah State Jr. Livestock Show Knowledge Test 2017 Senior. Name: County: Score:

Utah State Jr. Livestock Show Knowledge Test 2017 Senior. Name: County: Score: Utah State Jr. Livestock Show Knowledge Test 2017 Senior Name: County: Score: True or False - Please circle the correct answer: 1. True or False: High birth weight in calves is always good. -BF 6 2. True

More information