Objectives Making CYP450, Drug Interactions, & Pharmacogenetics Easy

Size: px
Start display at page:

Download "Objectives Making CYP450, Drug Interactions, & Pharmacogenetics Easy"

Transcription

1 Objectives Making, Drug Interactions, & Pharmacogenetics Easy Anthony J. Busti, MD, PharmD, FNLA, FAHA Describe the differences between phase I and phase II metabolic pathways. Identify the most common drug metabolizing s. Recall the influx and efflux cell membrane transporters involved in drug distribution and elimination. Describe what a single nucleotide genetic polymorphism is and how it can influence drug efficacy and safety. 2 Outline Background Information Variables That Make Up Drug Interactions The Role of Pharmacogenetics Why is this Topic Important? Every patient is unique: Age Gender Weight Ethnicity and/or Genetics (i.e. pharmacogenetics ) Smoking & Drinking Status Presence of 1 or more disease states in various combinations (especially if they affect renal & liver function) Presence of more than 1 medication to manage most problems 3 4 Why is this Topic Important? We, the healthcare system and medications are DANGEROUS: Institute of Medicine (IOM) Report, To Err is Human: Building a Safer Health System 770,000 hospitalized patients in America alone are likely to experience an adverse drug event (ADE). Prescribing errors per order occurred at rates of 0.6 to 53 per 1,000 orders Errors of omission (i.e. not giving patients necessary and appropriate medications) Institute of Medicine The Literature & Drug Interactions Population Estimate Reference All adults from large HMO Hospitalized patients at time of discharge Veterans Affairs outpatients Elderly patients hospitalized for drug toxicity 3.5% per year for significant DDI 60% had at least 1 DDI; 6.5% were severe 2.15% overall prevalence 14.7 % hospitalized within 1 week of interaction drug addition Solberg et al Egger et al Mahmood et al Juurlink

2 Why is this Topic Important? How do we fix this and become safer? Move beyond fact or guideline driven memorization towards a true scientific and evidenced based understanding of how drugs affect our patients. Institute of Medicine, At the beginning of the medication use process, prescribers often lack sufficient knowledge about how the drugs they are prescribing will work in specific patient populations. If the balance of medication risks and benefits is not known...it is impossible to say whether medication use is safe. Improving medication use and reducing errors, therefore, requires improving the quality of information generated by the pharmaceutical industry and other researchers regarding drug products and their use in clinical practice. Why is this Subject Important? How do we fix this and become safer? Stay up to date on: New Drug Approvals & Indications Drug Alerts, Warnings and News Updates to Treatment Guidelines Continuing education Attend professional conferences & meetings Staying committed to Life Long Learning Institute of Medicine Outline Background Information Variables That Make Up Drug Interactions Metabolism Movement & Distribution Genetic Polymorphisms The Role of Pharmacogenetics Basics of Drug Metabolism Drug Metabolism: Purpose: To make active (or) inactive metabolites Make drug molecules more water soluble for easier elimination Locations: Liver Intestines Kidneys 9 10 Pathways of Drug Elimination Variables in Drug Interactions Biliary Metabolism (Enzyme Pathways) Distribution (Cell Membrane Transporters) Renal Metabolic Phase I (Oxidation/Reduction) Phase II (Conjugation) Influx (Moves Into Cells) Efflux (Moves Out of Cells) 1A2 2C9 2D6 3A4 Glucuronidation Sulfation Acetylation Methylation Glutathione OAT OCT OATPB NTCP BCRP MRP P gp Williams J et al. Drug Metab Disp 2004;32:

3 Pathways of Drug Elimination Esterase FMO UGT 35% Williams J et al. Drug Metab Disp 2004;32: NAT MAO FMO = flavin monooxygenase MAO = monoamine oxidase NAT = n-acetyltransferase UGT = Uridine glucuronosyltransferase 13 Drug Metabolism Phase I Metabolism: Oxidation / Reduction Reactions by s Found in the liver (mainly), intestine, lungs & kidneys. Purpose is for microsomal () s to give/add a functional group to the drug molecule in preparation for phase II metabolism and/or elimination. Those functional groups are: COOH OH NH2 SH Metabolite can be active or inactive 14 Drug Metabolism Phase I Metabolism: s (e.g., 3A4) First number is the Family = 3 The letter is the subfamily = A» The last number is the s in that sub system = 4 Most common: CYP2B6 (3% of meds) CYP2E1 (4% of meds) CYP2C19 (8% of meds) CYP1A2 (11% of meds) CYP2C9 (16% of meds) CYP2D6 (19% of meds) CYP3A4 (36% of meds) Phase I Metabolism Drug A (substrate) Drug A Metabolite 17 18

4 Drug Interactions Drug Interactions Drug B (Substrate) COMPETITIVE (or) REVERSIBLE INHIBITOR Drug A (substrate) Drug B (substrate) COMPETITIVE (or) REVERSIBLE INHIBITOR Drug B Metabolite (vs) Drug A Metabolite Drug A (substrate) Drug B NONCOMPETITIVE Drug A Metabolite Drug Interactions Enzymes & Genetics Drug B = INDUCER Drug A (substrate) Drug A Metabolite Drug A Metabolite In patient with genetic polymorphism to Enzyme Drug A (substrate) Drug A Metabolite Drug A Metabolite Normal functioning Abnormal functioning Phase I (Oxidation/Reduction) 1A2 2C9 2D6 3A4 Variables in Drug Interactions Metabolism (Enzyme Pathways) Phase II (Conjugation) Glucuronidation Sulfation Acetylation Methylation Glutathione Distribution (Cell Membrane Transporters) Influx (Moves Into Cells) OAT OCT OATPB NTCP Efflux (Moves Out of Cells) BCRP MRP P gp Conjugation and Drug Interactions Phase II Metabolism: Conjugation reactions that add a compound to the drug to increase hydrophilicity Almost always inactive metabolites. Glucuronidation (e.g., via UDP glucuronosyltransferases; UGT1A1) Sulfation: sulfotransferases (SULT) Acetylation: N acetyltransferase (NAT) Glutathione conjugation Methylation methyltransferase (MT) 23 24

5 UGT Enzymes UGT1A10 UGT1A3 UGT1A6 UGT1A6 UGT2B7 UGT1A8 UGT1A4 UGT1A1 Williams J et al. Drug Metab Disp 2004;32: Summary of Drug Metabolism Type of Drug Metabolism Type of Reaction Enzyme names Metabolite Most common Phase I Oxidation/Reduction (modifies structure) Active or inactive; less lipophilic or more hydrophilic CYP3A4 Phase II Conjugation (adds a functional group) UGT, SULT, NAT, MT Almost always inactive & more hydrophilic UGT Subject to genetic polymorphisms? Yes Yes Variables in Drug Interactions Metabolism (Enzyme Pathways) Distribution (Cell Membrane Transporters) Phase I (Oxidation/Reduction) Phase II (Conjugation) Influx (Moves Into Cells) Efflux (Moves Out of Cells) 1A2 2C9 2D6 3A4 Glucuronidation Sulfation Acetylation Methylation Glutathione OAT OCT OATPB NTCP BCRP MRP P gp 29 30

6 31 32 Outline Background Information Variables That Make Up Drug Interactions The Role of Pharmacogenetics Genetics Background Human Genome Project completed in 2003 Make up of DNA: Nucleotides: Purines = adenine and guanine Pyrimidines = cytosine, thymine Nucleotides in a specific sequence or order; codon The sequence of nucleotides can influence gene transcription, translation, and/or the final product made (e.g., protein) Every 3 nucleotides (i.e., codon ) code for a specific amino acid which makes up the primary structure of a protein What largely makes us different is due to variations in this sequence. These are what we call SNPs 35 36

7 What is a SNP SNP = single nucleotide polymorphism 1 nucleotide in the sequence of our DNA is changed to another nucleotide. This single change can significantly change the expression of a gene where this change took place or the final product from that gene. How is this notated? E.g., CYP2C19*3 (G636A) W212X Defining a SNP Clinical Application of CYP2C19*3 CYP2C19*3 (G636A) W212X At nucleotide position 636 there is a change in the nucleotide present going from a guanine (G) to adenine (A). This results in a change in the genetic code where the gene would normally place the amino acid tryptophan (W) in position 212 of the amino acid sequence, but now abnormally places a termination sequence of the gene expression at that point. Note the italics in the name vs. CYP2C19 This results in the failure to complete the expression for that gene and thus compromises the final protein product made. In this SNP, CYP2C19 is non functional and this is not active. So what? How cares? Clinical Application of CYP2C19*3 Clinical Application of CYP2C19*

8 Anticoagulants: Warfarin Warfarin Pharmacodynamics: VKORC1 Genetic Characteristics: Located at 16q11.2 5,139 bp Several well known SNPs 44 Warfarin Pharmacodynamics: VKORC1 Warfarin Pharmacokinetics: CYP2C9 Allele SNP Location Activity Expression VKORC1 Wild type 16p11.2 Normal Normal VKORC1*2 C6484T (1173C/T) Intron 1 mrna VKORC1*2 G3673A( 1639G/A) Promoter mrna VKORC1*3 G9041A (3730G/A) 3 UTR mrna VKORC1*3 A8026G Intron 2 mrna VKORC1*4 C6009T Intron mrna Genetic Characteristics: Major Pathway (phase I) for s warfarin: Metabolites: 7 OH warfarin (major) 6 OH warfarin (minor) Minor Pathway for r warfarin via mainly CYP1A1/2, 3A4: Metabolites: 6 OH warfarin 8 OH warfarin 10 OH warfarin Limdi NA et al. Pharmacotherapy. 2008;28(9): Dickman LJ et al. Mol Pharmacol. 2001;60(2): Reider MJ et al. N Engl J Med. 2005;352: Williams PA et al. Nature. 2003;424: Petitpas I et al. J Biol Chem. 2001;276: Warfarin Pharmacokinetics: CYP2C9 Genetic Characteristics: Located at 10q ,720 bp Several well known single nucleotide polymorphisms (SNP) Warfarin Pharmacokinetics: CYP2CP Allele SNP Location Activity Km Vmax CYP2C9*1 Wild type 10q24.1 Normal 28 M 0.22 M CYP2C9*2 R144C (3608C T) Exon 3 CYP2C9*3 I359L (42614A C) Exon 7 CYP2C9*5 D360E (42619C G) Exon 7 CYP2C9* delA (818delA) Exon 5 Null CYP2C9*11 R335W (1003C T) Exon 7 YAC BAC/BAC Chromosome/ideograms/16.html 47 (see drug tables) Limdi NA et al. Pharmacotherapy. 2008;28(9): Dickman LJ et al. Mol Pharmacol. 2001;60(2): Reider MJ et al. N Engl J Med. 2005;352:

9 Abacavir (Ziagen) Abacavir (Ziagen) NRTI for the treatment of HIV infection 8% of patients will experience a hypersensitivity reaction within the first 6 weeks of therapy. Have 2 or more of the following reactions: fever, rash, GI (N/V/D), constitutional symptoms (malaise, fatigue) and/or respiratory symptoms (dyspnea). If it occurs, you must stop abacavir and never use it again. Why do only 8% of patients get this and who is at risk? Abacavir (Ziagen) Abacavir (Ziagen) 51 US Dept HHS Guidelines. Jan. 10, Abacavir (Ziagen) Carbamazepine Marketed Names: Carbatrol Equetro Tegretol Uses/Indications: Epilepsy Trigeminal neuralgia Bipolar disorder 53 54

10 Carbamazepine Side Effects: The most concerning side effect is the development of serious and life threatening skin reactions such as toxic epidermal necrolysis (TEN) and Stevens Johnson Syndrome (SJS). The risk is 10 fold higher in certain people of Asian decent (specifically the Han Chinese; including other countries other than Taiwan) Carbamazepine HLA B*1502 genetic polymorphism: HLA = human leukocyte antigen Class I MHC are found on cells and present antigens to cytotoxic CD8+ T lymphocytes (or Natural Killer cells) If these cytotoxic CD8+ T Lymphocytes see this antigen present by our normal cells as non self then will attack and kill those cells. Prevention: Screen in high risk patients. Treatment: Stop the med, consider admission to burn unit or definitely an ICU. Drug therapy can include: corticosteroids, cyclosporin, or IVIG. Summary Background Information Drug Interactions are a problem Variables That Make Up Drug Interactions Metabolism Phase I = s Phase II = Conjugative s Distribution & Elimination Influx and Efflux Cell Membrane Transporters The Role of Pharmacogenetics 57 58

Genetics and Genomics: Influence on Individualization of Medication Regimes

Genetics and Genomics: Influence on Individualization of Medication Regimes Genetics and Genomics: Influence on Individualization of Medication Regimes Joseph S Bertino Jr., Pharm.D., FCCP Schenectady, NY USA Goals and Objectives To discuss pharmacogenetics and pharmacogenomics

More information

Variability Due to Genetic Differences

Variability Due to Genetic Differences 1 Variability Due to Genetic Differences Nick Holford Dept Pharmacology & Clinical Pharmacology University of Auckland 2 Objectives Understand how between individual variation may contribute to :» drug

More information

Pharmacogenomics and Pharmacokinetics ^

Pharmacogenomics and Pharmacokinetics ^ Pharmacogenomics and Pharmacokinetics ^ avid F. Kisor, B.S., Pharm.. Profeor of Pharmacokinetics epartment of Pharmaceutical and Biomedical Sciences Raabe College of Pharmacy Ohio Northern University Learning

More information

Comparison Between the US FDA, Japan PMDA and EMA In Vitro DDI Guidance: Are we Close to Harmonization?

Comparison Between the US FDA, Japan PMDA and EMA In Vitro DDI Guidance: Are we Close to Harmonization? Comparison Between the US FDA, Japan PMDA and EMA In Vitro DDI Guidance: Are we Close to Harmonization? Brian Ogilvie, Ph.D. VP Scientific Consulting XenoTech, LLC bogilvie@xenotechllc.com 14 Jun, 2018

More information

Tailoring Drug Therapy Based on Genotype. Larisa H. Cavallari, Pharm.D. Associate Professor, Department of Pharmacy Practice

Tailoring Drug Therapy Based on Genotype. Larisa H. Cavallari, Pharm.D. Associate Professor, Department of Pharmacy Practice Tailoring Drug Therapy Based on Genotype Larisa H. Cavallari, Pharm.D. Associate Professor, Department of Pharmacy Practice University of Illinois at Chicago 833 S. Wood St., Rm 164 Chicago, IL 60612 Tel:

More information

Chapter 4. Drug Biotransformation

Chapter 4. Drug Biotransformation Chapter 4 Drug Biotransformation Drug Biotransformation 1 Why is drug biotransformation necessary 2 The role of biotransformation in drug disposition 3 Where do drug biotransformation occur 4 The enzymes

More information

The importance of pharmacogenetics in the treatment of epilepsy

The importance of pharmacogenetics in the treatment of epilepsy The importance of pharmacogenetics in the treatment of epilepsy Öner Süzer and Esat Eşkazan İstanbul University, Cerrahpaşa Faculty of Medicine, Department of Pharmacology and Clinical Pharmacology Introduction

More information

2/28/2010. Pharmacogenomics and the Asian Population. Limited efficacy/response to drugs already on the market

2/28/2010. Pharmacogenomics and the Asian Population. Limited efficacy/response to drugs already on the market Pharmacogenomics and the Asian Population Majority are medication related Alan H.B. Wu, Ph.D. Professor, Laboratory Medicine, UCSF Section Chief, Clinical Chemistry, February 27, 20 Limited efficacy/response

More information

Application of Pharmacogenetics Supplementary Worksheet

Application of Pharmacogenetics Supplementary Worksheet Application of Pharmacogenetics Supplementary Worksheet Section 1 Health Care Problem Section 2 Drug Metabolism Section 3 Phase I & II metabolism Section 4 Inhibitors and Inducers Section 5 DNA & Drug

More information

Controlling ADME through Chemical Design. Marty Mulvihill Chris Vulpe

Controlling ADME through Chemical Design. Marty Mulvihill Chris Vulpe Controlling ADME through Chemical Design Marty Mulvihill Chris Vulpe ADME Chemical Processes in ADME Wang and Skolnik, Chemistry and Biodiversity, 2009, 1887. Controlling toxicity through ADME Toward molecular

More information

Genetic Screening for ADR

Genetic Screening for ADR Genetic Screening for ADR Mahidol University Faculty of Medicine Siriraj Hospital Manop Pithukpakorn, MD Division of Medical Genetics Department of Medicine concentration Drug level over time toxic optimum

More information

Falk Symposium 156: Genetics in Liver Disease. Pharmacogenetics. Gerd Kullak-Ublick

Falk Symposium 156: Genetics in Liver Disease. Pharmacogenetics. Gerd Kullak-Ublick Falk Symposium 156: Genetics in Liver Disease Pharmacogenetics Gerd Kullak-Ublick Division of Clinical Pharmacology and Toxicology Department of Internal Medicine University Hospital Zurich Freiburg, 8.

More information

Basic Concepts in Pharmacokinetics. Leon Aarons Manchester Pharmacy School University of Manchester

Basic Concepts in Pharmacokinetics. Leon Aarons Manchester Pharmacy School University of Manchester Basic Concepts in Pharmacokinetics Leon Aarons Manchester Pharmacy School University of Manchester Objectives 1. Define pharmacokinetics 2. Describe absorption 3. Describe distribution 4. Describe elimination

More information

Chapter 9. Biotransformation

Chapter 9. Biotransformation Chapter 9 Biotransformation Biotransformation The term biotransformation is the sum of all chemical processes of the body that modify endogenous or exogenous chemicals. Focus areas of toxicokinetics: Biotransformation

More information

Objectives. Clinical Problem. What if there were a way. Pharmacogenomics in Current Practice MEDICINE 12/1/2017

Objectives. Clinical Problem. What if there were a way. Pharmacogenomics in Current Practice MEDICINE 12/1/2017 Objectives Pharmacogenomics in Current Practice Trinh Pham, PharmD, BCOP Associate Clinical Professor University of Connecticut School of Pharmacy Review the concept of pharmacogenetics and pharmacogenomics

More information

Pharmacogenomics in Current Practice. Trinh Pham, PharmD, BCOP Associate Clinical Professor University of Connecticut School of Pharmacy.

Pharmacogenomics in Current Practice. Trinh Pham, PharmD, BCOP Associate Clinical Professor University of Connecticut School of Pharmacy. Pharmacogenomics in Current Practice Trinh Pham, PharmD, BCOP Associate Clinical Professor University of Connecticut School of Pharmacy Objectives Review the concept of pharmacogenetics and pharmacogenomics

More information

Health economics and drug safety

Health economics and drug safety Health economics and drug safety Professor Dyfrig Hughes FFRPS FBPhS FLSW Centre for Health Economics & Medicines Evaluation Bangor University, Wales @HughesDyfrig ADEs that are not reactions to a medicine

More information

Deliverable 2.1 List of relevant genetic variants for pre-emptive PGx testing

Deliverable 2.1 List of relevant genetic variants for pre-emptive PGx testing GA N 668353 H2020 Research and Innovation Deliverable 2.1 List of relevant genetic variants for pre-emptive PGx testing WP N and Title: WP2 - Towards shared European Guidelines for PGx Lead beneficiary:

More information

Pharmacogenetics of Codeine. Lily Mulugeta, Pharm.D Office of Clinical Pharmacology Pediatric Group FDA

Pharmacogenetics of Codeine. Lily Mulugeta, Pharm.D Office of Clinical Pharmacology Pediatric Group FDA Pharmacogenetics of Codeine Lily Mulugeta, Pharm.D Office of Clinical Pharmacology Pediatric Group FDA 1 Codeine Overview Naturally occurring opium alkaloid Demethylated to morphine for analgesic effect

More information

XTreme 200 Human Liver Microsomes Lot No Human Liver Microsomes Pool of 200 (100 Male and 100 Female) Suspension medium: 250 mm sucrose

XTreme 200 Human Liver Microsomes Lot No Human Liver Microsomes Pool of 200 (100 Male and 100 Female) Suspension medium: 250 mm sucrose XTreme 200 Human Liver Microsomes Lot No. 1710084 Human Liver Microsomes Pool of 200 (100 Male and 100 Female) Suspension medium: 250 mm sucrose H2610 0.5 ml at 20 mg/ml H2620 1.0 ml at 20 mg/ml H2630

More information

Quetiapine Case 1 Warfarin Jose de Leon, MD

Quetiapine Case 1 Warfarin Jose de Leon, MD Quetiapine Case 1 Warfarin 1-23-16 Jose de Leon, MD 1. Quetiapine Case 1 J Clin Psychopharm 1999;19:382-3 http://www.ncbi.nlm.nih.gov/pubmed/10440472 Educational Objectives At the conclusion of this presentation,

More information

Pharmacologic Considerations when using DAAs in Cirrhosis

Pharmacologic Considerations when using DAAs in Cirrhosis Pharmacologic Considerations when using DAAs in Cirrhosis Jennifer J. Kiser, PharmD Assistant Professor University of Colorado Denver 1 st International Workshop on the Optimal Use of DAAs in Liver Transplant

More information

Pharmacogenomics of Medications for Pain and Major Depression: Promise and Peril

Pharmacogenomics of Medications for Pain and Major Depression: Promise and Peril Pharmacogenomics of Medications for Pain and Major Depression: Promise and Peril Geoffrey C. Wall, PharmD, FCCP, BCPS, CGP Professor of Clinical Sciences Drake University College of Pharmacy and Health

More information

Dilantin (phenytoin) ROBERT A. SCHWARTZ

Dilantin (phenytoin) ROBERT A. SCHWARTZ Dilantin (phenytoin) ROBERT A. SCHWARTZ Bailey & Galyen Attorney in Charge, Mass Tort Litigation Managing Attorney, Houston 18333 Egret Bay Blvd., Suite 120 Houston, Texas 77058 Toll Free: (866) 715-1529

More information

Uridine Diphosphate Glucuronosyltransferase 1A1 (UGT1A1) Pharmacogenetic Competency

Uridine Diphosphate Glucuronosyltransferase 1A1 (UGT1A1) Pharmacogenetic Competency Uridine Diphosphate Glucuronosyltransferase 1A1 (UGT1A1) Pharmacogenetic Competency Updated on 7/2015 General Tips for Viewing Material Upon completion of the educational material, close out the presentation

More information

6. DOSE ADJUSTMENTS BASED ON PHARMACOGENETICS OF CYP450 ENZYMES

6. DOSE ADJUSTMENTS BASED ON PHARMACOGENETICS OF CYP450 ENZYMES 6. DOSE ADJUSTMENTS BASED ON PHARMACOGENETICS OF CYP450 ENZYMES Ron H.N. van Schaik Dept. Clinical Chemistry, Erasmus MC, Rotterdam, The Netherlands 6.1 Introduction In today s medicine, drug therapy represents

More information

It the process by which a drug reversibly leaves blood and enter interstitium (extracellular fluid) and/ or cells of tissues.

It the process by which a drug reversibly leaves blood and enter interstitium (extracellular fluid) and/ or cells of tissues. It the process by which a drug reversibly leaves blood and enter interstitium (extracellular fluid) and/ or cells of tissues. Primarily depends on: 1.Regional blood flow. 2.Capillary permeability. 3.Protein

More information

Chemically Reactive Drug Metabolites in Drug Discovery and Development Detection, Evaluation, and Risk Assessment

Chemically Reactive Drug Metabolites in Drug Discovery and Development Detection, Evaluation, and Risk Assessment Chemically Reactive Drug Metabolites in Drug Discovery and Development Detection, Evaluation, and Risk Assessment Pacific Northwest Bio Meeting Seattle, WA, August 14, 2012 Thomas A. Baillie, PhD, DSc

More information

3. Describe how variants in the CYP2C19 gene impact Plavix metabolism. 4. Compare molecular genetic technologies for pharmacogenomics testing

3. Describe how variants in the CYP2C19 gene impact Plavix metabolism. 4. Compare molecular genetic technologies for pharmacogenomics testing UP! UNDERSTANDING PHARMACOGENOMICS (PGX) Robert Pyatt Ph.D., Director Sanford Medical Genetics and Genomics Laboratories and Associate Professor, Dept of Internal Medicine, University of South Dakota April

More information

Implémentation clinique de la pharmacogénétique

Implémentation clinique de la pharmacogénétique Implémentation clinique de la pharmacogénétique Vincent HAUFROID Cliniques Universitaires St Luc Université catholique de Louvain Louvain centre for Toxicology and Applied Pharmacology (LTAP) Pharmacogenetics:

More information

Mycophénolate mofétil

Mycophénolate mofétil Mycophénolate mofétil O OH CH 3 O O-desmethyl O glucosides OH CH 3 OCH 3 CH 3 CYP 3A UGT2B7 C O HO O HO AcMPAG (acyl-glucuronide) ACTIF TOXIQUE O O CH 3 OCH 3 Mycophenolate (MPA) OH COOH UGT enzymes COOH

More information

Warfarin Dosing Using Genetic Information A Model for Hospital Policy Development

Warfarin Dosing Using Genetic Information A Model for Hospital Policy Development Warfarin Dosing Using Genetic Information A Model for Hospital Policy Development Jean Lopategui, MD Director, Molecular Pathology Jean.lopategui@cshs.org Warfarin Pharmacogenomics Part I Background Information

More information

Figure 1. Stepwise approach of treating patients with rheumatoid arthritis.

Figure 1. Stepwise approach of treating patients with rheumatoid arthritis. Establish diagnosis early Document baseline disease activity and damage Estimate prognosis Initiate therapy Begin patient education Start DMARD therapy within 3 months Consider NSAID Consider local or

More information

Imipramine therapy (CYP2D6)

Imipramine therapy (CYP2D6) Imipramine therapy (CYP2D6) Intake Start therapy 1st conc 08:00 2nd conc 3e spiegel 4e spiegel 1 week 1 week 1 week 1 week 1 week 22:00 ~ 50% patients need dose adjustment Imipramine therapy (CYP2D6) Intake

More information

HUMAN BIOTRANSFORMATION. ANDREW PARKINSON, BRIAN W. OGILVIE, BRANDY L. PARIS, TIFFINI N. HENSLEY, and GREG J. LOEWEN XenoTech LLC, Lenexa, KS

HUMAN BIOTRANSFORMATION. ANDREW PARKINSON, BRIAN W. OGILVIE, BRANDY L. PARIS, TIFFINI N. HENSLEY, and GREG J. LOEWEN XenoTech LLC, Lenexa, KS CHAPTER 1 HUMAN BIOTRANSFORMATION ANDREW PARKINSON, BRIAN W. OGILVIE, BRANDY L. PARIS, TIFFINI N. HENSLEY, and GREG J. LOEWEN XenoTech LLC, Lenexa, KS 1.1 INTRODUCTION Biotransformation is the enzyme -

More information

Sections 12.3, 13.1, 13.2

Sections 12.3, 13.1, 13.2 Sections 12.3, 13.1, 13.2 Now that the DNA has been copied, it needs to send its genetic message to the ribosomes so proteins can be made Transcription: synthesis (making of) an RNA molecule from a DNA

More information

Supplemental material to this article can be found at:

Supplemental material to this article can be found at: Supplemental material to this article can be found at: http://dmd.aspetjournals.org/content/suppl/2016/11/07/dmd.116.073411.dc1 1521-009X/45/1/86 108$25.00 http://dx.doi.org/10.1124/dmd.116.073411 DRUG

More information

MODULE No.26: Drug Metabolism

MODULE No.26: Drug Metabolism SUBJECT Paper No. and Title Module No. and Title Module Tag PAPER No. 9: Drugs of Abuse MODULE No. 26: Drug Metabolism FSC_P9_M26 TABLE OF CONTENTS 1. Learning Outcomes 2. Introduction 3. Sites of Drug

More information

Page 61 PHARMACOGENETIC AND TUMOUR DRUGS. Table 1. Genetic polymorphisms known to affect responses to anticancer drugs.

Page 61 PHARMACOGENETIC AND TUMOUR DRUGS. Table 1. Genetic polymorphisms known to affect responses to anticancer drugs. PHARMACOGENETIC AND TUMOUR DRUGS polymorphisms known to affect responses to anticancer drugs are presented in Table 1. Table 1. Genetic polymorphisms known to affect responses to anticancer drugs Elizabeta

More information

Two decades of clinical pharmacogenetic testing - Where do we stand?

Two decades of clinical pharmacogenetic testing - Where do we stand? Two decades of clinical pharmacogenetic testing - Where do we stand? Marja-Liisa Dahl, MD PhD, Professor Dept of Clinical Pharmacology Karolinska University Hospital/Karolinska Institutet Stockholm, Sweden

More information

Are health care systems ready to deliver pharmacogenetics as standard of care? Predicting the needs and setting the strategies

Are health care systems ready to deliver pharmacogenetics as standard of care? Predicting the needs and setting the strategies Are health care systems ready to deliver pharmacogenetics as standard of care? Predicting the needs and setting the strategies David Gurwitz Sackler Faculty of Medicine, Tel-Aviv University, Israel OECD,

More information

What Can Be Learned from Recent New Drug Applications? A Systematic Review of Drug

What Can Be Learned from Recent New Drug Applications? A Systematic Review of Drug Title What Can Be Learned from Recent New Drug Applications? A Systematic Review of Drug Interaction Data for Drugs Approved by the U.S. FDA in 2015 Jingjing Yu, Zhu Zhou, Katie H. Owens, Tasha K. Ritchie,

More information

METABOLISM. Ali Alhoshani, B.Pharm, Ph.D. Office: 2B 84

METABOLISM. Ali Alhoshani, B.Pharm, Ph.D. Office: 2B 84 METABOLISM Ali Alhoshani, B.Pharm, Ph.D. ahoshani@ksu.edu.sa Office: 2B 84 Metabolism By the end of this lecture, you should: Recognize the importance of biotransformation Know the different sites for

More information

Table 1 Functional polymorphisms identified by XGEN group, Center for Pharmacogenomics in OSU College of Medicine.

Table 1 Functional polymorphisms identified by XGEN group, Center for Pharmacogenomics in OSU College of Medicine. Table 1 Functional polymorphisms identified by XGEN group, Center for Pharmacogenomics in OSU College of Medicine. Gene Functional polymorphisms or haplotypes identified Functions of polymorphisms or haplotypes

More information

Mental Health DNA Insight WHITE PAPER

Mental Health DNA Insight WHITE PAPER Mental Health DNA Insight WHITE PAPER JULY 2016 Mental Health DNA Insight / White Paper Mental Health DNA Insight Pathway Genomics Mental Health DNA Insight test is aimed to help psychiatrists, neurologists,

More information

Pharmacokinetic drug drug interactions of tyrosine kinase inhibitors: A focus on cytochrome P450, transporters, and acid suppression therapy

Pharmacokinetic drug drug interactions of tyrosine kinase inhibitors: A focus on cytochrome P450, transporters, and acid suppression therapy Received: 1 March 2016 Revised: 4 July 2016 Accepted: 4 July 2016 DOI: 10.1002/hon.2335 REVIEW Pharmacokinetic drug drug interactions of tyrosine kinase s: A focus on cytochrome P450, transporters, and

More information

Nevirapine 200mg Tablet WHOPAR part 4 May 2005 Section 7 updated: May 2016 SUMMARY OF PRODUCT CHARACTERISTICS

Nevirapine 200mg Tablet WHOPAR part 4 May 2005 Section 7 updated: May 2016 SUMMARY OF PRODUCT CHARACTERISTICS SUMMARY OF PRODUCT CHARACTERISTICS 1 1. NAME OF THE MEDICINAL PRODUCT Nevirapine 200mg Tablet. 2. QUALITATIVE AND QUANTITATIVE COMPOSITION Each tablet contains nevirapine 200 mg. For excipients, see section

More information

B. Incorrect! Compounds are made more polar, to increase their excretion.

B. Incorrect! Compounds are made more polar, to increase their excretion. Pharmacology - Problem Drill 04: Biotransformation Question No. 1 of 10 Instructions: (1) Read the problem and answer choices carefully, (2) Work the problems on paper as 1. What is biotransformation?

More information

Transcriptional control in Eukaryotes: (chapter 13 pp276) Chromatin structure affects gene expression. Chromatin Array of nuc

Transcriptional control in Eukaryotes: (chapter 13 pp276) Chromatin structure affects gene expression. Chromatin Array of nuc Transcriptional control in Eukaryotes: (chapter 13 pp276) Chromatin structure affects gene expression Chromatin Array of nuc 1 Transcriptional control in Eukaryotes: Chromatin undergoes structural changes

More information

Toxicant Disposition and Metabolism. Jan Chambers Center for Environmental Health Sciences College of Veterinary Medicine

Toxicant Disposition and Metabolism. Jan Chambers Center for Environmental Health Sciences College of Veterinary Medicine Toxicant Disposition and Metabolism Jan Chambers Center for Environmental Health Sciences College of Veterinary Medicine chambers@cvm.msstate.edu Definitions Disposition Absorption passage across membrane.

More information

Mechanism of Detoxification

Mechanism of Detoxification Mechanism of Detoxification Prof.Dr. Hedef Dhafir El-Yassin 1 Objectives: 1. To list the detoxification pathways 2. To describe detoxification pathways and phases in the liver, 2 3 4 o Xenobiotics are

More information

Clinical Pharmacology of DAA s for HCV: What s New and What s in the Pipeline

Clinical Pharmacology of DAA s for HCV: What s New and What s in the Pipeline Clinical Pharmacology of DAA s for HCV: What s New and What s in the Pipeline Anita Mathias, PhD Clinical Pharmacology, Gilead Sciences 14 th Int. Workshop on Clinical Pharmacology of HIV Therapy April

More information

Drug-Drug Interactions in Psychiatry

Drug-Drug Interactions in Psychiatry Drug-Drug Interactions in Psychiatry John J. Miller, M.D. Medical Director, Brain Health Exeter, NH Acknowledgement Some of the slides used in this presentation were created by Jessica R. Oesterheld, MD.

More information

Cytokrom P450 (CYP) Hepatic Drug Metabolism. Medicines in plasma. Plasma concentration of a medicine. Eva Brittebo Dept Pharmaceutical Biosciences

Cytokrom P450 (CYP) Hepatic Drug Metabolism. Medicines in plasma. Plasma concentration of a medicine. Eva Brittebo Dept Pharmaceutical Biosciences Hepatic Drug Metabolism Eva Brittebo Dept Pharmaceutical Biosciences Background Cytochrome P450 (CYP) Liver metabolism Liver toxicity Inhibition and induction Polymorphism 15-05-13 2 Plasma concentration

More information

Precision Medicine in Mental Health Care

Precision Medicine in Mental Health Care Precision Medicine in Mental Health Care Study PI: David Oslin, MD 11/21/17 Background: Public Health Significance Depression is one of the world s great public health problems At least 1 in 7 Veterans

More information

Valproate Case 1: Pharmacokinetics Jose de Leon, MD

Valproate Case 1: Pharmacokinetics Jose de Leon, MD Valproate Case 1: Pharmacokinetics 2-12-16 Jose de Leon, MD 1. Valproate Case 1 J Clin Psychopharmacology 2009;29:509-11 http://www.ncbi.nlm.nih.gov/pubmed/19745660 Educational Objectives At the conclusion

More information

MEDCHEM 570. First Midterm. January 30, 2015

MEDCHEM 570. First Midterm. January 30, 2015 Name MEDCHEM 570 First Midterm January 30, 2015 Instructions: Exam packet totals 7 pages. The last page has a 5 points extra credit question. If you need additional space for a question go to the back

More information

Cryo Characterization Report (CCR)

Cryo Characterization Report (CCR) Human Cryopreserved Hepatocytes Lot number: HUM4061B Date: October 19, 2014 Cryo Characterization Report (CCR) Lot Overview Qualification Catalog Number Quantity Cryopreserved human hepatocytes, Qualyst

More information

Detox Genomics. Client Name:

Detox Genomics. Client Name: Detox Genomics Client Name: Phase 1 Detoxification TIC DA CYP1A1 CYP1B1(1) CYP1B1(2) CYP2A6 CYP2A6(2) CYP2C9 CYP2C19 CYP2D6 CYP2D6(2) CYP2D6(3) CYP2E1(1) CYP2E1(2) CYP3A4 AT Phase I detoxification is handled

More information

Genomics in patients with Japanese Ancestry

Genomics in patients with Japanese Ancestry Genomics in patients with Japanese Ancestry Yoshiaki Uyama, Ph.D. (PMDA) Visiting Professor, Graduate School of Medicine, Chiba University Visiting Professor, Graduate School of Medicine, Nagoya University

More information

Gan GG Department of Medicine University Malaya Medical Centre Kuala Lumpur

Gan GG Department of Medicine University Malaya Medical Centre Kuala Lumpur Gan GG Department of Medicine University Malaya Medical Centre Kuala Lumpur outline Definitions Genetic polymorphisms and drugs therapy a)warfarin b) Mercaptopurine c) Methotrexate d) Clopidogrel e) others

More information

DILI: Clinical Pharmacology Considerations for Risk Assessment

DILI: Clinical Pharmacology Considerations for Risk Assessment DILI: Clinical Pharmacology Considerations for Risk Assessment Raj Madabushi, PhD Office of Clinical Pharmacology Drug-Induced Liver Injury (DILI) Conference XVII June 06, 2017 Disclaimer: The views expressed

More information

Pharmacogenetics to tailor Drug Exposure and Outcomes in Kidney Transplantation

Pharmacogenetics to tailor Drug Exposure and Outcomes in Kidney Transplantation 2017 BANFF-SCT Joint Scientific Meeting BARCELONA 27-31 March 2017 SCT Plenary 4 Thursday March 30, 2017 Pharmacogenetics to tailor Drug Exposure and Outcomes in Kidney Transplantation Dennis A. Hesselink

More information

Pharmacokinetics Metabolism

Pharmacokinetics Metabolism Pharmacokinetics Metabolism Learning object Know the processes involved in ADME of drugs Know how these processes may affect the action of xenobiotics Appreciate how these processes can affect the outcome

More information

Review of Pharmacogenetic Testing Today

Review of Pharmacogenetic Testing Today Review of Pharmacogenetic Testing Today Gwen McMillin, PhD ARUP Laboratories University of Utah Salt Lake City, Utah A customer says to the pharmacist: "Why does my medication have 40 side effects?" The

More information

Role of metabolism in Drug-Induced Liver Injury (DILI) Drug Metab Rev. 2007;39(1):

Role of metabolism in Drug-Induced Liver Injury (DILI) Drug Metab Rev. 2007;39(1): Role of metabolism in Drug-Induced Liver Injury (DILI) Drug Metab Rev. 2007;39(1):159-234 Drug Metab Rev. 2007;39(1):159-234 Drug Metab Rev. 2007;39(1):159-234 A schematic representation of the most relevant

More information

Genetic Testing for Pharmacogenetics

Genetic Testing for Pharmacogenetics Genetic Testing for Pharmacogenetics MP9479 Covered Service: Yes when meets criteria below Prior Authorization Required: Yes-as shown below (1.0 and 3.0) Additional Information: None Prevea360 Health Plan

More information

RISK FACTORS AND DRUG TO STATIN-INDUCED MYOPATHY

RISK FACTORS AND DRUG TO STATIN-INDUCED MYOPATHY RISK FACTORS AND DRUG INTERACTION PREDISPOSING TO STATIN-INDUCED MYOPATHY Assist. Prof. Dr. Verawan Uchaipichat Clinical Pharmacy Department Khon Kaen University Advanced Pharmacotherapy 2012 Updated d

More information

Right drug. Right dose. Right now. Delivering on the promise and value of personalized prescribing

Right drug. Right dose. Right now. Delivering on the promise and value of personalized prescribing Right drug. Right dose. Right now. Delivering on the promise and value of personalized prescribing 2 Table of Contents Part One: Pharmacogenetics 101...Slides 4-16 Time Requirement: 20 minutes Part Two:

More information

Chapter 6: Estrogen Metabolism by Conjugation

Chapter 6: Estrogen Metabolism by Conjugation Chapter 6: Estrogen Metabolism by Conjugation Rebecca Raftogianis, Cyrus Creveling, Richard Weinshilboum, Judith Weisz The involvement of estrogens in carcinogenic processes within estrogen-responsive

More information

Personalized Prescribing: Using Genetic Testing to Guide Drug and Dose Selection. Lindsay S. Elliott, Pharm.D., CGP

Personalized Prescribing: Using Genetic Testing to Guide Drug and Dose Selection. Lindsay S. Elliott, Pharm.D., CGP Personalized Prescribing: Using Genetic Testing to Guide Drug and Dose Selection Lindsay S. Elliott, Pharm.D., CGP Disclosure I, Lindsay Elliott, am a pharmacy consultant for Genelex Corporation in conducting

More information

Pharmacokinetics for Physicians. Assoc Prof. Noel E. Cranswick Clinical Pharmacologist Royal Children s Hospital Melbourne

Pharmacokinetics for Physicians. Assoc Prof. Noel E. Cranswick Clinical Pharmacologist Royal Children s Hospital Melbourne Pharmacokinetics for Physicians Assoc Prof. Noel E. Cranswick Clinical Pharmacologist Royal Children s Hospital Melbourne The Important Therapeutic Questions What drug? What dose? How long? Drug Dosage

More information

Molecular Biology (BIOL 4320) Exam #2 May 3, 2004

Molecular Biology (BIOL 4320) Exam #2 May 3, 2004 Molecular Biology (BIOL 4320) Exam #2 May 3, 2004 Name SS# This exam is worth a total of 100 points. The number of points each question is worth is shown in parentheses after the question number. Good

More information

Drug Interactions, from bench to bedside

Drug Interactions, from bench to bedside Drug Interactions, from bench to bedside Candidate to Market, The Paterson Institute for Cancer Research, Manchester, UK Michael Griffin PhD Overview of presentation To understand the importance of drug-drug

More information

How Reactive Metabolites Induce an Immune Response that Sometimes Leads to an Idiosyncratic Drug Reaction

How Reactive Metabolites Induce an Immune Response that Sometimes Leads to an Idiosyncratic Drug Reaction How Reactive Metabolites Induce an Immune Response that Sometimes Leads to an Idiosyncratic Drug Reaction Jack Uetrecht, M.D., Ph.D. jack.uetrecht@utoronto.ca It is very difficult to study the mechanisms

More information

How Reactive Metabolites Induce an Immune Response that Sometimes Leads to an Idiosyncratic Drug Reaction

How Reactive Metabolites Induce an Immune Response that Sometimes Leads to an Idiosyncratic Drug Reaction How Reactive Metabolites Induce an Immune Response that Sometimes Leads to an Idiosyncratic Drug Reaction Jack Uetrecht, M.D., Ph.D. jack.uetrecht@utoronto.ca It is very difficult to study the mechanisms

More information

Pharmacokinetic Considerations for Pharmacotherapy in Pregnancy

Pharmacokinetic Considerations for Pharmacotherapy in Pregnancy Pharmacokinetic Considerations for Pharmacotherapy in Pregnancy Dr Jaime Bastian, PharmD Assistant Professor Idaho State University jbastian@pharmacy.isu.edu Learning Objectives Understand the scope of

More information

PHM142 Autoimmune Disorders + Idiosyncratic Drug Reactions

PHM142 Autoimmune Disorders + Idiosyncratic Drug Reactions PHM142 Autoimmune Disorders + Idiosyncratic Drug Reactions 1 Autoimmune Disorders Auto-reactivity: low physiological levels (e.g. tolerance) vs. pathogenic levels 80+ types of autoimmune diseases affect

More information

METABOLISM: PRINCIPLE, METHODS, AND APPLICATIONS

METABOLISM: PRINCIPLE, METHODS, AND APPLICATIONS 3 METABOLISM: PRICIPLE, METHODS, AD APPLICATIOS 3.1 ITRODUCTIO: A OVERVIEW O DRUG METABOLISM I RELATIO TO CLEARACE MEDIATED BY PHASE I, PHASE II, AD PHASE III DRUG-METABOLIZIG EZYMES Drug metabolism occurs

More information

Disclosures. AED Options. Epilepsy Pharmacotherapy: Treatment Considerations with Older AEDs

Disclosures. AED Options. Epilepsy Pharmacotherapy: Treatment Considerations with Older AEDs Epilepsy Pharmacotherapy: Treatment Considerations with Older AEDs BARRY E. GIDAL, PHARMD PROFESSOR SCHOOL OF PHARMACY & DEPT. OF NEUROLOGY Disclosures Speaking honoraria: UCB, Eisai, Sunovion Consultant:

More information

CHAPTER 18: Immune System

CHAPTER 18: Immune System CHAPTER 18: Immune System 1. What are four characteristics of the specific immune system? a. b. c. d. 2. List the two main types of defense mechanisms and briefly describe features of each. 3. Give examples

More information

Predict GENES. Select right drug. Select right dose. Develop new drugs. Non-Response Response Adverse Reaction

Predict GENES. Select right drug. Select right dose. Develop new drugs. Non-Response Response Adverse Reaction Predict Select right drug Select right dose Develop new drugs GENES Non-Response Response Adverse Reaction Phase I: Each Chromosome Has Many Genes Chromosome 12 ~ 1,300 Genes Examples of Personalized Medicines

More information

DEPARTMENT OF PHARMACOLOGY AND THERAPEUTIC UNIVERSITAS SUMATERA UTARA

DEPARTMENT OF PHARMACOLOGY AND THERAPEUTIC UNIVERSITAS SUMATERA UTARA METABOLISME dr. Yunita Sari Pane DEPARTMENT OF PHARMACOLOGY AND THERAPEUTIC UNIVERSITAS SUMATERA UTARA Pharmacokinetic absorption distribution BIOTRANSFORMATION elimination Intravenous Administration Oral

More information

FDA s Clinical Drug Interaction Studies Guidance (2017 Draft Guidance)

FDA s Clinical Drug Interaction Studies Guidance (2017 Draft Guidance) FDA s Clinical Drug Interaction Studies Guidance (2017 Draft Guidance) Kellie S. Reynolds, Pharm.D. Deputy Director, Division of Clinical Pharmacology IV Office of Clinical Pharmacology (OCP) Office of

More information

Montpellier and Nimes University Hospital. 2nd International Workshop on Clinical Pharmacology of Anticancer Drugs Madrid, September the 13th and 14th

Montpellier and Nimes University Hospital. 2nd International Workshop on Clinical Pharmacology of Anticancer Drugs Madrid, September the 13th and 14th Association of NR1I2, CYP3A5 and ABCB1 genetic polymorphisms with variability of temsirolimus pharmacokinetics and toxicity in patients with metastatic bladder cancer Litaty MBATCHI, Matthieu GASSIOT,

More information

Psychiatric Pharmacogenomics: Introduction and Applications

Psychiatric Pharmacogenomics: Introduction and Applications Psychiatric Pharmacogenomics: Introduction and Applications Moises Gaviria, MD Distinguished Professor of Psychiatry University of Illinois at Chicago Medical Director The Institute of Neurobehavioral

More information

A Genetic Test to Screen for Abacavir Hypersensitivity Reactions

A Genetic Test to Screen for Abacavir Hypersensitivity Reactions The Future of Pharmacogenetics in HIV Clinical Care A Genetic Test to Screen for Abacavir Hypersensitivity Reactions Evan Collins & Misty Bath CANAC/ACIIS 15 th Annual Conference Vancouver, BC April 2007

More information

Administer as an intravenous infusion over 35 to 60 minutes (2.1, 2.3) Dilution required prior to administration (2.2)

Administer as an intravenous infusion over 35 to 60 minutes (2.1, 2.3) Dilution required prior to administration (2.2) HIGHLIGHTS OF PRESCRIBING INFORMATION These highlights do not include all the information needed to use EXONDYS 51 safely and effectively. See full prescribing information for EXONDYS 51. EXONDYS 51 (eteplirsen)

More information

Therapeutic Areas. Learning Objectives. Discussion Format. PharmGenEd Clinical Applications of Pharmacogenomics

Therapeutic Areas. Learning Objectives. Discussion Format. PharmGenEd Clinical Applications of Pharmacogenomics PharmGenEd Clinical Applications of Pharmacogenomics Therapeutic Areas Infectious Diseases: abacavir Oncology: trastuzumab Anticoagulation: warfarin Psychiatry: SSRIs Neurology: carbamazepine All copyrighted

More information

Recent experiences to review data from MRCTs and progress of research on ethnic factors. Dr Yoshiaki Uyama

Recent experiences to review data from MRCTs and progress of research on ethnic factors. Dr Yoshiaki Uyama Recent experiences to review data from MRCTs and progress of research on ethnic factors Dr Yoshiaki Uyama (PMDA) Visiting Professor, Graduate School of Advanced Clinical Science, Chiba University Visiting

More information

2/25/2015 PHARMACODYNAMICS OF AGING: NARROWING OF THE THERAPEUTIC INDEX IN THE FACE OF THERAPEUTIC OPPORTUNITY OVERALL PRESCRIBING

2/25/2015 PHARMACODYNAMICS OF AGING: NARROWING OF THE THERAPEUTIC INDEX IN THE FACE OF THERAPEUTIC OPPORTUNITY OVERALL PRESCRIBING Mean # Drugs/Resident 2/25/2015 PHARMACODYNAMICS OF AGING: NARROWING OF THE THERAPEUTIC INDEX IN THE FACE OF THERAPEUTIC OPPORTUNITY Darrell R. Abernethy, M.D., Ph.D. Associate Director for Drug Safety

More information

Evaluation of Drug-Drug Interactions FDA Perspective

Evaluation of Drug-Drug Interactions FDA Perspective Evaluation of Drug-Drug Interactions FDA Perspective Kellie Schoolar Reynolds, Pharm.D. Deputy Director Division of Clinical Pharmacology IV Office of Clinical Pharmacology Office of Translational Sciences

More information

Cytochrome P 450 Unique family of heme proteins present in bacteria, fungi, insects, plants, fish, mammals and primates. Universal oxygenases (oxygen-

Cytochrome P 450 Unique family of heme proteins present in bacteria, fungi, insects, plants, fish, mammals and primates. Universal oxygenases (oxygen- Cytochrome P 450 Biochemistry Department Cytochrome P 450 Unique family of heme proteins present in bacteria, fungi, insects, plants, fish, mammals and primates. Universal oxygenases (oxygen-utilizing

More information

2/26/2015 PHARMACODYNAMICS OF AGING: NARROWING OF THE THERAPEUTIC INDEX IN THE FACE OF THERAPEUTIC OPPORTUNITY

2/26/2015 PHARMACODYNAMICS OF AGING: NARROWING OF THE THERAPEUTIC INDEX IN THE FACE OF THERAPEUTIC OPPORTUNITY PHARMACODYNAMICS OF AGING: NARROWING OF THE THERAPEUTIC INDEX IN THE FACE OF THERAPEUTIC OPPORTUNITY Darrell R. Abernethy, M.D., Ph.D. Associate Director for Drug Safety Office of Clinical Pharmacology

More information

Involvement of CYP2C8 and UGT1A9 in the metabolism of a novel gastroprokinetic agent, Z-338

Involvement of CYP2C8 and UGT1A9 in the metabolism of a novel gastroprokinetic agent, Z-338 Involvement of CYP2C8 and UGT1A9 in the metabolism of a novel gastroprokinetic agent, Z-338 S. Furuta 1, E. Kamada 1, T. Sugimoto 1, Y. Kawabata 1, X. C. Wu 2, J. Skibbe 3, E. Usuki 3, A. Parkinson 3 and

More information

Clinical Pharmacokinetics of Tyrosine Kinase Inhibitors

Clinical Pharmacokinetics of Tyrosine Kinase Inhibitors Clinical Pharmacokinetics of Tyrosine Kinase Inhibitors 2 Nielka P. van Erp, Hans Gelderblom, Henk-Jan Guchelaar Cancer Treatment Reviews 2009 (in press) Introduction Summary In the recent years, eight

More information

Yes if indicated below. (4.0 TMPT does not require prior authorization)

Yes if indicated below. (4.0 TMPT does not require prior authorization) Genetic Testing for Pharmacogenetics MP9479 Covered Service: Prior Authorization Required: Additional Information: Medicare Policy: BadgerCare Plus Policy: Yes when meets criteria below Yes if indicated

More information

Personalized Genomic Medicine: What is it? Why should I care? How can I use it?

Personalized Genomic Medicine: What is it? Why should I care? How can I use it? Friday, October 17, 2014 Olli Lifelong Learning Health Education Series Lunch and Learn UNC-Asheville Campus Lynn G. Dressler, Dr.P.H. Director, Personalized Medicine Mission Health Fullerton Genetics

More information

Genetics. Instructor: Dr. Jihad Abdallah Transcription of DNA

Genetics. Instructor: Dr. Jihad Abdallah Transcription of DNA Genetics Instructor: Dr. Jihad Abdallah Transcription of DNA 1 3.4 A 2 Expression of Genetic information DNA Double stranded In the nucleus Transcription mrna Single stranded Translation In the cytoplasm

More information