P/Q And N Channels Control Baseline and Spike-Triggered Calcium Levels in Neocortical Axons And Synaptic Boutons

Size: px
Start display at page:

Download "P/Q And N Channels Control Baseline and Spike-Triggered Calcium Levels in Neocortical Axons And Synaptic Boutons"

Transcription

1 P/Q And N Channels Control Baseline and Spike-Triggered Calcium Levels in Neocortical Axons And Synaptic Boutons Yuguo Yu, Carlos Maureira, Xiuxin Liu and David McCormick Supplemental Figures 1-9 1

2 Figure S1. Properties of OGB1 on synaptic transmission and axonal imaging. a. Oregon green Bapta 1 at the concentrations used in this study does not disrupt the ability of depolarization of the presynaptic somatic membrane potential to facilitate synaptic transmission between pairs of layer 5 pyramidal cells. Control data illustrating the shift in single EPSP amplitude evoked by single action potentials between nearby layer 5 pyramidal cells (n=4 pairs). Red is with the presynaptic cell depolarized to -60 mv, while blue is with the presynaptic cell at -80 mv. b. Similar data, except with 50 μm OGB1 in the micropipettes (n=4 pairs). c. Photograph of the lower part of the soma and axon initial segment as seen in the 2-photon microscope. The green box illustrates the area in which data was collected in both the green (OGB1) and red (Alexa Fluor 594) channels. d. Raw fluorescence in the green (Oregon Green Bapta) channel versus distance from the beginning of the axon, at -80 and -60 mv. Data is plotted on a log plot, owing to the large somatic signal. e. Subtraction of the -80 mv trace from the -60 mv trace reveals that subthreshold depolarization resulted in an increase in Ca 2+ concentration in the axon initial segment, but not the soma. 2

3 Figure S2. Relationship between action potential activity and OGB1 and fluo 5F fluorescence. a. OGB1 fluorescent response in the AIS to 1, 2, 3, 12 and after 50 action potentials. Saturation was considered to be the response to 50 action potentials. a. The fluorescent response to 1, 2, and 3 spikes at 50 Hz was approximately linear. b. Plot of the ratio between Fpeak and F showing a F/F of Similar numbers were obtained in group (n=6) averages from different compartments: OGB1: soma: ; AIS: ; boutons: c. Plot of ΔF/R for OGB1 in the AIS for the data obtained in b. For the first 3 action potentials, ΔF/R is approximately 30% for each spike. d. Fluo5F fluorescent response to 1, 2, 3, 12 and after 50 action potentials at 50 Hz in the AIS. Saturation was considered to be the response to 50 action potentials. The fluorescent response to 1, 2, and 3 spikes was approximately linear. e. Plot of the ratio between Fpeak and F showing a F/F of Similar numbers were obtained in group (n=6) averages fluo5f:soma: ; AIS: ; boutons: f. Plot of ΔF/R for the data obtained in b for the AIS. For the first three spikes, each action potential initiates a change in ΔF/R of about 140%. 3

4 Figure S3. Comparison of depolarization induced enhancement of calcium responses in the axon initial segment and proximal boutons obtained with Fluo 5f at 21 and 35 o C. Significant enhancements (asterisks) were found for all cases. There were no statistically significant differences between the results obtained at 21 and 35 o C and therefore the results were combined (middle bars). a) Changes in baseline Fluo 5f response to depolarization. b) change in peak Fluo 5f signal obtained after an action potential. c) Depolarization induced change in delta peak Fluo 5f change after an action potential. 4

5 Figure S4. Bath application of NiCl 2 blocks the depolarization-induced and spike-triggered increases in somatic and axonal Ca 2+. a-d. Bath application of Ni 2+ (200 μm) results in a large reduction or abolition of the effect of membrane potential on basal Ca 2+ levels (a-c) or spike triggered Ca 2+ increases (a,d). 5

6 Figure S5. Bath application of 100 μm of NNC (Huang et al., 2004) does not block the depolarization-induced and spike-triggered increases in Ca 2+ in the axon initial segment. a-c. This t-current antagonist, which has some specificity towards Cav3.1 subunits, did not exhibit any significant effect ( μm; n=26 observations in 5 cells). d. NNC application did not have an effect on the spike triggered increase in Ca 2+ in the axon initial segment. 6

7 Figure S6. Effects of the T-current blocker mibefradil. Bath application of mibefradil (30 μm) (Martin et al., 2000) enhanced the depolarization-induced increase in baseline Ca 2+ (a-c) but had no significant effect on spike-triggered Ca 2+ transients in the axon initial segment (d) (3-30 μm; n=76 observations in 7 cells). 7

8 Figure S7. Bath application of the T-current blocker fluoxetine does not affect axonal calcium responses. Application of 50 μm of fluoxetine, an antagonist of all three types of T-channel alpha subunits (Cav3.1, 3.2, 3.3) (Traboulsie et al., 2006) was without effect on the depolarization-induced or spike triggered increases in Ca 2+ in the axon initial segment (50 μm; n=6 observations in 2 cells). 8

9 Figure S8. Effects of SNX-482 on calcium responses in the axon initial segment. Bath application of the Ca 2+ channel antagonist SNX-482 (500 nm; n=21 observations in 4 cells) resulted in no significant effect on the depolarization-induced increase in Ca 2+ in the axon initial segment, although there was a small but significant decrease % in the spike-triggered Ca 2+ response (d). SNX-482 is reported to be a selective antagonist of R-type Ca 2+ channels, although it may also inhibit P/Q channels as well (Arroyo et al., 2003). 9

10 Calculation of the approximate [Ca 2+ ] at and during depolarization For Oregon Green Bapta 1, the internal concentration of Ca 2+ can be approximated according to the following equations (Maravall et al., 2000; Jackson and Redman, 2003; Scott and Rusakov, 2006): For OGB1: Oregon Green BAPTA 1: Kd=200 μm [Ca] F Fmin F/ F F / F = = Kd F F 1 F/ F F min min = 6 F (approximate value) [Ca] F/ F => = Kd 1 F/ F [1] [2] For steady state ing calcium concentration: [Ca] F / F = Kd 1 F / F Intracellular ing calcium concentration ranges from: [Ca] = nm,here we assume [Ca] = 100 nm : [Ca] 100 F / F Kd F / F => = = = => F / F = For subthreshold depolarization increased ing [Ca] level: [Ca] x x = Cx[Ca] ; F = fxf x [Ca] x Fx / F = Kd 1 F / F Cx[Ca] fxf / F fx Kd 1 fxf / F fx => = = fx => 0.5Cx = fx fx => Cx = fx x [3] This equation is plotted in supplemental Figure S8 below. From this figure, we see that a 5% increase in Fluorescence intensity F, corresponds to a 12% increase in ing internal calcium concentration; while a 20% increase in Fluorescence intensity F corresponds to a 57% increase in ing internal calcium concentration. 10

11 If the original [Ca 2+ ] i is 100 nm, a 5% in OGB1 fluorescence, such as in the presynaptic boutons, suggests an increase in [Ca 2+ ] i to 112 nm while a 20% increase in OGB1 fluorescence, such as in the AIS, suggests an increase in [Ca 2+ ] i to 157 nm. The relationship between released transmitter and baseline calcium concentration is not well known. It has been suggested to follow a power-law relationship: ΔPSP = Δ[Ca] n with n=1.1 (Awatramani et al., 2005). If n=1.1, a 5% change in OGN1 fluorescence 12% increase in [Ca 2+ ] i 13.5% increase in average PSP amplitude. In contrast, a 20% change in OGB1 F 57% increase in [Ca 2+ ] i 65% increase in average EPSP amplitude. Since we observed changes in [Ca 2+ ] i that on average were approximately 5%, but which ranged up to approximately 20% (Figure 2), we should expect that depolarization of the soma could cause a small (e.g. 12%) increase in average EPSP amplitude, with rare increases that are up to 65% with subthreshold depolarization. Figure S9. Relationship between percent change in internal free calcium concentration and percent change in fluorescence of OGB1 indicator dye. Note that for a 5% increase in OGB1 fluorescence corresponds to a calculated 12% increase in [Ca 2+ ]free and a 20% increase in OGB1 11

12 fluorescence corresponds to approximately a 57% increase in [Ca 2+ ]free. The red line is the speculative amplitude of the average EPSPas a function of the change in OGB1 indicator fluorsescence, using the power law exponent of 1.1 as per (Awatramani et al., 2005). References Arroyo G, Aldea M, Fuentealba J, Albillos A, Garcia AG (2003) SNX482 selectively blocks P/Q Ca2+ channels and delays the inactivation of Na+ channels of chromaffin cells. Eur J Pharmacol 475: Awatramani GB, Price GD, Trussell LO (2005) Modulation of transmitter release by presynaptic ing potential and background calcium levels. Neuron 48: Huang L, Keyser BM, Tagmose TM, Hansen JB, Taylor JT, Zhuang H, Zhang M, Ragsdale DS, Li M (2004) NNC [(1S,2S)-2-(2-(N-[(3-benzimidazol-2-yl)propyl]-Nmethylamino)ethyl)-6-fluo ro-1,2,3,4-tetrahydro-1-isopropyl-2-naphtyl cyclopropanecarboxylate dihydrochloride]: a new selective inhibitor of T-type calcium channels. J Pharmacol Exp Ther 309: Jackson MB, Redman SJ (2003) Calcium dynamics, buffering, and buffer saturation in the boutons of dentate granule-cell axons in the hilus. J Neurosci 23: Maravall M, Mainen ZF, Sabatini BL, Svoboda K (2000) Estimating intracellular calcium concentrations and buffering without wavelength ratioing. Biophys J 78: Martin RL, Lee JH, Cribbs LL, Perez-Reyes E, Hanck DA (2000) Mibefradil block of cloned T- type calcium channels. J Pharmacol Exp Ther 295: Scott R, Rusakov DA (2006) Main determinants of presynaptic Ca2+ dynamics at individual mossy fiber-ca3 pyramidal cell synapses. J Neurosci 26: Traboulsie A, Chemin J, Kupfer E, Nargeot J, Lory P (2006) T-type calcium channels are inhibited by fluoxetine and its metabolite norfluoxetine. Mol Pharmacol 69:

NIH Public Access Author Manuscript J Neurosci. Author manuscript; available in PMC 2011 March 1.

NIH Public Access Author Manuscript J Neurosci. Author manuscript; available in PMC 2011 March 1. NIH Public Access Author Manuscript Published in final edited form as: J Neurosci. 2010 September 1; 30(35): 11858 11869. doi:10.1523/jneurosci.2651-10.2010. P/Q And N Channels Control Baseline and Spike-Triggered

More information

SUPPLEMENTARY INFORMATION. Supplementary Figure 1

SUPPLEMENTARY INFORMATION. Supplementary Figure 1 SUPPLEMENTARY INFORMATION Supplementary Figure 1 The supralinear events evoked in CA3 pyramidal cells fulfill the criteria for NMDA spikes, exhibiting a threshold, sensitivity to NMDAR blockade, and all-or-none

More information

SUPPLEMENTARY INFORMATION

SUPPLEMENTARY INFORMATION doi: 1.138/nature6416 Supplementary Notes Spine Ca 2+ signals produced by glutamate uncaging We imaged uncaging-evoked [Ca 2+ ] transients in neurons loaded with a green Ca 2+ - sensitive indicator (G;

More information

Supplementary Figure 1. Basic properties of compound EPSPs at

Supplementary Figure 1. Basic properties of compound EPSPs at Supplementary Figure 1. Basic properties of compound EPSPs at hippocampal CA3 CA3 cell synapses. (a) EPSPs were evoked by extracellular stimulation of the recurrent collaterals and pharmacologically isolated

More information

Astrocyte signaling controls spike timing-dependent depression at neocortical synapses

Astrocyte signaling controls spike timing-dependent depression at neocortical synapses Supplementary Information Astrocyte signaling controls spike timing-dependent depression at neocortical synapses Rogier Min and Thomas Nevian Department of Physiology, University of Berne, Bern, Switzerland

More information

Chapter 3 subtitles Action potentials

Chapter 3 subtitles Action potentials CELLULAR NEUROPHYSIOLOGY CONSTANCE HAMMOND Chapter 3 subtitles Action potentials Introduction (3:15) This third chapter explains the calcium current triggered by the arrival of the action potential in

More information

Axon Initial Segment Kv1 Channels Control Axonal Action Potential Waveform and Synaptic Efficacy

Axon Initial Segment Kv1 Channels Control Axonal Action Potential Waveform and Synaptic Efficacy Article Axon Initial Segment Kv1 Channels Control Axonal Action Potential Waveform and Synaptic Efficacy Maarten H.P. Kole, 1,2 Johannes J. Letzkus, 1,2 and Greg J. Stuart 1, * 1 Division of Neuroscience,

More information

Supplementary Figure 1. SDS-FRL localization of CB 1 in the distal CA3 area of the rat hippocampus. (a-d) Axon terminals (t) in stratum pyramidale

Supplementary Figure 1. SDS-FRL localization of CB 1 in the distal CA3 area of the rat hippocampus. (a-d) Axon terminals (t) in stratum pyramidale Supplementary Figure 1. SDS-FRL localization of CB 1 in the distal CA3 area of the rat hippocampus. (a-d) Axon terminals (t) in stratum pyramidale (b) show stronger immunolabeling for CB 1 than those in

More information

SUPPLEMENTARY INFORMATION

SUPPLEMENTARY INFORMATION Supplementary Figure 1. Normal AMPAR-mediated fepsp input-output curve in CA3-Psen cdko mice. Input-output curves, which are plotted initial slopes of the evoked fepsp as function of the amplitude of the

More information

Folia Pharmacol. Jpn branch main shaft. -induced calcium NMDA. spine. branch CCD CCD S N. Olympus, BX WI.

Folia Pharmacol. Jpn branch main shaft. -induced calcium NMDA. spine. branch CCD CCD S N. Olympus, BX WI. Folia Pharmacol. Jpn. 121 1. NMDA IP spine branch - - - e-mail: tnakamu@ims.u-tokyo.ac.jp branch main shaft branch NMDA bmain shaft IP -induced calcium release c 2. 1 CCD CCD S N Olympus, BX WI Fig. 1

More information

Supplementary figure 1: LII/III GIN-cells show morphological characteristics of MC

Supplementary figure 1: LII/III GIN-cells show morphological characteristics of MC 1 2 1 3 Supplementary figure 1: LII/III GIN-cells show morphological characteristics of MC 4 5 6 7 (a) Reconstructions of LII/III GIN-cells with somato-dendritic compartments in orange and axonal arborizations

More information

Title: Plasticity of intrinsic excitability in mature granule cells of the dentate gyrus

Title: Plasticity of intrinsic excitability in mature granule cells of the dentate gyrus Title: Plasticity of intrinsic excitability in mature granule cells of the dentate gyrus Authors: Jeffrey Lopez-Rojas a1, Martin Heine b1 and Michael R. Kreutz ac1 a Research Group Neuroplasticity, b Research

More information

Chapter 6 subtitles postsynaptic integration

Chapter 6 subtitles postsynaptic integration CELLULAR NEUROPHYSIOLOGY CONSTANCE HAMMOND Chapter 6 subtitles postsynaptic integration INTRODUCTION (1:56) This sixth and final chapter deals with the summation of presynaptic currents. Glutamate and

More information

Supporting Information

Supporting Information ATP from synaptic terminals and astrocytes regulates NMDA receptors and synaptic plasticity through PSD- 95 multi- protein complex U.Lalo, O.Palygin, A.Verkhratsky, S.G.N. Grant and Y. Pankratov Supporting

More information

BIPN 140 Problem Set 6

BIPN 140 Problem Set 6 BIPN 140 Problem Set 6 1) The hippocampus is a cortical structure in the medial portion of the temporal lobe (medial temporal lobe in primates. a) What is the main function of the hippocampus? The hippocampus

More information

BIPN 140 Problem Set 6

BIPN 140 Problem Set 6 BIPN 140 Problem Set 6 1) Hippocampus is a cortical structure in the medial portion of the temporal lobe (medial temporal lobe in primates. a) What is the main function of the hippocampus? The hippocampus

More information

Supplementary Information

Supplementary Information Hyperpolarization-activated cation channels inhibit EPSPs by interactions with M-type K + channels Meena S. George, L.F. Abbott, Steven A. Siegelbaum Supplementary Information Part 1: Supplementary Figures

More information

Wenqin Hu, Cuiping Tian, Tun Li, Mingpo Yang, Han Hou & Yousheng Shu

Wenqin Hu, Cuiping Tian, Tun Li, Mingpo Yang, Han Hou & Yousheng Shu Distinct contributions of Na v 1.6 and Na v 1.2 in action potential initiation and backpropagation Wenqin Hu, Cuiping Tian, Tun Li, Mingpo Yang, Han Hou & Yousheng Shu Supplementary figure and legend Supplementary

More information

File name: Supplementary Information Description: Supplementary Figures, Supplementary Table and Supplementary References

File name: Supplementary Information Description: Supplementary Figures, Supplementary Table and Supplementary References File name: Supplementary Information Description: Supplementary Figures, Supplementary Table and Supplementary References File name: Supplementary Data 1 Description: Summary datasheets showing the spatial

More information

Supporting Online Material for

Supporting Online Material for www.sciencemag.org/cgi/content/full/317/5841/183/dc1 Supporting Online Material for Astrocytes Potentiate Transmitter Release at Single Hippocampal Synapses Gertrudis Perea and Alfonso Araque* *To whom

More information

Is action potential threshold lowest in the axon?

Is action potential threshold lowest in the axon? Supplementary information to: Is action potential threshold lowest in the axon? Maarten H. P. Kole & Greg J. Stuart Supplementary Fig. 1 Analysis of action potential (AP) threshold criteria. (a) Example

More information

Short- and long-lasting consequences of in vivo nicotine treatment

Short- and long-lasting consequences of in vivo nicotine treatment Short- and long-lasting consequences of in vivo nicotine treatment on hippocampal excitability Rachel E. Penton, Michael W. Quick, Robin A. J. Lester Supplementary Figure 1. Histogram showing the maximal

More information

Ultrastructural Contributions to Desensitization at the Cerebellar Mossy Fiber to Granule Cell Synapse

Ultrastructural Contributions to Desensitization at the Cerebellar Mossy Fiber to Granule Cell Synapse Ultrastructural Contributions to Desensitization at the Cerebellar Mossy Fiber to Granule Cell Synapse Matthew A.Xu-Friedman and Wade G. Regehr Department of Neurobiology, Harvard Medical School, Boston,

More information

The action potential travels down both branches because each branch is a typical axon with voltage dependent Na + and K+ channels.

The action potential travels down both branches because each branch is a typical axon with voltage dependent Na + and K+ channels. BIO 360 - MIDTERM FALL 2018 This is an open book, open notes exam. PLEASE WRITE YOUR NAME ON EACH SHEET. Read each question carefully and answer as well as you can. Point values are shown at the beginning

More information

Neuroscience 201A (2016) - Problems in Synaptic Physiology

Neuroscience 201A (2016) - Problems in Synaptic Physiology Question 1: The record below in A shows an EPSC recorded from a cerebellar granule cell following stimulation (at the gap in the record) of a mossy fiber input. These responses are, then, evoked by stimulation.

More information

STRUCTURAL ELEMENTS OF THE NERVOUS SYSTEM

STRUCTURAL ELEMENTS OF THE NERVOUS SYSTEM STRUCTURAL ELEMENTS OF THE NERVOUS SYSTEM STRUCTURE AND MAINTENANCE OF NEURONS (a) (b) Dendrites Cell body Initial segment collateral terminals (a) Diagrammatic representation of a neuron. The break in

More information

Spatial Distribution of Calcium Entry Evoked by Single Action Potentials within the Presynaptic Active Zone

Spatial Distribution of Calcium Entry Evoked by Single Action Potentials within the Presynaptic Active Zone Spatial Distribution of Calcium Entry Evoked by Single Action Potentials within the Presynaptic Active Zone Elliot S. Wachman,, Robert E. Poage,, Joel R. Stiles, Daniel L. Farkas,, and Stephen D. Meriney

More information

Bidirectional NMDA receptor plasticity controls CA3 output and heterosynaptic metaplasticity

Bidirectional NMDA receptor plasticity controls CA3 output and heterosynaptic metaplasticity Bidirectional NMDA receptor plasticity controls CA output and heterosynaptic metaplasticity David L. Hunt, Nagore Puente, Pedro Grandes, Pablo E. Castillo a NMDAR EPSC (pa) - - -8-6 -4 - st 5 nd 5 b NMDAR

More information

Nature Neuroscience: doi: /nn Supplementary Figure 1. Large-scale calcium imaging in vivo.

Nature Neuroscience: doi: /nn Supplementary Figure 1. Large-scale calcium imaging in vivo. Supplementary Figure 1 Large-scale calcium imaging in vivo. (a) Schematic illustration of the in vivo camera imaging set-up for large-scale calcium imaging. (b) High-magnification two-photon image from

More information

Dep. Control Time (min)

Dep. Control Time (min) aa Control Dep. RP 1s 1 mv 2s 1 mv b % potentiation of IPSP 2 15 1 5 Dep. * 1 2 3 4 Time (min) Supplementary Figure 1. Rebound potentiation of IPSPs in PCs. a, IPSPs recorded with a K + gluconate pipette

More information

Nature Methods: doi: /nmeth Supplementary Figure 1. Activity in turtle dorsal cortex is sparse.

Nature Methods: doi: /nmeth Supplementary Figure 1. Activity in turtle dorsal cortex is sparse. Supplementary Figure 1 Activity in turtle dorsal cortex is sparse. a. Probability distribution of firing rates across the population (notice log scale) in our data. The range of firing rates is wide but

More information

Brief presynaptic bursts evoke synapse-specific retrograde inhibition mediated by endogenous cannabinoids

Brief presynaptic bursts evoke synapse-specific retrograde inhibition mediated by endogenous cannabinoids Brief presynaptic bursts evoke synapse-specific retrograde inhibition mediated by endogenous cannabinoids Solange P Brown 1 3,Stephan D Brenowitz 1,3 & Wade G Regehr 1 Many types of neurons can release

More information

Marco Canepari 1,2,3, Maja Djurisic 1,3 and Dejan Zecevic 1,3

Marco Canepari 1,2,3, Maja Djurisic 1,3 and Dejan Zecevic 1,3 J Physiol 580.2 (2007) pp 463 484 463 Dendritic signals from rat hippocampal CA1 pyramidal neurons during coincident pre- and post-synaptic activity: a combined voltage- and calcium-imaging study Marco

More information

Effects of Axonal Topology on the Somatic Modulation of Synaptic Outputs

Effects of Axonal Topology on the Somatic Modulation of Synaptic Outputs 2868 The Journal of Neuroscience, February 22, 2012 32(8):2868 2876 Cellular/Molecular Effects of Axonal Topology on the Somatic Modulation of Synaptic Outputs Takuya Sasaki, Norio Matsuki, and Yuji Ikegaya

More information

Axon Initial Segment Ca 2+ Channels Influence Action Potential Generation and Timing

Axon Initial Segment Ca 2+ Channels Influence Action Potential Generation and Timing Article Axon Initial Segment Ca 2+ Channels Influence Action Potential Generation and Timing Kevin J. Bender 1, * and Laurence O. Trussell 1 1 Vollum Institute and Oregon Hearing Research Center, Oregon

More information

Unique functional properties of somatostatin-expressing GABAergic neurons in mouse barrel cortex

Unique functional properties of somatostatin-expressing GABAergic neurons in mouse barrel cortex Supplementary Information Unique functional properties of somatostatin-expressing GABAergic neurons in mouse barrel cortex Luc Gentet, Yves Kremer, Hiroki Taniguchi, Josh Huang, Jochen Staiger and Carl

More information

Arnaud Ruiz, Emilie Campanac, Ricardo Scott, Dmitri A. Rusakov, Dimitri M. Kullmann

Arnaud Ruiz, Emilie Campanac, Ricardo Scott, Dmitri A. Rusakov, Dimitri M. Kullmann Presynaptic GABA A receptors enhance transmission and LTP induction at hippocampal mossy fiber synapses Arnaud Ruiz, Emilie Campanac, Ricardo Scott, Dmitri A. Rusakov, Dimitri M. Kullmann Supplementary

More information

Synaptic Integration

Synaptic Integration Synaptic Integration 3 rd January, 2017 Touqeer Ahmed PhD Atta-ur-Rahman School of Applied Biosciences National University of Sciences and Technology Excitatory Synaptic Actions Excitatory Synaptic Action

More information

Supplementary Figure 1. GABA depolarizes the majority of immature neurons in the

Supplementary Figure 1. GABA depolarizes the majority of immature neurons in the Supplementary Figure 1. GABA depolarizes the majority of immature neurons in the upper cortical layers at P3 4 in vivo. (a b) Cell-attached current-clamp recordings illustrate responses to puff-applied

More information

You submitted this quiz on Sun 7 Apr :08 PM IST (UTC +0530). You got a score of out of Your Answer Score Explanation

You submitted this quiz on Sun 7 Apr :08 PM IST (UTC +0530). You got a score of out of Your Answer Score Explanation Feedback Ex You submitted this quiz on Sun 7 Apr 0 :08 PM IST (UTC +00). You got a score of 0.00 out of 0.00. Question AIS Axon Initial Segment 0. Question https://class.coursera.org/bluebrain-00/quiz/feedback?submission_id=

More information

Summary of Calcium Regulation inside the Cell

Summary of Calcium Regulation inside the Cell Overview of Calcium Summary of Calcium Regulation inside the Cell Plasma membrane transport a. Influx via receptor & voltage-regulated channels b. Efflux via Ca-ATPase & Na-Ca antiporter ER/SR membrane

More information

MCB MIDTERM EXAM #1 MONDAY MARCH 3, 2008 ANSWER KEY

MCB MIDTERM EXAM #1 MONDAY MARCH 3, 2008 ANSWER KEY MCB 160 - MIDTERM EXAM #1 MONDAY MARCH 3, 2008 ANSWER KEY Name ID# Instructions: -Only tests written in pen will be regarded -Please submit a written request indicating where and why you deserve more points

More information

Chapter 5 subtitles GABAergic synaptic transmission

Chapter 5 subtitles GABAergic synaptic transmission CELLULAR NEUROPHYSIOLOGY CONSTANCE HAMMOND Chapter 5 subtitles GABAergic synaptic transmission INTRODUCTION (2:57) In this fifth chapter, you will learn how the binding of the GABA neurotransmitter to

More information

Action potentials propagate down their axon

Action potentials propagate down their axon Action potentials propagate down their axon Larger diameter axons have less resistance to ion flow Speed of conduction is faster in large diameter axons Saltatory conduction in myelinated axons Large myelinated

More information

Learning Rules for Spike Timing-Dependent Plasticity Depend on Dendritic Synapse Location

Learning Rules for Spike Timing-Dependent Plasticity Depend on Dendritic Synapse Location 10420 The Journal of Neuroscience, October 11, 2006 26(41):10420 10429 Cellular/Molecular Learning Rules for Spike Timing-Dependent Plasticity Depend on Dendritic Synapse Location Johannes J. Letzkus,

More information

Multi compartment model of synaptic plasticity

Multi compartment model of synaptic plasticity Multi compartment model of synaptic plasticity E. Paxon Frady We introduce a biophysical model of a neuronal network that can accurately replicate many classical plasticity experiments. The model uses

More information

Supporting Online Material for

Supporting Online Material for www.sciencemag.org/cgi/content/full/312/5779/1533/dc1 Supporting Online Material for Long-Term Potentiation of Neuron-Glia Synapses Mediated by Ca 2+ - Permeable AMPA Receptors Woo-Ping Ge, Xiu-Juan Yang,

More information

The Journal of Physiology

The Journal of Physiology J Physiol 589.8 (2011) pp 1957 1977 1957 Cell type-specific and activity-dependent dynamics of action potential-evoked Ca 2+ signals in dendrites of hippocampal inhibitory interneurons Alesya Evstratova,

More information

GABAA AND GABAB RECEPTORS

GABAA AND GABAB RECEPTORS FAST KINETIC MODELS FOR SIMULATING AMPA, NMDA, GABAA AND GABAB RECEPTORS Alain Destexhe, Zachary F. Mainen and Terrence J. Sejnowski* The Salk Institute for Biological Studies and The Howard Hughes Medical

More information

Neurons! John A. White Dept. of Bioengineering

Neurons! John A. White Dept. of Bioengineering Neurons! John A. White Dept. of Bioengineering john.white@utah.edu What makes neurons different from cardiomyocytes? Morphological polarity Transport systems Shape and function of action potentials Neuronal

More information

1) Drop off in the Bi 150 box outside Baxter 331 or to the head TA (jcolas).

1) Drop off in the Bi 150 box outside Baxter 331 or  to the head TA (jcolas). Bi/CNS/NB 150 Problem Set 3 Due: Tuesday, Oct. 27, at 4:30 pm Instructions: 1) Drop off in the Bi 150 box outside Baxter 331 or e-mail to the head TA (jcolas). 2) Submit with this cover page. 3) Use a

More information

Part 11: Mechanisms of Learning

Part 11: Mechanisms of Learning Neurophysiology and Information: Theory of Brain Function Christopher Fiorillo BiS 527, Spring 2012 042 350 4326, fiorillo@kaist.ac.kr Part 11: Mechanisms of Learning Reading: Bear, Connors, and Paradiso,

More information

A Role for Synaptic Inputs at Distal Dendrites: Instructive Signals for Hippocampal Long-Term Plasticity

A Role for Synaptic Inputs at Distal Dendrites: Instructive Signals for Hippocampal Long-Term Plasticity Article A Role for Synaptic Inputs at Distal Dendrites: Instructive Signals for Hippocampal Long-Term Plasticity Joshua T. Dudman, 1 David Tsay, 1 and Steven A. Siegelbaum 1,2,3, * 1 Department of Neuroscience

More information

Chapter 3 Neurotransmitter release

Chapter 3 Neurotransmitter release NEUROPHYSIOLOGIE CELLULAIRE CONSTANCE HAMMOND Chapter 3 Neurotransmitter release In chapter 3, we proose 3 videos: Observation Calcium Channel, Ca 2+ Unitary and Total Currents Ca 2+ and Neurotransmitter

More information

SYNAPTIC COMMUNICATION

SYNAPTIC COMMUNICATION BASICS OF NEUROBIOLOGY SYNAPTIC COMMUNICATION ZSOLT LIPOSITS 1 NERVE ENDINGS II. Interneuronal communication 2 INTERNEURONAL COMMUNICATION I. ELECTRONIC SYNAPSE GAP JUNCTION II. CHEMICAL SYNAPSE SYNAPSES

More information

Alterations in Synaptic Strength Preceding Axon Withdrawal

Alterations in Synaptic Strength Preceding Axon Withdrawal Alterations in Synaptic Strength Preceding Axon Withdrawal H. Colman, J. Nabekura, J.W. Lichtman presented by Ana Fiallos Synaptic Transmission at the Neuromuscular Junction Motor neurons with cell bodies

More information

Large-conductance calcium-dependent potassium channels prevent dendritic excitability in neocortical pyramidal neurons

Large-conductance calcium-dependent potassium channels prevent dendritic excitability in neocortical pyramidal neurons Zurich Open Repository and Archive University of Zurich Main Library Strickhofstrasse 39 CH-857 Zurich www.zora.uzh.ch Year: 29 Large-conductance calcium-dependent potassium channels prevent dendritic

More information

Axon initial segment position changes CA1 pyramidal neuron excitability

Axon initial segment position changes CA1 pyramidal neuron excitability Axon initial segment position changes CA1 pyramidal neuron excitability Cristina Nigro and Jason Pipkin UCSD Neurosciences Graduate Program Abstract The axon initial segment (AIS) is the portion of the

More information

Action potential. Definition: an all-or-none change in voltage that propagates itself down the axon

Action potential. Definition: an all-or-none change in voltage that propagates itself down the axon Action potential Definition: an all-or-none change in voltage that propagates itself down the axon Action potential Definition: an all-or-none change in voltage that propagates itself down the axon Naturally

More information

Supplemental Information. Differential Regulation. of Evoked and Spontaneous Release. by Presynaptic NMDA Receptors

Supplemental Information. Differential Regulation. of Evoked and Spontaneous Release. by Presynaptic NMDA Receptors Neuron, Volume 96 Supplemental Information Differential Regulation of Evoked and Spontaneous Release by Presynaptic NMDA Receptors Therése Abrahamsson, hristina You hien hou, Si Ying Li, Adamo Mancino,

More information

-51mV 30s 3mV. n=14 n=4 p=0.4. Depolarization (mv) 3

-51mV 30s 3mV. n=14 n=4 p=0.4. Depolarization (mv) 3 Supplementary Figure 1 a optoβ 2 -AR b ChR2-51mV 30s 3mV -50mV 30s 3mV c 4 n=14 n=4 p=0.4 Depolarization (mv) 3 2 1 0 Both optogenetic actuators, optoβ 2 AR and ChR2, were effective in stimulating astrocytes

More information

Abstract. 1 Introduction

Abstract. 1 Introduction Biophysical model of a single synaptic connection: transmission properties are determined by the cooperation of pre- and postsynaptic mechanisms Julia Trommershäuser and Annette Zippelius Institut für

More information

Supplementary Figure 1

Supplementary Figure 1 Supplementary Figure 1 Supplementary Figure 1 SNARE Probes for FRET/2pFLIM Analysis Used in the Present Study. mturquoise (mtq) and Venus (Ven) are in blue and yellow, respectively. The soluble N-ethylmaleimide-sensitive

More information

Basics of Computational Neuroscience: Neurons and Synapses to Networks

Basics of Computational Neuroscience: Neurons and Synapses to Networks Basics of Computational Neuroscience: Neurons and Synapses to Networks Bruce Graham Mathematics School of Natural Sciences University of Stirling Scotland, U.K. Useful Book Authors: David Sterratt, Bruce

More information

Introduction to Neurobiology

Introduction to Neurobiology Biology 240 General Zoology Introduction to Neurobiology Nervous System functions: communication of information via nerve signals integration and processing of information control of physiological and

More information

Chapter 2: Cellular Mechanisms and Cognition

Chapter 2: Cellular Mechanisms and Cognition Chapter 2: Cellular Mechanisms and Cognition MULTIPLE CHOICE 1. Two principles about neurons were defined by Ramón y Cajal. The principle of connectional specificity states that, whereas the principle

More information

Simulating inputs of parvalbumin inhibitory interneurons onto excitatory pyramidal cells in piriform cortex

Simulating inputs of parvalbumin inhibitory interneurons onto excitatory pyramidal cells in piriform cortex Simulating inputs of parvalbumin inhibitory interneurons onto excitatory pyramidal cells in piriform cortex Jeffrey E. Dahlen jdahlen@ucsd.edu and Kerin K. Higa khiga@ucsd.edu Department of Neuroscience

More information

Synaptic plasticity. Activity-dependent changes in synaptic strength. Changes in innervation patterns. New synapses or deterioration of synapses.

Synaptic plasticity. Activity-dependent changes in synaptic strength. Changes in innervation patterns. New synapses or deterioration of synapses. Synaptic plasticity Activity-dependent changes in synaptic strength. Changes in innervation patterns. New synapses or deterioration of synapses. Repair/changes in the nervous system after damage. MRC Centre

More information

BIONB/BME/ECE 4910 Neuronal Simulation Assignments 1, Spring 2013

BIONB/BME/ECE 4910 Neuronal Simulation Assignments 1, Spring 2013 BIONB/BME/ECE 4910 Neuronal Simulation Assignments 1, Spring 2013 Tutorial Assignment Page Due Date Week 1/Assignment 1: Introduction to NIA 1 January 28 The Membrane Tutorial 9 Week 2/Assignment 2: Passive

More information

Simulation of myelinated neuron with focus on conduction speed and changeable excitability

Simulation of myelinated neuron with focus on conduction speed and changeable excitability Simulation of myelinated neuron with focus on conduction speed and changeable excitability Pengfei Chen Sung Min Kim Abstract In this paper we focus on the two particular properties of myelinated neuron,

More information

BIPN140 Lecture 12: Synaptic Plasticity (II)

BIPN140 Lecture 12: Synaptic Plasticity (II) BIPN140 Lecture 12: Synaptic Plasticity (II) 1. Early v.s. Late LTP 2. Long-Term Depression 3. Molecular Mechanisms of Long-Term Depression: NMDA-R dependent 4. Molecular Mechanisms of Long-Term Depression:

More information

At presynaptic nerve terminals, the opening of voltage-gated

At presynaptic nerve terminals, the opening of voltage-gated Reduced endogenous Ca 2+ buffering speeds active zone Ca 2+ signaling Igor Delvendahl a,1, Lukasz Jablonski a, Carolin Baade a, Victor Matveev b, Erwin Neher c,1, and Stefan Hallermann a,1 a Carl-Ludwig-Institute

More information

One difficulty in these experiments is that a typical change. in light intensity recorded during a single voltage oscillation

One difficulty in these experiments is that a typical change. in light intensity recorded during a single voltage oscillation Proc. Natl. Acad. Sci. USA Vol. 86, pp. 1679-1683, March 1989 Neurobiology Spatially and temporally resolved calcium concentration changes in oscillating neurons of crab stomatogastric ganglion (arseiazo

More information

VS : Systemische Physiologie - Animalische Physiologie für Bioinformatiker. Neuronenmodelle III. Modelle synaptischer Kurz- und Langzeitplastizität

VS : Systemische Physiologie - Animalische Physiologie für Bioinformatiker. Neuronenmodelle III. Modelle synaptischer Kurz- und Langzeitplastizität Bachelor Program Bioinformatics, FU Berlin VS : Systemische Physiologie - Animalische Physiologie für Bioinformatiker Synaptische Übertragung Neuronenmodelle III Modelle synaptischer Kurz- und Langzeitplastizität

More information

Synaptic Transmission: Ionic and Metabotropic

Synaptic Transmission: Ionic and Metabotropic Synaptic Transmission: Ionic and Metabotropic D. Purves et al. Neuroscience (Sinauer Assoc.) Chapters 5, 6, 7. C. Koch. Biophysics of Computation (Oxford) Chapter 4. J.G. Nicholls et al. From Neuron to

More information

Sample Lab Report 1 from 1. Measuring and Manipulating Passive Membrane Properties

Sample Lab Report 1 from  1. Measuring and Manipulating Passive Membrane Properties Sample Lab Report 1 from http://www.bio365l.net 1 Abstract Measuring and Manipulating Passive Membrane Properties Biological membranes exhibit the properties of capacitance and resistance, which allow

More information

The action potential in mammalian central neurons

The action potential in mammalian central neurons The action potential in mammalian central neurons Bruce P. Bean Abstract The action potential of the squid giant axon is formed by just two voltagedependent conductances in the cell membrane, yet mammalian

More information

Structure of a Neuron:

Structure of a Neuron: Structure of a Neuron: At the dendrite the incoming signals arrive (incoming currents) At the soma current are finally integrated. At the axon hillock action potential are generated if the potential crosses

More information

Fig. S4. Current-voltage relations of iglurs. A-C: time courses of currents evoked by 100 ms pulses

Fig. S4. Current-voltage relations of iglurs. A-C: time courses of currents evoked by 100 ms pulses Fig. S1. Immunohistochemical detection of iglur2 protein in single islet cells. A: α cells identified using glucagon-specific antibody express the iglur2 subtype of AMPA receptor. 24 out of 26 identified

More information

The molecular analysis of long-term plasticity in the mammalian

The molecular analysis of long-term plasticity in the mammalian Genetic evidence for a protein-kinase-a-mediated presynaptic component in NMDA-receptor-dependent forms of long-term synaptic potentiation Yan-You Huang*, Stanislav S. Zakharenko*, Susanne Schoch, Pascal

More information

1) Drop off in the Bi 150 box outside Baxter 331 or to the head TA (jcolas).

1) Drop off in the Bi 150 box outside Baxter 331 or  to the head TA (jcolas). Bi/CNS/NB 150 Problem Set 3 Due: Tuesday, Oct. 27, at 4:30 pm Instructions: 1) Drop off in the Bi 150 box outside Baxter 331 or e-mail to the head TA (jcolas). 2) Submit with this cover page. 3) Use a

More information

Modeling Depolarization Induced Suppression of Inhibition in Pyramidal Neurons

Modeling Depolarization Induced Suppression of Inhibition in Pyramidal Neurons Modeling Depolarization Induced Suppression of Inhibition in Pyramidal Neurons Peter Osseward, Uri Magaram Department of Neuroscience University of California, San Diego La Jolla, CA 92092 possewar@ucsd.edu

More information

A genetically targeted optical sensor to monitor calcium signals in astrocyte processes

A genetically targeted optical sensor to monitor calcium signals in astrocyte processes A genetically targeted optical sensor to monitor calcium signals in astrocyte processes 1 Eiji Shigetomi, 1 Sebastian Kracun, 2 Michael V. Sofroniew & 1,2 *Baljit S. Khakh Ψ 1 Departments of Physiology

More information

Membrane Potential Changes in Dendritic Spines during Action Potentials and Synaptic Input

Membrane Potential Changes in Dendritic Spines during Action Potentials and Synaptic Input The Journal of Neuroscience, May 27, 2009 29(21):6897 6903 6897 Cellular/Molecular Membrane Potential Changes in Dendritic Spines during Action Potentials and Synaptic Input Lucy M. Palmer and Greg J.

More information

Neuroscience 201A Problem Set #1, 27 September 2016

Neuroscience 201A Problem Set #1, 27 September 2016 Neuroscience 201A Problem Set #1, 27 September 2016 1. The figure above was obtained from a paper on calcium channels expressed by dentate granule cells. The whole-cell Ca 2+ currents in (A) were measured

More information

Supplementary Figure 1) GABAergic enhancement by leptin hyperpolarizes POMC neurons A) Representative recording samples showing the membrane

Supplementary Figure 1) GABAergic enhancement by leptin hyperpolarizes POMC neurons A) Representative recording samples showing the membrane Supplementary Figure 1) GABAergic enhancement by leptin hyperpolarizes POMC neurons A) Representative recording samples showing the membrane potential recorded from POMC neurons following treatment with

More information

Electrophysiology. General Neurophysiology. Action Potentials

Electrophysiology. General Neurophysiology. Action Potentials 5 Electrophysiology Cochlear implants should aim to reproduce the coding of sound in the auditory system as closely as possible, for best sound perception. The cochlear implant is in part the result of

More information

Supplementary Materials for VAMP4 directs synaptic vesicles to a pool that selectively maintains asynchronous neurotransmission

Supplementary Materials for VAMP4 directs synaptic vesicles to a pool that selectively maintains asynchronous neurotransmission Supplementary Materials for VAMP4 directs synaptic vesicles to a pool that selectively maintains asynchronous neurotransmission Jesica Raingo, Mikhail Khvotchev, Pei Liu, Frederic Darios, Ying C. Li, Denise

More information

Biomarkers in Schizophrenia

Biomarkers in Schizophrenia Biomarkers in Schizophrenia David A. Lewis, MD Translational Neuroscience Program Department of Psychiatry NIMH Conte Center for the Neuroscience of Mental Disorders University of Pittsburgh Disease Process

More information

Charlie Taylor, PhD CpTaylor Consulting Chelsea, MI, USA

Charlie Taylor, PhD CpTaylor Consulting Chelsea, MI, USA Contribution of Calcium Channel α 2 δ Binding Sites to the Pharmacology of Gabapentin and Pregabalin Charlie Taylor, PhD CpTaylor Consulting Chelsea, MI, USA Disclosure Information Charlie Taylor, PhD

More information

Information Processing During Transient Responses in the Crayfish Visual System

Information Processing During Transient Responses in the Crayfish Visual System Information Processing During Transient Responses in the Crayfish Visual System Christopher J. Rozell, Don. H. Johnson and Raymon M. Glantz Department of Electrical & Computer Engineering Department of

More information

Presynaptic NMDA receptor control of spontaneous and evoked activity By: Sally Si Ying Li Supervisor: Jesper Sjöström

Presynaptic NMDA receptor control of spontaneous and evoked activity By: Sally Si Ying Li Supervisor: Jesper Sjöström Presynaptic NMDA receptor control of spontaneous and evoked activity By: Sally Si Ying Li Supervisor: Jesper Sjöström NMDA receptors are traditionally known to function as post-synaptic coincidence detectors.

More information

The Functional Influence of Burst and Tonic Firing Mode on Synaptic Interactions in the Thalamus

The Functional Influence of Burst and Tonic Firing Mode on Synaptic Interactions in the Thalamus The Journal of Neuroscience, November 15, 1998, 18(22):9500 9516 The Functional Influence of Burst and Tonic Firing Mode on Synaptic Interactions in the Thalamus Uhnoh Kim and David A. McCormick Section

More information

Anatomy Review. Graphics are used with permission of: Pearson Education Inc., publishing as Benjamin Cummings (

Anatomy Review. Graphics are used with permission of: Pearson Education Inc., publishing as Benjamin Cummings ( Anatomy Review Graphics are used with permission of: Pearson Education Inc., publishing as Benjamin Cummings (http://www.aw-bc.com) Page 1. Introduction Neurons communicate with other cells at junctions

More information

Chapter 4 Neuronal Physiology

Chapter 4 Neuronal Physiology Chapter 4 Neuronal Physiology V edit. Pg. 99-131 VI edit. Pg. 85-113 VII edit. Pg. 87-113 Input Zone Dendrites and Cell body Nucleus Trigger Zone Axon hillock Conducting Zone Axon (may be from 1mm to more

More information

BIPN100 F15 Human Physiology 1 Lecture 3. Synaptic Transmission p. 1

BIPN100 F15 Human Physiology 1 Lecture 3. Synaptic Transmission p. 1 BIPN100 F15 Human Physiology 1 Lecture 3. Synaptic Transmission p. 1 Terms you should know: synapse, neuromuscular junction (NMJ), pre-synaptic, post-synaptic, synaptic cleft, acetylcholine (ACh), acetylcholine

More information

Memory Systems II How Stored: Engram and LTP. Reading: BCP Chapter 25

Memory Systems II How Stored: Engram and LTP. Reading: BCP Chapter 25 Memory Systems II How Stored: Engram and LTP Reading: BCP Chapter 25 Memory Systems Learning is the acquisition of new knowledge or skills. Memory is the retention of learned information. Many different

More information

SK2 Channel Modulation Contributes to Compartment-Specific Dendritic Plasticity in Cerebellar Purkinje Cells

SK2 Channel Modulation Contributes to Compartment-Specific Dendritic Plasticity in Cerebellar Purkinje Cells Article SK2 Channel Modulation Contributes to Compartment-Specific Dendritic Plasticity in Cerebellar Purkinje Cells Gen Ohtsuki, 1,2,4 Claire Piochon, 1 John P. Adelman, 3 and Christian Hansel 1,2, *

More information

Synaptic plasticityhippocampus. Neur 8790 Topics in Neuroscience: Neuroplasticity. Outline. Synaptic plasticity hypothesis

Synaptic plasticityhippocampus. Neur 8790 Topics in Neuroscience: Neuroplasticity. Outline. Synaptic plasticity hypothesis Synaptic plasticityhippocampus Neur 8790 Topics in Neuroscience: Neuroplasticity Outline Synaptic plasticity hypothesis Long term potentiation in the hippocampus How it s measured What it looks like Mechanisms

More information

Ube3a is required for experience-dependent maturation of the neocortex

Ube3a is required for experience-dependent maturation of the neocortex Ube3a is required for experience-dependent maturation of the neocortex Koji Yashiro, Thorfinn T. Riday, Kathryn H. Condon, Adam C. Roberts, Danilo R. Bernardo, Rohit Prakash, Richard J. Weinberg, Michael

More information