Drug Receptor Interactions and Pharmacodynamics

Size: px
Start display at page:

Download "Drug Receptor Interactions and Pharmacodynamics"

Transcription

1 Drug Receptor Interactions and Pharmacodynamics Dr. Raz Mohammed MSc Pharmacology School of Pharmacy Lec 6

2 Pharmacodynamics definition Pharmacodynamics describes the actions of a drug on the body and the effect of drug concentrations on the magnitude of response. Drugs exert their effects by interacting with receptors present on the cell surface or within the cell.

3 The drug-receptor complex Cells have different types of receptors, each is specific for a particular ligand and produces a unique response. Ligand: A small molecule that binds to a receptor, it may be a naturally occuring molecule or a drug. Cells may have tens of thousands of receptors for certain ligands (drugs). Cells may also have different types of receptors, each of which is specific for a particular ligand (drug). Example: the heart contains specific receptors that bind and respond to norepinephrine, also receptors for acetylcholine.

4 The recognition of a drug by a receptor triggers a biologic response

5 The formation of the drug-receptor complex leads to a biologic response. The magnitude of the response is proportional to the number of drug-receptor complexes: Most receptors are named to indicate the type of drug/chemical that interacts best with it; for example, the receptor for histamine is called a histamine receptor. Not all drugs exert their effects by interacting with a receptor; for example, antacids chemically neutralize excess gastric acid, reducing the symptoms of heartburn

6 Major Receptor Families A. Transmembrane Ligand-gated ion channels B. Transmembrane G protein-coupled receptors C. Enzyme-linked receptors D. Intracellular receptors

7

8 A. Transmembrane Ligand-gated ion channels These are responsible for regulation of the flow of ions across cell membranes. The activity of these channels is regulated by the binding of a ligand to the channel. Response to these receptors is very rapid, having durations of a few milliseconds. The nicotinic receptor and the (GABA) receptor are important examples of ligandgated receptors

9 These receptors mediate functions such as neurotransmission, cardiac conduction, and muscle contraction. EX. stimulation of the nicotinic receptor by Ach results in sodium influx, generation of an action potential, and activation of contraction in skeletal muscle. Benzodiazepines, enhance the stimulation of the GABA receptor by GABA, resulting in increased chloride influx and hyperpolarization of the respective cell.

10 Nicotinic receptor

11 GABA receptor

12 B. Transmembrane G protein-coupled receptors These receptors consist of a single peptide that has seven membrane-spanning regions. Intracellularly, these receptors are linked to a G protein having three subunits an { α } subunit that binds (GDP) and { β, γ } subunit.

13 Binding of the ligand to the receptor results in the following: Activation of the G protein so that GTP replaces GDP on the α subunit. Dissociation of the G protein occurs, and both α- GTP subunit and β γ subunit subsequently interact with other cellular effectors ( enzyme or ion channel). These effectors then activate second messengers that are responsible for further actions within the cell. Stimulation of these receptors results in responses that last several seconds to minutes.

14 G protein-coupled receptors are the most abundant type of receptors. Important processes mediated by G protein coupled receptors include neurotransmission, olfaction, and vision. Example of receptors: α and ß adrenergic receptors muscarinic receptors

15 Second messengers: These are intracellular signaling molecules released by the cell to trigger physiological changes, they are essential in conducting & amplifying signals coming from G protein coupled receptors. 1. Activation of adenylyl cyclase by α-gtp subunits, results in the production of camp a second messenger that regulates protein phosphorylation. 2. G proteins also activate phospholipase C, which is responsible for the generation of two other second messengers inositol triphosphate (IP3) and diacylglycerol (DAG). IP3 is responsible for the regulation of intracellular free calcium concentrations. DAG activates several enzymes such as protein kinase C leading to countless physiological effects.

16

17

18 The recognition of chemical signals by G protein-coupled membrane receptors triggers an increase in the activity of adenylyl cyclase.

19

20 Lec 7 &

21 C. Enzyme-linked receptors (Receptor Tyrosine kinase) These receptors have cytosolic enzyme activity as an integral component of their structure or function. Binding of a ligand to an extracellular domain activates this cytosolic enzyme activity. Duration of responses to stimulation of these receptors is on the order of minutes to hours. Example of receptor: insulin. These receptors have a tyrosine kinase activity as part of their structure. Upon binding of the ligand to receptor subunits, the receptor undergoes conformational changes, converting from its inactive form to an active kinase form.

22

23

24 Insulin Receptor

25

26 D. Intracellular receptors The fourth family of receptors is different from the other three in that the receptor is entirely intracellular and the ligand must diffuse into the cell to interact with the receptor. The ligand in that it must have sufficient lipid solubility to be able to move across the target cell membrane. For example, steroid hormones exert their action on target cells by this receptor mechanism. The ligand binds with its receptor, and the receptor becomes activated The activated ligand receptor complex migrates to the nucleus, where it binds to specific DNA sequences, resulting in the regulation of gene expression.

27

28 Mechanism of intracellular receptors

29 The duration of the response (hours to days) is much greater than that of other receptor families. Other examples of intracellular ligands and their targets?

30 Characteristics of signal transduction Signal transduction has two important features: 1. The ability to amplify small signals 2. Mechanisms to protect the cell from excessive stimulation.

31 1. Signal amplification Some receptors have the ability to amplify signal duration and intensity. G protein linked receptors amplifies many of possible responses initiated by ligand binding to a receptor. Two phenomena account for the amplification First, a single ligand receptor complex can interact with many G proteins, multiplying the original signal many-fold. Second, the activated G proteins persist for a longer duration than the original ligand receptor complex.

32 A drug can produce a maximal response even when less than 100% of the receptors are occupied. The remaining unoccupied receptors are just serving as receptor reserve are called Spare receptors.

33 2. Desensitization and downregulation of receptors: Repeated or continuous administration of an agonist may lead to changes in the responsiveness of the receptor. To prevent potential damage to the cell, several mechanisms have evolved to protect a cell from excessive stimulation. Tachyphylaxis (desensitization): Repeated administration of a drug results in a diminished effect. The receptor becomes desensitized to the action of the drug, the receptors are still present on the cell surface but are unresponsive to the ligand.

34 Down-regulation: Prolonged exposure to high concentration of agonist causes a reduction in the number of receptors available for activation. This results due to endocytosis or internalisation of the receptors from the cell surface. These receptors may be recycled to the cell surface, restoring sensitivity, or may be degraded, decreasing the total number of receptors available. Some receptors, require a (resting period) following stimulation before they can be activated again. During this recovery phase they are said to be (refractory) or (unresponsive).

35 Some receptors, require a (resting period) following stimulation before they can be activated again. During this recovery phase they are said to be (refractory) or (unresponsive). Desensitization of receptors

36 Potency Is the amount of drug necessary to produce an effect of a given magnitude. EC50 : is the concentration of drug producing an effect that is 50 % of the maximum. It is used to determine potency; it is commonly designated as the EC50. In the figure, the EC50 for Drugs A and B are indicated. Drug A is more potent than Drug B because less Drug A is needed to obtain 50 percent effect

37 The effect of dose on the magnitude of pharmacologic response. Panel A is a linear graph. Panel B is a semilogarithmic plot of the same data. EC50 = drug dose that shows fifty percent of maximal response.

38 Efficacy [intrinsic activity]: This is the ability of a drug to produce a physiologic response (effect) when it interacts with a receptor. Efficacy is dependent on the number of drugreceptor complexes formed and the efficiency of the coupling of receptor activation to cellular responses. Maximal response (Emax) is more important than drug potency. A drug with greater efficacy is more therapeutically beneficial than one that is more potent.

39 Typical dose-response curve for drugs showing differences in potency and efficacy. (EC50 = drug dose that shows fifty percent of maximal response.)

40 Affinity Affinity describes the strength of the interaction (binding) between a ligand and its receptor. Kd: is the dissociation constant for the drug from the receptor, can be used to determine the affinity of a drug for its receptor. - The higher the Kd value, the weaker the interaction and the lower the affinity. - when a drug has a low Kd, the binding of the ligand to the receptor is strong, and the affinity is high.

41 AGONIST 1. Full agonist 2. Partial agonist 3. Inverse agonist

42 Agonists An agonist binds to a receptor and produces a biologic response that mimics the response to the endogenous ligand. 1. Full agonist: A full has a strong affinity for its receptor and maximum efficacy. A drug binding to a receptor and producing maximal biologic response that mimics the response to the endogenous ligand. For example, phenylephrine is an agonist at α 1 adrenoceptors, because it produces effects that resemble the action of the endogenous ligand, norepinephrine.

43 2. Partial agonist Have efficacies greater than zero, but less than that of a full agonist. -Even if all the receptors are occupied, partial agonists cannot produce an Emax of as great a magnitude as that of a full agonist. -In the presence of agonist, a partial agonist act as an antagonist.

44 Effects of full agonists, partial agonists, and inverse agonist on receptor activity.

45 3. Inverse agonist A drug that binds to the same receptor as an agonist but induces a pharmacological response opposite to that agonist.

46 Antagonist Drugs that decrease or oppose the actions of another drug or endogenous ligand. An antagonist has no effect if an agonist is not present Many antagonists act on the same receptor as the agonist. Have no intrinsic activity and produce no effect (no efficacy),but they have strong affinity to the receptor.

47

48 Types of antagonist 1- Competitive antagonist: Both antagonist and agonist bind to the same site on the receptor. The competitive antagonist prevents an agonist from binding to its receptor. Example: Terazosin If the agonist is given in a high enough concentration, it can displace the antagonist and fully activate the receptors. 2- Irreversible antagonist: Irreversibly (permanently) binds to the receptor The effects of an irreversible antagonist cannot be overcome by adding more agonist.

49 3. Chemical antagonist is a drug that interacts directly by combining with another drug and rendering it inactive. Protamine sulfate ionically binds to heparin, rendering it inactive and antagonizing heparin's anticoagulant effect. 4. Physiologic antagonist (functional antagonist) An antagonist may act at a completely separate receptor, initiating effects that are functionally opposite those of the agonist. Example/ Functional antagonism by epinephrine to histamine induced bronchoconstriction. Histamine receptor on bronchial smooth muscle causing contraction and narrowing of bronchial smooth muscle, epinephrine is an agonist at beta 2 receptor on bronchial smooth muscle lead to relaxation of muscles.

50 Therapeutic index Is the ratio of the dose that produces toxicity to the dose that produces a clinically desired or effective response in a population of individuals. Therapeutic index=td50/ ED50 TD50 = the drug dose that produces a toxic effect in half the population ED50 = the drug dose that produces a therapeutic or desired response in half the population. Therapeutic index is a measure of a drug's safety, a larger value indicates a wide margin between doses that are effective and doses that are toxic. Warfarin ( have a small therapeutic Index). Penicillin ( have a large therapeutic index) is safe.

51

Receptors Families. Assistant Prof. Dr. Najlaa Saadi PhD Pharmacology Faculty of Pharmacy University of Philadelphia

Receptors Families. Assistant Prof. Dr. Najlaa Saadi PhD Pharmacology Faculty of Pharmacy University of Philadelphia Receptors Families Assistant Prof. Dr. Najlaa Saadi PhD Pharmacology Faculty of Pharmacy University of Philadelphia Receptor Families 1. Ligand-gated ion channels 2. G protein coupled receptors 3. Enzyme-linked

More information

Pharmacodynamics. OUTLINE Definition. Mechanisms of drug action. Receptors. Agonists. Types. Types Locations Effects. Definition

Pharmacodynamics. OUTLINE Definition. Mechanisms of drug action. Receptors. Agonists. Types. Types Locations Effects. Definition Pharmacodynamics OUTLINE Definition. Mechanisms of drug action. Receptors Types Locations Effects Agonists Definition Types Outlines of Pharmacodynamics Antagonists Definition Types Therapeutic Index Definition

More information

Receptors and Drug Action. Dr. Subasini Pharmacology Department Ishik University, Erbil

Receptors and Drug Action. Dr. Subasini Pharmacology Department Ishik University, Erbil Receptors and Drug Action Dr. Subasini Pharmacology Department Ishik University, Erbil Receptors and Drug Action Receptor Receptor is defined as a macromolecule or binding site located on the surface or

More information

Physiology Unit 1 CELL SIGNALING: CHEMICAL MESSENGERS AND SIGNAL TRANSDUCTION PATHWAYS

Physiology Unit 1 CELL SIGNALING: CHEMICAL MESSENGERS AND SIGNAL TRANSDUCTION PATHWAYS Physiology Unit 1 CELL SIGNALING: CHEMICAL MESSENGERS AND SIGNAL TRANSDUCTION PATHWAYS In Physiology Today Cell Communication Homeostatic mechanisms maintain a normal balance of the body s internal environment

More information

PHRM20001: Pharmacology - How Drugs Work!

PHRM20001: Pharmacology - How Drugs Work! PHRM20001: Pharmacology - How Drugs Work Drug: a chemical that affects physiological function in a specific way. Endogenous substances: hormones, neurotransmitters, antibodies, genes. Exogenous substances:

More information

Neurotransmitter Systems II Receptors. Reading: BCP Chapter 6

Neurotransmitter Systems II Receptors. Reading: BCP Chapter 6 Neurotransmitter Systems II Receptors Reading: BCP Chapter 6 Neurotransmitter Systems Normal function of the human brain requires an orderly set of chemical reactions. Some of the most important chemical

More information

Lipids and Membranes

Lipids and Membranes Lipids and Membranes Presented by Dr. Mohammad Saadeh The requirements for the Pharmaceutical Biochemistry I Philadelphia University Faculty of pharmacy Membrane transport D. Endocytosis and Exocytosis

More information

Biosignals, Chapter 8, rearranged, Part I

Biosignals, Chapter 8, rearranged, Part I Biosignals, Chapter 8, rearranged, Part I Nicotinic Acetylcholine Receptor: A Ligand-Binding Ion Channel Classes of Receptor Proteins in Eukaryotes, Heterotrimeric G Proteins Signaling View the Heterotrimeric

More information

Membrane associated receptor transfers the information. Second messengers relay information

Membrane associated receptor transfers the information. Second messengers relay information Membrane associated receptor transfers the information Most signals are polar and large Few of the signals are nonpolar Receptors are intrinsic membrane proteins Extracellular and intracellular domains

More information

Assem Al Refaei. Sameer Emeish. Sameer Emeish. Alia Shatnawi

Assem Al Refaei. Sameer Emeish. Sameer Emeish. Alia Shatnawi 5 Assem Al Refaei Sameer Emeish Sameer Emeish Alia Shatnawi Sheet Checklist: - Lock And Key Model Explanation. - Specificity, Selectivity And Sensitivity Explanation. - Spare And Orphan Receptors. - Features

More information

Life History of A Drug

Life History of A Drug DRUG ACTION & PHARMACODYNAMIC M. Imad Damaj, Ph.D. Associate Professor Pharmacology and Toxicology Smith 652B, 828-1676, mdamaj@hsc.vcu.edu Life History of A Drug Non-Specific Mechanims Drug-Receptor Interaction

More information

Chapter 15: Signal transduction

Chapter 15: Signal transduction Chapter 15: Signal transduction Know the terminology: Enzyme-linked receptor, G-protein linked receptor, nuclear hormone receptor, G-protein, adaptor protein, scaffolding protein, SH2 domain, MAPK, Ras,

More information

Lecture 9: Cell Communication I

Lecture 9: Cell Communication I 02.05.10 Lecture 9: Cell Communication I Multicellular organisms need to coordinate cellular functions in different tissues Cell-to-cell communication is also used by single celled organisms to signal

More information

Pharmacologic Principles. Dr. Alia Shatanawi

Pharmacologic Principles. Dr. Alia Shatanawi Pharmacologic Principles Dr. Alia Shatanawi Definitions Drug: It is any chemical that affect living processes. It modifies an already existing function, and does not create a new function. 2 What is Pharmacology?

More information

Chapter 20. Cell - Cell Signaling: Hormones and Receptors. Three general types of extracellular signaling. endocrine signaling. paracrine signaling

Chapter 20. Cell - Cell Signaling: Hormones and Receptors. Three general types of extracellular signaling. endocrine signaling. paracrine signaling Chapter 20 Cell - Cell Signaling: Hormones and Receptors Three general types of extracellular signaling endocrine signaling paracrine signaling autocrine signaling Endocrine Signaling - signaling molecules

More information

Cell Communication. Local and Long Distance Signaling

Cell Communication. Local and Long Distance Signaling Cell Communication Cell to cell communication is essential for multicellular organisms Some universal mechanisms of cellular regulation providing more evidence for the evolutionary relatedness of all life

More information

2013 W. H. Freeman and Company. 12 Signal Transduction

2013 W. H. Freeman and Company. 12 Signal Transduction 2013 W. H. Freeman and Company 12 Signal Transduction CHAPTER 12 Signal Transduction Key topics: General features of signal transduction Structure and function of G protein coupled receptors Structure

More information

BCOR 011 Lecture 19 Oct 12, 2005 I. Cell Communication Signal Transduction Chapter 11

BCOR 011 Lecture 19 Oct 12, 2005 I. Cell Communication Signal Transduction Chapter 11 BCOR 011 Lecture 19 Oct 12, 2005 I. Cell Communication Signal Transduction Chapter 11 External signal is received and converted to another form to elicit a response 1 Lecture Outline 1. Types of intercellular

More information

INTERACTION DRUG BODY

INTERACTION DRUG BODY INTERACTION DRUG BODY What the drug does to the body What the body does to the drug Receptors - intracellular receptors - membrane receptors - Channel receptors - G protein-coupled receptors - Tyrosine-kinase

More information

G-Protein Coupled Receptors GPCRs. GPCRs

G-Protein Coupled Receptors GPCRs. GPCRs 2 type of ligands 1 G-Protein Coupled Receptors GPCRs One of the largest protein families: > 1000 type of GPCRs in mammals >3% of the human genes Major drug targets: ~ 60 % of approved drugs interact with

More information

Plasma membranes. Plasmodesmata between plant cells. Gap junctions between animal cells Cell junctions. Cell-cell recognition

Plasma membranes. Plasmodesmata between plant cells. Gap junctions between animal cells Cell junctions. Cell-cell recognition Cell Communication Cell Signaling Cell-to-cell communication is essential for multicellular organisms Communicate by chemical messengers Animal and plant cells have cell junctions that directly connect

More information

Cell Biology Lecture 9 Notes Basic Principles of cell signaling and GPCR system

Cell Biology Lecture 9 Notes Basic Principles of cell signaling and GPCR system Cell Biology Lecture 9 Notes Basic Principles of cell signaling and GPCR system Basic Elements of cell signaling: Signal or signaling molecule (ligand, first messenger) o Small molecules (epinephrine,

More information

PHRM20001 NOTES PART 1 Lecture 1 History of Pharmacology- Key Principles

PHRM20001 NOTES PART 1 Lecture 1 History of Pharmacology- Key Principles PHRM20001 NOTES PART 1 Lecture 1 History of Pharmacology- Key Principles Hippocrates (5 th century BCE):... benefit my patients according to my greatest ability and judgment, and I will do no harm or injustice

More information

number Done by Corrected by Doctor Alia Shatnawi

number Done by Corrected by Doctor Alia Shatnawi number 11 Done by Lojayn Salah Corrected by Doctor Alia Shatnawi The last thing we talked about in the previous lecture was the effect of a drug at a particular dose, and we took this equation: E= Emax

More information

Sarah Jaar Marah Al-Darawsheh

Sarah Jaar Marah Al-Darawsheh 22 Sarah Jaar Marah Al-Darawsheh Faisal Mohammad Receptors can be membrane proteins (for water-soluble hormones/ligands) or intracellular (found in the cytosol or nucleus and bind to DNA, for lipid-soluble

More information

Basic Pharmacology. Understanding Drug Actions and Reactions

Basic Pharmacology. Understanding Drug Actions and Reactions Basic Pharmacology Understanding Drug Actions and Reactions MARIA A. HERNANDEZ Ph.D. Pharmaceutical and Administrative College of Pharmacy Nova Southeastern University Ft. Lauderdale, Florida, U.S.A. APPU

More information

By the name of Allah

By the name of Allah By the name of Allah Receptors function and signal transduction ( Hormones and receptors Types) We were talking about receptors of the neurotransmitters; we have 2 types of receptors: 1- Ionotropic receptors

More information

Chapter 11. Cell Communication

Chapter 11. Cell Communication Chapter 11 Cell Communication Overview: The Cellular Internet Cell-to-cell communication Is absolutely essential for multicellular organisms Concept 11.1: External signals are converted into responses

More information

Basics of Pharmacology

Basics of Pharmacology Basics of Pharmacology Pekka Rauhala Transmed 2013 What is pharmacology? Pharmacology may be defined as the study of the effects of drugs on the function of living systems Pharmacodynamics The mechanism(s)

More information

number Done by Corrected by Doctor

number Done by Corrected by Doctor number 9 Done by Nazek Hyasat Corrected by Bahaa Najjar & mohammed AL-shrouf Doctor Alia Shatnawi HOW DO DRUGS WORK??? You know that receptors are targeted by drugs, the question now is how do these drugs

More information

Drug + Receptor Drug receptor complex Biologic effect

Drug + Receptor Drug receptor complex Biologic effect 1 Pharmacodynamics Lecture(5) I. OVERVIEW Most drugs exert their effects, both beneficial and harmful, by interacting with receptors that is, specialized target macromolecules present on the cell surface

More information

Pharmacodynamics. Dr. Alia Shatanawi

Pharmacodynamics. Dr. Alia Shatanawi Pharmacodynamics Dr. Alia Shatanawi Drug Receptor Interactions Sep-17 Dose response relationships Graduate dose-response relations As the dose administrated to single subject or isolated tissue is increased,

More information

Learning Objectives. How do drugs work? Mechanisms of Drug Action. Liam Anderson Dept Pharmacology & Clinical Pharmacology

Learning Objectives. How do drugs work? Mechanisms of Drug Action. Liam Anderson Dept Pharmacology & Clinical Pharmacology How do drugs work? Mechanisms of Drug Action Liam Anderson Dept Pharmacology & Clinical Pharmacology Learning Objectives Describe the potential drug targets within a human body. Describe the role of receptors,

More information

Pharmacology. Biomedical Sciences. Dynamics Kinetics Genetics. School of. Dr Lindsey Ferrie

Pharmacology. Biomedical Sciences. Dynamics Kinetics Genetics. School of. Dr Lindsey Ferrie Pharmacology Dynamics Kinetics Genetics Dr Lindsey Ferrie lindsey.ferrie@ncl.ac.uk MRCPsych Neuroscience and Psychopharmacology School of Biomedical Sciences Dynamics What the drug does to the body What

More information

Receptors. Dr. Sanaa Bardaweel

Receptors. Dr. Sanaa Bardaweel Receptors Types and Theories Dr. Sanaa Bardaweel Some terms in receptor-drug interactions Agonists: drugs that mimic the natural messengers and activate receptors. Antagonist: drugs that block receptors.

More information

Chem Lecture 10 Signal Transduction

Chem Lecture 10 Signal Transduction Chem 452 - Lecture 10 Signal Transduction 111130 Here we look at the movement of a signal from the outside of a cell to its inside, where it elicits changes within the cell. These changes are usually mediated

More information

G-Protein Signaling. Introduction to intracellular signaling. Dr. SARRAY Sameh, Ph.D

G-Protein Signaling. Introduction to intracellular signaling. Dr. SARRAY Sameh, Ph.D G-Protein Signaling Introduction to intracellular signaling Dr. SARRAY Sameh, Ph.D Cell signaling Cells communicate via extracellular signaling molecules (Hormones, growth factors and neurotransmitters

More information

11/8/16. Cell Signaling Mechanisms. Dr. Abercrombie 11/8/2016. Principal Parts of Neurons A Signal Processing Computer

11/8/16. Cell Signaling Mechanisms. Dr. Abercrombie 11/8/2016. Principal Parts of Neurons A Signal Processing Computer Cell Signaling Mechanisms Dr. Abercrombie 11/8/2016 Principal Parts of Neurons A Signal Processing Computer A Multitude of Synapses and Synaptic Actions Summation/Synaptic Integration 1 The Synapse Signal

More information

Lecture Outline. Hormones & Chemical Signaling. Communication Basics: Overview. Communication Basics: Methods. Four methods of cell communication

Lecture Outline. Hormones & Chemical Signaling. Communication Basics: Overview. Communication Basics: Methods. Four methods of cell communication Lecture Outline Hormones & Chemical Signaling Communication Basics Communication Overview Communication Methods Signal pathways Regulation (modulation) of signal pathways Homeostasis... again Endocrine

More information

Cellular Messengers. Intracellular Communication

Cellular Messengers. Intracellular Communication Cellular Messengers Intracellular Communication Most common cellular communication is done through extracellular chemical messengers: Ligands Specific in function 1. Paracrines Local messengers (neighboring

More information

INTERACTION DRUG BODY

INTERACTION DRUG BODY INTERACTION DRUG BODY What the drug does to the body What the body does to the drug Receptors - intracellular receptors - membrane receptors - Channel receptors - G protein-coupled receptors - Tyrosine-kinase

More information

2402 : Anatomy/Physiology

2402 : Anatomy/Physiology Dr. Chris Doumen Lecture 2 2402 : Anatomy/Physiology The Endocrine System G proteins and Adenylate Cyclase /camp TextBook Readings Pages 405 and 599 through 603. Make use of the figures in your textbook

More information

Chapter 11. Cell Communication. Signal Transduction Pathways

Chapter 11. Cell Communication. Signal Transduction Pathways Chapter 11 Cell Communication Signal Transduction Pathways Signal-Transduction Pathway Signal on a cell s surface is converted into a specific cellular response Local signaling (short distance) - Paracrine

More information

ANATOMY & PHYSIOLOGY - CLUTCH CH. 6 - CELL COMMUNICATION.

ANATOMY & PHYSIOLOGY - CLUTCH CH. 6 - CELL COMMUNICATION. !! www.clutchprep.com CONCEPT: CELL-TO-CELL CONNECTIONS AND SIGNALING Gap and Tight Junctions: Adjacent cells communicate and hold on to each other via junctions. Two important kinds: Gap Junctions are

More information

Cell Signaling part 2

Cell Signaling part 2 15 Cell Signaling part 2 Functions of Cell Surface Receptors Other cell surface receptors are directly linked to intracellular enzymes. The largest family of these is the receptor protein tyrosine kinases,

More information

Introduction! Introduction! Introduction! Chem Lecture 10 Signal Transduction & Sensory Systems Part 2

Introduction! Introduction! Introduction! Chem Lecture 10 Signal Transduction & Sensory Systems Part 2 Chem 452 - Lecture 10 Signal Transduction & Sensory Systems Part 2 Questions of the Day: How does the hormone insulin trigger the uptake of glucose in the cells that it targets. Introduction! Signal transduction

More information

Cell Communication. Chapter 11. Biology Eighth Edition Neil Campbell and Jane Reece. PowerPoint Lecture Presentations for

Cell Communication. Chapter 11. Biology Eighth Edition Neil Campbell and Jane Reece. PowerPoint Lecture Presentations for Chapter 11 Cell Communication PowerPoint Lecture Presentations for Biology Eighth Edition Neil Campbell and Jane Reece Lectures by Chris Romero, updated by Erin Barley with contributions from Joan Sharp

More information

Lojayn Salah. Razan Aburumman. Faisal Muhammad

Lojayn Salah. Razan Aburumman. Faisal Muhammad 20 Lojayn Salah Razan Aburumman Faisal Muhammad Note: I tried to include everything that's important from the doctor's slides but you can refer back to them after studying this sheet.. After you read this

More information

Introduction to Receptor Pharmacology

Introduction to Receptor Pharmacology Introduction to Receptor Pharmacology Dr Taufiq Rahman 2 nd August 2016 Part I: A general overview of receptors what is sustaining life? how a cell biologist will look at this? sustaining life means that

More information

HORMONES (Biomedical Importance)

HORMONES (Biomedical Importance) hormones HORMONES (Biomedical Importance) Hormones are the chemical messengers of the body. They are defined as organic substances secreted into blood stream to control the metabolic and biological activities.

More information

Cell Communication. Chapter 11. PowerPoint Lectures for Biology, Seventh Edition. Lectures by Chris Romero. Neil Campbell and Jane Reece

Cell Communication. Chapter 11. PowerPoint Lectures for Biology, Seventh Edition. Lectures by Chris Romero. Neil Campbell and Jane Reece Chapter 11 Cell Communication PowerPoint Lectures for Biology, Seventh Edition Neil Campbell and Jane Reece Lectures by Chris Romero Overview: The Cellular Internet Cell-to-cell communication Is absolutely

More information

numbe r Done by Corrected Docto Alia Shatnawi

numbe r Done by Corrected Docto Alia Shatnawi numbe r 9 Done by Nazek Hyasat Corrected Bahaa Najjar & mohammed AL-shrouf Docto Alia Shatnawi HOW DO DRUGS WORK??? You know that receptor targets by the drugs, the question now how these drugs work on

More information

Cell Communication. Cell Communication. Communication between cells requires: ligand: the signaling molecule

Cell Communication. Cell Communication. Communication between cells requires: ligand: the signaling molecule Cell Communication Cell Communication Communication between cells requires: ligand: the signaling molecule receptor protein: the molecule to which the ligand binds (may be on the plasma membrane or within

More information

Lecture 15. Signal Transduction Pathways - Introduction

Lecture 15. Signal Transduction Pathways - Introduction Lecture 15 Signal Transduction Pathways - Introduction So far.. Regulation of mrna synthesis Regulation of rrna synthesis Regulation of trna & 5S rrna synthesis Regulation of gene expression by signals

More information

Pharmacology Unit 1 Page 1 of 12. Learning goals for this file:

Pharmacology Unit 1 Page 1 of 12. Learning goals for this file: Pharmacology Unit 1 Page 1 of 12 Learning goals for this file: 1) Review receptor theory affinity, antagonists, agonists 2) Upregulation & downregulation; spare receptors 3) Types of Ligands and Receptor

More information

Lecture no. 7. There are four major families of receptors that are responsible for drug responses:

Lecture no. 7. There are four major families of receptors that are responsible for drug responses: Sunday 7/10/2012 Pharmacology Lecture no. 7 There are four major families of receptors that are responsible for drug responses: 1. Ligand gated ion receptors: Channels across the plasma membrane that bind

More information

Cell Communication. Cell Communication. Cell Communication. Cell Communication. Cell Communication. Chapter 9. Communication between cells requires:

Cell Communication. Cell Communication. Cell Communication. Cell Communication. Cell Communication. Chapter 9. Communication between cells requires: Chapter 9 Communication between cells requires: ligand: the signaling molecule receptor protein: the molecule to which the receptor binds -may be on the plasma membrane or within the cell 2 There are four

More information

Hormones and Signal Transduction. Dr. Kevin Ahern

Hormones and Signal Transduction. Dr. Kevin Ahern Dr. Kevin Ahern Signaling Outline Signaling Outline Background Signaling Outline Background Membranes Signaling Outline Background Membranes Hormones & Receptors Signaling Outline Background Membranes

More information

Ch. 6: Communication, Integration & Homeostasis

Ch. 6: Communication, Integration & Homeostasis Developed by John Gallagher, MS, DVM Ch. 6: Communication, Integration & Homeostasis Goals Describe cell to cell communication Electrical or Chemical only Explain signal transduction Review homeostasis

More information

Pharmacodynamics. Prof. Dr. Öner Süzer Cerrahpaşa Medical Faculty Department of Pharmacology and Clinical Pharmacology

Pharmacodynamics. Prof. Dr. Öner Süzer Cerrahpaşa Medical Faculty Department of Pharmacology and Clinical Pharmacology Pharmacodynamics Prof. Dr. Öner Süzer Cerrahpaşa Medical Faculty Department of Pharmacology and Clinical Pharmacology www.onersuzer.com Last updated: 13.05.2010 English Pharmacology Textbooks 2 2 1 3 3

More information

PHSI3009 Frontiers in Cellular Physiology 2017

PHSI3009 Frontiers in Cellular Physiology 2017 Overview of PHSI3009 L2 Cell membrane and Principles of cell communication L3 Signalling via G protein-coupled receptor L4 Calcium Signalling L5 Signalling via Growth Factors L6 Signalling via small G-protein

More information

Pharmacodynamics. Dr. Alia Shatanawi

Pharmacodynamics. Dr. Alia Shatanawi Pharmacodynamics Dr. Alia Shatanawi Introduction Pharmacology is the study of the biochemical and physiological aspects of the drug effects including absorption, distribution, metabolism, elimination,

More information

G protein-coupled Signal Transduction

G protein-coupled Signal Transduction Theresa Filtz, hd har 735, Winter 2006 G protein-coupled Signal Transduction Main Objectives (the big chunks) Describe in molecular detail the cascades of events in a generalized G protein-coupled signaling

More information

January 25, Introduction to Pharmacology

January 25, Introduction to Pharmacology January 25, 2015 Introduction to Pharmacology Edward Fisher, Ph.D., R.Ph. Professor and Associate Dean for Academic Affairs Director MS Clinical Psychopharmacology University of Hawaii at Hilo College

More information

Signal Transduction: G-Protein Coupled Receptors

Signal Transduction: G-Protein Coupled Receptors Signal Transduction: G-Protein Coupled Receptors Federle, M. (2017). Lectures 4-5: Signal Transduction parts 1&2: nuclear receptors and GPCRs. Lecture presented at PHAR 423 Lecture in UIC College of Pharmacy,

More information

Receptor Occupancy Theory

Receptor Occupancy Theory Pharmacodynamics 1 Receptor Occupancy Theory The Law of Mass Action Activation of membrane receptors and target cell responses is proportional to the degree of receptor occupancy. Assumptions: Association

More information

2401 : Anatomy/Physiology

2401 : Anatomy/Physiology Dr. Chris Doumen Week 11 2401 : Anatomy/Physiology Autonomic Nervous System TextBook Readings Pages 533 through 552 Make use of the figures in your textbook ; a picture is worth a thousand words! Work

More information

Signal Transduction: Information Metabolism. Chem 454: Regulatory Mechanisms in Biochemistry University of Wisconsin-Eau Claire

Signal Transduction: Information Metabolism. Chem 454: Regulatory Mechanisms in Biochemistry University of Wisconsin-Eau Claire Signal Transduction: Information Metabolism Chem 454: Regulatory Mechanisms in Biochemistry University of Wisconsin-Eau Claire Introduction Information Metabolism How cells receive, process and respond

More information

Cell Communication. Biology Eighth Edition Neil Campbell and Jane Reece. PowerPoint Lecture Presentations for

Cell Communication. Biology Eighth Edition Neil Campbell and Jane Reece. PowerPoint Lecture Presentations for Chapter 11 Cell Communication PowerPoint Lecture Presentations for Biology Eighth Edition Neil Campbell and Jane Reece Lectures by Chris Romero, updated by Erin Barley with contributions from Joan Sharp

More information

STEIN IN-TERM EXAM -- BIOLOGY FEBRUARY 16, PAGE

STEIN IN-TERM EXAM -- BIOLOGY FEBRUARY 16, PAGE STEIN IN-TERM EXAM -- BIOLOGY 3058 -- FEBRUARY 16, 2017 -- PAGE 1 of 9 There are 25 questions in this Biology 3058 exam. All questions are "A, B, C, D, E, F, G, H" questions worth one point each. There

More information

Leen Osama, Lujain Hamdan, Osama Mohd, Razi Kittaneh... Faisal Mohammad

Leen Osama, Lujain Hamdan, Osama Mohd, Razi Kittaneh... Faisal Mohammad 23 Leen Osama, Lujain Hamdan, Osama Mohd, Razi Kittaneh... Faisal Mohammad Revision of previous lectures G-proteins coupled receptors mechanism: When a hormone binds to G-protein coupled receptor, GTP

More information

Mechanisms of Hormone Action

Mechanisms of Hormone Action Mechanisms of Hormone Action General principles: 1. Signals act over different ranges. 2. Signals have different chemical natures. 3. The same signal can induce a different response in different cells.

More information

Cell Signaling (part 1)

Cell Signaling (part 1) 15 Cell Signaling (part 1) Introduction Bacteria and unicellular eukaryotes respond to environmental signals and to signaling molecules secreted by other cells for mating and other communication. In multicellular

More information

Fundamentals of Pharmacology

Fundamentals of Pharmacology Fundamentals of Pharmacology Topic Page Receptors 2 Ion channels / GABA 4 GPCR s 6 TK receptors 8 Basics of PK 11 ADR s / Clinical study design 13 Introduction to the ANS 16 Cholinergic Pharmacology 20

More information

Cell Communication. Chapter 11. Biology Eighth Edition Neil Campbell and Jane Reece. PowerPoint Lecture Presentations for

Cell Communication. Chapter 11. Biology Eighth Edition Neil Campbell and Jane Reece. PowerPoint Lecture Presentations for Chapter 11 Cell Communication PowerPoint Lecture Presentations for Biology Eighth Edition Neil Campbell and Jane Reece Lectures by Chris Romero, updated by Erin Barley with contributions from Joan Sharp

More information

GPCR. General Principles of Cell Signaling G-protein-Coupled Receptors Enzyme-Coupled Receptors Other Signaling Pathways. G-protein-Coupled Receptors

GPCR. General Principles of Cell Signaling G-protein-Coupled Receptors Enzyme-Coupled Receptors Other Signaling Pathways. G-protein-Coupled Receptors G-protein-Coupled Receptors General Principles of Cell Signaling G-protein-Coupled Receptors Enzyme-Coupled Receptors Other Signaling Pathways GPCR G-protein-coupled receptors Figure 15-30 Molecular Biology

More information

Cell Communication. Chapter 11. Biology Eighth Edition Neil Campbell and Jane Reece. PowerPoint Lecture Presentations for

Cell Communication. Chapter 11. Biology Eighth Edition Neil Campbell and Jane Reece. PowerPoint Lecture Presentations for Chapter 11 Cell Communication PowerPoint Lecture Presentations for Biology Eighth Edition Neil Campbell and Jane Reece Lectures by Chris Romero, updated by Erin Barley with contributions from Joan Sharp

More information

PATHOPHYSIOLOGY AND MOLECULAR BIOLOGY- BASED PHARMACOLOGY MOLECULAR-BASED APPROACHES: RECEPTOR AGONISTS, ANTAGONISTS, ENZYME INHIBITORS

PATHOPHYSIOLOGY AND MOLECULAR BIOLOGY- BASED PHARMACOLOGY MOLECULAR-BASED APPROACHES: RECEPTOR AGONISTS, ANTAGONISTS, ENZYME INHIBITORS PharmaTrain Cooperative European Medicines Development Course (CEMDC) Budapest, October, 2017 PATHOPHYSIOLOGY AND MOLECULAR BIOLOGY- BASED PHARMACOLOGY MOLECULAR-BASED APPROACHES: RECEPTOR AGONISTS, ANTAGONISTS,

More information

Pharmacodynamics Dr. Iman Lec. 2

Pharmacodynamics Dr. Iman Lec. 2 Pharmacodynamics Dr. Iman Lec. 2 Inverse agonist: drug that produces effects which are opposite to those of the agonist, e.g. β carbolines bind to benzodiazepine receptor leading to stimulation and anxiety

More information

Integrated Pharmacotherapy I. Drug Targets, Ligands, Receptors, and Mechanisms of Drug Action

Integrated Pharmacotherapy I. Drug Targets, Ligands, Receptors, and Mechanisms of Drug Action Integrated Pharmacotherapy I Drug Targets, Ligands, Receptors, and Mechanisms of Drug Action Required reading: Chapters 1 and 2, Basic and Clinical Pharmacology, 10th Ed., Katzung BG, McGraw Hill, 2007.

More information

Lecture: CHAPTER 13 Signal Transduction Pathways

Lecture: CHAPTER 13 Signal Transduction Pathways Lecture: 10 17 2016 CHAPTER 13 Signal Transduction Pathways Chapter 13 Outline Signal transduction cascades have many components in common: 1. Release of a primary message as a response to a physiological

More information

Dania Ahmad. Tamer Barakat + Dania Ahmad. Faisal I. Mohammed

Dania Ahmad. Tamer Barakat + Dania Ahmad. Faisal I. Mohammed 16 Dania Ahmad Tamer Barakat + Dania Ahmad Faisal I. Mohammed Revision: What are the basic types of neurons? sensory (afferent), motor (efferent) and interneuron (equaled association neurons). We classified

More information

Propagation of the Signal

Propagation of the Signal OpenStax-CNX module: m44452 1 Propagation of the Signal OpenStax College This work is produced by OpenStax-CNX and licensed under the Creative Commons Attribution License 3.0 By the end of this section,

More information

Cell responses to environment-- Signals

Cell responses to environment-- Signals Cell responses to environment-- Signals Signal transduction can coordinate: Development Formation of tissues Timing of cell division Direction of cell enlargement Size and shape of organs Responses to

More information

General Principles of Endocrine Physiology

General Principles of Endocrine Physiology General Principles of Endocrine Physiology By Dr. Isabel S.S. Hwang Department of Physiology Faculty of Medicine University of Hong Kong The major human endocrine glands Endocrine glands and hormones

More information

Chapter 5 Control of Cells by Chemical Messengers

Chapter 5 Control of Cells by Chemical Messengers Chapter 5 Control of Cells by Chemical Messengers = How hormones and other signals work Intercellular Communication = Intercellular Signal Transmission Chemical communication Electrical communication Intercellular

More information

Revision. camp pathway

Revision. camp pathway االله الرحمن الرحيم بسم Revision camp pathway camp pathway Revision camp pathway Adenylate cyclase Adenylate Cyclase enzyme Adenylate cyclase catalyses the formation of camp from ATP. Stimulation or inhibition

More information

Cell Communication. Chapter 11. Biology. Eighth Edition Neil Campbell and Jane Reece. PowerPoint Lecture Presentations for

Cell Communication. Chapter 11. Biology. Eighth Edition Neil Campbell and Jane Reece. PowerPoint Lecture Presentations for Chapter 11 Cell Communication PowerPoint Lecture Presentations for Biology Eighth Edition Neil Campbell and Jane Reece Lectures by Chris Romero, updated by Erin Barley with contributions from Joan Sharp

More information

agonistic Summation: additive Potentiation synergism :

agonistic Summation: additive Potentiation synergism : 25 Two common types of agonistic drug interactions are : 1. Summation: When two drugs with similar mechanisms are given together, they typically produce additive effects. 2. Potentiation or synergism :

More information

PHARMACODYNAMICS II QUANTITATIVE ASPECTS OF DRUGS. Ali Alhoshani, B.Pharm, Ph.D. Office: 2B 84

PHARMACODYNAMICS II QUANTITATIVE ASPECTS OF DRUGS. Ali Alhoshani, B.Pharm, Ph.D. Office: 2B 84 PHARMACODYNAMICS II QUANTITATIVE ASPECTS OF DRUGS Ali Alhoshani, B.Pharm, Ph.D. ahoshani@ksu.edu.sa Office: 2B 84 Quantitative aspects of drugs By the end of this lecture, you should: Determine quantitative

More information

Chapter 9. Cellular Signaling

Chapter 9. Cellular Signaling Chapter 9 Cellular Signaling Cellular Messaging Page 215 Cells can signal to each other and interpret the signals they receive from other cells and the environment Signals are most often chemicals The

More information

Cellular Physiology (PHSI3009) Contents:

Cellular Physiology (PHSI3009) Contents: Cellular Physiology (PHSI3009) Contents: Cell membranes and communication 2 nd messenger systems G-coupled protein signalling Calcium signalling Small G-protein signalling o RAS o MAPK o PI3K RHO GTPases

More information

BIOLOGY. Cell Communication CAMPBELL. Reece Urry Cain Wasserman Minorsky Jackson. Lecture Presentation by Nicole Tunbridge and Kathleen Fitzpatrick

BIOLOGY. Cell Communication CAMPBELL. Reece Urry Cain Wasserman Minorsky Jackson. Lecture Presentation by Nicole Tunbridge and Kathleen Fitzpatrick CAMPBELL BIOLOGY TENTH EDITION Reece Urry Cain Wasserman Minorsky Jackson 11 Cell Communication Lecture Presentation by Nicole Tunbridge and Kathleen Fitzpatrick Cellular Messaging Cells can signal to

More information

Cell Communication. Chapter 11. Biology. Eighth Edition Neil Campbell and Jane Reece. PowerPoint Lecture Presentations for

Cell Communication. Chapter 11. Biology. Eighth Edition Neil Campbell and Jane Reece. PowerPoint Lecture Presentations for Chapter 11 Cell Communication PowerPoint Lecture Presentations for Biology Eighth Edition Neil Campbell and Jane Reece Lectures by Chris Romero, updated by Erin Barley with contributions from Joan Sharp

More information

Chapter 11 Cell Communication Guided Reading. 3. How do intercellular connections function in cell to cell communication?

Chapter 11 Cell Communication Guided Reading. 3. How do intercellular connections function in cell to cell communication? AP Biology TEXT: Biology, Campbell and Reece 7 th Edition Name Chapter 11 Cell Communication Guided Reading This chapter is often considered difficult as you have not covered it in an introductory biology

More information

General Principles of Pharmacology and Toxicology

General Principles of Pharmacology and Toxicology General Principles of Pharmacology and Toxicology Parisa Gazerani, Pharm D, PhD Assistant Professor Center for Sensory-Motor Interaction (SMI) Department of Health Science and Technology Aalborg University

More information

Cell Communication CHAPTER 11

Cell Communication CHAPTER 11 Cell Communication CHAPTER 11 What you should know: The 3 stages of cell communication: reception, transduction, and response. How a receptor protein recognizes signal molecules and starts transduction.

More information

Chapter 16: Endocrine System 1

Chapter 16: Endocrine System 1 Ch 16 Endocrine System Bi 233 Endocrine system Endocrine System: Overview Body s second great controlling system Influences metabolic activities of cells by means of hormones Slow signaling Endocrine glands

More information

Goals and Challenges of Communication. Communication and Signal Transduction. How Do Cells Communicate?

Goals and Challenges of Communication. Communication and Signal Transduction. How Do Cells Communicate? Goals and Challenges of Communication Reaching (only) the correct recipient(s) Imparting correct information Timeliness Causing the desired effect Effective termination Communication and Signal Transduction

More information

Lab Results: 1. Document the initial and final egg masses. 2. Calculate the percent change

Lab Results: 1. Document the initial and final egg masses. 2. Calculate the percent change Lab Results: 1. Document the initial and final egg masses. 2. Calculate the percent change 3. Draw an arrow showing which way water traveled (in or out of the egg) on your post lab. CHI- SQUARE: What if

More information