Nature Neuroscience: doi: /nn Supplementary Figure 1

Size: px
Start display at page:

Download "Nature Neuroscience: doi: /nn Supplementary Figure 1"

Transcription

1 Supplementary Figure 1 Relative expression of K IR2.1 transcript to enos was reduced 29-fold in capillaries from knockout animals. Relative expression of K IR2.1 transcript to enos was reduced 29-fold in capillaries from knockout animals (n = 6 capillaries from 6 mice), compared to controls (n = 5 capillaries from 5 mice) indicating successful knockout of K IR2.1 (*P = (t 9 = 3.204); unpaired t-test). Error bars represent s.e.m.

2 Supplementary Figure 2 K IR currents in pial artery SM cells were unaffected by knockout of K IR2.1 in ECs. (A) Typical experiment in a WT pial artery SM cell in which control currents (black trace) are characterized by an inwardly rectifying current at potentials negative to E K (-23 mv) and an outwardly rectifying component at positive potentials. Application of 100 µm Ba 2+ inhibited the inward rectifier component (red). Currents were recorded in response to a 200-ms ramp from -140 to +50 mv with 60 mm [K + ] o and 300 nm [Ca 2+ ] i. (B) Typical experiment in a pial artery SM cell from an EC K IR2.1 -/- mouse under the same conditions. Ba 2+ (blue trace) inhibited the inward rectifier component that was evident under control conditions (black trace). (C) Summary data at -140 mv, indicating no difference in SM cell K IR current density between WT and EC K IR2.1 -/- mice (WT, n = 14 cells from 3 mice; EC K IR2.1 -/-, n = 13 cells from 4 mice; P = (t 25 = ) Student s unpaired t-test). (D) The density of voltage-dependent currents at +50 mv was also unchanged between SM cells from WT and EC K IR2.1 -/- mice (WT, n = 14 cells from 3 mice; EC K IR2.1 -/-, n = 13 cells from 4 mice; P = (t 25 = 1.316) Student s unpaired t-test). All error bars represent s.e.m.

3 Supplementary Figure 3 SK and IK channel activation in pial artery ECs. (A) Typical experiment in a pial artery EC in which a small inwardly rectifying current (black line) is observed in response to a 200-ms ramp from -140 to +50 mv under control conditions (6 mm [K + ] o, 300 nm [Ca 2+ ] i). Subsequent application of 1 µm NS309 (green) produced large SK and IK currents. (B) Typical experiment in a pial artery EC dialyzed with 3 µm Ca 2+, which caused the immediate development of prominent K + currents.

4 Supplementary Figure 4 The presence of capillaries did not affect the properties of attached, pressurized (40 mmhg) parenchymal arterioles. (A) Side-by-side comparison of vasomotor responses in parenchymal arteriole (PA) (left) and CaPA (right) preparations taken from the same mouse. Nearly identical responses were observed to bath application of 1 M NS309, 10 mm K +, and 100 nm U (B) Summary data for seven paired experiments (7 mice) indicating that PA and CaPA preparations develop the same degree of myogenic tone and have identical vasomotor properties (n = 7; tone: P = , (t 6 = ); NS309: P = , (t 6 = ); 10 mm K + : P = , (t 6 = 1,239); U46619: P = , (t 6 = ); paired Student s t-test). All error bars represent s.e.m.

5 Supplementary Figure 5 K + concentrations lower than 10 mm also dilated upstream arterioles when applied onto capillaries, with a threshold for activation between 6 and 7 mm K + followed by moderately graded responses between 7 and 10 mm. (A) Typical intraluminal arteriolar diameter at Zone 1, located at the point from which the primary capillary initially branches out, during stimulation of attached downstream capillaries with 6, 7, 8, 9 and 10 mm K +. (B) Summary data showing peak diameter changes in Zone 1 in response to the different K + concentrations (n = 5 preparations from 5 mice; 6 mm K + vs 7 mm K + : ***P = , (t 5 = 10.48); 7 mm K + vs 8 mm K + : *P = , (t 5 = 3.038); 8 mm K + vs 9 mm K + : *P = , (t 5 = 3.196); 9 mm K + vs 10 mm K + : P = , (t 5 = 2,706), paired Student s t-test). All error bars represent s.e.m.

6 Supplementary Figure 6 Pressure ejection of agents onto capillaries did not directly stimulate upstream arterioles. (A) Pipette positions (tip indicated by black arrowheads) for capillary stimulation (left) and arteriole stimulation (right). (B) Pressure ejection of 1 M NS309 onto capillaries (P1, purple) had no effect on upstream arteriolar diameter, whereas direct arteriole stimulation (P2, orange) with this agent caused substantial dilation, indicating that solutions ejected onto capillaries do not spill over onto the arteriole.

7 Supplementary Figure 7 Endothelial function and vasomotor properties of parenchymal arterioles were unaffected by EC K IR2.1 knockout. (A) Typical diameter traces of pressurized parenchymal arterioles from WT (top) and EC K IR2.1 -/- (bottom) mice. Myogenic tone and responses to the SK and IK channel opener NS309 were essentially identical between groups. (B) Summary of myogenic tone at 40 mm Hg intravascular pressure (top) and dilation evoked by NS309 (bottom) in WT and EC K IR2.1 -/- mice (WT, n = 7 mice; EC K IR2.1 -/-, n = 9 mice); tone: P = , (t 13 = 1.183); NS309: P = , (t 13 = ); unpaired Student s t-test). All error bars represent s.e.m.

8 Supplementary Figure 8 Surgically removing the capillary tree from its upstream arteriole eliminated arteriolar dilation following capillary stimulation with 10 mm K +. (A) A CaPA preparation with capillaries attached (top) or severed (middle and bottom) with a pipette positioned for capillary (top and middle) or arteriole (bottom) stimulation by pressure ejection. Red arrow indicates the tip of the pipette. Diameter was recorded in Zone 1 (black box) where the primary capillary branches from the arteriole. (B) Arteriolar diameter at Zone 1 in response to 10 mm K + stimulation of attached capillaries (top) or severed capillaries (middle). Application of 10 mm K + to capillaries failed to produce upstream arteriolar dilation after surgical separation of the capillary tree from the arteriole, while direct stimulation of the arteriole with 10 mm K + still led to vasodilation (bottom). This observation confirms the spatial restriction of the pressure ejected solution and indicates that the observed phenomenon relies on inherent conducted signaling from capillaries to the arteriole. (C) Summary data (n = 6 preparations, 6 mice) showing peak diameter changes in Zone 1 in the different configurations: Capillary tree attached (top) or severed (middle and bottom), induced by 10 mm K + applied onto capillaries (top and middle) or the arteriole (bottom). Error bars represent s.e.m.

9 Supplementary Figure 9 Stimulation of capillaries in vivo with 10 mm K + increased RBC velocity in WT mice, but not in EC K IR2.1 / mice or in the presence of Ba 2+. (A) Typical velocity-time trace for pressure ejection of 10 mm K + (300 ms, 8 psi; purple arrow) onto a capillary in a WT mouse, showing a rapid and sustained increase in RBC velocity. Gray circles represent the velocities of individual RBCs, and the blue line is a running average. (B) Same as in A for an experiment performed on a capillary in an EC K IR2.1 -/- mouse, showing the lack of a substantial increase in RBC velocity to 10 mm K +. (C, D) Typical RBC flux-time trace (C) and corresponding RBC velocity time-course (D) for pressure ejection of 10 mm K + (200 ms, 6 psi; purple arrow) onto a WT mouse capillary in vivo after a 25-min incubation of the cortex with 100 µm Ba 2+. (E) Summary data showing RBC velocity before and after capillary application of 10 mm K + in WT mice (n = 11 paired experiments, 11 mice; ***P = (t 10 = 5.244), paired Student s t-test). (F) Summary data showing RBC velocity before and after capillary application of 10 mm K + in EC K IR2.1 -/- mice (n = 9 paired experiments, 9 mice; P = 0.88 (t 8 = ), paired Student s t- test). (G) Summary data showing RBC velocity before and after capillary application of 10 mm K + in WT mice following cortical application of 100 M Ba 2+ (n = 6 paired experiments, 6 mice; P = (t 5 = ) Student s paired t-test). All error bars represent s.e.m.

10 Supplementary Figure 10 Stimulation of capillaries in vivo with 3 mm K + had no effect on RBC flux or velocity. (A) Typical RBC flux-time trace for pressure ejection of acsf (3 mm K + ; 300 ms, 6 psi, black arrow) onto a capillary in vivo. (B) Corresponding RBC velocity-time trace for the experiment shown in A (gray circles, individual RBC velocities; blue line, running average). (C) Summary data for RBC flux (n = 6 paired experiments, 6 mice; P = (t 5 = ) Student s paired t-test) and (D) velocity (n = 6 paired experiments, 6 mice; P = (t 5 = ) Student s paired t-test) and before and after acsf delivery, indicating that pressure ejection alone produced no change in either parameter. Error bars represent s.e.m.

11 Supplementary Figure 11 Capillary hyperemia to 10 mm K + persisted in the presence of tetrodotoxin (TTX), a blocker of voltage-dependent Na + channels. (A) Contralateral whisker stimulation increased capillary flux under basal conditions, and this response was eliminated by application of 3 M TTX to the cranial surface (n = 5 paired experiments, 5 mice; **P = , two-way ANOVA with post hoc Tukey s multiple comparisons test). (B) In the presence of TTX, application of 10 mm K + to the capillary still caused an increase in RBC flux and velocity, as evidenced by the increased number and steeper angle of RBCs (black streaks against the green FITC-loaded plasma) passing through the line-scanned region. Left: baseline distance-time line scan plot; right: after application of 10 mm K +. (C) Typical RBC fluxtime plot indicating marked hyperemia after in vivo application of 10 mm K + to a capillary, after pre-treatment with 3 M TTX to silence neuronal activity. (D) Summary data for the peak increase in capillary RBC flux evoked by 10 mm K + in the presence of TTX (n = 5 paired experiments, 5 mice; *P = (t 4 = 3.123) paired Student s t-test). Error bars represent s.e.m.

12 Supplementary Figure 12 Whisker stimulation-evoked neural activity was unaffected by 100 µm Ba 2+ superfusion. (A) Representative 8 s LFP epoch (top) and accompanying 0-20 Hz spectrogram (bottom) recorded from the whisker barrel cortex in response to contralateral whisker stimulation under control conditions. Stimulation reliably entrained large oscillations at a frequency of ~5 Hz. (B) Exactly as in A for the same mouse, after superfusion of 100 µm Ba 2+ over the cranial surface. (C) Signal spectrum plot for the recording in A illustrating the predominance of 5 Hz oscillations evoked by whisker stimulation. (D) Signal spectrum plot for the recording in B. (E) Summary data showing the peak signal amplitude before and after 100 µm Ba 2+ superfusion for the 0 4 Hz band of the LFP spectrum (n = 5 paired experiments, 5 mice; P = (t 4 = 0.991) Student s paired t-test). (F) Summary data showing the frequency of peak LFP oscillations before and after 100 µm Ba 2+ superfusion for the 0 4 Hz band of the LFP spectrum (n = 5 paired experiments, 5 mice; P = (t 4 = 0.777) Student s paired t-test). (G) Summary data showing the peak signal amplitude before and after 100 µm Ba 2+ superfusion for the 4 6 Hz band of the LFP spectrum (n = 5 paired experiments, 5 mice; P = (t 4 = ) Student s paired t-test). (H) Summary data showing the frequency of peak LFP oscillations before and after 100 µm Ba 2+ superfusion for the 4 6 Hz band of the LFP spectrum (n = 5 paired experiments, 5 mice; P = (t 4 = 1.969) Student s paired t-test). (I) Summary data showing the peak signal amplitude before and after 100 µm Ba 2+ superfusion for the 6 20 Hz band of the LFP spectrum (n = 5 paired experiments, 5 mice; P = (t 4 = ) Student s paired t-test). Note that the scale is one order of magnitude smaller than for the data in other bands, reflecting lower activity in this frequency range. (J) Summary data showing the frequency of peak LFP oscillations before and after 100 µm Ba 2+ superfusion for the 6 20 Hz band of the LFP spectrum (n = 4 paired experiments, 4 mice; P = (t 3 = ) Student s paired t-test). All error bars represent s.e.m.

13 Supplementary Figure 13 Proposed mechanism for K + regulation of CBF. Neural activity (1) leads to an increase in local K + around capillaries (2). Through activation of K IR channels (3), this generates local hyperpolarization of the capillary endothelial membrane, which then spreads to adjacent ECs, presumably through gap junctions, activating K IR channels to rapidly propagate a regenerative electrical signal upstream to the feed arteriole (4). After spreading into adjacent SM cells (SMC), hyperpolarization deactivates voltage-dependent Ca 2+ channels (VDCC). The ensuing decrease in intracellular Ca 2+ causes SM relaxation and arteriolar dilation (5), promoting an increase in blood flow into the capillaries (6).

14 Supplementary Table 1. Comparison of electrophysiological, ex vivo and in vivo observations from KIR2.1 fl/fl (N = 5) and Tek-cre (N = 4) mice with wild-type (N = 4 to 8). All values for laser Doppler flowmetry experiments are expressed as % increase in blood flow from baseline. The presence of loxp sites around the Kcnj2 gene, or the presence of cre recombinase in ECs alone had no effect on KIR currents or KIR-mediated effects. Preparation KIR2.1 fl/fl Tek-cre Wild-type Electrophysiology Capillary EC KIR current density (pa/pf) at -140 mv 12.7 ± ± ± 2.6 CaPA % dilation at Zone 2 induced by capillary stimulation with 10 mm [K + ]o % inhibition by Ba 2+ (30 µm) 52.1 ± ± ± ± ± ± 1.4 Laser-Doppler flowmetry Whisker stimulation 29.6 ± ± ± 3.3 Whisker stimulation µm Ba ± ± ± mm K ± ± ± mm K µm Ba ± ± ± 2.6

15 Supplementary Table 2. Physiological variables for mice used for laser Doppler flowmetry experiments. There were no significant differences between groups. Age (weeks) Body weight (g) Blood gas ph pco2 (mmhg) po2 (mmhg) Body temp ( C) Blood pressure (mmhg) Mouse strain n C57BL/ ± ± ± ± ± ± ± EC K IR2.1 -/ ± ± ± ± ± ± ± K IR2.1 fl/fl 9.9 ± ± ± ± ± ± ± Tek-cre 12.9 ± ± ± ± ± ± ± 6.0 5

Supplementary Figure 1

Supplementary Figure 1 Supplementary Figure 1 Localization of virus injections. (a) Schematic showing the approximate center of AAV-DIO-ChR2-YFP injection sites in the NAc of Dyn-cre mice (n=8 mice, 16 injections; caudate/putamen,

More information

Nature Methods: doi: /nmeth Supplementary Figure 1. Activity in turtle dorsal cortex is sparse.

Nature Methods: doi: /nmeth Supplementary Figure 1. Activity in turtle dorsal cortex is sparse. Supplementary Figure 1 Activity in turtle dorsal cortex is sparse. a. Probability distribution of firing rates across the population (notice log scale) in our data. The range of firing rates is wide but

More information

Supplementary Table I Blood pressure and heart rate measurements pre- and post-stroke

Supplementary Table I Blood pressure and heart rate measurements pre- and post-stroke SUPPLEMENTARY INFORMATION doi:10.1038/nature09511 Supplementary Table I Blood pressure and heart rate measurements pre- and post-stroke Pre Post 7-days Systolic Diastolic BPM Systolic Diastolic BPM Systolic

More information

File name: Supplementary Information Description: Supplementary Figures, Supplementary Table and Supplementary References

File name: Supplementary Information Description: Supplementary Figures, Supplementary Table and Supplementary References File name: Supplementary Information Description: Supplementary Figures, Supplementary Table and Supplementary References File name: Supplementary Data 1 Description: Summary datasheets showing the spatial

More information

Supplementary Figure 1: Kv7 currents in neonatal CA1 neurons measured with the classic M- current voltage-clamp protocol.

Supplementary Figure 1: Kv7 currents in neonatal CA1 neurons measured with the classic M- current voltage-clamp protocol. Supplementary Figures 1-11 Supplementary Figure 1: Kv7 currents in neonatal CA1 neurons measured with the classic M- current voltage-clamp protocol. (a), Voltage-clamp recordings from CA1 pyramidal neurons

More information

SUPPLEMENTARY INFORMATION. Supplementary Figure 1

SUPPLEMENTARY INFORMATION. Supplementary Figure 1 SUPPLEMENTARY INFORMATION Supplementary Figure 1 The supralinear events evoked in CA3 pyramidal cells fulfill the criteria for NMDA spikes, exhibiting a threshold, sensitivity to NMDAR blockade, and all-or-none

More information

Supplementary Figure 1

Supplementary Figure 1 Supplementary Figure 1 The average sigmoid parametric curves of capillary dilation time courses and average time to 50% peak capillary diameter dilation computed from individual capillary responses averaged

More information

Supplementary Materials for

Supplementary Materials for www.sciencetranslationalmedicine.org/cgi/content/full/4/117/117ra8/dc1 Supplementary Materials for Notch4 Normalization Reduces Blood Vessel Size in Arteriovenous Malformations Patrick A. Murphy, Tyson

More information

Ube3a is required for experience-dependent maturation of the neocortex

Ube3a is required for experience-dependent maturation of the neocortex Ube3a is required for experience-dependent maturation of the neocortex Koji Yashiro, Thorfinn T. Riday, Kathryn H. Condon, Adam C. Roberts, Danilo R. Bernardo, Rohit Prakash, Richard J. Weinberg, Michael

More information

Nature Neuroscience: doi: /nn Supplementary Figure 1. Diverse anorexigenic signals induce c-fos expression in CEl PKC-δ + neurons

Nature Neuroscience: doi: /nn Supplementary Figure 1. Diverse anorexigenic signals induce c-fos expression in CEl PKC-δ + neurons Supplementary Figure 1 Diverse anorexigenic signals induce c-fos expression in CEl PKC-δ + neurons a-c. Quantification of CEl c-fos expression in mice intraperitoneal injected with anorexigenic drugs (a),

More information

Supplementary Information

Supplementary Information Supplementary Information D-Serine regulates cerebellar LTD and motor coordination through the 2 glutamate receptor Wataru Kakegawa, Yurika Miyoshi, Kenji Hamase, Shinji Matsuda, Keiko Matsuda, Kazuhisa

More information

Nature Neuroscience: doi: /nn Supplementary Figure 1. Trial structure for go/no-go behavior

Nature Neuroscience: doi: /nn Supplementary Figure 1. Trial structure for go/no-go behavior Supplementary Figure 1 Trial structure for go/no-go behavior a, Overall timeline of experiments. Day 1: A1 mapping, injection of AAV1-SYN-GCAMP6s, cranial window and headpost implantation. Water restriction

More information

Supplementary figure 1: LII/III GIN-cells show morphological characteristics of MC

Supplementary figure 1: LII/III GIN-cells show morphological characteristics of MC 1 2 1 3 Supplementary figure 1: LII/III GIN-cells show morphological characteristics of MC 4 5 6 7 (a) Reconstructions of LII/III GIN-cells with somato-dendritic compartments in orange and axonal arborizations

More information

Supplementary Figure 1

Supplementary Figure 1 8w Pia II/III IV V VI PV EYFP EYFP PV EYFP PV d PV EYFP Supplementary Figure a Spike probability x - PV-Cre d Spike probability x - RS RS b e Spike probability Spike probability.6......8..... FS FS c f

More information

Wenqin Hu, Cuiping Tian, Tun Li, Mingpo Yang, Han Hou & Yousheng Shu

Wenqin Hu, Cuiping Tian, Tun Li, Mingpo Yang, Han Hou & Yousheng Shu Distinct contributions of Na v 1.6 and Na v 1.2 in action potential initiation and backpropagation Wenqin Hu, Cuiping Tian, Tun Li, Mingpo Yang, Han Hou & Yousheng Shu Supplementary figure and legend Supplementary

More information

Postn MCM Smad2 fl/fl Postn MCM Smad3 fl/fl Postn MCM Smad2/3 fl/fl. Postn MCM. Tgfbr1/2 fl/fl TAC

Postn MCM Smad2 fl/fl Postn MCM Smad3 fl/fl Postn MCM Smad2/3 fl/fl. Postn MCM. Tgfbr1/2 fl/fl TAC A Smad2 fl/fl Smad3 fl/fl Smad2/3 fl/fl Tgfbr1/2 fl/fl 1. mm B Tcf21 MCM Tcf21 MCM Smad3 fl/fl Tcf21 MCM Smad2/3 fl/fl Tcf21 MCM Tgfbr1/2 fl/fl αmhc MCM C 1. mm 1. mm D Smad2 fl/fl Smad3 fl/fl Smad2/3

More information

Supplementary Figure 1. Basic properties of compound EPSPs at

Supplementary Figure 1. Basic properties of compound EPSPs at Supplementary Figure 1. Basic properties of compound EPSPs at hippocampal CA3 CA3 cell synapses. (a) EPSPs were evoked by extracellular stimulation of the recurrent collaterals and pharmacologically isolated

More information

John Nguyen, Nozomi Nishimura, Robert Fetcho, Costantino Iadecola, Chris B. Schaffer

John Nguyen, Nozomi Nishimura, Robert Fetcho, Costantino Iadecola, Chris B. Schaffer Supplemental figures and text for Occlusion of cortical ascending venules causes blood flow decreases, reversals in flow direction, and vessel dilation in upstream capillaries John Nguyen, Nozomi Nishimura,

More information

Nature Neuroscience: doi: /nn Supplementary Figure 1. Large-scale calcium imaging in vivo.

Nature Neuroscience: doi: /nn Supplementary Figure 1. Large-scale calcium imaging in vivo. Supplementary Figure 1 Large-scale calcium imaging in vivo. (a) Schematic illustration of the in vivo camera imaging set-up for large-scale calcium imaging. (b) High-magnification two-photon image from

More information

Nature Neuroscience: doi: /nn Supplementary Figure 1. Behavioral training.

Nature Neuroscience: doi: /nn Supplementary Figure 1. Behavioral training. Supplementary Figure 1 Behavioral training. a, Mazes used for behavioral training. Asterisks indicate reward location. Only some example mazes are shown (for example, right choice and not left choice maze

More information

Astrocyte signaling controls spike timing-dependent depression at neocortical synapses

Astrocyte signaling controls spike timing-dependent depression at neocortical synapses Supplementary Information Astrocyte signaling controls spike timing-dependent depression at neocortical synapses Rogier Min and Thomas Nevian Department of Physiology, University of Berne, Bern, Switzerland

More information

Supplementary Figure 1) GABAergic enhancement by leptin hyperpolarizes POMC neurons A) Representative recording samples showing the membrane

Supplementary Figure 1) GABAergic enhancement by leptin hyperpolarizes POMC neurons A) Representative recording samples showing the membrane Supplementary Figure 1) GABAergic enhancement by leptin hyperpolarizes POMC neurons A) Representative recording samples showing the membrane potential recorded from POMC neurons following treatment with

More information

Supplementary Figure 1

Supplementary Figure 1 Supplementary Figure 1 Supplementary Figure 1. Short latency of the fepsp evoked in CA3 by electrical stimulation of perforant path inputs (a) Single and superimposed representative perforant pathway-ca3

More information

Supplementary Figure 1. GABA depolarizes the majority of immature neurons in the

Supplementary Figure 1. GABA depolarizes the majority of immature neurons in the Supplementary Figure 1. GABA depolarizes the majority of immature neurons in the upper cortical layers at P3 4 in vivo. (a b) Cell-attached current-clamp recordings illustrate responses to puff-applied

More information

Neurovascular Physiology and Pathophysiology

Neurovascular Physiology and Pathophysiology Neurovascular Physiology and Pathophysiology The physiological questions aim at understanding the molecular and biochemical mechanisms, by which the brain adapts local blood flow to neuronal activity and

More information

Supplementary Figure 1. ACE robotic platform. A. Overview of the rig setup showing major hardware components of ACE (Automatic single Cell

Supplementary Figure 1. ACE robotic platform. A. Overview of the rig setup showing major hardware components of ACE (Automatic single Cell 2 Supplementary Figure 1. ACE robotic platform. A. Overview of the rig setup showing major hardware components of ACE (Automatic single Cell Experimenter) including the MultiClamp 700B, Digidata 1440A,

More information

Fig. S4. Current-voltage relations of iglurs. A-C: time courses of currents evoked by 100 ms pulses

Fig. S4. Current-voltage relations of iglurs. A-C: time courses of currents evoked by 100 ms pulses Fig. S1. Immunohistochemical detection of iglur2 protein in single islet cells. A: α cells identified using glucagon-specific antibody express the iglur2 subtype of AMPA receptor. 24 out of 26 identified

More information

SUPPLEMENTARY INFORMATION

SUPPLEMENTARY INFORMATION Supplementary Figure 1. Normal AMPAR-mediated fepsp input-output curve in CA3-Psen cdko mice. Input-output curves, which are plotted initial slopes of the evoked fepsp as function of the amplitude of the

More information

Short- and long-lasting consequences of in vivo nicotine treatment

Short- and long-lasting consequences of in vivo nicotine treatment Short- and long-lasting consequences of in vivo nicotine treatment on hippocampal excitability Rachel E. Penton, Michael W. Quick, Robin A. J. Lester Supplementary Figure 1. Histogram showing the maximal

More information

Supplementary Materials for

Supplementary Materials for www.sciencesignaling.org/cgi/content/full/8/358/ra2/dc1 Supplementary Materials for Localized TRPA1 channel Ca 2+ signals stimulated by reactive oxygen species promote cerebral artery dilation Michelle

More information

Chapter 3 subtitles Action potentials

Chapter 3 subtitles Action potentials CELLULAR NEUROPHYSIOLOGY CONSTANCE HAMMOND Chapter 3 subtitles Action potentials Introduction (3:15) This third chapter explains the calcium current triggered by the arrival of the action potential in

More information

Supplementary Figure 1

Supplementary Figure 1 Supplementary Figure 1 Arcuate ChIEF-tdTomato neurons expressed TH These micrographs show that TH-Cre-ChIEF-tdTomato (magenta), expressed by AAV in a TH-Cre mouse, were immunostained with TH (green) in

More information

Supplementary Movie Caption

Supplementary Movie Caption Supplementary Movie Caption 1. Movie S1. Ultrasound-induced blood focusing in vitro (Fig.2b). 2. Movie S2. Acoustic canalization of blood flow in the gap between two capillaries (Fig. 2d). 3. Movie S3.

More information

Nature Neuroscience: doi: /nn Supplementary Figure 1

Nature Neuroscience: doi: /nn Supplementary Figure 1 Supplementary Figure 1 Bidirectional optogenetic modulation of the tonic activity of CEA PKCδ + neurons in vitro. a, Top, Cell-attached voltage recording illustrating the blue light-induced increase in

More information

Light-evoked hyperpolarization and silencing of neurons by conjugated polymers

Light-evoked hyperpolarization and silencing of neurons by conjugated polymers Light-evoked hyperpolarization and silencing of neurons by conjugated polymers Paul Feyen 1,, Elisabetta Colombo 1,2,, Duco Endeman 1, Mattia Nova 1, Lucia Laudato 2, Nicola Martino 2,3, Maria Rosa Antognazza

More information

SUPPLEMENTARY INFORMATION

SUPPLEMENTARY INFORMATION doi: 1.138/nature588 SUPPLEMENTARY INFORMATION Supplemental Information Sensory neuron sodium channel Na v 1.8 is essential for pain at cold temperatures Katharina Zimmermann*, Andreas Leffler*, Alexandru

More information

Introduction to Electrophysiology

Introduction to Electrophysiology Introduction to Electrophysiology Dr. Kwangyeol Baek Martinos Center for Biomedical Imaging Massachusetts General Hospital Harvard Medical School 2018-05-31s Contents Principles in Electrophysiology Techniques

More information

Supplementary Figure 1. Nature Neuroscience: doi: /nn.4547

Supplementary Figure 1. Nature Neuroscience: doi: /nn.4547 Supplementary Figure 1 Characterization of the Microfetti mouse model. (a) Gating strategy for 8-color flow analysis of peripheral Ly-6C + monocytes from Microfetti mice 5-7 days after TAM treatment. Living

More information

Is action potential threshold lowest in the axon?

Is action potential threshold lowest in the axon? Supplementary information to: Is action potential threshold lowest in the axon? Maarten H. P. Kole & Greg J. Stuart Supplementary Fig. 1 Analysis of action potential (AP) threshold criteria. (a) Example

More information

Nature Biotechnology: doi: /nbt Supplementary Figure 1. Analysis of hair bundle morphology in Ush1c c.216g>a mice at P18 by SEM.

Nature Biotechnology: doi: /nbt Supplementary Figure 1. Analysis of hair bundle morphology in Ush1c c.216g>a mice at P18 by SEM. Supplementary Figure 1 Analysis of hair bundle morphology in Ush1c c.216g>a mice at P18 by SEM. (a-c) Heterozygous c.216ga mice displayed normal hair bundle morphology at P18. (d-i) Disorganized hair bundles

More information

Supplementary Information. Errors in the measurement of voltage activated ion channels. in cell attached patch clamp recordings

Supplementary Information. Errors in the measurement of voltage activated ion channels. in cell attached patch clamp recordings Supplementary Information Errors in the measurement of voltage activated ion channels in cell attached patch clamp recordings Stephen R. Williams 1,2 and Christian Wozny 2 1 Queensland Brain Institute,

More information

Supplementary Figure 1

Supplementary Figure 1 Supplementary Figure 1 Miniature microdrive, spike sorting and sleep stage detection. a, A movable recording probe with 8-tetrodes (32-channels). It weighs ~1g. b, A mouse implanted with 8 tetrodes in

More information

Nature Neuroscience: doi: /nn Supplementary Figure 1. Lick response during the delayed Go versus No-Go task.

Nature Neuroscience: doi: /nn Supplementary Figure 1. Lick response during the delayed Go versus No-Go task. Supplementary Figure 1 Lick response during the delayed Go versus No-Go task. Trial-averaged lick rate was averaged across all mice used for pyramidal cell imaging (n = 9). Different colors denote different

More information

Chapter 6 subtitles postsynaptic integration

Chapter 6 subtitles postsynaptic integration CELLULAR NEUROPHYSIOLOGY CONSTANCE HAMMOND Chapter 6 subtitles postsynaptic integration INTRODUCTION (1:56) This sixth and final chapter deals with the summation of presynaptic currents. Glutamate and

More information

Nature Neuroscience: doi: /nn Supplementary Figure 1. Confirmation that optogenetic inhibition of dopaminergic neurons affects choice

Nature Neuroscience: doi: /nn Supplementary Figure 1. Confirmation that optogenetic inhibition of dopaminergic neurons affects choice Supplementary Figure 1 Confirmation that optogenetic inhibition of dopaminergic neurons affects choice (a) Sample behavioral trace as in Figure 1d, but with NpHR stimulation trials depicted as green blocks

More information

Supplementary Figure 1: Steviol and stevioside potentiate TRPM5 in a cell-free environment. (a) TRPM5 currents are activated in inside-out patches

Supplementary Figure 1: Steviol and stevioside potentiate TRPM5 in a cell-free environment. (a) TRPM5 currents are activated in inside-out patches Supplementary Figure 1: Steviol and stevioside potentiate TRPM5 in a cell-free environment. (a) TRPM5 currents are activated in inside-out patches during application of 500 µm Ca 2+ at the intracellular

More information

Supplementary Figure 1 Information on transgenic mouse models and their recording and optogenetic equipment. (a) 108 (b-c) (d) (e) (f) (g)

Supplementary Figure 1 Information on transgenic mouse models and their recording and optogenetic equipment. (a) 108 (b-c) (d) (e) (f) (g) Supplementary Figure 1 Information on transgenic mouse models and their recording and optogenetic equipment. (a) In four mice, cre-dependent expression of the hyperpolarizing opsin Arch in pyramidal cells

More information

Dep. Control Time (min)

Dep. Control Time (min) aa Control Dep. RP 1s 1 mv 2s 1 mv b % potentiation of IPSP 2 15 1 5 Dep. * 1 2 3 4 Time (min) Supplementary Figure 1. Rebound potentiation of IPSPs in PCs. a, IPSPs recorded with a K + gluconate pipette

More information

-51mV 30s 3mV. n=14 n=4 p=0.4. Depolarization (mv) 3

-51mV 30s 3mV. n=14 n=4 p=0.4. Depolarization (mv) 3 Supplementary Figure 1 a optoβ 2 -AR b ChR2-51mV 30s 3mV -50mV 30s 3mV c 4 n=14 n=4 p=0.4 Depolarization (mv) 3 2 1 0 Both optogenetic actuators, optoβ 2 AR and ChR2, were effective in stimulating astrocytes

More information

Zhu et al, page 1. Supplementary Figures

Zhu et al, page 1. Supplementary Figures Zhu et al, page 1 Supplementary Figures Supplementary Figure 1: Visual behavior and avoidance behavioral response in EPM trials. (a) Measures of visual behavior that performed the light avoidance behavior

More information

Nature Medicine: doi: /nm.4084

Nature Medicine: doi: /nm.4084 Supplementary Figure 1: Sample IEDs. (a) Sample hippocampal IEDs from different kindled rats (scale bar = 200 µv, 100 ms). (b) Sample temporal lobe IEDs from different subjects with epilepsy (scale bar

More information

Supporting Information

Supporting Information ATP from synaptic terminals and astrocytes regulates NMDA receptors and synaptic plasticity through PSD- 95 multi- protein complex U.Lalo, O.Palygin, A.Verkhratsky, S.G.N. Grant and Y. Pankratov Supporting

More information

Unique functional properties of somatostatin-expressing GABAergic neurons in mouse barrel cortex

Unique functional properties of somatostatin-expressing GABAergic neurons in mouse barrel cortex Supplementary Information Unique functional properties of somatostatin-expressing GABAergic neurons in mouse barrel cortex Luc Gentet, Yves Kremer, Hiroki Taniguchi, Josh Huang, Jochen Staiger and Carl

More information

Supplementary Figure 1. SDS-FRL localization of CB 1 in the distal CA3 area of the rat hippocampus. (a-d) Axon terminals (t) in stratum pyramidale

Supplementary Figure 1. SDS-FRL localization of CB 1 in the distal CA3 area of the rat hippocampus. (a-d) Axon terminals (t) in stratum pyramidale Supplementary Figure 1. SDS-FRL localization of CB 1 in the distal CA3 area of the rat hippocampus. (a-d) Axon terminals (t) in stratum pyramidale (b) show stronger immunolabeling for CB 1 than those in

More information

Chapter 3 Neurotransmitter release

Chapter 3 Neurotransmitter release NEUROPHYSIOLOGIE CELLULAIRE CONSTANCE HAMMOND Chapter 3 Neurotransmitter release In chapter 3, we proose 3 videos: Observation Calcium Channel, Ca 2+ Unitary and Total Currents Ca 2+ and Neurotransmitter

More information

Nature Neuroscience: doi: /nn Supplementary Figure 1. ACx plasticity is required for fear conditioning.

Nature Neuroscience: doi: /nn Supplementary Figure 1. ACx plasticity is required for fear conditioning. Supplementary Figure 1 ACx plasticity is required for fear conditioning. (a) Freezing time of conditioned and control mice before CS presentation and during CS presentation in a new context. Student s

More information

SUPPLEMENTARY INFORMATION

SUPPLEMENTARY INFORMATION doi:1.138/nature1139 a d Whisker angle (deg) Whisking repeatability Control Muscimol.4.3.2.1 -.1 8 4-4 1 2 3 4 Performance (d') Pole 8 4-4 1 2 3 4 5 Time (s) b Mean protraction angle (deg) e Hit rate (p

More information

Nature Neuroscience: doi: /nn Supplementary Figure 1

Nature Neuroscience: doi: /nn Supplementary Figure 1 Supplementary Figure 1 Atlas representations of the midcingulate (MCC) region targeted in this study compared against the anterior cingulate (ACC) region commonly reported. Coronal sections are shown on

More information

Potentiation of Glucose-stimulated Insulin Secretion by the GPR40 PLC TRPC

Potentiation of Glucose-stimulated Insulin Secretion by the GPR40 PLC TRPC Supplementary information Potentiation of Glucose-stimulated Insulin Secretion by the GPR40 PLC TRPC Pathway in Pancreatic -Cells Authors: Hodaka Yamada 1,*, Masashi Yoshida 1,*, Kiyonori Ito 1, Katsuya

More information

Nature Neuroscience: doi: /nn Supplementary Figure 1

Nature Neuroscience: doi: /nn Supplementary Figure 1 Supplementary Figure 1 Drd1a-Cre driven ChR2 expression in the SCN. (a) Low-magnification image of a representative Drd1a-ChR2 coronal brain section (n = 2) showing endogenous tdtomato fluorescence (magenta).

More information

SUPPLEMENTARY INFORMATION

SUPPLEMENTARY INFORMATION SUPPLEMENTARY INFORMATION doi:10.1038/nature11306 Supplementary Figures Supplementary Figure 1. Basic characterization of GFP+ RGLs in the dentate gyrus of adult nestin-gfp mice. a, Sample confocal images

More information

Hormonal gain control of a medial preoptic area social reward circuit

Hormonal gain control of a medial preoptic area social reward circuit CORRECTION NOTICE Nat. Neurosci. 20, 449 458 (2017) Hormonal gain control of a medial preoptic area social reward circuit Jenna A McHenry, James M Otis, Mark A Rossi, J Elliott Robinson, Oksana Kosyk,

More information

Finite Element Modeling of Vasoreactivity Using COMSOL Multiphysics Software

Finite Element Modeling of Vasoreactivity Using COMSOL Multiphysics Software Finite Element Modeling of Vasoreactivity Using COMSOL Multiphysics Software Jaimit Parikh, Adam Kapela and Nikolaos Tsoukias 9 th October 2014 INTRODUCTION Microvascularture: Blood vessels < 150 µm Longitudinally

More information

Intravital Microscopic Interrogation of Peripheral Taste Sensation

Intravital Microscopic Interrogation of Peripheral Taste Sensation Supplementary Information Intravital Microscopic Interrogation of Peripheral Taste Sensation Myunghwan Choi 1, Woei Ming Lee 1,2, and Seok-Hyun Yun 1 * 1 Harvard Medical School and Wellman Center for Photomedicine,

More information

Tuning properties of individual circuit components and stimulus-specificity of experience-driven changes.

Tuning properties of individual circuit components and stimulus-specificity of experience-driven changes. Supplementary Figure 1 Tuning properties of individual circuit components and stimulus-specificity of experience-driven changes. (a) Left, circuit schematic with the imaged component (L2/3 excitatory neurons)

More information

SUPPLEMENTARY INFORMATION

SUPPLEMENTARY INFORMATION doi: 10.1038/nature06310 SUPPLEMENTARY INFORMATION www.nature.com/nature 1 www.nature.com/nature 2 www.nature.com/nature 3 Supplementary Figure S1 Spontaneous duration of wake, SWS and REM sleep (expressed

More information

Marianna Szemes 1, Rachel L Davies 2, Claire LP Garden 3 and Maria M Usowicz 4*

Marianna Szemes 1, Rachel L Davies 2, Claire LP Garden 3 and Maria M Usowicz 4* Szemes et al. Molecular Brain 2013, 6:33 RESEARCH Open Access Weaker control of the electrical properties of cerebellar granule cells by tonically active GABA A receptors in the Ts65Dn mouse model of Down

More information

AKAP150-dependent cooperative TRPV4 channel gating is central to endothelium-dependent vasodilation and is disrupted in hypertension

AKAP150-dependent cooperative TRPV4 channel gating is central to endothelium-dependent vasodilation and is disrupted in hypertension PHYSIOLOGY AKAP150-dependent cooperative TRPV4 channel gating is central to endothelium-dependent vasodilation and is disrupted in hypertension Swapnil K. Sonkusare, 1 Thomas Dalsgaard, 1 Adrian D. Bonev,

More information

Supplementary Figure 1. SybII and Ceb are sorted to distinct vesicle populations in astrocytes. Nature Neuroscience: doi: /nn.

Supplementary Figure 1. SybII and Ceb are sorted to distinct vesicle populations in astrocytes. Nature Neuroscience: doi: /nn. Supplementary Figure 1 SybII and Ceb are sorted to distinct vesicle populations in astrocytes. (a) Exemplary images for cultured astrocytes co-immunolabeled with SybII and Ceb antibodies. SybII accumulates

More information

An acetylcholine-activated microcircuit drives temporal dynamics of cortical activity

An acetylcholine-activated microcircuit drives temporal dynamics of cortical activity An acetylcholine-activated microcircuit drives temporal dynamics of cortical activity Naiyan Chen, Hiroki Sugihara, & Mriganka Sur Nature America, nc. All rights reserved. Cholinergic modulation of cortex

More information

Supplementary materials for: Executive control processes underlying multi- item working memory

Supplementary materials for: Executive control processes underlying multi- item working memory Supplementary materials for: Executive control processes underlying multi- item working memory Antonio H. Lara & Jonathan D. Wallis Supplementary Figure 1 Supplementary Figure 1. Behavioral measures of

More information

Supplemental Information. A Visual-Cue-Dependent Memory Circuit. for Place Navigation

Supplemental Information. A Visual-Cue-Dependent Memory Circuit. for Place Navigation Neuron, Volume 99 Supplemental Information A Visual-Cue-Dependent Memory Circuit for Place Navigation Han Qin, Ling Fu, Bo Hu, Xiang Liao, Jian Lu, Wenjing He, Shanshan Liang, Kuan Zhang, Ruijie Li, Jiwei

More information

Supplementary Figure 1. Localization of face patches (a) Sagittal slice showing the location of fmri-identified face patches in one monkey targeted

Supplementary Figure 1. Localization of face patches (a) Sagittal slice showing the location of fmri-identified face patches in one monkey targeted Supplementary Figure 1. Localization of face patches (a) Sagittal slice showing the location of fmri-identified face patches in one monkey targeted for recording; dark black line indicates electrode. Stereotactic

More information

Chapter 12: Cardiovascular Physiology System Overview

Chapter 12: Cardiovascular Physiology System Overview Chapter 12: Cardiovascular Physiology System Overview Components of the cardiovascular system: Heart Vascular system Blood Figure 12-1 Plasma includes water, ions, proteins, nutrients, hormones, wastes,

More information

Supplemental information Acid-sensing ion channel 1a contributes to hippocampal LTP inducibility through multiple mechanisms

Supplemental information Acid-sensing ion channel 1a contributes to hippocampal LTP inducibility through multiple mechanisms Supplemental information Acid-sensing ion channel 1a contributes to hippocampal LTP inducibility through multiple mechanisms Ming-Gang Liu, Hu-Song Li, Wei-Guang Li, Yan-Jiao Wu, Shi-Ning Deng, Chen Huang,

More information

Kidney. Heart. Lung. Sirt1. Gapdh. Mouse IgG DAPI. Rabbit IgG DAPI

Kidney. Heart. Lung. Sirt1. Gapdh. Mouse IgG DAPI. Rabbit IgG DAPI a e Na V 1.5 Ad-LacZ Ad- 110KD b Scn5a/ (relative to Ad-LacZ) f 150 100 50 0 p = 0.65 Ad-LacZ Ad- c Heart Lung Kidney Spleen 110KD d fl/fl c -/- DAPI 20 µm Na v 1.5 250KD fl/fl Rabbit IgG DAPI fl/fl Mouse

More information

SUPPLEMENTARY INFORMATION. The Calcium-activated Chloride Channel Anoctamin 1 acts as a Heat. Sensor in Nociceptive Neurons

SUPPLEMENTARY INFORMATION. The Calcium-activated Chloride Channel Anoctamin 1 acts as a Heat. Sensor in Nociceptive Neurons SUPPLEMENTARY INFORMATION The Calcium-activated Chloride Channel Anoctamin 1 acts as a Heat Sensor in Nociceptive Neurons Hawon Cho, Young Duk Yang, Jesun Lee, Byeongjoon Lee, Tahnbee Kim Yongwoo Jang,

More information

Microcircuitry coordination of cortical motor information in self-initiation of voluntary movements

Microcircuitry coordination of cortical motor information in self-initiation of voluntary movements Y. Isomura et al. 1 Microcircuitry coordination of cortical motor information in self-initiation of voluntary movements Yoshikazu Isomura, Rie Harukuni, Takashi Takekawa, Hidenori Aizawa & Tomoki Fukai

More information

Supplementary Information

Supplementary Information Hyperpolarization-activated cation channels inhibit EPSPs by interactions with M-type K + channels Meena S. George, L.F. Abbott, Steven A. Siegelbaum Supplementary Information Part 1: Supplementary Figures

More information

Supporting Online Material for

Supporting Online Material for www.sciencemag.org/cgi/content/full/317/5841/183/dc1 Supporting Online Material for Astrocytes Potentiate Transmitter Release at Single Hippocampal Synapses Gertrudis Perea and Alfonso Araque* *To whom

More information

Nerve. (2) Duration of the stimulus A certain period can give response. The Strength - Duration Curve

Nerve. (2) Duration of the stimulus A certain period can give response. The Strength - Duration Curve Nerve Neuron (nerve cell) is the structural unit of nervous system. Nerve is formed of large numbers of nerve fibers. Types of nerve fibers Myelinated nerve fibers Covered by myelin sheath interrupted

More information

Neuroscience 201A Problem Set #1, 27 September 2016

Neuroscience 201A Problem Set #1, 27 September 2016 Neuroscience 201A Problem Set #1, 27 September 2016 1. The figure above was obtained from a paper on calcium channels expressed by dentate granule cells. The whole-cell Ca 2+ currents in (A) were measured

More information

Introduction to Neurobiology

Introduction to Neurobiology Biology 240 General Zoology Introduction to Neurobiology Nervous System functions: communication of information via nerve signals integration and processing of information control of physiological and

More information

Supplementary Figure 1. Identification of the type II spiral ganglion neurons (SGN) via immunofluorescence of peripherin protein (PRPH).

Supplementary Figure 1. Identification of the type II spiral ganglion neurons (SGN) via immunofluorescence of peripherin protein (PRPH). Supplementary Figure 1. Identification of the type II spiral ganglion neurons (SGN) via immunofluorescence of peripherin protein (PRPH). (a), (b), PRPH immunolabelling of cryosections from post-natal day

More information

a 0,8 Figure S1 8 h 12 h y = 0,036x + 0,2115 y = 0,0366x + 0,206 Labeling index Labeling index ctrl shrna Time (h) Time (h) ctrl shrna S G2 M G1

a 0,8 Figure S1 8 h 12 h y = 0,036x + 0,2115 y = 0,0366x + 0,206 Labeling index Labeling index ctrl shrna Time (h) Time (h) ctrl shrna S G2 M G1 (GFP+ BrdU+)/GFP+ Labeling index Labeling index Figure S a, b, y =,x +, y =,x +,,,,,,,, Time (h) - - Time (h) c d S G M G h M G S G M G S G h Time of BrdU injection after electroporation (h) M G S G M

More information

Supplementary Figure 1. Microglia do not show signs of classical immune activation following MD a-b. Images showing immunoreactivity for MHCII (a)

Supplementary Figure 1. Microglia do not show signs of classical immune activation following MD a-b. Images showing immunoreactivity for MHCII (a) 1 Supplementary Figure 1. Microglia do not show signs of classical immune activation following MD a-b. Images showing immunoreactivity for MHCII (a) and CD45 (b) in fixed sections of binocular visual cortex

More information

SUPPLEMENTARY INFORMATION. Rett Syndrome Mutation MeCP2 T158A Disrupts DNA Binding, Protein Stability and ERP Responses

SUPPLEMENTARY INFORMATION. Rett Syndrome Mutation MeCP2 T158A Disrupts DNA Binding, Protein Stability and ERP Responses SUPPLEMENTARY INFORMATION Rett Syndrome Mutation T158A Disrupts DNA Binding, Protein Stability and ERP Responses Darren Goffin, Megan Allen, Le Zhang, Maria Amorim, I-Ting Judy Wang, Arith-Ruth S. Reyes,

More information

Sum of Neurally Distinct Stimulus- and Task-Related Components.

Sum of Neurally Distinct Stimulus- and Task-Related Components. SUPPLEMENTARY MATERIAL for Cardoso et al. 22 The Neuroimaging Signal is a Linear Sum of Neurally Distinct Stimulus- and Task-Related Components. : Appendix: Homogeneous Linear ( Null ) and Modified Linear

More information

SUPPLEMENTARY INFORMATION

SUPPLEMENTARY INFORMATION SUPPLEMENTARY INFORMATION doi:10.1038/nature12024 entary Figure 1. Distribution of the number of earned cocaine Supplementary Figure 1. Distribution of the number of earned cocaine infusions in Shock-sensitive

More information

Sample Lab Report 1 from 1. Measuring and Manipulating Passive Membrane Properties

Sample Lab Report 1 from  1. Measuring and Manipulating Passive Membrane Properties Sample Lab Report 1 from http://www.bio365l.net 1 Abstract Measuring and Manipulating Passive Membrane Properties Biological membranes exhibit the properties of capacitance and resistance, which allow

More information

Transcranial Pulsed Ultrasound Stimulates Intact Brain Circuits

Transcranial Pulsed Ultrasound Stimulates Intact Brain Circuits Neuron, Volume 66 Supplemental Information Transcranial Pulsed Ultrasound Stimulates Intact Brain Circuits Yusuf Tufail, Alexei Matyushov, Nathan Baldwin, Monica L. Tauchmann, Joseph Georges, Anna Yoshihiro,

More information

Fibrinogen-induced perivascular microglial clustering is required for the. development of axonal damage in neuroinflammation

Fibrinogen-induced perivascular microglial clustering is required for the. development of axonal damage in neuroinflammation SUPPLEMENTARY INFORMATION Fibrinogen-induced perivascular microglial clustering is required for the development of axonal damage in neuroinflammation Dimitrios Davalos, Jae Kyu Ryu, Mario Merlini, Kim

More information

Thalamic control of cortical states

Thalamic control of cortical states Supplementary Information Thalamic control of cortical states James F.A. Poulet, Laura M.J. Fernandez, Sylvain Crochet & Carl C.H. Petersen Supplementary Information consists of: 1. Methods 2. Supplementary

More information

Supplemental Information. Dorsal Raphe Dual Serotonin-Glutamate Neurons. Drive Reward by Establishing Excitatory Synapses

Supplemental Information. Dorsal Raphe Dual Serotonin-Glutamate Neurons. Drive Reward by Establishing Excitatory Synapses Cell Reports, Volume 26 Supplemental Information Dorsal Raphe Dual Serotonin-Glutamate Neurons Drive Reward by Establishing Excitatory Synapses on VTA Mesoaccumbens Dopamine Neurons Hui-Ling Wang, Shiliang

More information

Daniel Bulte. Centre for Functional Magnetic Resonance Imaging of the Brain. University of Oxford

Daniel Bulte. Centre for Functional Magnetic Resonance Imaging of the Brain. University of Oxford Daniel Bulte Centre for Functional Magnetic Resonance Imaging of the Brain University of Oxford Overview Signal Sources BOLD Contrast Mechanism of MR signal change FMRI Modelling Scan design details Factors

More information

SYNAPTIC COMMUNICATION

SYNAPTIC COMMUNICATION BASICS OF NEUROBIOLOGY SYNAPTIC COMMUNICATION ZSOLT LIPOSITS 1 NERVE ENDINGS II. Interneuronal communication 2 INTERNEURONAL COMMUNICATION I. ELECTRONIC SYNAPSE GAP JUNCTION II. CHEMICAL SYNAPSE SYNAPSES

More information

Social transmission and buffering of synaptic changes after stress

Social transmission and buffering of synaptic changes after stress SUPPLEMENTARY INFORMATION Articles https://doi.org/10.1038/s41593-017-0044-6 In the format provided by the authors and unedited. Social transmission and buffering of synaptic changes after stress Toni-Lee

More information

Nature Immunology: doi: /ni Supplementary Figure 1

Nature Immunology: doi: /ni Supplementary Figure 1 Supplementary Figure 1 NLRP12 is downregulated in biopsy samples from patients with active ulcerative colitis (UC). (a-g) NLRP12 expression in 7 UC mrna profiling studies deposited in NCBI GEO database.

More information

Cerebral vascular structure in the motor cortex of adult mice is stable and is not altered by voluntary exercise

Cerebral vascular structure in the motor cortex of adult mice is stable and is not altered by voluntary exercise Original Article Cerebral vascular structure in the motor cortex of adult mice is stable and is not altered by voluntary exercise Journal of Cerebral Blood Flow & Metabolism () 1 19! Author(s) 216 Reprints

More information

Nature Neuroscience: doi: /nn.4642

Nature Neuroscience: doi: /nn.4642 Supplementary Figure 1 Recording sites and example waveform clustering, as well as electrophysiological recordings of auditory CS and shock processing following overtraining. (a) Recording sites in LC

More information