Cardiopulmonary resuscitation

Size: px
Start display at page:

Download "Cardiopulmonary resuscitation"

Transcription

1 Clinical Investigations Extracorporeal membrane oxygenation support can extend the duration of cardiopulmonary resuscitation* Yih-Sharng Chen, MD; Hsi-Yu Yu, MD; Shu-Chien Huang, MD; Jou-Wei Lin, MD; Nai-Hsin Chi, MD; Chih-Hsien Wang, MD; Shoei-Shan Wang, MD; Fang-Yue Lin, MD; Wen-Je Ko, MD Objectives: To evaluate the use of extracorporeal membrane oxygenation in prolonged cardiopulmonary resuscitation and to estimate how long cardiopulmonary resuscitation can be extended with acceptable results. Design: Review of consecutive adult in-hospital cardiopulmonary resuscitation patients without return of spontaneous circulation in 10 mins and with extracorporeal membrane oxygenation rescue, and analysis of the relationship between outcome and cardiopulmonary resuscitation duration and possible etiologies. The data were collected following the Utstein style guidelines on in-hospital cardiopulmonary resuscitation. Two organ dysfunction scores were incorporated into the analysis for outcome prediction. Setting: A university-affiliated tertiary referral medical center and extracorporeal membrane oxygenation center. Patients: An observational cohort study in 135 consecutive adult in-hospital cardiopulmonary resuscitation patients without return of spontaneous circulation who received extracorporeal membrane oxygenation during cardiopulmonary resuscitation. Main Results: The average cardiopulmonary resuscitation duration was mins and 56.3% of patients received subsequent interventions to treat underlying etiologies. The successful weaning rate was 58.5% and the survival-to-discharge rate was 34.1%. The majority of survivors (89%) had an acceptable neurologic status on discharge. Risk factors for hospital mortality included longer cardiopulmonary resuscitation duration, etiology of acute coronary syndrome, and a higher organ dysfunction score in the first 24 hrs. Logistic regression analysis revealed the probability of survival was approximately 0.5, 0.3, or 0.1 when the duration of cardiopulmonary resuscitation was 30, 60, or 90 mins, respectively. Conclusion: Assisted circulation might extend the presently accepted duration of cardiopulmonary resuscitation in adult inhospital cardiopulmonary resuscitation patients. (Crit Care Med 2008; 36: ) KEY WORDS: extracorporeal membrane oxygenation; cardiopulmonary resuscitation; in-hospital Cardiopulmonary resuscitation (CPR) has much improved over the past decade because of the early applications of basic cardiac life support and the automated external defibrillator. Nevertheless, the outcome of in-hospital CPR is quite varied and major studies have reported a survival-to-discharge of 10% to 20% (1 4). The probability of survival drops rapidly if CPR lasts longer than 10 mins (5 7), and even more if it lasts longer *See also p From the Departments of Surgery (Y-SC, H-YY, S-CH, N-HC, C-HW, S-SW, F-YL, W-JK), and Medicine (J-WL), National Taiwan University Hospital, Yunlin Branch, Taipei, Taiwan. Supported, in part, by the following grant: NSC B , B , B , B , and NTUH The authors have not disclosed any potential conflicts of interest. For information regarding this article, Dr. Ko at yschen1234@yahoo.com.tw Copyright 2008 by the Society of Critical Care Medicine and Lippincott Williams & Wilkins DOI: /CCM.0b013e318183f491 than 30 mins (8, 9). A large series of adult in-hospital CPR patients with only 18% survival had a median CPR duration of 18 mins in all patients combined, which was even shorter in survivors (9). This reflects the fact that most CPR patients can only tolerate a short period of CPR. Because prolonged CPR has such a poor result, several mechanical devices and techniques have been developed to improve outcome (10). Clinical investigation of the use of these adjunctive devices in CPR has demonstrated an improved hemodynamic effect and increased frequency of return of spontaneous circulation, but with no, or only minimal, improvement in survival (10 12). The potential of extracorporeal membrane oxygenation (ECMO) as a resuscitative tool was suggested as early as 1966 (13), but few clinical investigations focused on its use at that time because of its complexity. Emergency extracorporeal circulation data collected from multiple institutions in the early 1990s revealed improved survival in patients who received ECMO for cardiac arrest or shock (14, 15). However, there is no adequate information on how long the victim can tolerate CPR with an acceptable outcome when ECMO is available as an adjunctive device. We performed this observational cohort study of the use of ECMO in prolonged adult in-hospital CPR (ECPR) in a tertiary medical center, and analyzed the results and estimated how long CPR can be extended with acceptable results in the setting of mechanical assisted circulation. PATIENTS AND METHODS This study was approved by our institutional review board. We reviewed our ECMO database which was established in The database were collected consecutively and reviewed for ECMO quality assurance. Adult patients (aged 18 yrs) experiencing CPR of 10 mins and receiving ECMO were recruited. A CPR event was defined as the documented loss of a pulse and respiration with the patient receiving multiple doses of epinephrine injection and/or undergoing chest compression with or without defibrillation. Monitored status was defined as 2529

2 being placed on monitoring systems for electrocardiography, blood pressure, or pulse oximetry during CPR (16). CPR duration was defined as the interval between initiation of CPR and initiation of ECMO. The first 57 cases had been presented previously (17). Exclusion Criteria of ECPR. Because ECPR is an aggressive intervention requiring considerable resources and of uncertain effect, we defined some absolute contraindications to avoid initiating inappropriate ECPR, including CPR with traumatic origin unless bleeding was under control, previous severe brain damage, terminal status of malignancy, and an age 75 yrs. From 2001, the age criterion was extended to 80 yrs because of the increased number of older patients and the satisfactory survival rate of the initial ECPR patients (17). Patients experiencing shock necessitating ECMO in an elective condition or emergency situation without cardiac massage or multiple boluses of epinephrine injection were excluded. Patients with a CPR duration 10 mins were excluded because they did not fit the criterion of prolonged CPR. Patients with postcardiotomy shock requiring ECMO because they could not be weaned from cardiopulmonary bypass were also excluded, as were patients who had signed a Do Not Resuscitate consent. Organization of ECMO. The equipment and management had been previously described elsewhere (17). The ECMO equipment consisted of the circuit, a centrifugal pump, and a hollow-fiber oxygenator (Medtronic, Anaheim, CA), all of which had heparin-bound surface. The circuit was primed with normal saline containing 2 units/ml of heparin, which took 5 mins. To simplify the system, we did not use a bridge tube between the arterial and venous circuits. A wheeled ECMO cart equipped with various sizes of cannulas, surgical suits, gloves and drapes, and various surgical instruments for vascular exposure was constructed for the ECPR team and could be rapidly transported to the CPR site to supply all the equipment for ECMO setup. The ECMO cart cost 200 US dollars to build and supplies were replenished from the operation theater. Team Members. Two teams were involved in ECPR, the resuscitation team and the ECMO team. The resuscitation team consisted of duty physicians and nurses responding to in-hospital CPR. The ECMO team consisted of cardiovascular surgeons and ECMO technicians. Duty cardiovascular surgical residents were in the hospital at all times. The technicians were on duty in the hospital day and evening and on call at night. Because the ECMO team did not attend every arrest event, the decision to call for ECPR was dependent on the primary physicians in charge of CPR. In general, the call was initiated after a trial of CPR for 10 to 20 mins without return of spontaneous circulation. Brief discussions between the two teams were held to preclude absolute contraindications. Oral permission was obtained from the families and the documents, including the formal informed consent for ECPR, further interventions, and data collection, were signed later. Cannulation. The femoral vessels were preferred for vascular access and were usually cannulated by the modified Seldinger technique under direct vision by surgical exposure. The percutaneous technique was used only on patients in the catheterization laboratory, whereas transthoracic cannulation was used on patients with open massage or in whom peripheral cannulation had failed. Intravenous heparin, 100 units/kg, was given immediately before cannulation. In general, it took 10 to 30 mins to set up the ECMO equipment once it had been decided to carry out ECPR. Management. For the potential problem of distal limb ischemia, we applied a previously reported salvage method using a distal perfusion catheter (18). Systemic anticoagulation was maintained with continuous heparin infusion to keep the activated clotting time between 180 and 220 sec. The patients were kept at normothermia. We did not apply a hypothermia strategy in the present ECPR study. The possible etiologies leading to CPR were investigated as soon as possible. Diagnosis of, and treatment for, the underlying etiology were performed within 24 hrs. In general, the level of consciousness of the patient was the main decisive factor for further therapies; however, temporary dilated and unresponsive pupils immediately after ECPR was not an indication for withdrawing support or with- Figure 1. Cohort for the ECPR study. ARDS, acute respiratory distress syndrome; CPR, cardiopulmonary resuscitation; ECPR, ECMO for CPR; ECMO, extracorporeal membrane oxygenation. 2530

3 holding further treatment, as this could be due to a temporary effect of epinephrine. Daily echocardiography was essential to estimate myocardial recoverability. Weaning from ECMO was usually tried 72 hrs after ECMO setup. When the patients had stable hemodynamics on dopamine and dobutamine 10 g/kg/min, a central venous pressure 12 mm Hg, and a left ventricular ejection fraction 40% by echocardiography, ECMO weaning was attempted by decreasing the ECMO blood flow to 0.5 L/min and the patient was observed for at least 10 mins. If the hemodynamics were not maintained during weaning, weaning was discontinued and attempted the following day. A ventricular assist device or heart transplantation was considered in the absence of contraindications if weaning was unsuccessful within 5 to 7 days. The level of consciousness was reexamined every 12 hrs before making further decisions. Data Collection. The data were collected following Utstein style guidelines on inhospital CPR (16, 17). The Sequential Organ Failure Assessment (SOFA) score (19) and the Logistic Organ Dysfunction Score (LODS) (20) were used to measure the severity of organ dysfunction. The efficacy and specificity of the scoring systems for critical patients had been validated (20, 21). Because the ECPR patients were supported by mechanical circulation, return of spontaneous circulation, which is traditionally defined as one of the CPR end points, was not a meaningful end point in this cohort. Instead, we used return of spontaneous heart beating. Weaning was defined as successful separation from ECMO support without mortality for at least 12 hrs. Survival-to-discharge was defined as successful weaning from ECMO followed by discharge from the hospital, and was regarded as the major end point. The functional status of survivors in follow-up was recorded using the Pittsburgh cerebral performance category score (22). Statistical Analysis. The data are shown as the mean SD and the median value is given if necessary. Categorical variables were compared using Fisher s exact test. Continuous variables were compared using the Mann-Whitney U test. Univariate and multivariate analysis were performed to identify risk factors for mortality. A multiple logistic regression model was used to identify predictors of survival in the ECPR cohort. The odds ratio (OR) and 95% confidence interval (CI) are reported for each variable. The probability of survival-to-discharge inferred by logistic regression was plotted against CPR duration. Stata 8.0 (Stata Corp., College Station, TX) was used for the statistical analyses. RESULTS Demographic Data. From December 1994 to July 2005, 529 adult patients received ECMO support at our institute, and 135 who had undergone in-hospital Table 1. Data of ECPR cohort (n 135) Parameters n (%) Male 90 (66.7%) Age (yrs) (56, 16 87) Etiologies of underlying disease ACS 66 (48.9%) Postcardiotomy 23 (17.0%)) CMP 22 (16.3%) Myocarditis 12 (8.9%) PE 5 (3.8%) Mechanical valve obstruction 3 (2.2%) Others 4 (2.9%) Comorbidity DM 39 (28.9%) HT 32 (23.7%) Ischemic heart disease 77 (57.0%) Previous heart surgery 10 (7.4%) Valve disease 6 (4.4%) Congenital heart disease 2 (1.5%) Previous CVA 3 (2.2%) ESRD 2 (1.5%) CPR site ICU 82 (60.7%) Ward 4 (3.0%) OT 2 (1.5%) Cath lab 21 (15.6%) ER 26 (19.3%) Previous CPR 23 (17.0%) Initial rhythm VT/VF 97 (71.9%) PEA/asystole 34 (25.2%) Unknown 5 (3.7%) Defibrillation 114 (84.4%) Witnessed cardiac arrest 133 (98.5%) Monitored during CPR 109 (80.7%) IE at CPR ( g/kg/min) (47, 8 594) CPR duration (mins) (50, ) Subsequent intervention 76 (56.3%) PCI 8 (10.5%) CABG 37 (48.7%) Unloading left heart 8 (10.5%) Valve replacement 2 (2.6%) HTx 8 (10.5%) VAD 4 (5.3%) Ventriculorraphy 5 (4.9%) Pulmonary embolectomy 3 (3.9%) ECMO duration (hrs) (73.5, ) SOFA (first 24 hrs) (13, 5 20) LODS (first 24 hrs) (11, 4 20) Outcome Survival 72 hr 102 (75.6%) Wean-off 79 (58.5%) Survival to hospital discharge 46 (34.1%) CPC status at hospital discharge 1/2 41 (89.1%) 3/4 5 (10.1%) Variables are expressed as number (%) or mean standard deviation (medium, range). Percent of each intervention is calculated as percentage of all patients receiving subsequent interventions. ACS, acute coronary syndrome; CABG, coronary artery bypass grafting; Cath lab, catheterization laboratory; CMP, cardiomyopathy; CPC, cerebral performance category; CPR, cardiopulmonary resuscitation; CVA, cerebral vascular accident; DM, diabetes mellitus; ECMO, extracorporeal membrane oxygenation; ECPR, ECMO for CPR; ECLS, extracorporeal life support; ER, emergency room; ESRD, end stage renal disease; HT, hypertension; HTx, heart transplantation; IE, inotropic equivalent; ICU, intensive care unit; LODS, Logistic Organ Dysfunction Score; OT, operative theater; PCI, percutaneous coronary intervention; PE, pulmonary embolism; PEA, pulseless electrical activity; SOFA, Sequential Organ Failure Assessment; VAD, ventricular assist device; VF, ventricular fibrillation; VT, ventricular tachycardia. 2531

4 Table 2. Weaning rate and survival to hospital discharge rate of extracorporeal membrane oxygenation for cardiopulmonary resuscitation patients with different etiologies Etiology n (%) Weaning Rate, n (%) Survival Rate, n (%) Acute coronary syndrome 66 (48.9) 35 (53.0) 16 (24.2) Postcardiotomy 23 (17.0) 16 (69.6) 11 (47.8) Cardiomyopathy 22 (16.3) 11 (50.0) 7 (31.8) Acute myocarditis 12 (8.9) 11 (91.7) 7 (58.3) Obstructive lesions 8 (5.9) 3 (37.5) 2 (25) Others 4 (3.0) 3 (75) 3 (75) Overall 135 (100) 79 (58.5) 46 (34.1) Weaning rate and survival to hospital discharge rate are expressed as number and percentage of each etiology group of patients. Table 3. Odds ratio (OR) and 95% confidence interval (CI) for weaning and survival to discharge Wean-off CPR and received ECMO during CPR were included in the study (Fig. 1). The demographic, intervention, and outcome data for the study patients are shown in Table 1. Femoral cannulation was performed in the majority of patients (98.5%). One of these had the complication of retroperitoneal hematoma due to vessel perforation and expired soon after initiation of ECMO. Transthoracic cannulation was performed on two patients because of open cardiac massage. Four patients (3.0%) did not show return of spontaneous heart beating despite successful ECMO setup. Seventy-six patients (56.3%) underwent subsequent interventions to treat the underlying etiology; coronary intervention was performed in 59.2% of these patients (Table 1). Outcome. Thirty-three of the 79 successfully weaned patients died (median 201) hours later. Forty-six (34.1%) patients survived to hospital discharge after ECPR, but seven subsequently died (mean follow-up for these seven patients: mos, range mos). One patient died of pneumonia 5 months after discharge. Three patients died of cardiac-related events (progressive heart failure or pulmonary hypertension) at 1, 1, and 3 yrs. One patient died of underlying ovarian malignancy 4 yrs after ECPR. Two patients who survived ECPR followed by ventricular assist device and cardiac transplantation died 4 and 8 yrs later due to chronic rejection and posttransplant malignancy, respectively. The 1-yr and 5-yr survival rates of patients who survived to hospital discharge were 93.5% and 85%, respectively. The majority of survivors (89.1%, n 41, Table 1) were in cerebral performance category status 1 or 2 at hospital discharge. This indicates that neurologic function can be preserved in most ECPR survivors. Risk Factor Analysis. The weaning rate and survival-to-discharge rate in patients with different underlying etiologies are shown in Table 2. The univariate analysis for weaning and survival-todischarge, shown in Table 3, revealed that both CPR duration and an etiology of acute coronary syndrome (ACS) were significantly associated with survival (Table 3, p 0.05). However, after multivariate logistic regression analysis, only CPR duration remained a risk factor related to the survival. Underlying Etiologies. As shown in Table 2, patients with ACS had a lower survival-to-discharge rate than those with other etiologies (24.2% vs. 43.5%, OR: 0.42, 95% CI: ), and myocarditis patients had a higher weaning rate than those with other etiologies (91.7% vs. 55.3%, OR: 8.9, 95% CI: ). In the ACS group, CPR duration was an important factor for survival ( mins in survivors vs mins in nonsurvivors, p 0.04), but not for weaning (p 0.05). Subsequent Interventions. Subsequent interventions after ECPR were performed on 76 patients, of which 30 Survival OR 95% CI OR 95% CI Male Age 60 yrs Underlying etiologies ACS a CMP Myocarditis a Postcardiotomy Comorbidity DM HT Ischemic heart disease Previous heart surgery Previous CPR VT/VF CPR location ICU/Cath/OT , ER Monitored CPR duration a Defibrillation Subsequent intervention CABG a p ACS, acute coronary syndrome; CABG, coronary artery bypass grafting; Cath lab, catheterization laboratory; CMP, cardiomyopathy; CPC, cerebral performance category; CPR, cardiopulmonary resuscitation; CVA, cerebral vascular accident; DM, diabetes mellitus; ECLS, extracorporeal life support; ER, emergency room; ESRD, end stage renal disease; HT, hypertension; HTx, heart transplantation; IE, inotropic equivalent; ICU, intensive care unit; LODS, Logistic Organ Dysfunction Score; OT, operative theater; PCI, percutaneous coronary intervention; PE, pulmonary embolism; PEA, pulseless electrical activity; SOFA, Sequential Organ Failure Assessment; VAD, ventricular assist device; VF, ventricular fibrillation; VT, ventricular tachycardia. (39.5%) survived to discharge. The survival rate of patients with subsequent intervention was not significantly better than that of patients without intervention (39.5% survival with intervention vs. 28.8% survival without intervention, p 0.15). The different intervention procedures did not influence the weaning or survival rate (p 0.05). However, in patients undergoing subsequent interventions, CPR duration was still an important determining factor for survival ( mins in survivors vs mins in nonsurvivors, p 0.001). 2532

5 In the ACS group, patients with subsequent intervention had a better weaning rate (61.2%) than those without intervention (29.4%) (p 0.028, OR: 3.8, 95% CI: ) and a marginally better survival-to-discharge rate (30.6% survival with intervention vs. 5.9% survival without intervention, p 0.051, OR: 7.1, 95% CI: ). No difference in the survival or weaning rate was seen in the ACS group when comparing different revascularization methods (surgical coronary artery bypass vs. percutaneous coronary intervention) (p 0.49 for weaning and p 0.27 for survival). Despite the low survival rate of the ACS group compared with other etiology groups, aggressive intervention for revascularization of the ischemic/infarcted myocardium can still be recommended after ECPR because it provides better survival. Duration of ECMO. A statistical difference in ECMO duration was seen between the weaned and nonweaned groups ( hrs for weaning vs hrs for nonweaning, p ), but there was no effect on survival ( hrs for survivors vs hrs for nonsurvivors, p 0.15). Organ Dysfunction Parameters. Significant differences in both the SOFA score and LODS in the first 24 hrs were seen between the survival and nonsurvival group and between the weaned and nonweaned group (Table 4). The survival group and weaned group had significantly lower neurologic and renal subscores in the SOFA score and LODS than the nonsurvival and nonweaned group, respectively. These two significant specific factors resulted in the total SOFA score and LODS also being a predictive parameter. Duration of CPR. Patients who survived to discharge had a significantly shorter CPR duration than those who did not ( mins for survivors vs. Table 4. The Sequential Organ Failure Assessment (SOFA) and Logistic Organ Dysfunction Score (LODS) scores in the first 24 hrs of extracorporeal membrane oxygenation for cardiopulmonary resuscitation group Weaned Nonweaned p Survival Nonsurvival p SOFA total a Resp Coag Cardiac Hepatic CNS a Renal a LODS total a Resp Coag Cardiac Hepatic CNS a Renal a The total score and the subscore of CNS and renal system consistently revealed difference between weaning and nonweaning or survival and nonsurvival. CNS, central nervous system; coag, coagulation and hematological system; resp, respiratory. a p Table 5. Relationship between weaning or survival and cardiopulmonary resuscitation (CPR) duration CPR Duration (min) n (%) Wean-off, n (%) Survival, n (%) OR 95% CI 15 0 (0) (14.1) 12 (63.2) 12 a (63.2) (85.9) 67 (57.8) 34 a (29.3) (43) 37 (63.8) 29 a (50) (57) 42 (54.5) 17 a (22.1) (65.2) 59 a (67.0) 42 a (47.4) (34.8) 20 a (42.6) 4 a (8.5) Total 135 (100) 79 (58.5) 46 (34.1) Odds ratio (OR) and 95% confidence interval (CI) are calculated to compare survival-to-hospitaldischarge rates between each two groups. a p mins for nonsurvivors, p 0.001). A detailed analysis of the relationship between CPR duration and survival is shown in Table 5. A logistic regression model was developed to demonstrate the relationship between CPR duration and probability of survival-to-discharge using the equation: Probability of survival exp ( CPR duration) 1 exp ( CPR duration) The probability of survival in the ECPR setting was approximately 0.5, 0.3, and 0.1 when CPR was 30, 60, and 90 mins, respectively (Fig. 2). CPR duration is an important factor for survival, but CPR duration did not play such an important role in ECMO weaning (Table 5). Using a cut-off for CPR duration of 60 mins, the weaning rate was significantly higher in the CPR 60 mins group (Table 5, p 0.01). Despite the fact that successfully weaned patients experienced a shorter CPR duration than those who were not weaned ( mins in weaned patients vs mins in nonweaned patients), the difference did not reach statistical significance (p 0.059). DISCUSSION With assisted circulation, CPR duration could be extended to 60 mins with acceptable survival and the incidence of major neurologic deficits was relatively low at hospital discharge. The organ dysfunction scores (SOFA score or LODS) reflected the severity of shock damage in the early stage after ECPR and thus helped to predict the outcome. The availability of an ECMO team equipped with a wheeled ECMO cart allowed a rapid response to a call for ECPR and shortened the CPR duration before ECMO setup. Recent improvements in results of the use of ECMO in cardiopulmonary insufficiency have encouraged more physicians to apply ECMO for arrested patients (17, 22 25). An increasing number of sporadic case reports or series with limited cases have demonstrated long CPR tolerance if ECMO is used in CPR (25 28). However, most of these studies were performed on pediatric groups, and none have been carried out on adult in-hospital CPR. No study has tried to delineate CPR duration tolerance in this setting. To our knowledge, the present study is the largest series of ECPR and clearly demon- 2533

6 Figure 2. Relationship between probability of survival-to-hospital discharge and cardiopulmonary resuscitation (CPR) duration. ECPR, extracorporeal membrance oxygenation for CPR. Table 6. Comparison of conventional CPR groups with ECPR groups In-Hospital Prolonged CPR ( 10 mins) No. Duration, Mins (Mean SD, Median) strates tolerance of a long duration of ECPR in adult in-hospital CPR patients. ECMO team equipped with the wheeled ECMO cart allowed rapid response to the call for ECPR, and shortened the required CPR duration before ECMO setup. However, CPR duration continues to be a key factor in conventional CPR (8) and ECPR. Our study clearly revealed that a longer CPR duration resulted in a lower probability of survival, but ECMO allowed a longer CPR duration than expected in conventional CPR apparently because immediate assisted perfusion prevents progressive acidosis, alleviates post-cpr myocardium stunning, and reverses post-cpr organ dysfunction. ECMO can bring some patients back from irreversibility (29). The use of ECMO has changed previous concepts about the time limitation in Age, Yr (Mean SD, Median) Survival (%) p C1, all causes , 30 a , 59.5 (NS) 9.5 a C2, cardiopulmonary , 30 a , 53.5 a 8.9 a origin With ECMO (ECPR) , , CPR, cardiopulmonary resuscitation; ECMO, extracorporeal membrane oxygenation; ECPR, extracorporeal cardiopulmonary resuscitation; NS, not significant; C1, C2 groups, C1 in-hospital adult CPR ( 10 mins); C2, C1 group with cardiopulmonary origin. a p 0.05 compared with ECPR group. CPR. Based on the present results, ECMO can extend CPR duration to 90 min with a 0.1 probability of survival (Fig. 2). However, the quality of the applied CPR has not been investigated in this study, and might impact the outcome (30). According to our web-based registry for in-hospital CPR between January 2004 and December 2005 (8), 696 adult patient were recorded. After excluding ECPR patients, patients aged 75 yrs, and patients with a CPR duration 10 mins, 243 patients who had received CPR for 10 mins were recruited as a comparison group (C1, Table 6); 168 of these had a cardiopulmonary origin and formed a second comparison group (group C2, Table 6). The comparison demonstrated that the ECPR group, despite being older and having a longer duration of CPR, still had a better survival. Although these groups were not ideal for comparison (age and CPR duration differences), this supplementary data provides evidence supporting the use of ECPR. In the same study period, seven patients with out-of-hospital CPR received ECMO deployment at the emergency service. Only three were able to be weaned off ECMO with a cerebral performance category status of 4, and only one survived to hospital discharge with vegetative status. Based on this experience, we hesitate to recommend ECMO for out-ofhospital CPR because of the uncertain duration of arrest. The organ dysfunction scores (SOFA score or LODS) were able to predict the outcome in the early stage after the event. Both scores reflected the severity of shock damage in the early stage after ECPR and thus helped to predict the outcome. Patients with the etiology of ACS had the worst outcome among the subgroups and this might be related to the severity of the coronary lesion and lower reversibility of the ischemic myocardium. Most of our ACS patients had multiple or proximal lesions and prolonged resuscitation might lead to lower reversibility of the ischemic myocardium. However, half were weaned off ECMO, of whom 50% survived. The extremely ill patients in the SHould we emergently revascularize Occluded Coronaries in cardiogenic shock registry had a 70% mortality (31), comparable with that in our ACS subgroup, despite being less critical than our ACS subgroup. Limitation. This is an observational study, not a randomized trial, and might have selection bias. However, we do not think that it is possible to conduct a prospective randomized study for patients undergoing CPR, as it is not ethical to exclude possibly reversible victims from ECMO, especially after prolonged CPR. The quality of CPR was not well controlled in this study and this may influence the outcome (30). We did not apply a hypothermic strategy in the present ECPR group. Whether a hypothermic strategy in addition to ECMO would improve the outcome may be an attractive topic, and it deserves further investigation. CONCLUSION A shorter CPR duration allows a better survival in ECPR. However, ECMO still offers an acceptable survival rate in pa- 2534

7 tients with prolonged CPR up to 60 mins with 0.3 probability of survival. REFERENCES 1. Sandroni C, Nolan J, Cavallaro F, et al: Inhospital cardiac arrest: Incidence, prognosis and possible measures to improve survival. Intensive Care Med 2007; 33: Nadkarni VM, Larkin GL, Peberdy MA, et al: First documented rhythm and clinical outcome from in-hospital cardiac arrest among children and adults. JAMA 2006; 295: Cooper S, Janghorbani M, Cooper G: A decade of in-hospital resuscitation: Outcomes and prediction of survival? Resuscitation 2006; 68: Weil MH, Fries M: In-hospital cardiac arrest. Crit Care Med 2005; 33: Hajbaghery MA, Mousavi G, Akbari H: Factors influencing survival after in-hospital cardiopulmonary resuscitation. Resuscitation 2005; 66: Pionkowski RS, Thompson BM, Gruchow HW, et al: Resuscitation time in ventricular fibrillation a prognostic indicator. Ann Emerg Med 1983; 12: Schultz SC, Cullinane DC, Pasquale MD, et al: Predicting in-hospital mortality during cardiopulmonary resuscitation. Resuscitation 1996; 33: Shih CL, Lu TC, Jerng JS, et al: A web-based Utstein style registry system of in-hospital cardiopulmonary resuscitation in Taiwan. Resuscitation 2007; 72: Peberdy MA, Kaye W, Ornato JP, et al: Cardiopulmonary resuscitation of adults in the hospital: A report of cardiac arrests from the National Registry of Cardiopulmonary Resuscitation. Resuscitation 2003; 58: International Liaison Committee on Resuscitation: 2005 International Consensus on Cardiopulmonary Resuscitation and Emergency Cardiovascular Care Science with Treatment Recommendations. Part 4: Advanced life support. Resuscitation 2005; 67: Kern KB, Morley PT, Babbs CF, et al: Use of adjunctive devices in cardiopulmonary resuscitation. Ann Emerg Med 2001; 37(4 Suppl): S68 S Wigginton JG, Miller AH, Benitez FL, et al: Mechanical devices for cardiopulmonary resuscitation. Curr Opin Crit Care 2005; 11: Kennedy JH: The role of assisted circulation in cardiac resuscitation. JAMA 1966; 197: Mooney MR, Arom KV, Joyce LD, et al: Emergency cardiopulmonary bypass support in patients with cardiac arrest. J Thorac Cardiovasc Surg 1991; 101: Hill JG, Bruhn PS, Cohen SE, et al: Emergent applications of cardiopulmonary support: A multiinstitutional experience. Ann Thorac Surg 1992; 54: Cummins RO, Chamberlain D, Hazinski MF, et al: Recommended guidelines for reviewing, reporting, and conducting research on in-hospital resuscitation: The inhospital Utstein style. A statement for healthcare professionals from the American Heart Association, the European Resuscitation Council, the Heart and Stroke Foundation of Canada, the Australian Resuscitation Council, and the Resuscitation Councils of Southern Africa. Resuscitation 1997; 34: Chen YS, Chao A, Yu HY, et al: Analysis and results of prolonged resuscitation in cardiac arrest patients rescued by extracorporeal membrane oxygenation. J Am Coll Cardiol 2003; 41: Huang SC, Yu HY, Ko WJ, et al: Pressure criterion for placement of distal perfusion catheter to prevent limb ischemia during adult extracorporeal life support. J Thorac Cardiovasc Surg 2004; 128: Vincent JL, de Mendonca A, Cantraine F, et al: Use of the SOFA score to assess the incidence of organ dysfunction/failure in intensive care units: Results of a multicenter, prospective study. Working group on sepsis-related problems of the European Society of Intensive Care Medicine. Crit Care Med 1998; 26: Le Gall JR, Klar J, Lemeshow S, et al: The Logistic Organ Dysfunction system. A new way to assess organ dysfunction in the intensive care unit. ICU Scoring Group. JAMA 1996; 276: Ferreira FL, Bota DP, Bross A, et al: Serial evaluation of the SOFA score to predict outcome in critically ill patients. JAMA 2001; 286: Tunstall-Pedoe H, Bailey L, Chamberlain DA, et al: Survey of 3765 cardiopulmonary resuscitations in British hospitals (the BRESUS Study): Methods and overall results. BMJ 1992; 304: Nagao K, Hayashi N, Kanmatsuse K, et al: Cardiopulmonary cerebral resuscitation using emergency cardiopulmonary bypass, coronary reperfusion therapy and mild hypothermia in patients with cardiac arrest outside the hospital. J Am Coll Cardiol 2000; 36: Chen YS, Ko WJ, Lin FY, et al: Preliminary result of an algorithm to select proper ventricular assist devices for high-risk patients with extracorporeal membrane oxygenation support. J Heart Lung Transplant 2001; 20: Schwarz B, Mair P, Margreiter J, et al: Experience with percutaneous venoarterial cardiopulmonary bypass for emergency circulatory support. Crit Care Med 2003; 31: Parra DA, Totapally BR, Zahn E, et al: Outcome of cardiopulmonary resuscitation in a pediatric cardiac intensive care unit. Crit Care Med 2000; 28: Aharon AS, Drinkwater DC Jr, Churchwell KB, et al: Extracorporeal membrane oxygenation in children after repair of congenital cardiac lesions. Ann Thorac Surg 2001; 72: ; discussion Posner JC, Osterhoudt KC, Mollen CJ, et al: Extracorporeal membrane oxygenation as a resuscitative measure in the pediatric emergency department. Pediatr Emerg Care 2000; 16: Massetti M, Tasle M, Le Page O, et al: Back from irreversibility: Extracorporeal life support for prolonged cardiac arrest. Ann Thorac Surg 2005; 79: ; discussion Abella BS, Alvarado JP, Myklebust H, et al: Quality of cardiopulmonary resuscitation during in-hospital cardiac arrest. JAMA 2005; 293: Hochman JS, Sleeper LA, Webb JG, et al: Early revascularization in acute myocardial infarction complicated by cardiogenic shock. SHOCK Investigators. Should We Emergently Revascularize Occluded Coronaries for Cardiogenic Shock. N Engl J Med 1999; 341:

Articles. Funding National Science Council, Taiwan.

Articles. Funding National Science Council, Taiwan. Cardiopulmonary resuscitation with assisted extracorporeal life-support versus conventional cardiopulmonary resuscitation in adults with in-hospital cardiac arrest: an observational study and propensity

More information

ECMO CPR. Ravi R. Thiagarajan MBBS, MPH. Cardiac Intensive Care Unit

ECMO CPR. Ravi R. Thiagarajan MBBS, MPH. Cardiac Intensive Care Unit ECMO CPR Ravi R. Thiagarajan MBBS, MPH Staff Intensivist Cardiac Intensive Care Unit Children s Hospital Boston PCICS 2008, Miami, FL No disclosures Disclosures Outline Outcomes for Pediatric in-hospital

More information

CPR What Works, What Doesn t

CPR What Works, What Doesn t Resuscitation 2017 ECMO and ECLS April 1, 2017 Corey M. Slovis, M.D. Vanderbilt University Medical Center Metro Nashville Fire Department Nashville International Airport Nashville, TN Circulation 2013;128:417-35

More information

Samphant Ponvilawan Bumrungrad International

Samphant Ponvilawan Bumrungrad International Samphant Ponvilawan Bumrungrad International Definitions Artificial circulation using VA ECMO as an alternative to ventilation and external cardiac massage Indications Out-of-Hospital Cardiac Arrest (OHCA)

More information

AllinaHealthSystem 1

AllinaHealthSystem 1 : Definition End-organ hypoperfusion secondary to cardiac failure Venoarterial ECMO: Patient Selection Michael A. Samara, MD FACC Advanced Heart Failure, Cardiac Transplant & Mechanical Circulatory Support

More information

ECLS: A new frontier for refractory V.Fib and pulseless VT

ECLS: A new frontier for refractory V.Fib and pulseless VT ECLS: A new frontier for refractory V.Fib and pulseless VT Ernest L. Mazzaferri, Jr. MD, FACC September 15, 2017 Cardiovascular Emergencies: An exploration into the expansion of time-critical diagnosis

More information

Disclosures. Extra-Corporeal Membrane Oxygenation During Cardio- Pulmonary Resuscitation ECPR April 22, 2016 ECG. Case. Case. Case Summary 4/22/2016

Disclosures. Extra-Corporeal Membrane Oxygenation During Cardio- Pulmonary Resuscitation ECPR April 22, 2016 ECG. Case. Case. Case Summary 4/22/2016 Extra-Corporeal Membrane Oxygenation During Cardio- Pulmonary Resuscitation ECPR April 22, 2016 Nothing to disclose. Disclosures Ivan J Chavez MD Case ECG History 60 y/o male No prior history of CAD In

More information

To ECMO Or Not To ECMO Challenges of venous arterial ECMO. Dr Emily Granger St Vincent s Hospital Darlinghurst NSW

To ECMO Or Not To ECMO Challenges of venous arterial ECMO. Dr Emily Granger St Vincent s Hospital Darlinghurst NSW To ECMO Or Not To ECMO Challenges of venous arterial ECMO Dr Emily Granger St Vincent s Hospital Darlinghurst NSW The Start: 1972 St Vincent s Hospital The Turning Point ECMO program restarted in 2004

More information

Out-of-hospital Cardiac Arrest. Franz R. Eberli MD, FESC, FAHA Cardiology Triemli Hospital Zurich, Switzerland

Out-of-hospital Cardiac Arrest. Franz R. Eberli MD, FESC, FAHA Cardiology Triemli Hospital Zurich, Switzerland Out-of-hospital Cardiac Arrest Franz R. Eberli MD, FESC, FAHA Cardiology Triemli Hospital Zurich, Switzerland Conflict of Interest I have no conflict of interest to disclose regarding this presentation.

More information

DECLARATION OF CONFLICT OF INTEREST

DECLARATION OF CONFLICT OF INTEREST DECLARATION OF CONFLICT OF INTEREST Cardiogenic Shock Mechanical Support Eulàlia Roig FESC Heart Failure and HT Unit Hospital Sant Pau - UAB Barcelona. Spain No conflics of interest Mechanical Circulatory

More information

Research Article Extracorporeal Rescue for Early and Late Graft Failure after Cardiac Transplantation: Short Result and Long-Term Followup

Research Article Extracorporeal Rescue for Early and Late Graft Failure after Cardiac Transplantation: Short Result and Long-Term Followup Hindawi Publishing Corporation The Scientific World Journal Volume 2013, Article ID 364236, 8 pages http://dx.doi.org/10.1155/2013/364236 Research Article Extracorporeal Rescue for Early and Late Graft

More information

In-hospital Care of the Post-Cardiac Arrest Patient. David A. Pearson, MD, FACEP, FAAEM Associate Program Director Department of Emergency Medicine

In-hospital Care of the Post-Cardiac Arrest Patient. David A. Pearson, MD, FACEP, FAAEM Associate Program Director Department of Emergency Medicine In-hospital Care of the Post-Cardiac Arrest Patient David A. Pearson, MD, FACEP, FAAEM Associate Program Director Department of Emergency Medicine Disclosures I have no financial interest, arrangement,

More information

Extracorporeal Membrane Oxygenation to Support Cardiopulmonary Resuscitation in Adults

Extracorporeal Membrane Oxygenation to Support Cardiopulmonary Resuscitation in Adults ADULT CARDIAC Extracorporeal Membrane Oxygenation to Support Cardiopulmonary Resuscitation in Adults Ravi R. Thiagarajan, MBBS, MPH, Thomas V. Brogan, MD, Mark A. Scheurer, MD, Peter C. Laussen, MBBS,

More information

Department of Surgery, Division of Cardiothoracic Surgery

Department of Surgery, Division of Cardiothoracic Surgery Review of In-Hospital and Out-of-Hospital Cardiac Arrests at a Tertiary Community Hospital for Potential ECPR Rescue Amanda Broderick 1, Jordan Williams 1, Alexandra Maryashina 1, & James Wu, MD 1 1 Department

More information

Intraaortic Balloon Counterpulsation- Supportive Data for a Role in Cardiogenic Shock ( Be Still My Friend )

Intraaortic Balloon Counterpulsation- Supportive Data for a Role in Cardiogenic Shock ( Be Still My Friend ) Intraaortic Balloon Counterpulsation- Supportive Data for a Role in Cardiogenic Shock ( Be Still My Friend ) Stephen G. Ellis, MD Section Head, Interventional Cardiology Professor of Medicine Cleveland

More information

Chapter 19 Detection of ROSC in Patients with Cardiac Arrest During Chest Compression Using NIRS: A Pilot Study

Chapter 19 Detection of ROSC in Patients with Cardiac Arrest During Chest Compression Using NIRS: A Pilot Study Chapter 19 Detection of ROSC in Patients with Cardiac Arrest During Chest Compression Using NIRS: A Pilot Study Tsukasa Yagi, Ken Nagao, Tsuyoshi Kawamorita, Taketomo Soga, Mitsuru Ishii, Nobutaka Chiba,

More information

EXTRACORPOREAL LIFE SUPPORT FOR REFRACTORY IN-HOSPITAL AND OUT-OF-HOSPITAL CARDIAC ARREST: ARE THE OUTCOMES REALLY DIFFERENT? A 10-YEAR EXPERIENCE

EXTRACORPOREAL LIFE SUPPORT FOR REFRACTORY IN-HOSPITAL AND OUT-OF-HOSPITAL CARDIAC ARREST: ARE THE OUTCOMES REALLY DIFFERENT? A 10-YEAR EXPERIENCE EXTRACORPOREAL LIFE SUPPORT FOR REFRACTORY IN-HOSPITAL AND OUT-OF-HOSPITAL CARDIAC ARREST: ARE THE OUTCOMES REALLY DIFFERENT? A 10-YEAR EXPERIENCE Pozzi M 1, Armoiry X 2, Koffel C 3, Pavlakovic I 3, Lavigne

More information

Supplementary Appendix

Supplementary Appendix Supplementary Appendix This appendix has been provided by the authors to give readers additional information about their work. Supplement to: Chan PS, Nallamothu BK, Krumholz HM, et al. Long-term outcomes

More information

Adult Extracorporeal Life Support (ECLS)

Adult Extracorporeal Life Support (ECLS) Adult Extracorporeal Life Support (ECLS) Steven Scott, M.D., F.A.C.S. Piedmont Heart Institute Cardiothoracic Surgery Disclosures None ECMO = ECLS A technique of life support that involves a continuous

More information

Research Article Identifying Prognostic Criteria for Survival after Resuscitation Assisted by Extracorporeal Membrane Oxygenation

Research Article Identifying Prognostic Criteria for Survival after Resuscitation Assisted by Extracorporeal Membrane Oxygenation Critical Care Research and Practice Volume 2016, Article ID 9521091, 5 pages http://dx.doi.org/10.1155/2016/9521091 Research Article Identifying Prognostic Criteria for Survival after Resuscitation Assisted

More information

Update on Sudden Cardiac Death and Resuscitation

Update on Sudden Cardiac Death and Resuscitation Update on Sudden Cardiac Death and Resuscitation Ashish R. Panchal, MD, PhD Medical Director Center for Emergency Medical Services Assistant Professor Clinical Department of Emergency Medicine The Ohio

More information

Extra Corporeal Life Support for Acute Heart failure

Extra Corporeal Life Support for Acute Heart failure Extra Corporeal Life Support for Acute Heart failure Benjamin Medalion, MD Director Heart and Lung Transplantation Department of Cardiothoracic Surgery Rabin Medical Center, Beilinson Campus, Israel Mechanical

More information

Outcomes of Therapeutic Hypothermia in Cardiac Arrest. Saad Mohammed Shariff, MBBS Aravind Herle, MD, FACC

Outcomes of Therapeutic Hypothermia in Cardiac Arrest. Saad Mohammed Shariff, MBBS Aravind Herle, MD, FACC Outcomes of Therapeutic Hypothermia in Cardiac Arrest Saad Mohammed Shariff, MBBS Aravind Herle, MD, FACC https://my.americanheart.org/idc/groups/ahamah-public/@wcm/@sop/@scon/documents/downloadable/ucm_427331.pdf

More information

Outcomes with ECMO for In Hospital Cardiac Arrest

Outcomes with ECMO for In Hospital Cardiac Arrest Outcomes with ECMO for In Hospital Cardiac Arrest Subhasis Chatterjee, MD, FACS, FACC, FCCP. ECMO Program Director CHI Baylor St. Lukes Medical Center/ Texas Heart Institute Asst. Professor of Surgery,

More information

Update on Sudden Cardiac Death and Resuscitation

Update on Sudden Cardiac Death and Resuscitation Update on Sudden Cardiac Death and Resuscitation Ashish R. Panchal, MD, PhD Medical Director Center for Emergency Medical Services Assistant Professor Clinical Department of Emergency Medicine The Ohio

More information

ECMO Primer A View to the Future

ECMO Primer A View to the Future ECMO Primer A View to the Future Todd J. Kilbaugh Assistant Professor of Anesthesiology, Critical Care Medicine, and Pediatrics Director of The ECMO Center at the Children s Hospital of Philadelphia Disclosures

More information

ECMO for Refractory Septic Shock Prof. Alain Combes

ECMO for Refractory Septic Shock Prof. Alain Combes ECMO for Refractory Septic Shock Prof. Alain Combes Service de Réanimation ican, Institute of Cardiometabolism and Nutrition Hôpital Pitié-Salpêtrière, AP-HP, Paris Université Pierre et Marie Curie, Paris

More information

Refractory cardiac arrest

Refractory cardiac arrest Refractory cardiac arrest Claudio Sandroni Dept. of Anaesthesiology and Intensive Care Catholic University School of Medicine Rome Italy IRC Scientific Committee Conflicts of interest None Cardiac arrest:

More information

Extracorporeal Life Support for Cardiogenic Shock or Cardiac Arrest Due to Acute Coronary Syndrome

Extracorporeal Life Support for Cardiogenic Shock or Cardiac Arrest Due to Acute Coronary Syndrome ORIGINAL ARTICLES: CARDIOTHORACIC ANESTHESIOLOGY: The Annals of Thoracic Surgery CME Program is located online at http://cme.ctsnetjournals.org. To take the CME activity related to this article, you must

More information

Developments in Cardiopulmonary Resuscitation Guidelines

Developments in Cardiopulmonary Resuscitation Guidelines Developments in Cardiopulmonary Resuscitation Guidelines Bernd W. Böttiger Seite 1 To preserve human life by making high quality resuscitation available to all Outcome after CPR in Germany ROSC ( Return

More information

E-CPR National Trends & Local Plans

E-CPR National Trends & Local Plans E-CPR National Trends & Local Plans Objectives What is E-CPR? Jon Marinaro MD FCCM Chief, Surgical Critical Care UNM Associate Director UNM Adult ECMO Program Why would one do it? Evidence behind E-CPR?

More information

E-CPR National Trends & Local Plans

E-CPR National Trends & Local Plans E-CPR National Trends & Local Plans Jon Marinaro MD FCCM Chief, Surgical Critical Care UNM Associate Director UNM Adult ECMO Program Objectives What is E-CPR? Why would one do it? Evidence behind E-CPR?

More information

Echo assessment of patients with an ECMO device

Echo assessment of patients with an ECMO device Echo assessment of patients with an ECMO device Evangelos Leontiadis Cardiologist 1st Cardiology Dept. Onassis Cardiac Surgery Center Athens, Greece Gibbon HLM 1953 Goldstein DJ et al, NEJM 1998; 339:1522

More information

10/16/2017. Review the indications for ECMO in patients with. Respiratory failure Cardiac failure Cardiorespiratory failure

10/16/2017. Review the indications for ECMO in patients with. Respiratory failure Cardiac failure Cardiorespiratory failure Review the indications for ECMO in patients with Respiratory failure Cardiac failure Cardiorespiratory failure 1 Extracorporeal membrane lung and/or cardiac support. A support therapy, in no way definitive.

More information

Supplementary Online Content

Supplementary Online Content Supplementary Online Content Hasegawa K, Hiraide A, Chang Y, Brown DFM. Association of prehospital advancied airway management with neurologic outcome and survival in patients with out-of-hospital cardiac

More information

Post Cardiac Arrest Care 2015 American Heart Association Guideline Update for CPR and Emergency Cardiovascular Care

Post Cardiac Arrest Care 2015 American Heart Association Guideline Update for CPR and Emergency Cardiovascular Care Post Cardiac Arrest Care 2015 American Heart Association Guideline Update for CPR and Emergency Cardiovascular Care รศ.ดร.พญ.ต นหยง พ พานเมฆาภรณ ภาคว ชาว ส ญญ ว ทยา คณะแพทยศาสตร มหาว ทยาล ยเช ยงใหม System

More information

PRE-CONGRESS Thursday, 7 th May 2015

PRE-CONGRESS Thursday, 7 th May 2015 PRE-CONGRESS Thursday, 7 th May 2015 Lecture Theater A2 Helicopter Room a Room b Room c Room C4 Hangar 12 :00 13 :00 Congress Registration 13 :00 14 :45 Session A: Practical ECLS in 2015 aspects of ECLS

More information

The ARREST Trial: Amiodarone for Resuscitation After Out-of-Hospital Cardiac Arrest Due to Ventricular Fibrillation

The ARREST Trial: Amiodarone for Resuscitation After Out-of-Hospital Cardiac Arrest Due to Ventricular Fibrillation The ARREST Trial: Amiodarone for Resuscitation After Out-of-Hospital Cardiac Arrest Due to Ventricular Fibrillation Introduction The ARREST (Amiodarone in out-of-hospital Resuscitation of REfractory Sustained

More information

Veno-Venous ECMO Support. Chris Cropsey, MD Sept. 21, 2015

Veno-Venous ECMO Support. Chris Cropsey, MD Sept. 21, 2015 Veno-Venous ECMO Support Chris Cropsey, MD Sept. 21, 2015 Objectives List indications and contraindications for ECMO Describe hemodynamics and oxygenation on ECMO Discuss evidence for ECMO outcomes Identify

More information

DECLARATION OF CONFLICT OF INTEREST. Research grants: Sanofi-Aventis

DECLARATION OF CONFLICT OF INTEREST. Research grants: Sanofi-Aventis DECLARATION OF CONFLICT OF INTEREST Research grants: Sanofi-Aventis Invasive management after cardiac arrest Nikolaos I Nikolaou FESC, FERC Athens, Greece Survival (%) Survival from Out of Hospital Cardiac

More information

Automated external defibrillators and survival after in-hospital cardiac arrest: early experience at an Australian teaching hospital

Automated external defibrillators and survival after in-hospital cardiac arrest: early experience at an Australian teaching hospital Automated external defibrillators and survival after in-hospital cardiac arrest: early experience at an Australian teaching hospital Roger J Smith, Bernadette B Hickey and John D Santamaria Early defibrillation

More information

Kiehl EL, 1,2 Parker AM, 1 Matar RM, 2 Gottbrecht M, 1 Johansen MC, 1 Adams MP, 1 Griffiths LA, 2 Bidwell KL, 1 Menon V, 2 Enfield KB, 1 Gimple LW 1

Kiehl EL, 1,2 Parker AM, 1 Matar RM, 2 Gottbrecht M, 1 Johansen MC, 1 Adams MP, 1 Griffiths LA, 2 Bidwell KL, 1 Menon V, 2 Enfield KB, 1 Gimple LW 1 C-GRApH: A Validated Scoring System For The Early Risk Stratification Of Neurologic Outcomes After Out-of-hospital Cardiac Arrest Treated With Therapeutic Hypothermia Kiehl EL, 1,2 Parker AM, 1 Matar RM,

More information

Ventricular tachycardia and ischemia. Martin Jan Schalij Department of Cardiology Leiden University Medical Center

Ventricular tachycardia and ischemia. Martin Jan Schalij Department of Cardiology Leiden University Medical Center Ventricular tachycardia and ischemia Martin Jan Schalij Department of Cardiology Leiden University Medical Center Disclosure: Research grants from: Boston Scientific Medtronic Biotronik Sudden Cardiac

More information

Stayin Alive: Pediatric Advanced Life Support (PALS) Updated Guidelines

Stayin Alive: Pediatric Advanced Life Support (PALS) Updated Guidelines Stayin Alive: Pediatric Advanced Life Support (PALS) Updated Guidelines Margaret Oates, PharmD, BCPPS Pediatric Critical Care Specialist GSHP Summer Meeting July 16, 2016 Disclosures I have nothing to

More information

Hypothermia: The Science and Recommendations (In-hospital and Out)

Hypothermia: The Science and Recommendations (In-hospital and Out) Hypothermia: The Science and Recommendations (In-hospital and Out) L. Kristin Newby, MD, MHS Professor of Medicine Duke University Medical Center Chair, Council on Clinical Cardiology, AHA President, Society

More information

Management of Acute Shock and Right Ventricular Failure

Management of Acute Shock and Right Ventricular Failure Management of Acute Shock and Right Ventricular Failure Nader Moazami, MD Department of Thoracic and Cardiovascular Surgery and Biomedical Engineering, Cleveland Clinic NONE Disclosures CARDIOGENIC SHOCK

More information

Drs. Rottman, Salloum, Campbell, Muldowney, Hong, Bagai, Kronenberg

Drs. Rottman, Salloum, Campbell, Muldowney, Hong, Bagai, Kronenberg Rotation: or: Faculty: Coronary Care Unit (CVICU) Dr. Jeff Rottman Drs. Rottman, Salloum, Campbell, Muldowney, Hong, Bagai, Kronenberg Duty Hours: Mon Fri, 7 AM to 7 PM, weekend call shared with consult

More information

Which mechanical assistance for cardiogenic shock?

Which mechanical assistance for cardiogenic shock? Which mechanical assistance for cardiogenic shock? Alain Combes, MD, PhD, Hôpital Pitié-Salpêtrière, AP-HP Inserm UMRS 1166, ican, Institute of Cardiometabolism and Nutrition Pierre et Marie Curie Sorbonne

More information

Rhondalyn C. McLean. 2 ND YEAR RESEARCH ELECTIVE RESIDENT S JOURNAL Volume VII, A. Study Purpose and Rationale

Rhondalyn C. McLean. 2 ND YEAR RESEARCH ELECTIVE RESIDENT S JOURNAL Volume VII, A. Study Purpose and Rationale A Randomized Clinical Study To Compare The Intra-Aortic Balloon Pump To A Percutaneous Left Atrial-To-Femoral Arterial Bypass Device For Treatment Of Cardiogenic Shock Following Acute Myocardial Infarction.

More information

Resuscitation Science : Advancing Care for the Sickest Patients

Resuscitation Science : Advancing Care for the Sickest Patients Resuscitation Science : Advancing Care for the Sickest Patients William Hallinan University of Rochester What is resuscitation science? Simply the science of resuscitation : Pre arrest Arrest care Medical

More information

Management of Cardiac Arrest Based on : 2010 American Heart Association Guidelines

Management of Cardiac Arrest Based on : 2010 American Heart Association Guidelines Management of Cardiac Arrest Based on : 2010 American Heart Association Guidelines www.circ.ahajournals.org Elham Pishbin. M.D Assistant Professor of Emergency Medicine MUMS C H E S Advanced Life Support

More information

Cardiogenic Shock. Carlos Cafri,, MD

Cardiogenic Shock. Carlos Cafri,, MD Cardiogenic Shock Carlos Cafri,, MD SHOCK= Inadequate Tissue Mechanisms: Perfusion Inadequate oxygen delivery Release of inflammatory mediators Further microvascular changes, compromised blood flow and

More information

Extracorporeal Membrane Oxygenation in Cardiac Intensive Care Unit

Extracorporeal Membrane Oxygenation in Cardiac Intensive Care Unit 10 Review Article THIEME Extracorporeal Membrane Oxygenation in Cardiac Intensive Care Unit Venkat Goyal 1 Pranay Oza 1 1 Riddhi Vinayak Critical Care and Cardiac Centre, Mumbai, Maharashtra, India J Card

More information

Prolonged Extracorporeal Membrane Oxygenation Support for Acute Respiratory Distress Syndrome

Prolonged Extracorporeal Membrane Oxygenation Support for Acute Respiratory Distress Syndrome CASE REPORT Prolonged Extracorporeal Membrane Oxygenation Support for Acute Respiratory Distress Syndrome Wen-Je Ko,* Hsao-Hsun Hsu, Pi-Ru Tsai When all conventional treatments for respiratory failure

More information

PERIOPERATIVE cardiopulmonary arrests are

PERIOPERATIVE cardiopulmonary arrests are Predictors of Survival from Perioperative Cardiopulmonary Arrests A Retrospective Analysis of 2,524 Events from the Get With The Guidelines-Resuscitation Registry Satya Krishna Ramachandran, M.D., F.R.C.A.,*

More information

Extracorporeal Life Support Organization (ELSO) Guidelines for Pediatric Respiratory Failure

Extracorporeal Life Support Organization (ELSO) Guidelines for Pediatric Respiratory Failure Extracorporeal Life Support Organization (ELSO) Guidelines for Pediatric Respiratory Failure Introduction This pediatric respiratory failure guideline is a supplement to ELSO s General Guidelines for all

More information

Cath Lab Essentials : LV Assist Devices for Hemodynamic Support (IABP, Impella, Tandem Heart, ECMO)

Cath Lab Essentials : LV Assist Devices for Hemodynamic Support (IABP, Impella, Tandem Heart, ECMO) Cath Lab Essentials : LV Assist Devices for Hemodynamic Support (IABP, Impella, Tandem Heart, ECMO) Michael A. Gibson, MD Assistant Professor of Medicine University of California, Irvine Division of Cardiology

More information

Pheochromocytoma Crisis Presenting as Fulminant Cardiopulmonary Failure: A Case Report

Pheochromocytoma Crisis Presenting as Fulminant Cardiopulmonary Failure: A Case Report 170 Pheochromocytoma Crisis Presenting as Fulminant Cardiopulmonary Failure: A Case Report Chun-Wen Chiu 1, Cheng-Hsiung Chen 2 Fulminant cardiopulmonary failure in a patient with pheochromocytoma is a

More information

Cardiovascular Nursing Practice: A Comprehensive Resource Manual and Study Guide for Clinical Nurses 2 nd Edition

Cardiovascular Nursing Practice: A Comprehensive Resource Manual and Study Guide for Clinical Nurses 2 nd Edition Cardiovascular Nursing Practice: A Comprehensive Resource Manual and Study Guide for Clinical Nurses 2 nd Edition Table of Contents Volume 1 Chapter 1: Cardiovascular Anatomy and Physiology Basic Cardiac

More information

Update of CPR AHA Guidelines

Update of CPR AHA Guidelines Update of CPR AHA Guidelines Donald Hal Shaffner Course objective is to have an updated understanding of the American Heart Association s treatment algorithms for the management of cardiac decompensation

More information

Extracorporeal Membrane Oxygenation (ECMO)

Extracorporeal Membrane Oxygenation (ECMO) Extracorporeal Membrane Oxygenation (ECMO) Policy Number: Original Effective Date: MM.12.006 05/16/2006 Line(s) of Business: Current Effective Date: HMO; PPO; QUEST Integration 01/01/2017 Section: Other/Miscellaneous

More information

Implantable Ventricular Assist Devices and Total Artificial Hearts. Policy Specific Section: June 13, 1997 March 29, 2013

Implantable Ventricular Assist Devices and Total Artificial Hearts. Policy Specific Section: June 13, 1997 March 29, 2013 Medical Policy Implantable Ventricular Assist Devices and Total Artificial Hearts Type: Medical Necessity and Investigational / Experimental Policy Specific Section: Surgery Original Policy Date: Effective

More information

Lesta Whalen, MD Medical Director, Sanford ECMO Pediatric Critical Care

Lesta Whalen, MD Medical Director, Sanford ECMO Pediatric Critical Care Lesta Whalen, MD Medical Director, Sanford ECMO Pediatric Critical Care Disclosures I have no financial disclosures. The use of certain devises for providing long-term cardiopulmonary support is investigational.

More information

The development of cardiogenic shock portends an extremely poor prognosis. Cardiogenic Shock: A Lethal Complication of Acute Myocardial Infarction

The development of cardiogenic shock portends an extremely poor prognosis. Cardiogenic Shock: A Lethal Complication of Acute Myocardial Infarction TREATMENT UPDATE Cardiogenic Shock: A Lethal Complication of Acute Myocardial Infarction David R. Holmes, Jr, MD Mayo Graduate School of Medicine, Mayo Clinic, Rochester, MN Cardiogenic shock is a serious

More information

ECMO as a bridge to durable LVAD therapy. Jonathan Haft, MD Department of Cardiac Surgery University of Michigan

ECMO as a bridge to durable LVAD therapy. Jonathan Haft, MD Department of Cardiac Surgery University of Michigan ECMO as a bridge to durable LVAD therapy Jonathan Haft, MD Department of Cardiac Surgery University of Michigan Systolic Heart Failure Prevalence 4.8 million U.S. 287,000 deaths per year $39 billion spent

More information

Counterpulsation. John N. Nanas, MD, PhD. Professor and Head, 3 rd Cardiology Dept, University of Athens, Athens, Greece

Counterpulsation. John N. Nanas, MD, PhD. Professor and Head, 3 rd Cardiology Dept, University of Athens, Athens, Greece John N. Nanas, MD, PhD Professor and Head, 3 rd Cardiology Dept, University of Athens, Athens, Greece History of counterpulsation 1952 Augmentation of CBF Adrian and Arthur Kantrowitz, Surgery 1952;14:678-87

More information

Chairman and O. Wayne Isom Professor Department of Cardiothoracic Surgery Weill Cornell Medicine

Chairman and O. Wayne Isom Professor Department of Cardiothoracic Surgery Weill Cornell Medicine Leonard N. Girardi, M.D. Chairman and O. Wayne Isom Professor Department of Cardiothoracic Surgery Weill Cornell Medicine New York, New York Houston Aortic Symposium Houston, Texas February 23, 2017 weill.cornell.edu

More information

Tissue Plasminogen Activator in In-Hospital Cardiac Arrest with Pulseless Electrical Activity

Tissue Plasminogen Activator in In-Hospital Cardiac Arrest with Pulseless Electrical Activity Tissue Plasminogen Activator in In-Hospital Cardiac Arrest with Pulseless Electrical Activity Hannah Jordan A. Study Purpose and Rationale Pulseless electrical activity during cardiac arrest carries a

More information

Extracorporeal Membrane Oxygenation (ECMO)

Extracorporeal Membrane Oxygenation (ECMO) Extracorporeal Membrane Oxygenation (ECMO) Policy Number: Original Effective Date: MM.12.006 05/16/2006 Line(s) of Business: Current Effective Date: HMO; PPO; QUEST Integration 11/01/2014 Section: Other/Miscellaneous

More information

In the past decade, two large randomized

In the past decade, two large randomized Mild therapeutic hypothermia improves outcomes compared with normothermia in cardiac-arrest patients a retrospective chart review* David Hörburger, MD; Christoph Testori, MD; Fritz Sterz, MD; Harald Herkner,

More information

University of Wisconsin - Madison Cardiovascular Medicine Fellowship Program UW CICU Rotation Goals and Objectives

University of Wisconsin - Madison Cardiovascular Medicine Fellowship Program UW CICU Rotation Goals and Objectives Background: The field of critical care cardiology has evolved considerably over the past 2 decades. Contemporary critical care cardiology is increasingly focused on the management of patients with advanced

More information

State of the art lecture: 21st Century Post resuscitation management

State of the art lecture: 21st Century Post resuscitation management State of the art lecture: 21st Century Post resuscitation management ACCA Masterclass 2017 Prof Alain CARIOU Intensive Care Unit - Cochin Hospital (APHP) Paris Descartes University INSERM U970 - France

More information

Mechanical Circulatory Support (MCS): What Every Pharmacist Needs to Know!

Mechanical Circulatory Support (MCS): What Every Pharmacist Needs to Know! Mechanical Circulatory Support (MCS): What Every Pharmacist Needs to Know! Matthew A. Wanat, PharmD, BCPS, BCCCP, FCCM Clinical Assistant Professor University of Houston College of Pharmacy Clinical Pharmacy

More information

Outcomes From Severe ARDS Managed Without ECMO. Roy Brower, MD Johns Hopkins University Critical Care Canada Forum Toronto November 1, 2016

Outcomes From Severe ARDS Managed Without ECMO. Roy Brower, MD Johns Hopkins University Critical Care Canada Forum Toronto November 1, 2016 Outcomes From Severe ARDS Managed Without ECMO Roy Brower, MD Johns Hopkins University Critical Care Canada Forum Toronto November 1, 2016 Severe ARDS Berlin Definition 2012 P:F ratio 100 mm Hg Prevalence:

More information

Circulatory Support: From IABP to LVAD

Circulatory Support: From IABP to LVAD Circulatory Support: From IABP to LVAD Howard A Cohen, MD, FACC, FSCAI Director Division of Cardiovascular Intervention Co Director Cardiovascular Interventional ti Laboratories Lenox Hill Heart & Vascular

More information

Emergency surgery in acute coronary syndrome

Emergency surgery in acute coronary syndrome Emergency surgery in acute coronary syndrome Teerawoot Jantarawan Division of Cardiothoracic Surgery, Department of Surgery, Faculty of Medicine Siriraj Hospital, Mahidol University, Bangkok, Thailand

More information

Advanced Resuscitation - Adult

Advanced Resuscitation - Adult C02A Resuscitation 2017-03-23 17 years & older Office of the Medical Director Advanced Resuscitation - Adult Intermediate Advanced Critical From PRIMARY ASSESSMENT Known or suspected hypothermia Algorithm

More information

2015 AHA Guidelines: Pediatric Updates

2015 AHA Guidelines: Pediatric Updates 2015 AHA Guidelines: Pediatric Updates Advances in Pediatric Emergency Medicine December 9, 2016 Karen O Connell, MD, MEd Associate Professor of Pediatrics and Emergency Medicine Emergency Medicine and

More information

ECMO BASICS CHLOE STEINSHOUER, MD PULMONARY AND SLEEP CONSULTANTS OF KANSAS

ECMO BASICS CHLOE STEINSHOUER, MD PULMONARY AND SLEEP CONSULTANTS OF KANSAS ECMO BASICS CHLOE STEINSHOUER, MD PULMONARY AND SLEEP CONSULTANTS OF KANSAS DISCLOSURES No financial disclosures or conflicts of interest OBJECTIVES Define ECMO/ECLS and be able to identify the main types

More information

Pulmonary Hypertension Surgical Options. Primary pulmonary hypertension. Transplantation. Thromboembolic disease Endarterectomy

Pulmonary Hypertension Surgical Options. Primary pulmonary hypertension. Transplantation. Thromboembolic disease Endarterectomy Stuart W. Jamieson Cardiothoracic Surgery University of California San Diego Chronic Thromboembolic Pulmonary Hypertension Pulmonary Hypertension Surgical Options Primary pulmonary hypertension Transplantation

More information

Summary Protocol ISRCTN / NCT REVIVED-BCIS2 Summary protocol version 4, May 2015 Page 1 of 6

Summary Protocol ISRCTN / NCT REVIVED-BCIS2 Summary protocol version 4, May 2015 Page 1 of 6 Summary Protocol REVIVED-BCIS2 Summary protocol version 4, May 2015 Page 1 of 6 Background: Epidemiology In 2002, it was estimated that approximately 900,000 individuals in the United Kingdom had a diagnosis

More information

ICU Volume 14 - Issue 1 - Spring Matrix

ICU Volume 14 - Issue 1 - Spring Matrix ICU Volume 14 - Issue 1 - Spring 2014 - Matrix The ECMO Retrieval Team Authors Alain Combes, MD Medical-Surgical Intensive Care Unit ican, Institute of Cardiometabolism and Nutrition Hôpital de la Pitié

More information

3/6/2017. Endovascular Selective Cerebral Hypothermia First-in-Human Experience

3/6/2017. Endovascular Selective Cerebral Hypothermia First-in-Human Experience Endovascular Selective Cerebral Hypothermia First-in-Human Experience Ronald Jay Solar, Ph.D. San Diego, CA 32 nd Annual Snowmass Symposium March 5-10, 2017 Introduction Major limitations in acute ischemic

More information

Heart Transplantation is Dead

Heart Transplantation is Dead Heart Transplantation is Dead Alternatives to Transplantation in Heart Failure Sagar Damle, MD University of Colorado Health Sciences Center Grand Rounds September 8, 2008 Outline Why is there a debate?

More information

ECMO for cardiac arrest patients: Update 2017

ECMO for cardiac arrest patients: Update 2017 ECMO for cardiac arrest patients: Update 2017 Lim Swee Han MBBS (NUS), FRCS Ed (A&E), FRCP (Edin), FAMS Senior Consultant, Department of Emergency Medicine, Singapore General Hospital Adjunct Associate

More information

Interventional treatment for patients with acute pulmonary embolism

Interventional treatment for patients with acute pulmonary embolism Interventional treatment for patients with acute pulmonary embolism I. Petrov, I. Martinov Cardiology department Tokuda Hospital Sofia I. Petrov, Treatment and prophylaxis of PE Treatment of PE: 1.) Systemic

More information

Ted Feldman, M.D., MSCAI FACC FESC

Ted Feldman, M.D., MSCAI FACC FESC Support Technologies and High Risk Intervention Patient Selection: When Not to Use Them Ted Feldman, M.D., MSCAI FACC FESC Evanston Hospital SCAI Fall Fellows Course Las Vegas December 7-10 th, 2014 Ted

More information

Extracorporeal Life Support (ECLS) as a Bridge to Decision in Lung Transplantation

Extracorporeal Life Support (ECLS) as a Bridge to Decision in Lung Transplantation Extracorporeal Life Support (ECLS) as a Bridge to Decision in Lung Transplantation Gabriel Loor, MD Baylor St. Lukes Medical Center Surgical Director Lung Transplantation Co-chief Section of Adult Cardiac

More information

Complications of Acute Myocardial Infarction

Complications of Acute Myocardial Infarction Acute Myocardial Infarction Complications of Acute Myocardial Infarction Diagnosis and Treatment JMAJ 45(4): 149 154, 2002 Hiroshi NONOGI Director, Division of Cardiology and Emergency Medicine, National

More information

SARASOTA MEMORIAL HOSPITAL NURSING DEPARTMENT POLICY

SARASOTA MEMORIAL HOSPITAL NURSING DEPARTMENT POLICY PS1070 SARASOTA MEMORIAL HOSPITAL NURSING DEPARTMENT POLICY TITLE: ADMISSION/DISCHARGE CRITERIA: CARDIOVASCULAR INTENSIVE Job Title of Reviewer: Director, CVICU EFFECTIVE DATE: REVIEWED/REVISED DATE: POLICY

More information

Management of Cardiogenic Shock. Dr Stephen Pettit, Consultant Cardiologist

Management of Cardiogenic Shock. Dr Stephen Pettit, Consultant Cardiologist Dr Stephen Pettit, Consultant Cardiologist Cardiogenic shock Management of Cardiogenic Shock Outline Definition, INTERMACS classification Medical management of cardiogenic shock PA catheters and haemodynamic

More information

Case scenario V AV ECMO. Dr Pranay Oza

Case scenario V AV ECMO. Dr Pranay Oza Case scenario V AV ECMO Dr Pranay Oza Case Summary 53 y/m, k/c/o MVP with myxomatous mitral valve with severe Mitral regurgitation underwent Mitral valve replacement with mini thoracotomy Pump time nearly

More information

Overview and Latest Research on Out of Hospital Cardiac Arrest

Overview and Latest Research on Out of Hospital Cardiac Arrest L MODULE 1 Overview and Latest Research on Out of Hospital Cardiac Arrest Jamie Jollis, MD Co PI RACE CARS 2 Out of Hospital Cardiac Arrest in U.S. 236 000 to 325 000 people in the United States each year

More information

ACLS Prep. Preparation is key to a successful ACLS experience. Please complete the ACLS Pretest and Please complete this ACLS Prep.

ACLS Prep. Preparation is key to a successful ACLS experience. Please complete the ACLS Pretest and Please complete this ACLS Prep. November, 2013 ACLS Prep Preparation is key to a successful ACLS experience. Please complete the ACLS Pretest and Please complete this ACLS Prep. ACLS Prep Preparation is key to a successful ACLS experience.

More information

Ultrasound-enhanced, catheter-directed thrombolysis for pulmonary embolism

Ultrasound-enhanced, catheter-directed thrombolysis for pulmonary embolism NATIONAL INSTITUTE FOR HEALTH AND CARE EXCELLENCE Interventional procedure consultation document Ultrasound-enhanced, catheter-directed thrombolysis for pulmonary embolism A pulmonary embolism (PE) is

More information

Indications of Coronary Angiography Dr. Shaheer K. George, M.D Faculty of Medicine, Mansoura University 2014

Indications of Coronary Angiography Dr. Shaheer K. George, M.D Faculty of Medicine, Mansoura University 2014 Indications of Coronary Angiography Dr. Shaheer K. George, M.D Faculty of Medicine, Mansoura University 2014 Indications for cardiac catheterization Before a decision to perform an invasive procedure such

More information

University of Florida Department of Surgery. CardioThoracic Surgery VA Learning Objectives

University of Florida Department of Surgery. CardioThoracic Surgery VA Learning Objectives University of Florida Department of Surgery CardioThoracic Surgery VA Learning Objectives This service performs coronary revascularization, valve replacement and lung cancer resections. There are 2 faculty

More information

Bridging With Percutaneous Devices: Tandem Heart and Impella

Bridging With Percutaneous Devices: Tandem Heart and Impella Bridging With Percutaneous Devices: Tandem Heart and Impella DAVID A. BARAN, MD, FACC, FSCAI SYSTEM DIRECTOR, ADVANCED HEART FAILURE, TX AND MCS SENTARA HEART HOSPITAL NORFOLK, VA PROFESSOR OF MEDICINE

More information

EXTRACORPOREAL MEMBRANE OXYGENATION

EXTRACORPOREAL MEMBRANE OXYGENATION Outcome in Patients Who Require Venoarterial Extracorporeal Membrane Oxygenation Support After Cardiac Surgery Hesham A. Elsharkawy, MD, MSc,* Liang Li, PhD, Wael Ali Sakr Esa, MD, Daniel I. Sessler, MD,

More information

GUIDELINE 14 ACUTE CORONARY SYNDROMES

GUIDELINE 14 ACUTE CORONARY SYNDROMES AUSTRALIAN RESUSCITATION COUNCIL GUIDELINE 14 ACUTE CORONARY SYNDROMES OVERVIEW AND SUMMARY As a part of the International Liaison Committee on Resuscitation (ILCOR) process that led to the International

More information