BME 365 Website. Project Directions

Size: px
Start display at page:

Download "BME 365 Website. Project Directions"

Transcription

1 Lecture 17 EKG

2 BME 365 Website Project Directions

3 Heart rate Factors Affecting CO Parasympathetic activity decreases HR Sympathetic activity increases HR Stroke volume Depends on force generated by cardiac muscle during contraction Force is affected by: Length-tension tension relation As sarcomere lengthens, tension during contraction increases Starling s law Contractility Controlled by nervous and endocrine systems Contractility increases as available calcium increases

4 Fig Silverthorn 2 nd Ed

5 Fig The Wiggers diagram Silverthorn 2 nd Ed

6 Introduction Scalar EKG Vector EKG Outline Depolarization of Heart Electric Potential on Body Surface Lead Vectors and Einthoven s Triangle Leads in Horizontal Plane Interpretation of Vector EKG EKG Interpretation Rate Rhythm Axis Blocks

7 Reading Assignment org/erclub/ekghome.html

8 Introduction Scalar EKG Vector EKG Outline Depolarization of Heart Electric Potential on Body Surface Lead Vectors and Einthoven s Triangle Leads in Horizontal Plane Interpretation of Vector EKG EKG Interpretation Rate Rhythm Axis Blocks

9 Question Orientation of heart in chest cavity?

10 Introduction The action potential of the heart: Generates an electrical potential field Can be measured on the body surface Scalar EKG Change of potential between 2 points on body vs. time Vector EKG EGK provides information about: Anatomic orientation of heart Relative size of chambers Disturbances of rhythm and conductance Extent and location of ischemic damage to myocardium Effects of altered electrolyte concentrations Influence of certain drugs (e.g. digitalis)

11 Introduction Scalar EKG Vector EKG Outline Depolarization of Heart Electric Potential on Body Surface Lead Vectors and Einthoven s Triangle Leads in Horizontal Plane Interpretation of Vector EKG EKG Interpretation Rate Rhythm Axis Blocks

12 Main Features: Scalar EKG P wave: atrial depolarization QRS complex: ventricular depolarization T wave: ventricular repolarization Magnitude of EKG: 5-10 mv Magnitude of ventricular depolarization: 100 mv

13 Fig 2.39 Sinoatrial rythms Cardiovascular Physiology

14 Introduction Scalar EKG Vector EKG Outline Depolarization of Heart Electric Potential on Body Surface Lead Vectors and Einthoven s Triangle Leads in Horizontal Plane Interpretation of Vector EKG EKG Interpretation Rate Rhythm Axis Blocks

15 Vector EKG Heart vector: P (t) At rest: Cardiac myocyte has membrane potential of -90 mv AP leads to depol Wavefront of depol spreads across heart, v~0.5-1m/s Can represent this sep of charge as an electric dipole moment When the entire cell is resting, volume average of these dipole moments is zero When the wave of depol spreads, this is not longer true

16 Heart vector: P (t) Vector EKG At rest: Cardiac myocyte membrane potential of -90 mv Can represent this separation of charge as a dipole moment At rest, volume average of dipole moment is zerp

17 Fig 2.71a Double layer associated with a single cell Benedek

18 Heart vector: P (t) Vector EKG Wave of depolarization: AP leads to depol Wavefront of depol spreads across heart v~0.5-1m/s Can represent wavefront of depol as electric dipole Magnitude and direction changes with time

19 Fig 2.74 Benedek

20 Fig 2.76 Benedek

21 Fig 2.77 Benedek

22 Fig 2.79 Benedek

23 Fig 2.80 Benedek

24 Heart vector: P (t) Vector EKG Orientation of heart vector in depolarization: What effect does this produce at body surface?

25 Electric Potential on Body Surface Assume: Electrical activity of heart acts at point at center of chest Chest is spherical, radius R Want: Electric potential (r, (r, )

26 Fig 2.81 Benedek

27 Electric Potential on Body Surface Electric Potential on Body Surface LaPlace s LaPlace s equation: equation: cos 3, 0 0 ), ( R R R R P R P R r r o o R

28 Lead Vectors Einthoven s Triangle Place three electrodes: RA, LA, LL V 1 = LA RA V 2 = LL - RA V 3 = LL LA When we measure potential in lead 1 versus time, we measure: P L 1

29 Fig 2.38 Cardiovascular Physiology

30 6 Frontal Leads Standard EKG: Use three additional leads in frontal plane avr avl avf Connect three Einthoven leads to a central point with 5000 resistors, create single lead Take difference between this terminal and individual leads in Einthoven triangle

31 Fig 2.85 Benedek

32 Fig 14.5 Keener

33 Introduction Scalar EKG Vector EKG Outline Depolarization of Heart Electric Potential on Body Surface Lead Vectors and Einthoven s Triangle Leads in Horizontal Plane Interpretation of Vector EKG EKG Interpretation Rate Rhythm Axis Blocks

34 EKG Interpretation Look for leads with largest and smallest deflections Lead vector with largest mean amplitude is most parallel to heart dipole Lead vector with smallest mean amplitude is most perpendicular to heart dipole

35 Questions: In normal heart, which leads see largest QRS complex amplitude? In normal heart, which leads see smallest QRS complex amplitude?

36 Fig 14.6 Keener

37 6 Leads in Horizontal Plane All connected to central terminal of Einthoven leads

38 Fig 14.7 Keener

39 Interpretation of Vector EKG Ventricular Hypertrophy? MI? LV Hypertrophy? RV Hypertrophy?

40 Fig 14.8 Keener

41 LVH

42 Fig 14.9 Keener

43 RVH

44 Interpretation of Vector EKG Scalar EKG: Rate? Rhythm? Vector EKG: Axis If I and avf are positive, then axis is normal

45 Interpretation of Vector EKG Blocks: SA node block Missed beat AV node block Primary: PR int > 0.2 s Secondary: more than 1 P wave before each QRS Tertiary: complete dissociation between P waves and QRS complexes Ischemia ST segment elevation or depression Ventricular Fibrillation

46 SA Node Block

47 AV Node Block

48 Ischemia

49 Atrial Fibrillation

50 Ventricular Fibrillation

51 Outline Introduction Scalar EKG Vector EKG Depolarization of Heart Electric Potential on Body Surface Lead Vectors and Einthoven s Triangle Leads in Horizontal Plane Interpretation of Vector EKG EKG Interpretation Rate Rhythm Axis Blocks

Electrocardiography Normal 5. Faisal I. Mohammed, MD, PhD

Electrocardiography Normal 5. Faisal I. Mohammed, MD, PhD Electrocardiography Normal 5 Faisal I. Mohammed, MD, PhD 1 Objectives 2 1. Describe the different waves in a normal electrocardiogram. 2. Recall the normal P-R and Q-T interval time of the QRS wave. 3.

More information

- why the T wave is deflected upwards although it's a repolarization wave?

- why the T wave is deflected upwards although it's a repolarization wave? Cardiac Electrograph: - why the T wave is deflected upwards although it's a repolarization wave? After depolarization the ventricle contracts but since the heart is a volume conductor (3D not 2D), when

More information

DR QAZI IMTIAZ RASOOL OBJECTIVES

DR QAZI IMTIAZ RASOOL OBJECTIVES PRACTICAL ELECTROCARDIOGRAPHY DR QAZI IMTIAZ RASOOL OBJECTIVES Recording of electrical events in heart Established electrode pattern results in specific tracing pattern Health of heart i. e. Anatomical

More information

ECG INTERPRETATION MANUAL

ECG INTERPRETATION MANUAL Lancashire & South Cumbria Cardiac Network ECG INTERPRETATION MANUAL THE NORMAL ECG Lancashire And South Cumbria Cardiac Physiologist Training Manual THE NORMAL ECG E.C.G CHECKLIST 1) Name, Paper Speed,

More information

EKG. Danil Hammoudi.MD

EKG. Danil Hammoudi.MD EKG Danil Hammoudi.MD What is an EKG? The electrocardiogram (EKG) is a representation of the electrical events of the cardiac cycle. Each event has a distinctive waveform, the study of which can lead to

More information

Lab Activity 24 EKG. Portland Community College BI 232

Lab Activity 24 EKG. Portland Community College BI 232 Lab Activity 24 EKG Reference: Dubin, Dale. Rapid Interpretation of EKG s. 6 th edition. Tampa: Cover Publishing Company, 2000. Portland Community College BI 232 Graph Paper 1 second equals 25 little boxes

More information

Electrocardiogram ECG. Hilal Al Saffar FRCP FACC College of medicine,baghdad University

Electrocardiogram ECG. Hilal Al Saffar FRCP FACC College of medicine,baghdad University Electrocardiogram ECG Hilal Al Saffar FRCP FACC College of medicine,baghdad University Tuesday 29 October 2013 ECG introduction Wednesday 30 October 2013 Abnormal ECG ( ischemia, chamber hypertrophy, heart

More information

INTRODUCTION TO ECG. Dr. Tamara Alqudah

INTRODUCTION TO ECG. Dr. Tamara Alqudah INTRODUCTION TO ECG Dr. Tamara Alqudah Excitatory & conductive system of the heart + - The ECG The electrocardiogram, or ECG, is a simple & noninvasive diagnostic test which records the electrical

More information

The Electrocardiogram part II. Dr. Adelina Vlad, MD PhD

The Electrocardiogram part II. Dr. Adelina Vlad, MD PhD The Electrocardiogram part II Dr. Adelina Vlad, MD PhD Basic Interpretation of the ECG 1) Evaluate calibration 2) Calculate rate 3) Determine rhythm 4) Determine QRS axis 5) Measure intervals 6) Analyze

More information

CARDIOVASCULAR PHYSIOLOGY ECG. Dr. Ana-Maria Zagrean

CARDIOVASCULAR PHYSIOLOGY ECG. Dr. Ana-Maria Zagrean CARDIOVASCULAR PHYSIOLOGY ECG Dr. Ana-Maria Zagrean Electrocardiogram (ECG) ECG is a non-invasive method to record at the body surface the electrical activity of the heart. - the rate and regularity of

More information

Family Medicine for English language students of Medical University of Lodz ECG. Jakub Dorożyński

Family Medicine for English language students of Medical University of Lodz ECG. Jakub Dorożyński Family Medicine for English language students of Medical University of Lodz ECG Jakub Dorożyński Parts of an ECG The standard ECG has 12 leads: six of them are considered limb leads because they are placed

More information

Introduction to ECG Gary Martin, M.D.

Introduction to ECG Gary Martin, M.D. Brief review of basic concepts Introduction to ECG Gary Martin, M.D. The electrical activity of the heart is caused by a sequence of rapid ionic movements across cell membranes resulting first in depolarization

More information

Determining Axis and Axis Deviation on an ECG

Determining Axis and Axis Deviation on an ECG Marquette University e-publications@marquette Physician Assistant Studies Faculty Research and Publications Health Sciences, College of 7-15-2010 Determining Axis and Axis Deviation on an ECG Patrick Loftis

More information

ELECTROCARDIOGRAPHY (ECG)

ELECTROCARDIOGRAPHY (ECG) ELECTROCARDIOGRAPHY (ECG) The heart is a muscular organ, which pumps blood through the blood vessels of the circulatory system. Blood provides the body with oxygen and nutrients, as well as assists in

More information

5- The normal electrocardiogram (ECG)

5- The normal electrocardiogram (ECG) 5- The (ECG) Introduction Electrocardiography is a process of recording electrical activities of heart muscle at skin surface. The electrical current spreads into the tissues surrounding the heart, a small

More information

Interpreting Electrocardiograms (ECG) Physiology Name: Per:

Interpreting Electrocardiograms (ECG) Physiology Name: Per: Interpreting Electrocardiograms (ECG) Physiology Name: Per: Introduction The heart has its own system in place to create nerve impulses and does not actually require the brain to make it beat. This electrical

More information

By the end of this lecture, you will be able to: Understand the 12 lead ECG in relation to the coronary circulation and myocardium Perform an ECG

By the end of this lecture, you will be able to: Understand the 12 lead ECG in relation to the coronary circulation and myocardium Perform an ECG By the end of this lecture, you will be able to: Understand the 12 lead ECG in relation to the coronary circulation and myocardium Perform an ECG recording Identify the ECG changes that occur in the presence

More information

ECG (MCQs) In the fundamental rules of the ECG all the following are right EXCEP:

ECG (MCQs) In the fundamental rules of the ECG all the following are right EXCEP: ECG (MCQs) 2010 1- In the fundamental rules of the ECG all the following are right EXCEP: a- It is a biphasic record of myocardial action potential fluctuations. b- Deflection record occurs only during

More information

BASIC CONCEPT OF ECG

BASIC CONCEPT OF ECG BASIC CONCEPT OF ECG Electrocardiogram The electrocardiogram (ECG) is a recording of cardiac electrical activity. The electrical activity is readily detected by electrodes attached to the skin. After the

More information

Sheet 5 physiology Electrocardiography-

Sheet 5 physiology Electrocardiography- *questions asked by some students Sheet 5 physiology Electrocardiography- -why the ventricles lacking parasympathetic supply? if you cut both sympathetic and parasympathetic supply of the heart the heart

More information

Birmingham Regional Emergency Medical Services System

Birmingham Regional Emergency Medical Services System Birmingham Regional Emergency Medical Services System 2018 ALCTE Summer Conference EKG Basics Brian Gober, MAT, ATC, NRP, CSCS Education Services Manager ECC Training Center Coordinator Birmingham Regional

More information

ECG CONVENTIONS AND INTERVALS

ECG CONVENTIONS AND INTERVALS 1 ECG Waveforms and Intervals ECG waveforms labeled alphabetically P wave== represents atrial depolarization QRS complex=ventricular depolarization ST-T-U complex (ST segment, T wave, and U wave)== V repolarization.

More information

Cardiac physiology. b. myocardium -- cardiac muscle and fibrous skeleton of heart

Cardiac physiology. b. myocardium -- cardiac muscle and fibrous skeleton of heart I. Heart anatomy -- general gross. A. Size/orientation - base/apex B. Coverings D. Chambers 1. parietal pericardium 2. visceral pericardium 3. Layers of heart wall a. epicardium Cardiac physiology b. myocardium

More information

ECG Interpretation Cat Williams, DVM DACVIM (Cardiology)

ECG Interpretation Cat Williams, DVM DACVIM (Cardiology) ECG Interpretation Cat Williams, DVM DACVIM (Cardiology) Providing the best quality care and service for the patient, the client, and the referring veterinarian. GOAL: Reduce Anxiety about ECGs Back to

More information

Understanding basics of EKG

Understanding basics of EKG Understanding basics of EKG By Alula A.(R III) www.le.ac.uk Topic for discussion Understanding of cellular electrophysiology Basics Rate Rhythm Axis Intervals P wave QRS ST/T wave Abnormal EKGs Understanding

More information

Ask Mish. EKG INTERPRETATION part i

Ask Mish. EKG INTERPRETATION part i EKG INTERPRETATION part i What is EKG? EKG or ECG= electrocardiogram(~graphy) means the recording of the heart electrical activity from Greek kardio= heart, graphein= to write cardiac cell physiology Cardiac

More information

Relax and Learn At the Farm 2012

Relax and Learn At the Farm 2012 Relax and Learn At the Farm 2012 Session 2: 12 Lead ECG Fundamentals 101 Cynthia Webner DNP, RN, CCNS, CCRN-CMC, CHFN Though for Today Mastery is not something that strikes in an instant, like a thunderbolt,

More information

Full file at

Full file at MULTIPLE CHOICE. Choose the one alternative that best completes the statement or answers the question. 1) What electrical event must occur for atrial kick to occur? 1) A) Atrial repolarization B) Ventricular

More information

Proceedings of the World Small Animal Veterinary Association Sydney, Australia 2007

Proceedings of the World Small Animal Veterinary Association Sydney, Australia 2007 Proceedings of the World Small Animal Sydney, Australia 2007 Hosted by: Next WSAVA Congress ECG INTERPRETATION Adrian Boswood MA VetMB DVC DECVIM-CA(Cardiology) MRCVS The Royal Veterinary College, Hawkshead

More information

Electrocardiography Abnormalities (Arrhythmias) 7. Faisal I. Mohammed, MD, PhD

Electrocardiography Abnormalities (Arrhythmias) 7. Faisal I. Mohammed, MD, PhD Electrocardiography Abnormalities (Arrhythmias) 7 Faisal I. Mohammed, MD, PhD 1 Causes of Cardiac Arrythmias Abnormal rhythmicity of the pacemaker Shift of pacemaker from sinus node Blocks at different

More information

12 Lead ECG. Presented by Rebecca Sevigny BSN, RN Professional Practice & Development Dept.

12 Lead ECG. Presented by Rebecca Sevigny BSN, RN Professional Practice & Development Dept. 12 Lead ECG Presented by Rebecca Sevigny BSN, RN Professional Practice & Development Dept. Two Main Coronary Arteries RCA LCA which branches into Left Anterior Descending Circumflex Artery Two Main Coronary

More information

Ekg pra pr c a tice D.HAMMOUDI.MD

Ekg pra pr c a tice D.HAMMOUDI.MD Ekg practice D.HAMMOUDI.MD Anatomy Revisited RCA (Right Coronary Artery) Right ventricle Inferior wall of LV Posterior wall of LV (75%) SA Node (60%) AV Node (>80%) LCA (Left Coronary Artery) Septal wall

More information

Lect.6 Electrical axis and cardiac vector Cardiac vector: net result Vector that occurs during depolarization of the ventricles Figure:

Lect.6 Electrical axis and cardiac vector Cardiac vector: net result Vector that occurs during depolarization of the ventricles  Figure: Lect.6 Electrical axis and cardiac vector Objectives: 1. State the relationship between the direction of cardiac vector with the direction (-ve, +ve) and amplitude of an ECG waves. 2. Draw diagram indicting

More information

Introduction to Electrocardiography

Introduction to Electrocardiography Introduction to Electrocardiography Class Objectives: Introduction to ECG monitoring Discuss principles of interpretation Identify the components and measurements of the ECG ECG analysis ECG Monitoring

More information

ECG and Cardiac Electrophysiology

ECG and Cardiac Electrophysiology ECG and Cardiac Electrophysiology Simon Some very basic electrophysiology Intracellular fluid: 10 mm Na, 140 mm K, etc. K Na-K ATPase Extracellular fluid: 140mM Na, 4mM K, etc. Na Ion gradient plus selective

More information

12 Lead ECG Skills: Building Confidence for Clinical Practice. Presented By: Cynthia Webner, BSN, RN, CCRN-CMC. Karen Marzlin, BSN, RN,CCRN-CMC

12 Lead ECG Skills: Building Confidence for Clinical Practice. Presented By: Cynthia Webner, BSN, RN, CCRN-CMC. Karen Marzlin, BSN, RN,CCRN-CMC 12 Lead ECG Skills: Building Confidence for Clinical Practice NTI 2009 Preconference Session 803 Presented By: Karen Marzlin, BSN, RN,CCRN-CMC 1 12 Lead ECG Fundamentals: The Starting Place for Linking

More information

12 Lead ECG Interpretation: The Basics and Beyond

12 Lead ECG Interpretation: The Basics and Beyond 12 Lead ECG Interpretation: The Basics and Beyond Cindy Weston, DNP, RN, CCRN, CNS-CC, FNP-BC Assistant Professor Texas A&M University College of Nursing cweston@tamhsc.edu Objectives Review the basics

More information

Section V. Objectives

Section V. Objectives Section V Landscape of an MI Objectives At the conclusion of this presentation the participant will be able to Outline a systematic approach to 12 lead ECG interpretation Demonstrate the process for determining

More information

The Fundamentals of 12 Lead EKG. ECG Recording. J Point. Reviewing the Cardiac Conductive System. Dr. E. Joe Sasin, MD Rusty Powers, NRP

The Fundamentals of 12 Lead EKG. ECG Recording. J Point. Reviewing the Cardiac Conductive System. Dr. E. Joe Sasin, MD Rusty Powers, NRP The Fundamentals of 12 Lead EKG Dr. E. Joe Sasin, MD Rusty Powers, NRP SA Node Intranodal Pathways AV Junction AV Fibers Bundle of His Septum Bundle Branches Purkinje System Reviewing the Cardiac Conductive

More information

12-Lead EKG Interpretation for the Primary Care Provider

12-Lead EKG Interpretation for the Primary Care Provider 21 st Annual Southwestern Regional Nurse Practitioner Symposium July 26, 2009 12-Lead EKG Interpretation for the Primary Care Provider Fran Stier MSN, ANP-BC, ACNP-BC Heart Health Care LLC Show Low, AZ

More information

All About STEMIs. Presented By: Brittney Urvand, RN, BSN, CCCC. Essentia Health Fargo Cardiovascular Program Manager.

All About STEMIs. Presented By: Brittney Urvand, RN, BSN, CCCC. Essentia Health Fargo Cardiovascular Program Manager. All About STEMIs Presented By: Brittney Urvand, RN, BSN, CCCC Essentia Health Fargo Cardiovascular Program Manager Updated 10/2/2018 None Disclosures Objectives Identify signs and symptoms of a heart attack

More information

ECG. Prepared by: Dr.Fatima Daoud Reference: Guyton and Hall Textbook of Medical Physiology,12 th edition Chapters: 11,12,13

ECG. Prepared by: Dr.Fatima Daoud Reference: Guyton and Hall Textbook of Medical Physiology,12 th edition Chapters: 11,12,13 ECG Prepared by: Dr.Fatima Daoud Reference: Guyton and Hall Textbook of Medical Physiology,12 th edition Chapters: 11,12,13 The Concept When the cardiac impulse passes through the heart, electrical current

More information

ECG ABNORMALITIES D R. T AM A R A AL Q U D AH

ECG ABNORMALITIES D R. T AM A R A AL Q U D AH ECG ABNORMALITIES D R. T AM A R A AL Q U D AH When we interpret an ECG we compare it instantaneously with the normal ECG and normal variants stored in our memory; these memories are stored visually in

More information

Electrocardiography negative zero LA/VL RA/VR LL/VF recording electrode exploring electrode Wilson right arm right arm, left arm left arm

Electrocardiography negative zero LA/VL RA/VR LL/VF recording electrode exploring electrode Wilson right arm right arm, left arm left arm Electrocardiography In the previous lecture, we were talking about the unipolar limb leads. We said that to make the unipolar lead, you have to make the negative electrode as zero electrode, this is done

More information

Atlantic Health System

Atlantic Health System Atlantic Health System Morristown Medical Center Newton Medical Center Overlook Medical Center Basic Dysrhythmia Course Day 1 1 2 Chapter 1 Anatomy and Physiology Learning Objectives 1) Identify electrophysiology

More information

ECG SIGNS OF HYPERTROPHY OF HEART ATRIUMS AND VENTRICLES

ECG SIGNS OF HYPERTROPHY OF HEART ATRIUMS AND VENTRICLES Ministry of Health of Ukraine Kharkiv National Medical University ECG SIGNS OF HYPERTROPHY OF HEART ATRIUMS AND VENTRICLES Methodical instructions for students Рекомендовано Ученым советом ХНМУ Протокол

More information

Electrical Conduction

Electrical Conduction Sinoatrial (SA) node Electrical Conduction Sets the pace of the heartbeat at 70 bpm AV node (50 bpm) and Purkinje fibers (25 40 bpm) can act as pacemakers under some conditions Internodal pathway from

More information

Chapter 13 The Cardiovascular System: Cardiac Function

Chapter 13 The Cardiovascular System: Cardiac Function Chapter 13 The Cardiovascular System: Cardiac Function Overview of the Cardiovascular System The Path of Blood Flow through the Heart and Vasculature Anatomy of the Heart Electrical Activity of the Heart

More information

This presentation will deal with the basics of ECG description as well as the physiological basics of

This presentation will deal with the basics of ECG description as well as the physiological basics of Snímka 1 Electrocardiography basics This presentation will deal with the basics of ECG description as well as the physiological basics of Snímka 2 Lecture overview 1. Cardiac conduction system functional

More information

3/26/15 HTEC 91. EKG Sign-in Book. The Cardiac Cycle. Parts of the ECG. Waves. Waves. Review of protocol Review of placement of chest leads (V1, V2)

3/26/15 HTEC 91. EKG Sign-in Book. The Cardiac Cycle. Parts of the ECG. Waves. Waves. Review of protocol Review of placement of chest leads (V1, V2) EKG Sign-in Book HTEC 91 Review of protocol Review of placement of chest leads (V1, V2) Medical Office Diagnostic Tests Week 2 http://www.cvphysiology.com/arrhythmias/a013c.htm The Cardiac Cycle Represents

More information

Axis. B.G. Petty, Basic Electrocardiography, DOI / _2, Springer Science+Business Media New York 2016

Axis. B.G. Petty, Basic Electrocardiography, DOI / _2, Springer Science+Business Media New York 2016 Axis 2 The electrical axis of any electrocardiogram (EKG) waveform is the average direction of electrical activity. It is not a vector, because by definition a vector has both direction and amplitude,

More information

ECG Basics Sonia Samtani 7/2017 UCI Resident Lecture Series

ECG Basics Sonia Samtani 7/2017 UCI Resident Lecture Series ECG Basics Sonia Samtani 7/2017 UCI Resident Lecture Series Agenda I. Introduction II.The Conduction System III.ECG Basics IV.Cardiac Emergencies V.Summary The Conduction System Lead Placement avf Precordial

More information

PROBLEM SET 3. Assigned: February 19, 2004 Due: February 26, 2004

PROBLEM SET 3. Assigned: February 19, 2004 Due: February 26, 2004 Harvard-MIT Division of Health Sciences and Technology HST.542J: Quantitative Physiology: Organ Transport Systems Instructors: Roger Mark and Jose Venegas MASSACHUSETTS INSTITUTE OF TECHNOLOGY Departments

More information

Please check your answers with correct statements in answer pages after the ECG cases.

Please check your answers with correct statements in answer pages after the ECG cases. ECG Cases ECG Case 1 Springer International Publishing AG, part of Springer Nature 2018 S. Okutucu, A. Oto, Interpreting ECGs in Clinical Practice, In Clinical Practice, https://doi.org/10.1007/978-3-319-90557-0

More information

The Electrocardiogram

The Electrocardiogram The Electrocardiogram Chapters 11 and 13 AUTUMN WEDAN AND NATASHA MCDOUGAL The Normal Electrocardiogram P-wave Generated when the atria depolarizes QRS-Complex Ventricles depolarizing before a contraction

More information

CARDIOCOMP Electrocardiography Primer

CARDIOCOMP Electrocardiography Primer TM CARDIOCOMP Electrocardiography Primer Richmond, VA, USA 23230 CARDIOCOMP 1 Version 8 Electrocardiography Primer Revised: June 2015 Copyright 2015. Phipps & Bird, Inc. All Rights Reserved. This is a

More information

REtrive. REpeat. RElearn Design by. Test-Enhanced Learning based ECG practice E-book

REtrive. REpeat. RElearn Design by. Test-Enhanced Learning based ECG practice E-book Test-Enhanced Learning Test-Enhanced Learning Test-Enhanced Learning Test-Enhanced Learning based ECG practice E-book REtrive REpeat RElearn Design by S I T T I N U N T H A N G J U I P E E R I Y A W A

More information

ECG Interpretation. Best to have a system to methodically evaluate ECG (from Dubin) * Rate * Rhythm * Axis * Intervals * Hypertrophy * Infarction

ECG Interpretation. Best to have a system to methodically evaluate ECG (from Dubin) * Rate * Rhythm * Axis * Intervals * Hypertrophy * Infarction ECG to save Babies ECG Interpretation Best to have a system to methodically evaluate ECG (from Dubin) * Rate * Rhythm * Axis * Intervals * Hypertrophy * Infarction Electrical Activity in the heart 5 events

More information

Pennsylvania Academy of Family Physicians Foundation & UPMC 43rd Refresher Course in Family Medicine CME Conference March 10-13, 2016

Pennsylvania Academy of Family Physicians Foundation & UPMC 43rd Refresher Course in Family Medicine CME Conference March 10-13, 2016 Pennsylvania Academy of Family Physicians Foundation & UPMC 43rd Refresher Course in Family Medicine CME Conference March 10-13, 2016 Disclosures: EKG Workshop Louis Mancano, MD Speaker has no disclosures

More information

Electrocardiography. Hilal Al Saffar College of Medicine,Baghdad University

Electrocardiography. Hilal Al Saffar College of Medicine,Baghdad University Electrocardiography Hilal Al Saffar College of Medicine,Baghdad University Which of the following is True 1. PR interval, represent the time taken for the impulse to travel from SA node to AV nose. 2.

More information

4/14/15. The Electrocardiogram. In jeopardy more than a century after its introduction by Willem Einthoven? Time for a revival. by Hein J.

4/14/15. The Electrocardiogram. In jeopardy more than a century after its introduction by Willem Einthoven? Time for a revival. by Hein J. The Electrocardiogram. In jeopardy more than a century after its introduction by Willem Einthoven? Time for a revival. by Hein J. Wellens MD 1 Einthoven, 1905 The ECG! Everywhere available! Easy and rapid

More information

Chapter 9, Part 2. Cardiocirculatory Adjustments to Exercise

Chapter 9, Part 2. Cardiocirculatory Adjustments to Exercise Chapter 9, Part 2 Cardiocirculatory Adjustments to Exercise Electrical Activity of the Heart Contraction of the heart depends on electrical stimulation of the myocardium Impulse is initiated in the right

More information

Electrocardiography for Healthcare Professionals. Chapter 14 Basic 12-Lead ECG Interpretation

Electrocardiography for Healthcare Professionals. Chapter 14 Basic 12-Lead ECG Interpretation Electrocardiography for Healthcare Professionals Chapter 14 Basic 12-Lead ECG Interpretation 2012 The Companies, Inc. All rights reserved. Learning Outcomes 14.1 Discuss the anatomic views seen on a 12-lead

More information

12 Lead EKG. The Basics

12 Lead EKG. The Basics 12 Lead EKG The Basics Objectives Demonstrate proper 12 EKG lead placement Determine electrical axis Identify ST and T wave changes as they relate to myocardial ischemia Describe possible complications

More information

Collin County Community College

Collin County Community College Collin County Community College BIOL. 2402 Anatomy & Physiology WEEK 5 The Heart 1 The Heart Beat and the EKG 2 1 The Heart Beat and the EKG P-wave = Atrial depolarization QRS-wave = Ventricular depolarization

More information

12-Lead ECG Interpretation. Kathy Kuznar, RN, ANP

12-Lead ECG Interpretation. Kathy Kuznar, RN, ANP 12-Lead ECG Interpretation Kathy Kuznar, RN, ANP The 12-Lead ECG Objectives Identify the normal morphology and features of the 12- lead ECG. Perform systematic analysis of the 12-lead ECG. Recognize abnormalities

More information

ECG interpretation basics

ECG interpretation basics ECG interpretation basics Michał Walczewski, MD Krzysztof Ozierański, MD 21.03.18 Electrical conduction system of the heart Limb leads Precordial leads 21.03.18 Precordial leads Precordial leads 21.03.18

More information

ELECTROCARDIOGRAPH. General. Heart Rate. Starship Children s Health Clinical Guideline

ELECTROCARDIOGRAPH. General. Heart Rate. Starship Children s Health Clinical Guideline General Heart Rate QRS Axis T Wave Axis PR Interval according to Heart Rate & Age P Wave Duration and Amplitude QRS Duration according to Age QT Interval R & S voltages according to Lead & Age R/S ratio

More information

BIOL 219 Spring Chapters 14&15 Cardiovascular System

BIOL 219 Spring Chapters 14&15 Cardiovascular System 1 BIOL 219 Spring 2013 Chapters 14&15 Cardiovascular System Outline: Components of the CV system Heart anatomy Layers of the heart wall Pericardium Heart chambers, valves, blood vessels, septum Atrioventricular

More information

Electrocardiography I Laboratory

Electrocardiography I Laboratory Introduction The body relies on the heart to circulate blood throughout the body. The heart is responsible for pumping oxygenated blood from the lungs out to the body through the arteries and also circulating

More information

CRC 431 ECG Basics. Bill Pruitt, MBA, RRT, CPFT, AE-C

CRC 431 ECG Basics. Bill Pruitt, MBA, RRT, CPFT, AE-C CRC 431 ECG Basics Bill Pruitt, MBA, RRT, CPFT, AE-C Resources White s 5 th ed. Ch 6 Electrocardiography Einthoven s Triangle Chest leads and limb leads Egan s 10 th ed. Ch 17 Interpreting the Electrocardiogram

More information

The cardiovascular system is composed of the heart and blood vessels that carry blood to and from the body s organs. There are 2 major circuits:

The cardiovascular system is composed of the heart and blood vessels that carry blood to and from the body s organs. There are 2 major circuits: 1 The cardiovascular system is composed of the heart and blood vessels that carry blood to and from the body s organs. There are 2 major circuits: pulmonary and systemic. The pulmonary goes out to the

More information

iworx Sample Lab Experiment HH-4: The Six-Lead Electrocardiogram

iworx Sample Lab Experiment HH-4: The Six-Lead Electrocardiogram Experiment HH-4: The Six-Lead Electrocardiogram Background The cardiac cycle involves a sequential contraction of the atria and the ventricles. These contractions are triggered by the coordinated electrical

More information

LABORATORY INVESTIGATION

LABORATORY INVESTIGATION LABORATORY INVESTIGATION Recording Electrocardiograms The taking of an electrocardiogram is an almost universal part of any complete physical examination. From the ECG record of the electrical activity

More information

Heart. Heart 2-Tunica media: middle layer (media ='middle') muscle fibers (smooth or cardiac).

Heart. Heart 2-Tunica media: middle layer (media ='middle') muscle fibers (smooth or cardiac). t. innermost lumenal General Circulatory system heart and blood vessels walls have 3 layers (inside to outside) 1-Tunica interna: aka tunica intima layer--lumenal layer epithelium--endothelium simple squamous

More information

CASE 10. What would the ST segment of this ECG look like? On which leads would you see this ST segment change? What does the T wave represent?

CASE 10. What would the ST segment of this ECG look like? On which leads would you see this ST segment change? What does the T wave represent? CASE 10 A 57-year-old man presents to the emergency center with complaints of chest pain with radiation to the left arm and jaw. He reports feeling anxious, diaphoretic, and short of breath. His past history

More information

Chapter 12: Cardiovascular Physiology System Overview

Chapter 12: Cardiovascular Physiology System Overview Chapter 12: Cardiovascular Physiology System Overview Components of the cardiovascular system: Heart Vascular system Blood Figure 12-1 Plasma includes water, ions, proteins, nutrients, hormones, wastes,

More information

ABCs of ECGs. Shelby L. Durler

ABCs of ECGs. Shelby L. Durler ABCs of ECGs Shelby L. Durler Objectives Review the A&P of the cardiac conduction system Placement and obtaining 4-lead and 12-lead ECGs Overview of the basics of ECG rhythm interpretation Intrinsic

More information

Basic electrocardiography reading. R3 lee wei-chieh

Basic electrocardiography reading. R3 lee wei-chieh Basic electrocardiography reading R3 lee wei-chieh The Normal Conduction System Lead Placement avf Limb Leads Precordial Leads Interpretation Rate Rhythm Interval Axis Chamber abnormality QRST change What

More information

Chad Morsch B.S., ACSM CEP

Chad Morsch B.S., ACSM CEP What Is Cardiac Stress Testing? Chad Morsch B.S., ACSM CEP A Cardiac Stress Test is a test used to measure the heart's ability to respond to external stress in a controlled clinical environment. Cardiac

More information

General Introduction to ECG. Reading Assignment (p2-16 in PDF Outline )

General Introduction to ECG. Reading Assignment (p2-16 in PDF Outline ) General Introduction to ECG Reading Assignment (p2-16 in PDF Outline ) Objectives 1. Practice the 5-step Method 2. Differential Diagnosis: R & L axis deviation 3. Differential Diagnosis: Poor R-wave progression

More information

CHAPTER 13 Electrocardiography

CHAPTER 13 Electrocardiography 126 APTER Electrocardiography David M. Mirvis and Ary L. Goldberger FUNDAMENTAL PRINCIPLES, 126 Genesis of Cardiac Electrical Fields, 126 Recording Electrodes and Leads, 128 Electrocardiographic Processing

More information

TELEMETRY BASICS FOR NURSING STUDENTS

TELEMETRY BASICS FOR NURSING STUDENTS TELEMETRY BASICS FOR NURSING STUDENTS Accuracy of cardiac monitoring is an important component of patient safety in hospitalized patients who meet the criteria for dysrhythmia monitoring. (AACN, 2016,

More information

4. The two inferior chambers of the heart are known as the atria. the superior and inferior vena cava, which empty into the left atrium.

4. The two inferior chambers of the heart are known as the atria. the superior and inferior vena cava, which empty into the left atrium. Answer each statement true or false. If the statement is false, change the underlined word to make it true. 1. The heart is located approximately between the second and fifth ribs and posterior to the

More information

Understanding the 12-lead ECG, part II

Understanding the 12-lead ECG, part II Bundle-branch blocks Understanding the 12-lead ECG, part II Most common electrocardiogram (ECG) abnormality Appears as a wider than normal S complex Occurs when one of the two bundle branches can t conduct

More information

Farah Khreisat. Raghad Abu Jebbeh. Faisal Mohammad. 1 P a g e

Farah Khreisat. Raghad Abu Jebbeh. Faisal Mohammad. 1 P a g e 5 Farah Khreisat Raghad Abu Jebbeh Faisal Mohammad 1 P a g e بسم هللا الرحمن الرحيم Hello guys, hope you're doing well, as you've seen in the previous lecture, the Dr started with an extremely important

More information

Lab 7. Physiology of Electrocardiography

Lab 7. Physiology of Electrocardiography 7.1 Lab 7. Physiology of Electrocardiography The heart is a muscular pump that circulates blood throughout the body. To efficiently pump the blood, cardiac contractions must be coordinated and are regulated

More information

also aid the clinician in recognizing both the obvious and subtle abnormalities that may help guide therapy.

also aid the clinician in recognizing both the obvious and subtle abnormalities that may help guide therapy. Karen Lieberman, MS, CRNP f the many diagnostic tools used to screen for and evaluate cardiac abnormalities, the 12-lead electrocardiogram (ECG) is among the most basic. This inexpensive and noninvasive

More information

Skin supplied by T1-4 (medial upper arm and neck) T5-9- epigastrium Visceral afferents from skin and heart are the same dorsal root ganglio

Skin supplied by T1-4 (medial upper arm and neck) T5-9- epigastrium Visceral afferents from skin and heart are the same dorsal root ganglio Cardio 2 ECG... 3 Cardiac Remodelling... 11 Valvular Diseases... 13 Hypertension... 18 Aortic Coarctation... 24 Erythropoiesis... 27 Haemostasis... 30 Anaemia... 36 Atherosclerosis... 44 Angina... 48 Myocardial

More information

12 LEAD EKG BASICS. By: Steven Jones, NREMT P CLEMC

12 LEAD EKG BASICS. By: Steven Jones, NREMT P CLEMC 12 LEAD EKG BASICS By: Steven Jones, NREMT P CLEMC ECG Review Waves and Intervals P wave: the sequential activation (depolarization) of the right and left atria QRS complex: right and left ventricular

More information

Pathologic ECG. Adelina Vlad, MD PhD

Pathologic ECG. Adelina Vlad, MD PhD Pathologic ECG Adelina Vlad, MD PhD Basic Interpretation of the ECG 1) Evaluate calibration 2) Calculate rate 3) Determine rhythm 4) Determine QRS axis 5) Measure intervals 6) Analyze the morphology and

More information

12 Lead ECG Interpretation: Color Coding for MI s

12 Lead ECG Interpretation: Color Coding for MI s 12 Lead ECG Interpretation: Color Coding for MI s Anna E. Story, RN, MS Director, Continuing Professional Education Critical Care Nurse Online Instructional Designer 2004 Anna Story 1 Objectives review

More information

The Normal Electrocardiogram

The Normal Electrocardiogram C H A P T E R 1 1 The Normal Electrocardiogram When the cardiac impulse passes through the heart, electrical current also spreads from the heart into the adjacent tissues surrounding the heart. A small

More information

ECG WORKBOOK. Rohan Jayasinghe

ECG WORKBOOK. Rohan Jayasinghe ECG WORKBOOK Rohan Jayasinghe Contents Preface vii Foreword viii Acknowledgements ix The author x Reviewers xi Section 1 Basics of the ECG 1 Section 2 ECG-based diagnosis: pathology by ECG 21 Section 3

More information

Chapter 2 Practical Approach

Chapter 2 Practical Approach Chapter 2 Practical Approach There are beginners in electrocardiogram (ECG) analysis who are fascinated by a special pattern (e.g., a bundle-branch block or a striking Q wave) and thereby overlook other

More information

Anatomy Review: The Heart Graphics are used with permission of A.D.A.M. Software, Inc. and Benjamin/Cummings Publishing Co.

Anatomy Review: The Heart Graphics are used with permission of A.D.A.M. Software, Inc. and Benjamin/Cummings Publishing Co. Anatomy Review: The Heart Graphics are used with permission of A.D.A.M. Software, Inc. and Benjamin/Cummings Publishing Co. Anatomy Views Label the diagrams of the heart below: Interactive Physiology Study

More information

THE CARDIOVASCULAR SYSTEM. Heart 2

THE CARDIOVASCULAR SYSTEM. Heart 2 THE CARDIOVASCULAR SYSTEM Heart 2 PROPERTIES OF CARDIAC MUSCLE Cardiac muscle Striated Short Wide Branched Interconnected Skeletal muscle Striated Long Narrow Cylindrical PROPERTIES OF CARDIAC MUSCLE Intercalated

More information

Acute Coronary Syndromes. Disclosures

Acute Coronary Syndromes. Disclosures Acute Coronary Syndromes Disclosures I work for Virginia Garcia Memorial Health Center, Beaverton, OR. Jon Tardiff, BS, PA-C OHSU Clinical Assistant Professor And I am a medical editor for Jones & Bartlett

More information

Electrocardiography Biomedical Engineering Kaj-Åge Henneberg

Electrocardiography Biomedical Engineering Kaj-Åge Henneberg Electrocardiography 31650 Biomedical Engineering Kaj-Åge Henneberg Electrocardiography Plan Function of cardiovascular system Electrical activation of the heart Recording the ECG Arrhythmia Heart Rate

More information

Left posterior hemiblock (LPH)/

Left posterior hemiblock (LPH)/ ECG OF THE MONTH Left Postero-inferior Depolarization Delay Keywords Electrocardiography Intraventricular conduction delay, Inferoposterior hemiblock, Left posterior fascicular block, Left posterior hemiblock

More information