First Experiences With the HeartWare Ventricular Assist System in Children

Size: px
Start display at page:

Download "First Experiences With the HeartWare Ventricular Assist System in Children"

Transcription

1 First Experiences With the HeartWare Ventricular Assist System in Children Oliver Miera, MD, Evgenij V. Potapov, MD, PhD, Matthias Redlin, MD, Alexander Stepanenko, MD, Felix Berger, MD, PhD, Roland Hetzer, MD, PhD, and Michael Hübler, MD Departments of Pediatric Cardiology, Thoracic and Cardiovascular Surgery, and Anesthesiology, Deutsches Herzzentrum Berlin, Germany Purpose. The purpose of this study is to describe initial experience with a new continuous flow, ventricular assist system in the pediatric population. Description. Seven children (aged 6 to 16 years) received implantation of a novel third-generation, continuous flow, ventricular assist device (HeartWare, HeartWare Inc, Miami Lakes, FL) as a bridge to cardiac transplantation. Evaluation. All children were in terminal heart failure despite inotropic support, and signs of renal or hepatic impairment developed. Six children had dilatative cardiomyopathy and 1 had congenital heart disease (hypoplastic left heart, total cavopulmonary connections with extracardiac conduit). Six patients have been successfully bridged to transplantation. Median support time was 75 days (range, 1 to 136 days). One child is still under continuous mechanical support. None of the patients suffered a thromboembolic event or an infection. Conclusions. The HeartWare assist system can be successfully used as a bridge to transplantation in children and adolescents with end-stage heart failure. (Ann Thorac Surg 2011;91: ) 2011 by The Society of Thoracic Surgeons Treatment of terminal heart failure with ventricular assist devices (VAD) is a well-established therapy in adult patients. With the development of implantable continuous flow VADs of the third generation, survival and quality of life have improved [1]. Because implantable VAD systems that are suitable for adult patients are too large for application in pediatric patients, paracorporeal systems are routinely used in children [2]. Shortage of donor hearts and increasing application of VADs may lead to increased waiting times on the transplant list, which poses new challenges in the treatment of children with terminal heart failure. There is an urgent need for VAD systems that allow long-term support with low morbidity and minimal restrictions of the daily activities of patients. This report describes the first pediatric experience with HeartWare (HeartWare Inc, Miami Lakes, FL), a small continuous-flow VAD, which is implanted in the pericardial space. Written informed consent was obtained from the parents of all patients prior to implantation. The study was conducted according to the Declaration of Helsinki and in adherence to good clinical practice Accepted for publication Dec 9, Address correspondence to Dr Hübler, Department of Thoracic and Cardiovascular Surgery, Deutsches Herzzentrum Berlin, Augustenburger Platz 1, Berlin 13353, Germany; huebler@dhzb.de. guidelines. Local Ethics Committee approved the protocol. Technology The HeartWare System has been previously described in detail [3]. It consists of a centrifugal blood pump (HVAD pump), integrated inflow cannula, an outflow graft, and a percutaneous driveline, which is connected to a controller (Fig 1). The small pump has a displacement volume of 50 cc and weighs 140 g. It has one moving part, which is an impeller that spins blood to generate 1 to 10 L/min of flow at 1,800 to 4,000 rpm. A short integrated inflow cannula is inserted into the ventricle, and the outflow graft connects the pump to the aorta. A sewing ring attaches to the myocardium and allows pump orientation adjustments intraoperatively. The device size and short inflow cannula allow pericardial placement, which eliminates the need for device pockets. Technique After median sternotomy, the patients were placed on cardiopulmonary bypass. The insertion site for the inflow cannula in patients with normal anatomy was slightly anterior to the left ventricular apex. In 1 patient with a univentricular heart of right ventricular morphology, the pump 2011 by The Society of Thoracic Surgeons /$36.00 Published by Elsevier Inc doi: /j.athoracsur

2 Ann Thorac Surg MIERA ET AL 2011;91: HEARTWARE VAD IN CHILDREN 1257 Fig 1. Picture of the HVAD pump (HeartWare Inc, Miami Lakes, FL). The diameter of the pump is 49 mm, the total height of pump and integrated inflow cannula of 58 mm. The inflow cannula has a diameter of 20.5 mm and a length of 25 mm. The outflow graft has a diameter of 10 mm, and the percutaneous driveline a diameter of 4.2 mm. was inserted through the diaphragmatic surface of the single ventricle 3 cm from the tricuspid valve toward the apex. Prior to implantation, the pump was completely submerged in sterile dextrose, and the outflow graft was clamped. After sewing of the ring to the myocardium and coring of the ventricular wall of the HVAD pump, an inflow cannula was inserted into the ventricle. The outflow graft was anastomosed to the ascending aorta using partial clamping. The driveline was then tunneled to the right upper quadrant and was connected to the controller. Anticoagulation was begun, once bleeding had subsided, on postoperative day 1 with unfractionated heparin and a target activated partial thromboplastin time of 50 to 60 seconds. As patients tolerated oral nutrition, anticoagulation was switched to warfarin (target international normalized ratio, 2 to 3) plus platelet inhibition with acetylsalicylic acid and dipyridamole. Required doses were in the range of 0.5 to 1 mg/kg/day acetylsalicylic acid and 3 to 4 mg/kg/day dipyridamole. Dose of anticoagulation and platelet inhibition was monitored with thromboelastography and platelet aggregometry (target inhibition of 30%). Clinical Experience Patient characteristics (n 7), indications for mechanical support, and outcome data are given in Table 1. Representative preoperative and postoperative roentgenograms appear in Figure 2. Six of seven children described here had dilatative cardiomyopathy, which had been proven in myocardial biopsy. After implantation of the HeartWare System, organ function of all patients promptly recovered. After a maximum time of mechanical support of 136 days, 6 patients underwent successful heart transplantation, and 1 child is still under continuous mechanical support. The clinical course with the LVAD was uneventful in 6 patients, and 1 patient had an acquired von Willebrand factor deficit, leading to hemorrhagic pericardial effusion in the first week that needed surgical drainage. In this patient, the activated partial thromboplastin time was slightly prolonged (40 to 45 seconds) with therapy of unfractionated heparin; values for prothrombin time ( 85%) and platelet count (220,000 to 297,000/ L) were normal. Analysis of von Willebrand factor revealed a normal antigen (220%) with reduced activity (119%) and reduced levels of large multimers. Of the patients described herein, 1 of 7 had terminal failure of his univentricular heart with Fontan hemodynamics. Because of the predominant ventricular failure with low transpulmonary gradient it was decided to implant a HeartWare system as a ventricular support system without modifying the cavopulmonary connections (Fig 3). The initial postoperative data showed excellent performance of the VAD. The boy did not need inotropic support but a low dose of the vasopressor norepinephrine (0.03 g/kg/min). To improve pulmonary perfusion inhalative nitric oxide was necessary. In the first 12 hours, urine output was 4 ml/kg/hour, central venous saturation was 42%, and pulmonary artery pressure was 14 mm Hg. In postoperative hour 12, a donor organ became available, and the boy underwent successful heart transplantation. Comment We believe that this is the first report on the application of the HeartWare assist system in the pediatric population. The HeartWare system is a novel third generation, implantable VAD, which creates continuous flow to support even children in end-stage cardiac failure. The patients described (aged 6 to 16 years) were all in multiorgan failure under inotropic support. One is still on VAD, and 6 children were successfully bridged to cardiac transplantation. Not only was the outcome good, but the morbidity during circulatory support was low. During a total of more than 480 days of support, no patient suffered from an infection or thromboembolism. The only relevant complication was a re-thoracotomy due to pericardial hemorrhagic effusion in 1 patient. Development of a secondary von Willebrand syndrome may be explained by injury of the large protein multimers by turbulent flow through the pump. The role of the continuous flow pumps in the depletion of von Willebrand factor has been discussed [4, 5], and the axial flow pump Heartmate II (Thoratec, Pleasanton, CA) has been shown to cause acquired von Willebrand factor

3 Table 1. Baseline Characteristics and Outcome Data Baseline Characteristics Patient 1 Patient 2 Patient 3 Patient 4 Patient 5 Patient 6 Patient 7 Age Gender Male Male Male Female Male Male Female Weight (kg) Body surface area (m 2 ) Diagnosis DCM HLHS, TCPC DCM DCM DCM DCM DCM Left ventricular diameter (mm) Ejection fraction (%) a Inotropic support Secondary organ dysfunction b Renal Renal, hepatic Outcome data Extubation 0 c (postoperative day) Pump speed (rpm, median) Pump flow (L/min, median) Hepatic Gastrointestinal Renal Renal, hepatic Hepatic ,700 2,700 2,500 2,600 2,700 2,800 2, Days of VAD support 75 1 c Complications Pericardial tamponade Outcome Transplantation Transplantation Transplantation Transplantation Transplantation Transplantation Under continuous mechanical support a Measured while on inotropic support. b Secondary organ dysfunction is defined as follows: hepatic, elevation of transaminases three-fold of upper normal limit or bilirubin level 1 mg/dl; renal, oliguria ( 1 ml/kg/hr) or creatinine normal limit; gastrointestinal, intolerance of enteral nutrition. c Cardiac transplantation 12 hours after implantation of VAD. DCM dilatative cardiomyopathy; HLHS hypoplastic left heart syndrome; TCPC total cavopulmonary connection; VAD ventricular assist device MIERA ET AL Ann Thorac Surg HEARTWARE VAD IN CHILDREN 2011;91:

4 Ann Thorac Surg MIERA ET AL 2011;91: HEARTWARE VAD IN CHILDREN 1259 Fig 2. Chest roentgenogram of patient 3 (A) pre-implantation and (B) post-implantation. deficit [6]. The impact of the centrifugal pump Heart- Ware HVAD on the development of acquired von Willebrand syndrome remains uncertain. In our patient, no further signs of bleeding appeared during 57 days of support under the previously mentioned standard anticoagulation protocol. However, patients placed on continuous flow devices may be at higher risk for the development of platelet dysfunction [6] and should be screened for acquired von Willebrand syndrome. Of special interest is our second patient who suffered from failing Fontan hemodynamics with end-stage heart failure. We were able to show the feasibility of the HeartWare assist system in a Fontan patient using a modified implantation location (Fig 3). This patient group deserves particular attention in the future, because the number of children with univentricular heart successfully operated on and reaching adolescence and adulthood is growing. So far there is no well-established treatment strategy for bridging the failing univentricular heart to transplantation. There are only two existing reports of the application of implantable continuous flow devices in children [7, 8]. The first report, published by Fraser and colleagues [7], describes preliminary experience with the DeBakey VAD child in 6 children (aged 6 to 14 years). In 3 of the children, cardiac transplantation was successful; however, the other 3 children died during support. This device received regulatory approval by the Food and Drug Administration in Ruygrok and colleagues [8] reports the application of an implantable continuous flow device (ie, the VentrAssist system) in 3 children [8]. One of the alternatives to the HeartWare VAD is the paracorporeal pulsatile pediatric BerlinHeart Excor (Berlin Heart AG, Berlin, Germany). This device may be applied, even in small infants with a body weight of less than 3 kg, whereas for the HeartWare VAD, 17 to 20 kg seems to be the lowest range due to the limitation of flow to a minimum of 2 L/minutes. Given our initial experience and long waiting time for heart transplantation in Europe, the HeartWare assist system offers an attractive alternative to paracorporeal systems for larger children and adolescents with endstage heart failure. In newborns and small children, the pediatric BerlinHeart Excor remains the only reliable option. Fig 3. Chest roentgenogram of patient with univentricular heart. The pump was implanted in the diaphragmatic surface of the pericardial space. The inflow cannula penetrates the right ventricle 3-cm apical of the tricuspid valve. Disclosures and Freedom of Investigation The authors of this article had full control of the design of the study, methods used, outcome measurements, analysis of data, and production of the written report. Heart- Ware Inc had no role in this study or access to the information obtained. We thank Anne Gale, medical editor, for her editorial assistance.

5 1260 MIERA ET AL Ann Thorac Surg HEARTWARE VAD IN CHILDREN 2011;91: References 1. Slaughter MS, Rogers JG, Carmelo AM, et al. Advanced heart failure treated with continuous-flow left ventricular assist device. New Engl J Med 2009;361: Potapov EV, Stiller B, Hetzer R. Ventricular assist devices in children: current achievements and future perspectives. Pediatr Transplant 2007;11: LaRose JA, Tamez D, Ashenuga M, Reyes C. Design concepts and principle of operation of the heartware ventricular assist device. ASAIO J 2010;56: Letsou GV, Shah N, Gregoric ID, Myers TJ, Delgado R, Frazier OH. Gastrointestinal bleeding from arteriovenous malformations in patients supported by the Jarvik 2000 axial-flow left ventricular assist device. J Heart Lung Transplant 2005; 24: Hayes HM, Dembo LG, Larbalestier R, O Driscoll G. Management options to treat gastrointestinal bleeding in patients supported on rotary left ventricular assist devices: a singlecenter experience. Artif Organs 2010;34: Malehsa D, Meyer AL, Bara C, Strüber M. Acquired von Willebrand syndrome after exchange of the HeartMate XVE to the HeartMate II ventricular assist device. Eur J Cardiothorac Surg 2009;35: Fraser CD, Carberry KE, Owens WR, et al. Preliminary experience with the MicroMed DeBakey pediatric ventricular assist device. Semin Thorac Cardiovasc Surg Pediatr Card Surg Ann 2006;9: Ruygrok PN, Esmore DS, Alison PM, et al. Pediatric experience with the VentrAssist LVAD. Ann Thorac Surg 2008;86: Disclaimer The Society of Thoracic Surgeons, the Southern Thoracic Surgical Association, and The Annals of Thoracic Surgery neither endorse nor discourage use of the new technology described in this article.

Complications in CHD with a little help from our friends

Complications in CHD with a little help from our friends Complications in CHD with a little help from our friends Systemic ventricular failure how can the surgeon help? Assist device or transplantation? Michael Huebler (Zurich, CH) Survivors of CHD Curative

More information

Mechanical Support in the Failing Fontan-Kreutzer

Mechanical Support in the Failing Fontan-Kreutzer Mechanical Support in the Failing Fontan-Kreutzer Stephanie Fuller MD, MS Thomas L. Spray Endowed Chair in Congenital Heart Surgery Associate Professor, The Perelman School of Medicine at the University

More information

Pediatric Mechanical Circulatory Support (MCS)

Pediatric Mechanical Circulatory Support (MCS) Pediatric Mechanical Circulatory Support (MCS) Ivan Wilmot, MD Heart Failure, Transplant, MCS Assistant Professor The Heart Institute Cincinnati Children s Hospital Medical Center The University of Cincinnati

More information

PROVEN. TRUSTED. COMMITTED. HeartWare HVAD System

PROVEN. TRUSTED. COMMITTED. HeartWare HVAD System PROVEN. TRUSTED. COMMITTED. HeartWare HVAD System PROVEN. TRUSTED. COMMITTED. 42% of all heart transplant patients worldwide are bridge to transplant with a VAD. 1 Our commitment to advance the treatment

More information

Modern Left Ventricular Assist Devices (LVAD) : An Intro, Complications, and Emergencies

Modern Left Ventricular Assist Devices (LVAD) : An Intro, Complications, and Emergencies Modern Left Ventricular Assist Devices (LVAD) : An Intro, Complications, and Emergencies ERIC T. ROME D.O. HEART FAILURE, MECHANICAL ASSISTANCE AND TRANSPLANTATION CVI Left Ventricular Assist Device An

More information

Why Children Are Not Small Adults? Treatment of Pediatric Patients Needing Mechanical Circulatory Support

Why Children Are Not Small Adults? Treatment of Pediatric Patients Needing Mechanical Circulatory Support Why Children Are Not Small Adults? Treatment of Pediatric Patients Needing Mechanical Circulatory Support Utpal S Bhalala, MD, FAAP Assistant Professor and Director of Research Pediatric Critical Care

More information

Left Ventricular Assist Devices (LVADs): Overview and Future Directions

Left Ventricular Assist Devices (LVADs): Overview and Future Directions Left Ventricular Assist Devices (LVADs): Overview and Future Directions FATIMA KARAKI, M.D. PGY-3, DEPARTMENT OF MEDICINE WASHINGTON UNIVERSITY IN ST. LOUIS ST. LOUIS, MISSOURI, USA St. Louis, Missouri,

More information

None. Declaration of conflict of interest

None. Declaration of conflict of interest None Declaration of conflict of interest New Long Term Circulatory Support Technology and Treatment Strategies Stephen Westaby Oxford, UK Cardiac Transplantation: Facts from the UNOS Database Median survival

More information

Minimally invasive left ventricular assist device placement

Minimally invasive left ventricular assist device placement Original Article on Cardiac Surgery Minimally invasive left ventricular assist device placement Allen Cheng Department of Cardiovascular and Thoracic Surgery, University of Louisville, Louisville, USA

More information

ORIGINAL ARTICLE. Alexander M. Bernhardt a, *, Theo M.M.H. De By b, Hermann Reichenspurner a and Tobias Deuse a. Abstract INTRODUCTION

ORIGINAL ARTICLE. Alexander M. Bernhardt a, *, Theo M.M.H. De By b, Hermann Reichenspurner a and Tobias Deuse a. Abstract INTRODUCTION European Journal of Cardio-Thoracic Surgery 48 (2015) 158 162 doi:10.1093/ejcts/ezu406 Advance Access publication 29 October 2014 ORIGINAL ARTICLE Cite this article as: Bernhardt AM, De By TMMH, Reichenspurner

More information

Pediatric Mechanical Circulatory Support - What to Use

Pediatric Mechanical Circulatory Support - What to Use Pediatric Mechanical Circulatory Support - What to Use Ronald K. Woods, MD, PhD Associate Professor Medical College of Wisconsin Pediatric Cardiothoracic Surgery Children s Hospital of Wisconsin Disclosure

More information

Midterm experience with the Jarvik 2000 axial flow left ventricular assist device

Midterm experience with the Jarvik 2000 axial flow left ventricular assist device Cardiothoracic Transplantation Midterm experience with the Jarvik 2000 axial flow left ventricular assist device Saleem Haj-Yahia, MD, BSc, a,b Emma J. Birks, MRCP, PhD, a Paula Rogers, RGN, BSc (Hons),

More information

Understanding the Pediatric Ventricular Assist Device

Understanding the Pediatric Ventricular Assist Device Understanding the Pediatric Ventricular Assist Device W. James Parks, MSc., MD Pediatric Cardiologist Assistant Professor of Pediatrics and Radiology Children s Healthcare of Atlanta Sibley Heart Center

More information

Size Limitation for Current Continuous Flow Pumps: How young can we go?

Size Limitation for Current Continuous Flow Pumps: How young can we go? Size Limitation for Current Continuous Flow Pumps: How young can we go? Iki Adachi, M.D. Associate Surgeon Texas Children s Hospital Assistant Professor Baylor College of Medicine How young can we go?

More information

Implantable Ventricular Assist Devices and Total Artificial Hearts. Policy Specific Section: June 13, 1997 March 29, 2013

Implantable Ventricular Assist Devices and Total Artificial Hearts. Policy Specific Section: June 13, 1997 March 29, 2013 Medical Policy Implantable Ventricular Assist Devices and Total Artificial Hearts Type: Medical Necessity and Investigational / Experimental Policy Specific Section: Surgery Original Policy Date: Effective

More information

New ventricular assist devices. FW Mohr Clinical seminar: Devices for severe heart failure ESC congress Stockholm 2010

New ventricular assist devices. FW Mohr Clinical seminar: Devices for severe heart failure ESC congress Stockholm 2010 New ventricular assist devices FW Mohr Clinical seminar: Devices for severe heart failure ESC congress Stockholm 2010 The real world of CHF Prevalence 1-3% in europe, in the age of 70-80 years up to 10-20%

More information

Cardiac Transplantation and Surgery for Heart Failure. Biventricular Circulatory Support With Two Miniaturized Implantable Assist Devices

Cardiac Transplantation and Surgery for Heart Failure. Biventricular Circulatory Support With Two Miniaturized Implantable Assist Devices Cardiac Transplantation and Surgery for Heart Failure Biventricular Circulatory Support With Two Miniaturized Implantable Assist Devices Thomas Krabatsch, MD, PhD*; Evgenij Potapov, MD, PhD*; Alexander

More information

Right Ventricular Failure: Prediction, Prevention and Treatment

Right Ventricular Failure: Prediction, Prevention and Treatment Right Ventricular Failure: Prediction, Prevention and Treatment 3 rd European Training Symposium for Heart Failure Cardiologists and Cardiac Surgeons University Hospital Bern June 24-25, 2016 Disclosures:

More information

Destination Therapy SO MUCH DATA IN SUCH A SMALL DEVICE. HeartWare HVAD System The ONLY intrapericardial VAD approved for DT.

Destination Therapy SO MUCH DATA IN SUCH A SMALL DEVICE. HeartWare HVAD System The ONLY intrapericardial VAD approved for DT. DT Destination Therapy SO MUCH DATA IN SUCH A SMALL DEVICE. HeartWare HVAD System The ONLY intrapericardial VAD approved for DT. ONLY WE HAVE THIS BREADTH OF CLINICAL EVIDENCE TO SUPPORT DESTINATION THERAPY.

More information

Clinical Experience With HeartWare Left Ventricular Assist Device in Patients With End-Stage Heart Failure

Clinical Experience With HeartWare Left Ventricular Assist Device in Patients With End-Stage Heart Failure ADULT CARDIAC Clinical Experience With HeartWare Left Ventricular Assist Device in Patients With End-Stage Heart Failure Aron Frederik Popov, MD, Morteza Tavakkoli Hosseini, MD, Bartlomiej Zych, MD, Prashant

More information

LVAD Complications, Recovery

LVAD Complications, Recovery LVAD Complications, Recovery Abbas Ardehali, M.D., F.A.C.S. Professor of Surgery and Medicine, Division of Cardiac Surgery William E. Connor Chair in Cardiothoracic Transplantation Director, UCLA Heart,

More information

เอกราช อร ยะช ยพาณ ชย

เอกราช อร ยะช ยพาณ ชย 30 July 2016 เอกราช อร ยะช ยพาณ ชย Heart Failure and Transplant Cardiology aekarach.a@chula.ac.th Disclosure Speaker, CME service: Merck, Otsuka, Servier Consultant, non-cme service: Novartis, Menarini

More information

Outpatient Treatment of MCS Patient. F. Bennett Pearce, MD Professor of Pediatrics Med Director Heart Transplant COA

Outpatient Treatment of MCS Patient. F. Bennett Pearce, MD Professor of Pediatrics Med Director Heart Transplant COA Outpatient Treatment of MCS Patient F. Bennett Pearce, MD Professor of Pediatrics Med Director Heart Transplant COA Disclosure Statement I DO NOT HAVE ANY RELEVANT FINANCIAL RELATIONSHIPS WITH ANY COMMERCIAL

More information

Continuous Flow Left Ventricular Assist Device Outcomes in Commercial Use Compared With the Prior Clinical Trial

Continuous Flow Left Ventricular Assist Device Outcomes in Commercial Use Compared With the Prior Clinical Trial Continuous Flow Left Ventricular Assist Device Outcomes in Commercial Use Compared With the Prior Clinical Trial Ranjit John, MD, Yoshifumi Naka, MD, Nicholas G. Smedira, MD, Randall Starling, MD, MPH,

More information

The DuraHeart VAD, a Magnetically Levitated Centrifugal Pump

The DuraHeart VAD, a Magnetically Levitated Centrifugal Pump Circ J 2006; 70: 1421 1425 The DuraHeart VAD, a Magnetically Levitated Centrifugal Pump The University of Vienna Bridgeto-Transplant Experience Tomohiro Nishinaka, MD; Heinrich Schima, PhD*; Wilfried Roethy,

More information

LEFT VENTRICULAR ASSIST DEVICE COMPLICATIONS. Daniel Vargas, MD Section of Cardiothoracic Imaging University of Colorado Anschutz Medical Campus

LEFT VENTRICULAR ASSIST DEVICE COMPLICATIONS. Daniel Vargas, MD Section of Cardiothoracic Imaging University of Colorado Anschutz Medical Campus LEFT VENTRICULAR ASSIST DEVICE COMPLICATIONS Daniel Vargas, MD Section of Cardiothoracic Imaging University of Colorado Anschutz Medical Campus OBJECTIVES Review the most common LVAD-related complications.

More information

DEMYSTIFYING VADs. Nicolle Choquette RN MN Athabasca University

DEMYSTIFYING VADs. Nicolle Choquette RN MN Athabasca University DEMYSTIFYING VADs Nicolle Choquette RN MN Athabasca University Objectives odefine o Heart Failure o VAD o o o o Post Operative Complications Acute Long Term Nursing Interventions What is Heart Failure?

More information

Accuracy of the HVAD Pump Flow Estimation Algorithm

Accuracy of the HVAD Pump Flow Estimation Algorithm ASAIO Journal 2016 Adult Circulatory Support Accuracy of the HVAD Pump Flow Estimation Algorithm Carlos Reyes, Neil Voskoboynikov, Katherine Chorpenning, Jeffrey A. LaRose, Michael C. Brown, Nathalie J.

More information

Berlin Heart Pediatric Assistance Device: The Beginnings, The Teachings And The Cruising Speed : A Monocentric Experience With The Same System

Berlin Heart Pediatric Assistance Device: The Beginnings, The Teachings And The Cruising Speed : A Monocentric Experience With The Same System Berlin Heart Pediatric Assistance Device: The Beginnings, The Teachings And The Cruising Speed : A Monocentric Experience With The Same System Roland Henaine, Mathieu Vergnat, Geoffray Keller, Magali Veyrier,

More information

Ventricular Assist Devices

Ventricular Assist Devices Page 1 By Tonya Elliott, RN, MSN Background, Indications for VADs Mechanical circulatory support has become an acceptable therapy for end stage heart failure (HF) in maximally medically treated patients

More information

HeartWare ADVANCE Bridge to Transplant Trial and Continued Access Protocol Update

HeartWare ADVANCE Bridge to Transplant Trial and Continued Access Protocol Update HeartWare ADVANCE Bridge to Transplant Trial and Continued Access Protocol Update Mark S. Slaughter, MD University of Louisville, KY, USA HeartWare Users Meeting 29 October 2012 Barcelona, Spain HEARTWARE,

More information

Index. Note: Page numbers of article titles are in boldface type.

Index. Note: Page numbers of article titles are in boldface type. Index Note: Page numbers of article titles are in boldface type. A Ablation, radiofrequency, anesthetic considerations for, 479 489 Acute aortic syndrome, thoracic endovascular repair of, 457 462 aortic

More information

MEDICAL POLICY SUBJECT: VENTRICULAR ASSIST DEVICES

MEDICAL POLICY SUBJECT: VENTRICULAR ASSIST DEVICES MEDICAL POLICY PAGE: 1 OF: 7 If the member's subscriber contract excludes coverage for a specific service it is not covered under that contract. In such cases, medical policy criteria are not applied.

More information

Bridge to Heart Transplantation

Bridge to Heart Transplantation Bridge to Heart Transplantation Ulf Kjellman MD, PhD Senior Consultant Surgeon Heart Centre KFSH&RC 1 Disclosure Appointed for Proctorship by Thoratec/St.Jude/Abbott 2 To run a full overall covering transplant

More information

How to do it: tips and tricks of minimal-invasive HVAD implantation the lateral approach

How to do it: tips and tricks of minimal-invasive HVAD implantation the lateral approach Surgical Technique How to do it: tips and tricks of minimal-invasive HVAD implantation the lateral approach Ezin Deniz 1, Anamika Chatterjee 1, Christina Feldmann 1, Jasmin S. Hanke 1, Guenes Dogan 1,

More information

CHANGING THE WAY HEART FAILURE IS TREATED. VAD Therapy

CHANGING THE WAY HEART FAILURE IS TREATED. VAD Therapy CHANGING THE WAY HEART FAILURE IS TREATED VAD Therapy VAD THERAPY IS BECOMING AN ESSENTIAL PART OF HEART FAILURE PROGRAMS AROUND THE WORLD. Patients with advanced heart failure experience an impaired quality

More information

Multicenter Evaluation of an Intrapericardial Left Ventricular Assist System

Multicenter Evaluation of an Intrapericardial Left Ventricular Assist System Journal of the American College of Cardiology Vol. 57, No. 12, 2011 2011 by the American College of Cardiology Foundation ISSN 0735-1097/$36.00 Published by Elsevier Inc. doi:10.1016/j.jacc.2010.10.040

More information

Initial Experience With Miniature Axial Flow Ventricular Assist Devices for Postcardiotomy Heart Failure

Initial Experience With Miniature Axial Flow Ventricular Assist Devices for Postcardiotomy Heart Failure CARDIOVASCULAR Initial Experience With Miniature Axial Flow Ventricular Assist Devices for Postcardiotomy Heart Failure Michael J. Jurmann, MD, Henryk Siniawski, MD, Michael Erb, MD, Thorsten Drews, MD,

More information

End Stage Heart Failure - Time to Bring the Hammer Down

End Stage Heart Failure - Time to Bring the Hammer Down End Stage Heart Failure - Time to Bring the Hammer Down Eric R. Skipper, MD, FACS Chief, Adult Cardiovascular Surgery Surgical Director of Cardiac Transplantation and Mechanical Circulatory Support 2 3

More information

Initial Experience of Conversion of Toyobo Paracorporeal Left Ventricular Assist Device to DuraHeart Left Ventricular Assist Device

Initial Experience of Conversion of Toyobo Paracorporeal Left Ventricular Assist Device to DuraHeart Left Ventricular Assist Device Circulation Journal Official Journal of the Japanese Circulation Society http://www.j-circ.or.jp Advance Publication by J-STAGE Initial Experience of Conversion of Toyobo Paracorporeal Left Ventricular

More information

Minimally Invasive Insertion of HVAD

Minimally Invasive Insertion of HVAD Minimally Invasive Insertion of HVAD Simon Maltais, MD PhD Vice-Chair of Clinical Practice Director of MCS Program Department of Cardiovascular Surgery Mayo Clinic, Rochester, MN AATS MCS 2018, Houston

More information

07/17/2014. Thursday, July 17, 14

07/17/2014. Thursday, July 17, 14 HENRY FORD HOSPITAL Ventricular Assist Device Emergency Response Cheryl Smith, R.N., B.S.N. VAD Coordinator Henry Ford Health System 1 WHAT IS A VAD? What is a VAD? How does it work? 1 Pulsatile, Volume

More information

University of Florida Department of Surgery. CardioThoracic Surgery VA Learning Objectives

University of Florida Department of Surgery. CardioThoracic Surgery VA Learning Objectives University of Florida Department of Surgery CardioThoracic Surgery VA Learning Objectives This service performs coronary revascularization, valve replacement and lung cancer resections. There are 2 faculty

More information

Use of the Total Artificial Heart in the Failing Fontan Circulation J William Gaynor, M.D.

Use of the Total Artificial Heart in the Failing Fontan Circulation J William Gaynor, M.D. Use of the Total Artificial Heart in the Failing Fontan Circulation J William Gaynor, M.D. Daniel M. Tabas Endowed Chair in Pediatric Cardiothoracic Surgery at The Children s Hospital of Philadelphia The

More information

Body Mass Index and Outcome After Ventricular Assist Device Placement

Body Mass Index and Outcome After Ventricular Assist Device Placement Body Mass Index and Outcome After Ventricular Assist Device Placement Michele Musci, MD, Antonio Loforte, MD, Evgenij V. Potapov, MD, Thomas Krabatsch, MD, PhD, Yuguo Weng, MD, PhD, Miralem Pasic, MD,

More information

Role of paediatric assist device in bridge to transplant

Role of paediatric assist device in bridge to transplant Featured Article Role of paediatric assist device in bridge to transplant Roland Hetzer 1, Mariano Francisco del Maria Javier 1, Eva Maria Delmo Walter 2 1 Department of Cardiothoracic and Vascular Surgery,

More information

Planned, Short-Term RVAD During Durable LVAD Implant: Indications and Management

Planned, Short-Term RVAD During Durable LVAD Implant: Indications and Management Planned, Short-Term RVAD During Durable LVAD Implant: Indications and Management Yoshifumi Naka, MD, PhD Columbia University Medical Center New York, NY Disclosure Abbott/St. Jude Med./Thoratec Consultant

More information

Innovative ECMO Configurations in Adults

Innovative ECMO Configurations in Adults Innovative ECMO Configurations in Adults Practice at a Single Center with Platinum Level ELSO Award for Excellence in Life Support Monika Tukacs, BSN, RN, CCRN Columbia University Irving Medical Center,

More information

VAD come Destination therapy nell adulto con Scompenso Cardiaco

VAD come Destination therapy nell adulto con Scompenso Cardiaco VAD come Destination therapy nell adulto con Scompenso Cardiaco Francesco Santini Division of Cardiac Surgery, IRCCS San Martino IST University of Genova Medical School, Italy Heart Transplantation is

More information

How to Develop a Comprehensive Ventricular Assist Device Program

How to Develop a Comprehensive Ventricular Assist Device Program How to Develop a Comprehensive Ventricular Assist Device Program Rodrigo V. González, MD, MS Sección de Cirugía Cardiovascular División de Cirugía Facultad de Medicina Pontificia Universidad Católica de

More information

Mechanical Cardiac Support in Acute Heart Failure. Michael Felker, MD, MHS Associate Professor of Medicine Director of Heart Failure Research

Mechanical Cardiac Support in Acute Heart Failure. Michael Felker, MD, MHS Associate Professor of Medicine Director of Heart Failure Research Mechanical Cardiac Support in Acute Heart Failure Michael Felker, MD, MHS Associate Professor of Medicine Director of Heart Failure Research Disclosures Research Support and/or Consulting NHLBI Amgen Cytokinetics

More information

Ventricular Assisting Devices in the Cathlab. Unrestricted

Ventricular Assisting Devices in the Cathlab. Unrestricted Ventricular Assisting Devices in the Cathlab Unrestricted What is a VAD? A single system device that is surgically attached to the left ventricle of the heart and to the aorta for left ventricular support

More information

Left Ventricular Assist Device: What Should I Report?

Left Ventricular Assist Device: What Should I Report? 2017 SOTA, Tucson, AZ February 21, 2017 11:15 11:40 AM 25 min Left Ventricular Assist Device: What Should I Report? Muhamed Sarić MD, PhD, MPA Director of Noninvasive Cardiology Echo Lab Associate Professor

More information

Mechanical Circulatory Support: Reality and Dreams Experience of a Single Center

Mechanical Circulatory Support: Reality and Dreams Experience of a Single Center The Journal of The American Society of Extra-Corporeal Technology Mechanical Circulatory Support: Reality and Dreams Experience of a Single Center H.-H. Weitkemper, RN, ECCP; A. El-Banayosy, MD; L. Arusoglu,

More information

Do we really need an Artificial Heart? No!! John V. Conte, MD, Professor of Surgery Johns Hopkins University School of Medicine

Do we really need an Artificial Heart? No!! John V. Conte, MD, Professor of Surgery Johns Hopkins University School of Medicine Do we really need an Artificial Heart? No!! John V. Conte, MD, Professor of Surgery Johns Hopkins University School of Medicine Division of Cardiac Surgery The Johns Hopkins Medical Institutions Conflict

More information

Initial clinical experience with a novel left ventricular assist device with a magnetically levitated rotor in a multi-institutional trial

Initial clinical experience with a novel left ventricular assist device with a magnetically levitated rotor in a multi-institutional trial http://www.jhltonline.org FEATURED ARTICLES Initial clinical experience with a novel left ventricular assist device with a magnetically levitated rotor in a multi-institutional trial Georg M. Wieselthaler,

More information

UNIVERSITY OF UTAH HEALTH CARE HOSPITALS AND CLINICS

UNIVERSITY OF UTAH HEALTH CARE HOSPITALS AND CLINICS UNIVERSITY OF UTAH HEALTH CARE HOSPITALS AND CLINICS CARDIAC MECHANICAL SUPPORT PROGRAM GUIDELINES CARDIAC MECHANICAL SUPPORT: LVAD BASICS FREQUENT SCENARIOS AND TROUBLESHOOTING Review Date: July 2011

More information

Minimally invasive is the future of left ventricular assist device implantation

Minimally invasive is the future of left ventricular assist device implantation Review Article Minimally invasive is the future of left ventricular assist device implantation George Makdisi, I-Wen Wang Indiana University School of Medicine & Indiana University Health, Indianapolis,

More information

EMS: Care of the VAD Patient. Brittany Butzler BSN RN VAD Coordinator Froedtert and the Medical College of WI

EMS: Care of the VAD Patient. Brittany Butzler BSN RN VAD Coordinator Froedtert and the Medical College of WI EMS: Care of the VAD Patient Brittany Butzler BSN RN VAD Coordinator Froedtert and the Medical College of WI Disclosure No relevant financial relationships by planners or presenters Left Ventricular Assist

More information

Japanese Multicenter Outcomes With the HeartMate II Left Ventricular Assist Device in Patients With Small Body Surface Area

Japanese Multicenter Outcomes With the HeartMate II Left Ventricular Assist Device in Patients With Small Body Surface Area Circulation Journal Official Journal of the Japanese Circulation Society http://www.j-circ.or.jp Advance Publication by-j-stage Japanese Multicenter Outcomes With the HeartMate II Left Ventricular Assist

More information

Japanese Multicenter Outcomes With the HeartMate II Left Ventricular Assist Device in Patients With Small Body Surface Area

Japanese Multicenter Outcomes With the HeartMate II Left Ventricular Assist Device in Patients With Small Body Surface Area Circulation Journal Official Journal of the Japanese Circulation Society http://www.j-circ.or.jp ORIGINAL ARTICLE Cardiovascular Surgery Japanese Multicenter Outcomes With the HeartMate II Left Ventricular

More information

From Recovery to Transplant: One Patient's Journey

From Recovery to Transplant: One Patient's Journey From Recovery to Transplant: One Patient's Journey Tonya Elliott, RN, MSN Assist Device and Thoracic Transplant Coordinator Inova Transplant Center at Inova Fairfax Hospital Falls Church, VA Introduction

More information

Mechanical Ventricular Circulatory Support in Children; Bad Oeynhausen Experience

Mechanical Ventricular Circulatory Support in Children; Bad Oeynhausen Experience Original Article Mechanical Ventricular Circulatory Support in Children; Bad Oeynhausen Experience Kazutomo Minami, MD, PhD, 1 Edzard von Knyphausen, MD, 2 Ryusuke Suzuki, MD, 1 Ute Blanz, MD, 1 Latif

More information

Research Article Transapical Approach for Mitral Valve Repair during Insertion of a Left Ventricular Assist Device

Research Article Transapical Approach for Mitral Valve Repair during Insertion of a Left Ventricular Assist Device The Scientific World Journal Volume 2013, Article ID 925310, 4 pages http://dx.doi.org/10.1155/2013/925310 Research Article Transapical Approach for Mitral Valve Repair during Insertion of a Left Ventricular

More information

Ventricular Assist Device. Lauren Bartlett 10/5/16 BME 281, section 1

Ventricular Assist Device. Lauren Bartlett 10/5/16 BME 281, section 1 Ventricular Assist Device Lauren Bartlett 10/5/16 BME 281, section 1 What is a Ventricular Assist Device (VAD)? Electromechanical device for assisting cardiac circulation Used to partially or completely

More information

FEATURE. 58 EMERGENCY MEDICINE I FEBRUARY

FEATURE. 58 EMERGENCY MEDICINE I FEBRUARY FEATURE 58 EMERGENCY MEDICINE I FEBRUARY 2016 www.emed-journal.com Troubleshooting the Left Ventricular Assist Device Alicia S. Devine, JD, MD In an update and complement to a previously published article,

More information

Do Posttransplant Outcomes Differ in Heart Transplant Recipients Bridged With Continuous and Pulsatile Flow Left Ventricular Assist Devices?

Do Posttransplant Outcomes Differ in Heart Transplant Recipients Bridged With Continuous and Pulsatile Flow Left Ventricular Assist Devices? Do Posttransplant Outcomes Differ in Heart Transplant Recipients Bridged With Continuous and Pulsatile Flow Left Ventricular Assist Devices? Kimberly N. Hong, MHSA, Alexander Iribarne, MD, MS, Jonathan

More information

Ventricular Assist Devices for Permanent Therapy: Current Status and Future

Ventricular Assist Devices for Permanent Therapy: Current Status and Future Ventricular Assist Devices for Permanent Therapy: Current Status and Future Prospects Francis D. Pagani MD PhD Professor of Cardiac Surgery University of Michigan April 28 th, 2012 Disclosures NHLBI and

More information

Initial Experience With Single Cannulation for Venovenous Extracorporeal Oxygenation in Adults

Initial Experience With Single Cannulation for Venovenous Extracorporeal Oxygenation in Adults Initial Experience With Single Cannulation for Venovenous Extracorporeal Oxygenation in Adults Christian A. Bermudez, MD, Rodolfo V. Rocha, MD, Penny L. Sappington, MD, Yoshiya Toyoda, MD, PhD, Holt N.

More information

Safety Evaluation of the Pericardial HeartWare MVAD System

Safety Evaluation of the Pericardial HeartWare MVAD System Safety Evaluation of the Pericardial HeartWare MVAD System Edwin C. McGee, Jr. M.D. Surgical Director, Heart Failure, Heart Transplantation, and Mechanical Assistance Bluhm Cardiovascular Institute, Northwestern

More information

LVADs as a long term or destination therapy for the advanced heart failure

LVADs as a long term or destination therapy for the advanced heart failure LVADs as a long term or destination therapy for the advanced heart failure Prof. Davor Miličić, MD, PhD University of Zagreb School of Medicine Department of Cardiovascular Diseases University Hospital

More information

Ventricular Assist Device in Pediatric Heart Failure 성균관의대삼성서울병원흉부외과학교실

Ventricular Assist Device in Pediatric Heart Failure 성균관의대삼성서울병원흉부외과학교실 Ventricular Assist Device in Pediatric Heart Failure 양지혁 성균관의대삼성서울병원흉부외과학교실 순서 서론왜 VAD 가필요한가? 말기심부전치료의현황 ECMO vs. VAD 심근회복에대한기계순환보조의효과 어떤환자에서 VAD 를사용할것인가? 어떤 VAD 를사용할것인가? 결론 Introduction Ventricular Assist

More information

Adverse Event. Adverse Event Status. Please enter the date of the event you are reporting: Please enter a label describing this event:

Adverse Event. Adverse Event Status. Please enter the date of the event you are reporting: Please enter a label describing this event: Adverse Event Adverse Event Status Please enter the date of the event you are reporting: Please enter a label describing this event: 1 of 17 Adverse Event Infection Was there a major infection? Date of

More information

Overview of MCS in Bruce B Reid, MD Surgical Director Artificial Heart Program/Heart Transplantation

Overview of MCS in Bruce B Reid, MD Surgical Director Artificial Heart Program/Heart Transplantation Overview of MCS in 2017 Bruce B Reid, MD Surgical Director Artificial Heart Program/Heart Transplantation Technology Embracing Progress Technology Adoption Internet Adoption of Technology Pioneer in the

More information

Implantable Ventricular Assist Devices and Total Artificial Hearts

Implantable Ventricular Assist Devices and Total Artificial Hearts Implantable Ventricular Assist Devices and Total Artificial Hearts Policy Number: Original Effective Date: MM.06.017 05/21/1999 Line(s) of Business: Current Effective Date: PPO; HMO; QUEST Integration

More information

Total Artificial Hearts and Implantable Ventricular Assist Devices

Total Artificial Hearts and Implantable Ventricular Assist Devices Total Artificial Hearts and Implantable Ventricular Assist Devices Policy Number: 7.03.11 Last Review: 12/2017 Origination: 12/2001 Next Review: 12/2018 Policy Blue Cross and Blue Shield of Kansas City

More information

Update on Mechanical Circulatory Support. AATS May 5, 2010 Toronto, ON Canada

Update on Mechanical Circulatory Support. AATS May 5, 2010 Toronto, ON Canada Update on Mechanical Circulatory Support AATS May 5, 2010 Toronto, ON Canada Disclosures NONE Emergency Circulatory Support ECMO Tandem Heart Impella Assessment Cardiac Function Pulmonary function Valvular

More information

Complications of VAD therapy - RV failure

Complications of VAD therapy - RV failure Complications of VAD therapy - RV failure Nana Afari-Armah, MD Advanced heart failure and transplant cardiology Temple University Hospital 3/24/18 Goals Understand the role of the right ventricle in LVAD

More information

DECLARATION OF CONFLICT OF INTEREST

DECLARATION OF CONFLICT OF INTEREST DECLARATION OF CONFLICT OF INTEREST Cardiogenic Shock Mechanical Support Eulàlia Roig FESC Heart Failure and HT Unit Hospital Sant Pau - UAB Barcelona. Spain No conflics of interest Mechanical Circulatory

More information

Management of a Patient after the Bidirectional Glenn

Management of a Patient after the Bidirectional Glenn Management of a Patient after the Bidirectional Glenn Melissa B. Jones MSN, APRN, CPNP-AC CICU Nurse Practitioner Children s National Health System Washington, DC No Disclosures Objectives qbriefly describe

More information

Concomitant Aortic Valve Procedures in Patients Undergoing Implantation of Continuous-Flow LVADs: An INTERMACS Database Analysis

Concomitant Aortic Valve Procedures in Patients Undergoing Implantation of Continuous-Flow LVADs: An INTERMACS Database Analysis Concomitant Aortic Valve Procedures in Patients Undergoing Implantation of Continuous-Flow LVADs: An INTERMACS Database Analysis April 11, 2014 Jason O. Robertson, M.D., M.S.; David C. Naftel, Ph.D., Sunil

More information

Medical Policy. MP Total Artificial Hearts and Implantable Ventricular Assist Devices

Medical Policy. MP Total Artificial Hearts and Implantable Ventricular Assist Devices Medical Policy MP 7.03.11 BCBSA Ref. Policy: 7.03.11 Last Review: 08/20/2018 Effective Date: 08/20/2018 Section: Surgery Related Policies 7.03.08 Heart/Lung Transplant 7.03.09 Heart Transplant 8.01.60

More information

Improved Mechanical Reliability of the HeartMate XVE Left Ventricular Assist System

Improved Mechanical Reliability of the HeartMate XVE Left Ventricular Assist System Improved Mechanical Reliability of the HeartMate XVE Left Ventricular Assist System Francis D. Pagani, MD, PhD, James W. Long, MD, PhD, Walter P. Dembitsky, MD, Lyle D. Joyce, MD, PhD, and Leslie W. Miller,

More information

Total Artificial Hearts and Implantable Ventricular Assist Devices

Total Artificial Hearts and Implantable Ventricular Assist Devices Total Artificial Hearts and Implantable Ventricular Assist Devices Policy Number: 7.03.11 Last Review: 12/2018 Origination: 12/2001 Next Review: 12/2019 Policy Blue Cross and Blue Shield of Kansas City

More information

Hardware in the Chest - From VADs to Valves

Hardware in the Chest - From VADs to Valves Hardware in the Chest - From VADs to Valves Cristina Fuss, MD Purpose Recognize the device Indication and function Cristina Fuss, MD Department of Diagnostic Radiology FROM VADS TO VALVES Implanting technique

More information

Status of Implantable VADs

Status of Implantable VADs Status of Implantable VADs John V. Conte, MD, Professor of Surgery Johns Hopkins University School of Medicine Division of Cardiac Surgery The Johns Hopkins Medical Institutions Conflict of Interest Statement

More information

Surgical Options for Advanced Heart Failure

Surgical Options for Advanced Heart Failure Surgical Options for Advanced Heart Failure Benjamin Medalion, MD Director, Transplantation and Heart Failure Surgery Department of Cardiothoracic Surgery Rabin Medical Center, Beilinson Hospital Heart

More information

CASE PRESENTATION Ravi Dhanisetty, M.D. SUNY Downstate 23 July 2009 CASE PRESENTATION xx yr old female with chest pain for 3 days. Initially taken to outside hospital 3 days history of chest pain, shortness

More information

Destination Therapy For Advanced Heart Failure

Destination Therapy For Advanced Heart Failure Destination Therapy For Advanced Heart Failure Kevin Guffey, RN Vad Coordinator Tacoma General Hospital April 28, 2012 Current HF Estimates 300 Million Population HF=2.5% of Population 6.5-7 Million Patients

More information

Over the past 10 years, ventricular assist devices (VADs)

Over the past 10 years, ventricular assist devices (VADs) ORIGINAL ARTICLE Design Concepts and Preclinical Results of a Miniaturized HeartWare Platform The MVAD System Anson Cheung, MD,* Katherine Chorpenning, MS,Þ Daniel Tamez, BS,Þ Charles Shambaugh, Jr, BS,Þ

More information

Diagnosis of Device Thrombosis

Diagnosis of Device Thrombosis Diagnosis of Device Thrombosis Andrew Civitello MD, FACC Medical Director, Heart Transplant Program Director, Fellowship Co-Director, Baylor St. Luke's Medical Center / Texas Heart Institute Trends in

More information

THE FIRST CLINICAL USE OF HEART MATE II LEFT VENTRICULAR ASSIST SYSTEM IN CROATIA AS A BRIDGE-TO-TRANSPLANT: A CASE REPORT

THE FIRST CLINICAL USE OF HEART MATE II LEFT VENTRICULAR ASSIST SYSTEM IN CROATIA AS A BRIDGE-TO-TRANSPLANT: A CASE REPORT UDK 616.12-089:616-089.843 Review Received: 3. November 2010 Accepted: 26. January 2011. THE FIRST CLINICAL USE OF HEART MATE II LEFT VENTRICULAR ASSIST SYSTEM IN CROATIA AS A BRIDGE-TO-TRANSPLANT: A CASE

More information

Left Ventricular Assist Devices LVAD. North Country EMS Program Agency 3/21/12

Left Ventricular Assist Devices LVAD. North Country EMS Program Agency 3/21/12 Left Ventricular Assist Devices LVAD North Country EMS Program Agency 3/21/12 Objectives Describe indications for and functions of ventricular assist devices (LVAD) Differentiate assessment findings of

More information

Name of Policy: Ventricular Assist Devices and Total Artificial Hearts

Name of Policy: Ventricular Assist Devices and Total Artificial Hearts Name of Policy: Ventricular Assist Devices and Total Artificial Hearts Policy #: 033 Latest Review Date: February 2014 Category: Surgery Policy Grade: A Background/Definitions: As a general rule, benefits

More information

Left Ventricular Pressure and Volume Unloading During Pulsatile Versus Nonpulsatile Left Ventricular Assist Device Support

Left Ventricular Pressure and Volume Unloading During Pulsatile Versus Nonpulsatile Left Ventricular Assist Device Support Left Ventricular Pressure and Volume Unloading During Pulsatile Versus Nonpulsatile Left Ventricular Assist Device Support Stefan Klotz, MD, Mario C. Deng, MD, Joerg Stypmann, MD, Juergen Roetker, MD,

More information

3/1/2017. Chronic Mechanical Support for Heart Failure. Heart Failure is a major driver of morbidity and mortality in the US 1-7

3/1/2017. Chronic Mechanical Support for Heart Failure. Heart Failure is a major driver of morbidity and mortality in the US 1-7 Chronic Mechanical Support for Heart Failure Margarita Camacho MD, FACS Surgical Director Cardiac Transplant and Mechanical Assist Device Program RWJ/Barnabas Health Heart Centers at Newark Beth Israel

More information

VENTRICULAR ASSIST DEVICES AND TOTAL ARTIFICIAL HEARTS

VENTRICULAR ASSIST DEVICES AND TOTAL ARTIFICIAL HEARTS VENTRICULAR ASSIST DEVICES AND TOTAL ARTIFICIAL HEARTS Non-Discrimination Statement and Multi-Language Interpreter Services information are located at the end of this document. Coverage for services, procedures,

More information

Jennifer A. Brown The Cleveland Clinic School of Perfusion Cleveland, Ohio

Jennifer A. Brown The Cleveland Clinic School of Perfusion Cleveland, Ohio Biventricular Heart Failure Advanced Treatment Options at The Cleveland Clinic Jennifer A. Brown The Cleveland Clinic School of Perfusion Cleveland, Ohio I have no disclosures. Examine respiratory and

More information

Analysis of Pump Thrombosis in the Intermacs Database

Analysis of Pump Thrombosis in the Intermacs Database Analysis of Pump Thrombosis in the Intermacs Database Michael Acker William Measey Professor of Surgery Chief of Division of Cardiovascular Surgery Director of Heart and Vascular Center University of Pennsylvania

More information

12/19/2017. Learning Objectives. Mechanical Circulatory Support. Mechanical Aids to External Massage. Noninvasive Mechanical Support Devices

12/19/2017. Learning Objectives. Mechanical Circulatory Support. Mechanical Aids to External Massage. Noninvasive Mechanical Support Devices Learning Objectives Mechanical Circulatory Support Explain the indications, function, & complications for selected mechanical circulatory support devices Describe examples of ventricular assist devices

More information