MR Advance Techniques. Cardiac Imaging. Class IV

Save this PDF as:
 WORD  PNG  TXT  JPG

Size: px
Start display at page:

Download "MR Advance Techniques. Cardiac Imaging. Class IV"

Transcription

1 MR Advance Techniques Cardiac Imaging Class IV

2 Heart The heart is a muscular organ responsible for pumping blood through the blood vessels by repeated, rhythmic contractions. Layers of the heart Endocardium Myocardium Epicardium

3 Heart The heart is usually felt to be on the left side because the left heart (left ventricle) is stronger (it pumps to all body parts). The base of the heart is at the level of the atriums. The apex is the blunt point situated in an inferior (pointing down and left) direction

4 Heart Chambers Heart chambers Atria Right atrium Left atrium Ventricles Right ventricle Left ventricle

5 Heart eptum The Heart is a dividing wall between the right and left sides of the heart. Interatrial septum Interventricular septum Atrial eptum

6 Heart Valves Heart valves Atroventricular (AV) Tricuspid valve (RT) Mitral valve or bicuspid (LT) emiluvar Aortic valve Pulmonary valve

7 Cardiac Phases YTOLE

8 Cardiac Phases DIATOLE

9 Blood Circulation in the Heart Deoxygenated blood enters the right atrium via the superior and inferior vena cava. The right atria contracts and forces blood through the tricuspid valve and into the right ventricle. The right ventricle contracts and forces the deoxygenated blood through the pulmonary valve and into the pulmonary arteries and to the lungs.

10 Blood Circulation in the Heart The now oxygenated blood returns via the pulmonary veins, entering the left atria. The left atria contracts forcing the blood through the mitral valve and into the left ventricle. The left ventricle contracts and forces the blood through the aortic valve and into the aorta which sends it on it s way to the rest of the body.

11 Blood Circulation in the Heart During pulmonary circulation (circulation between the heart and lungs) oxygenated blood is carried by the pulmonary veins and deoxygenated blood is carried by the pulmonary arteries. To prevent confusion review the definition below: The true definition of arteries and veins: Arteries carry blood away from the heart. Veins carry blood toward the heart.

12 Blood Circulation Blue= O2 poor blood Red=O2 rich blood

13 Conventional MRI Vascular Techniques Cardiac imaging follows the same principle as vascular imaging: Black blood imaging Bright blood imaging

14 Black Blood in the Heart

15 Black Blood Imaging & IR Inversion pulses can produce black blood imaging in GRE pulse sequences. pecially on the heart where blood flow goes in different directions and pre-sat bands does not work properly. TI

16 Black Blood Imaging & IR Inversion pulses to produce black blood in GRE sequences can be known as driven equilibrium. These pulse sequences begins with a NON slice selected 180º pulse and then another slice selected 180º pulse. A TI equivalent to the null point of flowing spins entering the slice will be applied.

17 Double IR This technique is also known as Double Inversion Recovery or Double IR or driven equilibrium. Driven Equilibrium

18 Double IR 180 Non lice elected lice elected At TI of Blood (650 ms)

19 Longitudinal Magnetization TI of Blood Double IR 180 Non lice elected 180 lice elected 90 lice elected TI of Blood (650 ms)

20 Longitudinal Magnetization TI of Blood TI of Fat Triple IR 180 Non lice elected 180 lice elected 180 lice elected 90 lice elected TI of Blood (650 ms) TI of Fat (150 ms)

21 Double IR Vs. Triple IR

22 TI TI 500 TI 650

23 Gaiting Gaiting is a very general term used to describe a technique of reducing phase mismapping from periodic motion cause by respiration, cardiac motion and pulsatile flow.

24 Types of Gating Cardiac gating Respiratory gaiting

25 Cardiac Gaiting There are several forms of cardiac gating: Electrocardiogram (ECG, EKG) Peripheral gating Pseudo gating

26 Cardiac Gaiting Application Cardiac gaiting can be used: Reduce cardiac motion Reduce pulsatile flow Acquired cine images of the heart, blood vessels and CF.

27 ECG waves: A P wave that represents atrial systole (atrial depolarization) A R complex that represents ventricular systole (ventricular depolarization) A T wave that represents ventricular diastole (ventricular repolarization)

28

29 Heart Rate Heart rate is the speed of the heartbeat measured by the number of contractions of the heart per minute (bpm). The heart rate can vary according to the body's physical needs. Changes in the heart rate are known as cardiac arrhythmias. 60 seconds Normal heart rates are between bpm.

30 ECG The increase in the number of heartbeats per minute (bpm) is know as tachycardia. Tachycardia is a fast heart rate, defined as above 100 bpm at rest 60 seconds

31 ECG The decrease in the number of heartbeats per minute bpm is know as bradycardia. Bradycardia is a slow heart rate, defined as below 60 bpm at rest 60 seconds

32 Cardiac Gaiting Cardiac gating monitors cardiac motion by coordinating the excitation pulse with R wave of the cardiac cycle. This achieved by using an electrical signal generated by the cardiac motion to trigger each excitation pulse.

33 Cardiac Gaiting The peak of R wave is used to trigger each pulse sequence, because electrically, it has the greatest amplitude. This is called the R to R interval and is controlled by the patient s heart rate. Cardiac Cycle R to R Interval

34 R to R Interval To calculate the R to R interval we can use the following formula: R to R = ms / heart beat There are milliseconds in 1 minute If the heart beat is 80 beats per minute: R to R = ms / 80 R to R = 750ms

35 R to R Interval If the patient has a rapid heart rate, the RR interval decreases. If the heart rate is 120 bpm R to R = ms / 120 R to R = 500ms R 500 ms 500 ms R R P T P T P T

36 R to R Interval If the patient has a slow heart rate, the RR interval increases. If the heart rate is 60 bpm R to R = ms / 60 R to R = 1000ms R 1000 ms 1000 ms R R P T P T P T

37 ECG gating Electrocardiogram gating uses electrodes and lead wires that are attached to the patient chest to produce an ECG. This is use to determine the timing of the application of each excitation pulse.

38 No Cardiac Gaiting

39 Cardiac Gaiting

40 R R R R P T P T P T P T R 500 ms 500 ms 500 ms R R R P T P T P T P T

41 If the rate changes at all, data is obtained at different times during the cardiac cycle, and the images contain a great deal of artifact. 500 ms 500 ms 500 ms 700 ms 800 ms 800 ms P R T P R T P R T P R T P R T P R T P R T The safeguards are waiting periods before and after each R wave. They are named: Trigger window Trigger delay

42 ECG Triggering The trigger window: which is the period before each R wave, usually expressed as a percentage of the RR interval, where the system stops scanning and waits for the next R wave, it is about the 10 to 20% of the RR interval. R R P T P T Trigger window

43 ECG Triggering Trigger delay is the waiting period after each R waive. There is always a slight hardware delay between the system detecting the R wave and transmitting the RF to excite the first slice (few ms). R R P T P T Trigger delay

44 ECG Triggering The available imaging time is the actual time available to acquire the slices. It is defined as the effective TR minus the trigger window and the trigger delay. R R P T P T Available imaging time Trigger delay Trigger window

45 ECG Triggering Available imaging time = R to R interval (trigger window + trigger delay) If the R to R interval is 1000 ms, trigger window 10% and trigger delay 100 ms, the time available to acquire the data is: 1000 ms 100 ms 100 ms = 800 ms

46 Available Imaging Time The available imaging time is purely the time allowed to collect data, and governs the number of slices that can be obtained. R R R R P T P T P T P T Available Imaging Time

47 Effective TR The effective TR is the time between the excitation of slice 1 in the first R to R interval, to its excitation in the second R to R interval. Effective TR P R T P R T P R T P R T

48 Heart Rate & TR The TR, depends entirely on the time interval between each R waves (cardiac cycle). If the patient has a rapid heart rate, the RR interval decreases, making shorter the effective TR. horter TR will: Decrease scan time Decrease maximum number of slices per TR Increase T1 Effects on the image TR 500 TR 1000

49 Heart Rate & TR If HR is slow (bradycardia) the effective TR will be longer. Longer TR will: Increase scan time Increases maximum number of slices per TR Decrease T1 Effects on the image TR TR

50 Peripheral Gating Peripheral gating works exactly the same way as ECG gaiting. This method uses a light sensor (pulse oximeter) attached to the patient finger to detect pulsation of blood through the capillaries. It is estimated that the R wave of the ECG occurs approximately 250 ms before blood reach the fingers capillaries.

51 Peripheral Gating It is estimated that the R wave of the ECG occurs approximately 250 ms before blood reach the fingers capillaries. Not a very accurate method because factors such as age, weight, health can alter this estimated time.

52 Peripheral Gaiting Very useful for procedures that don t required exact timing such as PC-Angiography and areas with slower flow such as CF. R 250 ms P T 250 ms R R R P T P T P T

53 Pseudo Gating This method calculates the R to R interval and set the Repetition Time (TR) based on the RR. If hart rate changes motion will result on the image. TR 1000 ms TR 1000 ms R 1000 ms R R P T P T P T

54 Multiphase Cardiac Imaging In this technique a spin echo pulse sequence is used with slices acquired at precise phases of the cardiac cycle.

55 Cine If 18 phases are collected each slice must demonstrate 18 different positions of the heart in one cardiac cycle. This is referred to the number of phases per cardiac cycle.

56 Cine Cardiac cine acquisition are acquired with gradient echo sequences with retrospective gaiting technique Retrospective gaiting uses a method of collecting data continuously throughout the cardiac cycle. Data from each slice location can be acquired at different phases during the cardiac cycle.

57 The Uses of Cine Cine is useful for dynamic imaging of the vessels and CF. For example evaluate aortic dissection and cardiac function. In the brain, it may be useful to demonstrate dynamically the flow of CF in patient with hydrocephalus.

58 PC-MRA ystole Diastole ubtraction - =

59 PAMM is a technique used in MRI to detect infarcted areas. PAMM = patial Modulation of Magnetization. PAMM technique is like a grid that moves with the heart muscles. It is used in association with a multi-slice, multi-phase acquisition and acquires data along the short axis of the left ventricle. PAMM

60 PAMM In normal hearts, the stripes move along with the cardiac muscle. However in cases of infarction, the infarcted area does not contract along with the normal muscle and can, therefore, be easily identified in relation to the stripes.

61

62 Myocardial Perfusion Myocardial perfusion is used to evaluate the coronary arteries. At rest coronary arteries might supply enough blood to the myocardium, but during stress they might not.

63 Different to a stress test (Nuclear Medicine) were the heart is stressed by physical activity, in MRI the heart is stressed with the application of medication (Adenosine) then it is scanned to evaluate the level of perfusion. Myocardial Perfusion

64 Myocardial Perfusion This technique uses a T1 weighted images, to observe the enhancement of the tissues. The slices are repeated several times during the bolus injection allowing the evaluation of the level of perfusion.

65 Myocardial Perfusion

66 Respiratory Compensation When imaging the chest and abdomen, respiratory motion along the phase axis produces phase mismapping.

67 Respiratory Compensation Breathing Motion compensation techniques: Breath hold technique Respiratory gaiting Multi-average imaging

68 Breath Hold The best way of reducing breathing motion is: Use gradient echo pulse sequences to be able to scan faster Ask the patient to hold his breath during image acquisition (breath hold).

69 Motion Compensation Breath hold technique: helps to minimize motion form breathing. Tips: Explain the patient before start examination Always follow same instructions Aloud time for the patient to recover

70 Respiratory Gaiting Respiratory gating or respiratory compensation is achieved by monitoring the patient breathing cycle.

71 Respiratory Gaiting This is accomplished by placing a breading detection device on the patient. This breading detection device (belt or couching) is connected to the scanner and it will advise the scanner about breathing cycle.

72 Respiratory Gaiting A more sophisticated option is the use of a detection voxel on top of the liver to detect the liver motion during breathing activity.

73 Respiratory Compensation The image acquisition will always be at the same point during the respiration cycle. This technique is very effective but scan time is significantly increase.

74 This technique is very effective but scan time is significantly increase. No Respiratory respiratory gaiting (4(20 min) s)

75 T1 and Respiratory Gating The breathing cycle is slower then the cardiac cycle, this will result in longer effective TR s. Longer TR will significantly reduce the T1 effects on T1 weighted images, resulting in PD weighted images. Example: Respiratory rate: 20 breath p/m Effective TR = 60,0000 ms / 20 Effective TR = 3000 ms

76 T1 and Respiratory Gating 3000 ms 3000 ms 3000 ms

77 Multi Average Acquisition Increasing the number of excitations may also help, as this increases the number of times the signal is averaged. Motion is averaged out of the image as it is more random in nature than the signal itself.

78 NA & Motion Acquisition 1 Acquisition 2 Acquisition 3 Average of the 3 Acquisition

79 NEX & Motion ince moving tissues change position during different acquisitions the motion tend to disappear when several acquisitions are average out. Acquisition 12 Average of the 3 Acquisition = 79

80 Navigation ystem The navigation system is a combination of cardiac and respiratory gaiting at the same time to obtain a image free of respiratory and cardiac image. This application will increase imaging time.

Cardiovascular System Notes: Physiology of the Heart

Cardiovascular System Notes: Physiology of the Heart Cardiovascular System Notes: Physiology of the Heart Interesting Heart Fact Capillaries are so small it takes ten of them to equal the thickness of a human hair. Review What are the 3 parts of the cardiovascular

More information

Cardiovascular System Notes: Heart Disease & Disorders

Cardiovascular System Notes: Heart Disease & Disorders Cardiovascular System Notes: Heart Disease & Disorders Interesting Heart Facts The Electrocardiograph (ECG) was invented in 1902 by Willem Einthoven Dutch Physiologist. This test is still used to evaluate

More information

37 1 The Circulatory System

37 1 The Circulatory System H T H E E A R T 37 1 The Circulatory System The circulatory system and respiratory system work together to supply cells with the nutrients and oxygen they need to stay alive. a) The respiratory system:

More information

Cardiac Cycle. Each heartbeat is called a cardiac cycle. First the two atria contract at the same time.

Cardiac Cycle. Each heartbeat is called a cardiac cycle. First the two atria contract at the same time. The Heartbeat Cardiac Cycle Each heartbeat is called a cardiac cycle. First the two atria contract at the same time. Next the two ventricles contract at the same time. Then all the chambers relax. http://www.youtube.com/watch?v=frd3k6lkhws

More information

10. Thick deposits of lipids on the walls of blood vessels, called, can lead to serious circulatory issues. A. aneurysm B. atherosclerosis C.

10. Thick deposits of lipids on the walls of blood vessels, called, can lead to serious circulatory issues. A. aneurysm B. atherosclerosis C. Heart Student: 1. carry blood away from the heart. A. Arteries B. Veins C. Capillaries 2. What is the leading cause of heart attack and stroke in North America? A. alcohol B. smoking C. arteriosclerosis

More information

The Heart. Made up of 3 different tissue: cardiac muscle tissue, nerve tissue, and connective tissue.

The Heart. Made up of 3 different tissue: cardiac muscle tissue, nerve tissue, and connective tissue. The Heart The Heart Made up of 3 different tissue: cardiac muscle tissue, nerve tissue, and connective tissue. Your heart pumps with a regular beat (Heart Rate) Your heart rate can change depending on

More information

The Cardiovascular System (Heart)

The Cardiovascular System (Heart) The Cardiovascular System The Cardiovascular System (Heart) A closed system of the heart and blood vessels The heart pumps blood Blood vessels allow blood to circulate to all parts of the body The function

More information

MR Advance Techniques. Vascular Imaging. Class II

MR Advance Techniques. Vascular Imaging. Class II MR Advance Techniques Vascular Imaging Class II 1 Vascular Imaging There are several methods that can be used to evaluate the cardiovascular systems with the use of MRI. MRI will aloud to evaluate morphology

More information

4. The two inferior chambers of the heart are known as the atria. the superior and inferior vena cava, which empty into the left atrium.

4. The two inferior chambers of the heart are known as the atria. the superior and inferior vena cava, which empty into the left atrium. Answer each statement true or false. If the statement is false, change the underlined word to make it true. 1. The heart is located approximately between the second and fifth ribs and posterior to the

More information

Chapter 14. The Cardiovascular System

Chapter 14. The Cardiovascular System Chapter 14 The Cardiovascular System Introduction Cardiovascular system - heart, blood and blood vessels Cardiac muscle makes up bulk of heart provides force to pump blood Function - transports blood 2

More information

The Cardiovascular System. Chapter 15. Cardiovascular System FYI. Cardiology Closed systemof the heart & blood vessels. Functions

The Cardiovascular System. Chapter 15. Cardiovascular System FYI. Cardiology Closed systemof the heart & blood vessels. Functions Chapter 15 Cardiovascular System FYI The heart pumps 7,000 liters (4000 gallons) of blood through the body each day The heart contracts 2.5 billion times in an avg. lifetime The heart & all blood vessels

More information

The heart=a muscular double pump with 2 functions Overview

The heart=a muscular double pump with 2 functions Overview The Heart 1 The heart=a muscular double pump with 2 functions Overview The right side receives oxygen-poor blood from the body and tissues and then pumps it to the lungs to pick up oxygen and dispel carbon

More information

Circulatory System Notes

Circulatory System Notes Circulatory System Notes Functions of Circulatory System A. Transports B. Transports C. Transports D. Transports E. of fluids F. G. Regulate temperature H. Blood clotting Characteristics of various blood

More information

The Circulatory System. The Heart, Blood Vessels, Blood Types

The Circulatory System. The Heart, Blood Vessels, Blood Types The Circulatory System The Heart, Blood Vessels, Blood Types The Closed Circulatory System Humans have a closed circulatory system, typical of all vertebrates, in which blood is confined to vessels and

More information

Pearson's Comprehensive Medical Assisting Administrative and Clinical Competencies

Pearson's Comprehensive Medical Assisting Administrative and Clinical Competencies Pearson's Comprehensive Medical Assisting Administrative and Clinical Competencies THIRD EDITION CHAPTER 27 The Cardiovascular System Lesson 1: Overview of the Cardiovascular System Lesson Objectives Upon

More information

The cardiovascular system is composed of the heart and blood vessels that carry blood to and from the body s organs. There are 2 major circuits:

The cardiovascular system is composed of the heart and blood vessels that carry blood to and from the body s organs. There are 2 major circuits: 1 The cardiovascular system is composed of the heart and blood vessels that carry blood to and from the body s organs. There are 2 major circuits: pulmonary and systemic. The pulmonary goes out to the

More information

Aim: Transport- Why is it so important to multicellular organisms?

Aim: Transport- Why is it so important to multicellular organisms? Aim: Transport- Why is it so important to multicellular organisms? I.Transportthe absorption and circulation that allows substances to pass into or out of cells and move throughout the organism. A. absorptionsubstances

More information

THE HEART OBJECTIVES: LOCATION OF THE HEART IN THE THORACIC CAVITY CARDIOVASCULAR SYSTEM

THE HEART OBJECTIVES: LOCATION OF THE HEART IN THE THORACIC CAVITY CARDIOVASCULAR SYSTEM BIOLOGY II CARDIOVASCULAR SYSTEM ACTIVITY #3 NAME DATE HOUR THE HEART OBJECTIVES: Describe the anatomy of the heart and identify and give the functions of all parts. (pp. 356 363) Trace the flow of blood

More information

Circulatory Systems. All cells need to take in nutrients and expel metabolic wastes.

Circulatory Systems. All cells need to take in nutrients and expel metabolic wastes. Circulatory Systems All cells need to take in nutrients and expel metabolic wastes. Single celled organisms: nutrients from the environment can diffuse (or be actively transported) directly in to the cell

More information

The Cardiovascular System Part I: Heart Outline of class lecture After studying part I of this chapter you should be able to:

The Cardiovascular System Part I: Heart Outline of class lecture After studying part I of this chapter you should be able to: The Cardiovascular System Part I: Heart Outline of class lecture After studying part I of this chapter you should be able to: 1. Describe the functions of the heart 2. Describe the location of the heart,

More information

CIRCULATORY SYSTEM BLOOD VESSELS

CIRCULATORY SYSTEM BLOOD VESSELS Name: Block: CIRCULATORY SYSTEM Multicellular organisms (above the level of roundworms) rely on a circulatory system to bring nutrients to, and take wastes away from, cells. In higher organisms such as

More information

The Mammalian Circulatory System

The Mammalian Circulatory System The Mammalian Heart The Mammalian Circulatory System Recall: What are the 3 cycles of the mammalian circulatory system? What are their functions? What are the three main vessel types in the mammalian circulatory

More information

Cardiovascular System

Cardiovascular System Cardiovascular System Blood vessels, heart and blood Functions Transport oxygen, nutrients, waste, hormones White blood cells fighting disease Temperature regulation Blood vessels; Arteries Arteries carry

More information

THE HEART. A. The Pericardium - a double sac of serous membrane surrounding the heart

THE HEART. A. The Pericardium - a double sac of serous membrane surrounding the heart THE HEART I. Size and Location: A. Fist-size weighing less than a pound (250 to 350 grams). B. Located in the mediastinum between the 2 nd rib and the 5 th intercostal space. 1. Tipped to the left, resting

More information

The Heart and Cardiovascular System

The Heart and Cardiovascular System The Heart and Cardiovascular System What you will learn The location of the heart 3 layers and covering of the heart Explain the function of the heart as 2 separate pumps Identify the 4 chambers of the

More information

The Heart and Heart Disease

The Heart and Heart Disease The Heart and Heart Disease Illustration of the heart by Leonardo DaVinci heart-surgeon.com/ history.html 2/14/2010 1 I. Location, Size and Position of the Heart A. Triangular organ located 1. of mass

More information

Major Function of the Cardiovascular System. Transportation. Structures of the Cardiovascular System. Heart - muscular pump

Major Function of the Cardiovascular System. Transportation. Structures of the Cardiovascular System. Heart - muscular pump Structures of the Cardiovascular System Heart - muscular pump Blood vessels - network of tubes Blood - liquid transport vehicle brachiocephalic trunk superior vena cava right pulmonary arteries right pulmonary

More information

Collin County Community College. ! BIOL Anatomy & Physiology! WEEK 5. The Heart

Collin County Community College. ! BIOL Anatomy & Physiology! WEEK 5. The Heart Collin County Community College! BIOL. 2402 Anatomy & Physiology! WEEK 5 The Heart 1 (1578-1657) A groundbreaking work in the history of medicine, English physician William Harvey s Anatomical Essay on

More information

Heart Dissection. 5. Locate the tip of the heart or the apex. Only the left ventricle extends all the way to the apex.

Heart Dissection. 5. Locate the tip of the heart or the apex. Only the left ventricle extends all the way to the apex. Heart Dissection Page 1 of 6 Background: The heart is a four-chambered, hollow organ composed primarily of cardiac muscle tissue. It is located in the center of the chest in between the lungs. It is the

More information

Chapter 27 The Heart and Blood Vessels

Chapter 27 The Heart and Blood Vessels Chapter 27 The Heart and Blood Vessels Most animals have a closed blood system. The blood flows continuously in vessels back to the heart. In an open system the blood is pumped into open ended tubes and

More information

All About the Heart. Structures of the heart. Layers. Chambers

All About the Heart. Structures of the heart. Layers. Chambers All About the Heart Your heart is a muscle. It is slightly larger than your fist and weighs less than a pound. It is located to the left of the middle of your chest. Your heart pumps blood to the lungs

More information

EKG Competency for Agency

EKG Competency for Agency EKG Competency for Agency Name: Date: Agency: 1. The upper chambers of the heart are known as the: a. Atria b. Ventricles c. Mitral Valve d. Aortic Valve 2. The lower chambers of the heart are known as

More information

2.02 Understand the functions and disorders of the circulatory system

2.02 Understand the functions and disorders of the circulatory system 2.02 Understand the functions and disorders of the circulatory system 2.02 Understand the functions and disorders of the circulatory system Essential questions: What are the functions of blood? What are

More information

CARDIAC MRI. Cardiovascular Disease. Cardiovascular Disease. Cardiovascular Disease. Overview

CARDIAC MRI. Cardiovascular Disease. Cardiovascular Disease. Cardiovascular Disease. Overview CARDIAC MRI Dr Yang Faridah A. Aziz Department of Biomedical Imaging University of Malaya Medical Centre Cardiovascular Disease Diseases of the circulatory system, also called cardiovascular disease (CVD),

More information

Non Contrast MRA. Mayil Krishnam. Director, Cardiovascular and Thoracic Imaging University of California, Irvine

Non Contrast MRA. Mayil Krishnam. Director, Cardiovascular and Thoracic Imaging University of California, Irvine Non Contrast MRA Mayil Krishnam Director, Cardiovascular and Thoracic Imaging University of California, Irvine No disclosures Non contrast MRA-Why? Limitations of CTA Radiation exposure Iodinated contrast

More information

STRUCTURES OF THE CARDIOVASCULAR SYSTEM

STRUCTURES OF THE CARDIOVASCULAR SYSTEM STRUCTURES OF THE CARDIOVASCULAR SYSTEM CARDIOVASCULAR SYSTEM Also called the circulatory system Consists of the heart, arteries, veins, and capillaries Main function is to pump/circulate oxygenated blood

More information

The Cardiac Cycle Clive M. Baumgarten, Ph.D.

The Cardiac Cycle Clive M. Baumgarten, Ph.D. The Cardiac Cycle Clive M. Baumgarten, Ph.D. OBJECTIVES: 1. Describe periods comprising cardiac cycle and events within each period 2. Describe the temporal relationships between pressure, blood flow,

More information

Outline. Electrical Activity of the Human Heart. What is the Heart? The Heart as a Pump. Anatomy of the Heart. The Hard Work

Outline. Electrical Activity of the Human Heart. What is the Heart? The Heart as a Pump. Anatomy of the Heart. The Hard Work Electrical Activity of the Human Heart Oguz Poroy, PhD Assistant Professor Department of Biomedical Engineering The University of Iowa Outline Basic Facts about the Heart Heart Chambers and Heart s The

More information

Label Diagram #1 (Pg. 664)

Label Diagram #1 (Pg. 664) Chapter 18 The Cardiovascular System 18.1 Heart Anatomy The Pulmonary and Systemic Circuits Oxygen rich vs. Oxygen Poor Heart is a transport system consisting of two side-by-side pumps Right side receives

More information

THE HEART Dr. Ali Ebneshahidi

THE HEART Dr. Ali Ebneshahidi THE HEART Dr. Ali Ebneshahidi Functions is of the heart & blood vessels 1. The heart is an essential pumping organ in the cardiovascular system where the right heart pumps deoxygenated blood (returned

More information

The blood returns from the body and enters right atrium using the vena cava. It passes through the tricuspid valve to the right ventricle.

The blood returns from the body and enters right atrium using the vena cava. It passes through the tricuspid valve to the right ventricle. The blood returns from the body and enters right atrium using the vena cava. It passes through the tricuspid valve to the right ventricle. From this camber, it passes through the pulmonary semilunar valve

More information

CIRCULATORY SYSTEM TASK CARDS Worksheet

CIRCULATORY SYSTEM TASK CARDS Worksheet CIRCULATORY SYSTEM TASK CARDS Worksheet Name: Date: Instructions: Put the answers to each task card in the numbered boxes on the chart. 1 a) left semilunar valve / aortic valve b) blood would backflow

More information

Chapter 20: Cardiovascular System: The Heart

Chapter 20: Cardiovascular System: The Heart Chapter 20: Cardiovascular System: The Heart I. Functions of the Heart A. List and describe the four functions of the heart: 1. 2. 3. 4. II. Size, Shape, and Location of the Heart A. Size and Shape 1.

More information

Scrub In: Red blood cells are called: Which component of blood is necessary for the initiation of the blood clotting process:

Scrub In: Red blood cells are called: Which component of blood is necessary for the initiation of the blood clotting process: Scrub In: Red blood cells are called: a. erythrocytes b. leukocytes c. melanocytes d. thrombocytes Which component of blood is necessary for the initiation of the blood clotting process: a. erythrocytes

More information

CIRCULATION. Cardiovascular & lymphatic systems Functions. Transport Defense / immunity Homeostasis

CIRCULATION. Cardiovascular & lymphatic systems Functions. Transport Defense / immunity Homeostasis CIRCULATION CIRCULATION Cardiovascular & lymphatic systems Functions Transport Defense / immunity Homeostasis 2 Types of Circulatory Systems Open circulatory system Contains vascular elements Mixing of

More information

Cardiac Conduction System

Cardiac Conduction System Cardiac Conduction System What causes the Heart to Beat? Heart contracts by electrical signals! Cardiac muscle tissue contracts on its own an electrical signal is sent out by the heart so that all cells

More information

Unit 8: Blood / Lymph / Cardiovascular System

Unit 8: Blood / Lymph / Cardiovascular System Name: Period: Unit 8: Blood / Lymph / Cardiovascular System Test Review 1. Identify the general formed elements of the blood and their general functions. a. Erythrocytes: b. Leukocytes: c. Thrombocytes:

More information

Electrocardiography I Laboratory

Electrocardiography I Laboratory Introduction The body relies on the heart to circulate blood throughout the body. The heart is responsible for pumping oxygenated blood from the lungs out to the body through the arteries and also circulating

More information

Cardiovascular Physiology

Cardiovascular Physiology Cardiovascular Physiology The mammalian heart is a pump that pushes blood around the body and is made of four chambers: right and left atria and right and left ventricles. The two atria act as collecting

More information

Chapter 9 Homeostasis and Circulation

Chapter 9 Homeostasis and Circulation 1 Chapter 9 Homeostasis and Circulation Section 9.1 Homeostasis: Life in the Balance Outcomes: I can explain homeostasis I can describe the importance of homeostasis to living things I can explain the

More information

Introduction. Cardiac Imaging Modalities MRI. Overview. MRI (Continued) MRI (Continued) Arnaud Bistoquet 12/19/03

Introduction. Cardiac Imaging Modalities MRI. Overview. MRI (Continued) MRI (Continued) Arnaud Bistoquet 12/19/03 Introduction Cardiac Imaging Modalities Arnaud Bistoquet 12/19/03 Coronary heart disease: the vessels that supply oxygen-carrying blood to the heart, become narrowed and unable to carry a normal amount

More information

Objectives 8/17/2011. Challenges in Cardiac Imaging. Challenges in Cardiac Imaging. Basic Cardiac MRI Sequences

Objectives 8/17/2011. Challenges in Cardiac Imaging. Challenges in Cardiac Imaging. Basic Cardiac MRI Sequences 8/17/2011 Traditional Protocol Model for Tomographic Imaging Cardiac MRI Sequences and Protocols Frandics Chan, M.D., Ph.D. Stanford University Medical Center Interpretation Lucile Packard Children s Hospital

More information

Chapter 13 The Cardiovascular System: Cardiac Function

Chapter 13 The Cardiovascular System: Cardiac Function Chapter 13 The Cardiovascular System: Cardiac Function Overview of the Cardiovascular System The Path of Blood Flow through the Heart and Vasculature Anatomy of the Heart Electrical Activity of the Heart

More information

Lesson 10 Circulatory System (Nelson p.88-93)

Lesson 10 Circulatory System (Nelson p.88-93) Name: Date: Lesson 10 Circulatory System (Nelson p.88-93) Learning Goals: A. I can explain the primary functions of the circulatory system in animals. B. I can identify and explain all the parts of the

More information

Cardiovascular Physiology. Heart Physiology. Introduction. The heart. Electrophysiology of the heart

Cardiovascular Physiology. Heart Physiology. Introduction. The heart. Electrophysiology of the heart Cardiovascular Physiology Heart Physiology Introduction The cardiovascular system consists of the heart and two vascular systems, the systemic and pulmonary circulations. The heart pumps blood through

More information

Heart. Structure Physiology of blood pressure and heartbeat

Heart. Structure Physiology of blood pressure and heartbeat Heart Structure Physiology of blood pressure and heartbeat Location and Anatomy Location and Anatomy Pericardial cavity: surrounds, isolates, and anchors heart Parietal pericardium lined with serous membrane

More information

The Circulatory System

The Circulatory System The Circulatory System Key Questions What are the functions of the circulatory system? How does the heart pump blood through the body? What are three types of blood vessels? Vocabulary myocardium atrium

More information

2.01 Remember the structures of the circulatory system

2.01 Remember the structures of the circulatory system 2.01 Remember the structures of the circulatory system Essential questions What are the structures of blood? What are the structures of the circulatory system? circulatory system 2 Structures of the circulatory

More information

Cardiovascular System

Cardiovascular System Cardiovascular System BELLWORK: Define using technology angio hemo/hema cardio brady as in bradycardia tachy as in tachycardia Standards 8) Outline basic concepts of normal structure and function of all

More information

THE HEART. Structure & Function

THE HEART. Structure & Function THE HEART Structure & Function SARAH JOHANSON BIOTECH ENGINEERING, 2015 Function of the Heart: The heart is muscular organ that sits centrally in the thorax region of the body, but is skewed and twisted

More information

Cardiovascular System: The Heart

Cardiovascular System: The Heart Cardiovascular System: The Heart I. Anatomy of the Heart (See lab handout for terms list) A. Describe the size, shape and location of the heart B. Describe the structure and function of the pericardium

More information

THE CARDIOVASCULAR SYSTEM. Heart 2

THE CARDIOVASCULAR SYSTEM. Heart 2 THE CARDIOVASCULAR SYSTEM Heart 2 PROPERTIES OF CARDIAC MUSCLE Cardiac muscle Striated Short Wide Branched Interconnected Skeletal muscle Striated Long Narrow Cylindrical PROPERTIES OF CARDIAC MUSCLE Intercalated

More information

CIRCULATION & GAS EXCHANGE

CIRCULATION & GAS EXCHANGE AP BIOLOGY ACTIVITY2.13 Text:Campbell,v.8,chapter42 NAME DATE HOUR CIRCULATION & GAS EXCHANGE 1. In general, what is the function of transport systems? 2. What method/structure do most invertebrates use

More information

DISSECTION OF A SHEEP HEART

DISSECTION OF A SHEEP HEART DISSECTION OF A SHEEP HEART I. INTRODUCTION A. You will soon appreciate the point made previously the heart models just don t teach us what a real heart is like! Dissecting a sheep heart will give you

More information

The heart & Cardiovascular system

The heart & Cardiovascular system The heart & Cardiovascular system The heart s continuous pulse create a base for our understanding of rhythms in everyday life. Bonnie Bainbridge Cohen The heart constantly beats throughout our lives never

More information

Circulatory System Review

Circulatory System Review Circulatory System Review 1. Know the diagrams of the heart, internal and external. a) What is the pericardium? What is myocardium? What is the septum? b) Explain the 4 valves of the heart. What is their

More information

AP2 Lab 3 Coronary Vessels, Valves, Sounds, and Dissection

AP2 Lab 3 Coronary Vessels, Valves, Sounds, and Dissection AP2 Lab 3 Coronary Vessels, Valves, Sounds, and Dissection Project 1 - BLOOD Supply to the Myocardium (Figs. 18.5 &18.10) The myocardium is not nourished by the blood while it is being pumped through the

More information

Anatomy & Physiology of Cardiovascular System. Chapter 18 & 19

Anatomy & Physiology of Cardiovascular System. Chapter 18 & 19 Anatomy & Physiology of Cardiovascular System Chapter 18 & 19 Objectives..cont 1. Discuss the physiological stages of cardiac muscle contraction. 2. Trace a typical ECG and label each wave or complex 3.

More information

Cardiovascular System

Cardiovascular System Cardiovascular System I. Structure of the Heart A. Average adult heart is 14 cm long and 9 cm wide. B. Lies in the mediastinum. C. Enclosed in the pericardium. 1. Fibrous pericardium- Outer, tough connective

More information

Principles of Biomedical Systems & Devices. Lecture 8: Cardiovascular Dynamics Dr. Maria Tahamont

Principles of Biomedical Systems & Devices. Lecture 8: Cardiovascular Dynamics Dr. Maria Tahamont Principles of Biomedical Systems & Devices Lecture 8: Cardiovascular Dynamics Dr. Maria Tahamont Review of Cardiac Anatomy Four chambers Two atria-receive blood from the vena cave and pulmonary veins Two

More information

12.1 The Function of Circulation

12.1 The Function of Circulation 12.1 The Function of Circulation The Circulatory System Magnetic Resonance Angiography (MRA) Heart pump beats 100 000 times a day Deliver oxygen and nutrients Function of Circulation Multicellular organisms

More information

AP2 Lab 1 - Blood & Heart

AP2 Lab 1 - Blood & Heart AP2 Lab 1 - Blood & Heart Project 1 - Formed Elements Identification & Recognition See fig. 17.10 and Table 17.2. Instructor may also provide other images. Note: See Fig. 17.11 All formed elements are

More information

LAB: Sheep or Pig Heart Dissection

LAB: Sheep or Pig Heart Dissection Biology 12 Name: Circulatory System Per: Date: Observation: External Anatomy LAB: Sheep or Pig Heart Dissection 1. Line a dissecting tray with paper towel for easy clean up as the heart is fatty and will

More information

Class XI Chapter 18 Body Fluids and Circulation Biology

Class XI Chapter 18 Body Fluids and Circulation Biology Question 1: Name the components of the formed elements in the blood and mention one major function of each of them. The component elements in the blood are: (1) Erythrocytes: They are the most abundant

More information

Understanding the 12-lead ECG, part II

Understanding the 12-lead ECG, part II Bundle-branch blocks Understanding the 12-lead ECG, part II Most common electrocardiogram (ECG) abnormality Appears as a wider than normal S complex Occurs when one of the two bundle branches can t conduct

More information

UNIT 11: THE CARDIOVASCULAR SYSTEM

UNIT 11: THE CARDIOVASCULAR SYSTEM UNIT 11: THE CARDIOVASCULAR SYSTEM Functions of the Heart PUMPS Blood Transports Oxygen and Nutrients Removes Carbon Dioxide and Metabolic Wastes Thermoregulation Immunological Function Clotting Mechanisms

More information

BIOL 4350 Cardiovascular Physiology Dr. Hamilton. Using the figure above, match the following: 1. Purkinje fibers. 2. SA node. 3. AV node.

BIOL 4350 Cardiovascular Physiology Dr. Hamilton. Using the figure above, match the following: 1. Purkinje fibers. 2. SA node. 3. AV node. BIOL 4350 Cardiovascular Physiology Dr. Hamilton Using the figure above, match the following: 1. Purkinje fibers. 2. SA node. 3. AV node. 1 Using the figure above, match the following: 4. Atrial depolarization.

More information

The Cardiovascular and Lymphatic Systems Cardiovascular System Blood Vessels Blood Vessels Arteries Arteries Arteries

The Cardiovascular and Lymphatic Systems Cardiovascular System Blood Vessels Blood Vessels Arteries Arteries Arteries CH 12 The Cardiovascular and s The Cardiovascular and s OUTLINE: Cardiovascular System Blood Vessels Blood Pressure Cardiovascular System The cardiovascular system is composed of Blood vessels This system

More information

Clinical Applications

Clinical Applications C H A P T E R 16 Clinical Applications In selecting pulse sequences and measurement parameters for a specific application, MRI allows the user tremendous flexibility to produce variations in contrast between

More information

Pathological Arrhythmias/ Tachyarrhythmias

Pathological Arrhythmias/ Tachyarrhythmias Pathological Arrhythmias/ Tachyarrhythmias caused by: 1.Ectopic focus: Extrasystole or premature beat. If discharge is occasional. Can be: Atrial Extrasystole Vevtricular Extrasystole 2.Cardiac Arrhythmia

More information

PART I: HEART ANATOMY

PART I: HEART ANATOMY Lab 7: Heart Sounds and Blood Pressure PART I: HEART ANATOMY a) You should be able to identify the following structures on an adult human heart diagram. the 4 chambers the bicuspid (mitral) and tricuspid

More information

The Circulatory System (p )

The Circulatory System (p ) The Circulatory System (p. 268-281) How Does Gravity Affect Blood Circulation? As with all land animals, the giraffe and the corn snake are constantly subject to the force of gravity The circulatory system

More information

ANATOMY AND PHYSIOLOGY HOMEWORK CHAPTER 11 AND 12

ANATOMY AND PHYSIOLOGY HOMEWORK CHAPTER 11 AND 12 ANATOMY AND PHYSIOLOGY HOMEWORK CHAPTER 11 AND 12 Name Identify the following: 1) The Purkinje fibers are indicated by label. 2) The sinoatrial (SA) node is indicated by letter. 3) The specific chamber

More information

Journal of American Science 2014;10(9) Congenital Heart Disease in Pediatric with Down's Syndrome

Journal of American Science 2014;10(9)  Congenital Heart Disease in Pediatric with Down's Syndrome Journal of American Science 2014;10(9) http://www.jofamericanscience.org Congenital Heart Disease in Pediatric with Down's Syndrome Jawaher Khalid Almaimani; Maryam Faisal Zafir; Hanan Yousif Abbas and

More information

AS Level OCR Cardiovascular System

AS Level OCR Cardiovascular System AS Level OCR Cardiovascular System Learning Objectives The link between the Cardiac Cycle and the Conduction system of the heart. The relationship between Stroke volume, Heart rate and Cardiac Output.

More information

Introduction to Medical Careers. Cardiovascular & Circulatory Systems Chapters 11-12

Introduction to Medical Careers. Cardiovascular & Circulatory Systems Chapters 11-12 Introduction to Medical Careers Cardiovascular & Circulatory Systems Chapters 11-12 CHAPTER 11 CARDIOVASCULAR SYSTEM I will be able to: 1. Define at least eight terms referring to the cardiovascular system.

More information

Heart Facts. The average adult heart beats 72 times a min 100,000 times a day 3,600,000 times a year 2.5 billion times during a lifetime.

Heart Facts. The average adult heart beats 72 times a min 100,000 times a day 3,600,000 times a year 2.5 billion times during a lifetime. Circulatory System Heart Facts The average adult heart beats 72 times a min 100,000 times a day 3,600,000 times a year 2.5 billion times during a lifetime. Heart Facts Weighs 11 oz A healthy heart pumps

More information

Function: Transportation of. Oxygen Nutrients Waste Hormones gases

Function: Transportation of. Oxygen Nutrients Waste Hormones gases Function: Transportation of Oxygen Nutrients Waste Hormones gases Pericardium: double sac of serous membrane filled with fluid (pericardial fluid to be exact) that surrounds the heart. Parietal pericardium:

More information

CJ Shuster A&P2 Lab Addenum Beef Heart Dissection 1. Heart Dissection. (taken from Johnson, Weipz and Savage Lab Book)

CJ Shuster A&P2 Lab Addenum Beef Heart Dissection 1. Heart Dissection. (taken from Johnson, Weipz and Savage Lab Book) CJ Shuster A&P2 Lab Addenum Beef Heart Dissection 1 Heart Dissection. (taken from Johnson, Weipz and Savage Lab Book) Introduction When you have finished examining the model, you are ready to begin your

More information

1. Label the Diagram using the following terms: artery, arterioles, vein, venules, capillaries, valve, inner wall, middle wall, outer wall

1. Label the Diagram using the following terms: artery, arterioles, vein, venules, capillaries, valve, inner wall, middle wall, outer wall Bio 20 Ms. Nyboer Arteries, Veins, Capillaries, and the Heart Structure and Function Workbook Use your textbook (Ch. 10) and notes to fill in this workbook Part A: Arteries, Veins, Capillaries 1. Label

More information

Blood flows away from the heart in arteries, to the capillaries and back to the heart in the veins

Blood flows away from the heart in arteries, to the capillaries and back to the heart in the veins Cardiovascular System Summary Notes The cardiovascular system includes: The heart, a muscular pump The blood, a fluid connective tissue The blood vessels, arteries, veins and capillaries Blood flows away

More information

The cardiovascular system is composed of a pump the heart and blood

The cardiovascular system is composed of a pump the heart and blood 5 E X E R C I S E Cardiovascular Dynamics O B J E C T I V E S 1. To understand the relationships among blood flow, pressure gradient, and resistance 2. To define resistance and describe the main factors

More information

Ch. 12 The Circulatory System. The heart. The heart is a double pump. A quick note on arteries vs. veins. = the muscular pump of the CV system

Ch. 12 The Circulatory System. The heart. The heart is a double pump. A quick note on arteries vs. veins. = the muscular pump of the CV system Ch. 12 The Circulatory System The heart A.k.a. the cardiovascular system Blood was discussed in Ch. 11 Focus of Ch. 12: heart and blood vessels = the muscular pump of the CV system ~ 100,000 heartbeats/day!

More information