Antiarrhythmic Pharmacology. The Electronics

Size: px
Start display at page:

Download "Antiarrhythmic Pharmacology. The Electronics"

Transcription

1 Antiarrhythmic Pharmacology Linking Pharmacological Treatment to the Patient and the Rhythm Presented By: Karen Marzlin BSN, RN,C, CCRN-CMC CNEA The Electronics Action Potential of Cardiac Cells Phase 0: Rapid depolarization (beginning of QRS complex) Phase 1: Brief, rapid initiation of repolarization (QRS complex) 2 1

2 The Electronics Phase 2: Slowing of the repolarization (ST segment) Phase 3: Sudden acceleration in the rate of repolarization (T wave) Phase 4: Resting membrane potential (T-P segment)

3 5 Antiarrhythmic Medications Effecting the Action Potential Class I Fast sodium channel blockers IA:Quinidine, Procainamide, Disopyramide IB: Lidocaine, Mexiletine, Tocainide Class II??? IC: Flecainide, Propafenone Class III Potassium channel blockers Amiodarone, Ibutalide, Dofetalide, Sotalol Class IV Calcium channel blockers Verapamil, Diltiazem 6 3

4 Action Potential Actions Cautions Uses Drugs Class I A Antiarrhythmics Depresses Phase O of Action Potential Inhibits influx of sodium the fast channel of cardiac cell membrane Slows conduction widens QRS Increases the recovery period after repolarization; Effective refractory period prolonged, myocardium refractory after resting membrane potential has been restored (slightly prolongs QT) Decreases automaticity, excitability, conduction velocity (including accessory pathways) and contractility Net effect: suppresses atrial and ventricular ectopy Prolongs QT interval Mainly used in treatment of atrial fib / flutter Can also be used for ventricular tachycardia Quinidine Procainamide (Pronestyl) Disopyramide (Norpace) 7 Class I A Antiarrhythmics Quinidine Procainamide (Pronestyl) Disopyramide (Norpace) Effective antimalarial agent Anticholinergic effects Can increase ventricular rate in A fib / flutter Anticholinergic effects less pronounced ACLS Protocol Indications: Stable monomorphic or polymorphic VT with preserved ventricular function Can be used along with class IC drugs in WPW tachycardias Significant anticholinergic effects (limits uses) Can increase ventricular rate in A fib / flutter Significant negative inotropic effect Only used investigationally IV for refractory VT; Rapid IV dosing can decrease SVR 8 4

5 Action Potential Actions Cautions Uses Drugs Chart based on Lidocaine: Class I B Antiarrhythmics Blocks Phase O of Action Potential Inhibits influx of sodium the fast channel of cardiac cell membrane Increases the recovery period after repolarization; shortens refractory period (repolarization) unlike class IA drugs which lengthen it; Suppresses automaticity but not in the SA node; suppresses spontaneous depolarization in the ventricle inhibiting reentry mechanisms (some variations with other class I B medications) Acts preferentially on ischemic tissue; No anticholinergic properties Heavily metabolized in liver; toxicity manifested neurologically Acceptable for stable monomorphic or polymorphic VT (Acceptable for impaired ventricular function) Noy for prophylaxis of arrhythmias post infarction Lidocaine; Mexiletine (Mexitil); Tocainide (Tonocard) 9 Lidocaine Class I B Antiarrhythmics Parenteral administration only Can give via E-Tube during code Amiodorone considered first for pulseless ventricular tachycardia or ventricular fibrillation CNS: Effects confusion, numbness or tingling of lips or tongue, blurred vision Mexiletine (Mexitil) Tocainide (Tonocard) Used in treatment of life threatening ventricular arrhythmias Also used to treat diabetic neuropathy pain Tablets were discontinued on December Potential fatal hematological side effect of agranulocytosis

6 Action Potential Class I C Antiarrhythmics Potent inhibition of fast sodium channel; decrease in maximal rate of phase 0 depolarization Actions Increases recovery period after repolarization Slow His-Purkinge conduction and cause QRS widening PR and QT intervals are also usually prolonged Cautions Uses Drugs Proarrhythmic effects Life threatening ventricular arrhythmias Conversion to SR (Flecainide) Flecainide (Tambocor) Encainide (Enkaid) Moricizine (Ethomozine) Propofenone (Rhythmol) 11 Class I C Antiarrhythmics Flecainide (Tambocor) Encainide (Enkaid) Will slow conduction over accessory pathways in WPW tachycardias Not a first line agent for ventricular arrhythmias Used in atrial fibrillation CAST Trial: propensity for fatal proarrhythmic effects Not used post MI or with depressed LV function Discontinued in US in 1991; made available for compassionate care only to those on medication

7 Class I C Antiarrhythmics Moricizine (Ethmozine) Propafenone (Rhythmol) CAST studies: Reserved for life threatening ventricular arrhythmias Has properties of class I A and I B also Prolongs Pr, AV nodal conduction time and intraventricular conduction time Used in supraventricular arrhythmias and life threatening ventricular arrhythmias Also has small beta blocking actions Prolongs effective refractory period of accessory pathways Must be initiated in hospital setting to monitor ECG 13 Beta blockers A Closer Look at Antiarrhythmics Depresses SA node automaticity Increases refractory period of atrial and AV junctional tissue to slow conduction Inhibits sympathetic activity lol medications Sotalol (Class II and III) Class II

8 Class III Antiarrhythmics Action Potential Actions Cautions Uses Drugs Inhibits potassium ion fluxes during phase II and III of the action potential Directly on myocardium to delay repolarization (prolongs QT); prolongs effective refractory period in all cardiac tissue; By definition act only on repolarization phase and should not impact conduction Proarrhythmic Effects (amiodarone less) Drug dependent Amiodarone (Pacerone, Cordorone) Ibutilide (Corvert) pure class III Dofetilide (Tikosyn) pure class III Sotalol (Betapace) 15 Class III Antiarrhythmics Amiodarone (ARREST Trial) Approved for life threatening refractory ventricular arrhythmias; considered before lidocaine in pulseless VT or V fib; considered ahead of lidocaine for stable VT with impaired cardiac function; expanded to atrial and ventricular arrhythmias, conversion and maintenance of atrial fib Slows conduction in accessory pathways Originally marketed as anti-anginal (potent vasodilator) Relaxes smooth and cardiac muscle, reduces afterload and preload (well tolerated in heart failure and cardiomyoapthy) Proarrhythmias less frequent Is also a weak sodium channel blocker, also has effects similar to class II and IV, also has anticholinergic properties

9 Amiodarone Dosing Life-threatening ventricular arrhythmias Rapid loading infusion 150 mg administered at a rate of 15 mg/minute (over 10 minutes); initial infusion rate should not exceed 30 mg/minute The slow loading phase is 360 mg at a rate of 1 mg/minute (over 6 hours) First maintenance phase of the infusion is 540 mg at a rate of 0.5 mg/minute (over 18 hours). After the first 24 hours, maintenance infusion rate of 0.5 mg/minute should be continued; the rate of the maintenance infusion may be increased to achieve effective arrhythmia suppression. In the event of breakthrough episodes supplemental infusions of 150 mg administered at a rate of 15 mg/minute (over 10 minutes) may be given. For cardiac arrest secondary to pulseless ventricular tachycardia or ventricular fibrillation Initial adult loading dose is 300 mg (diluted in ml of a compatible IV solution) given as a single dose, rapid IV 17 More on Amiodarone Nursing Considerations Peripheral IV concentration not to exceed 2mg/ml Oral administration / GI symptoms Severe adverse reactions (potentially lethal interstial pneumonitis CXR q 3-6 mos); less common in lower doses; Thyroid dysfunction is also a side effect (by weight amiodarone is 37% iodine) Toxic side effects increase with length of use

10 Ibutilide (Corvert) Dofetilide (Tykosin) Class III Antiarrhythmics Indicated for rapid conversion of atrial fib or flutter to sinus rhythm; IV use only; also facilitated cardioversion (Don t convert atrial fib or flutter of duration without anticoagulation) Rather than blocking outward potassium currents promotes influx of sodium through slow inward sodium channel More pure class III agent Conversion to and maintenance of SR in A fib and flutter Reserved for very symptomatic patients, monitored 3 days in hospital Widens the QT; cannot be given with many other drugs (prolong QT or inhibit metabolism or elimination); no negative inotropic effects, neutral effect on mortality from arrhythmias post MI and in in HF, can be used in this 19 population to prevent worsening HF from atrial fib Class III Antiarrhythmics Sotalol (Betapace R ) (Betapace AF ) Used in atrial arrhythmias and life threatening ventricular arrhythmias Indicated for stable monomorphic VT or Polymorphic VT with normal QT in ACLS protocol Non selective beta blocking agent with class III properties Significant class III effects are only seen at doses > 160 mg Proarrhythmic potential (prolonged QT) More effective in preventing reoccurring arrhythmias than several other drugs

11 New Antiarrhythmic Dronedarone (Multaq) Rejected by FDA 2006 Decision by April Decreases hospitalizations in atrial fib Safer alternative to amiodarone 21 Class IV Antiarrhythmics Phase II of Action Potential Depresses automaticity in the SA and AV Junction and increases the refractory period at the AV junction Decreases contractility Calcium Channel Blockers Verapamil (SA Node), Cardizem (AV Node)

12

13 Exercise for Pro Arrhythmia Can expose pro arrhythmia with class I agents Will suppress pro arrhythmia with class III agents Increase HR = decreased pro arrhythmia 25 Initiation in Outpatient Setting Propafenone Absence of structural HD / SR Flecainide Absence of structural HD / SR Amiodarone Bradycardia biggest safety concern Absence of conduction system disease Sotolol In selected healthy patients

14 Outpatient Initiation Does not imply lack of monitoring Will be standard for new drug development Need to carefully dose and titrate 27 Non-classified Antiarrhythmics Adenosine Blocks conduction through AV Node Atropine Parasympatholytic Digitalis Cardiac Glycoside

15 Adenosine (Adenocard) Slows conduction through the AV Node Vasodilator Interrupts reentry pathways through the AV node and restores sinus rhythm Uses: Paroxsysmal SVT, AVNRT, Drug stress testing Side Effects: Headache, arrhythmias (blocks), SOB, chest pressure 29 Adenosine Nursing Considerations: Use cautiously in patients with asthma could cause bronchospasm Onset IV: Immediate Peak: 10 sec Duration seconds Dosing for conversion of arrhythmia: 6mg IV rapid push If no change within 1-2 minutes repeat with 12mg rapid push Not indicated in WPW Fibrillation!

16 Digoxin Inhibits the NA+ and K+ membrane pump Increase in intracellular Na+ Enhances the Na+ and Ca++ exchange Leads to in intracellular Ca++ inotropic activity 31 Digoxin Digoxin also increases vagal activity and decreases conduction velocity through the AV node (sympathetic stimulation easily overrides the inhibitory effects of digoxin on AV node conduction) Calcium channel blockers are replacing digoxin as agent for rate control in atrial arrhythmias Digoxin no better than placebo in converting atrial fib to SR Digoxin decreases sympathetic outflow and decreases renin production Beneficial in heart faiure

17 Digoxin Indications HF Atrial arrhythmias (old indication) Contraindication / cautions MI Ventricular arrhythmias, HB, Sick Sinus Syndrome IHHS Electrolyte abnormalities (decreased K+, Ca++ and Mg++) 33 Digoxin Has a narrow therapeutic range Toxicity may occur at therapeutic levels Lower doses now routinely used mg daily Amiodorone increases serum digoxin concentration (digoxin doses must be reduced if starting amiodarone) Multiple other medication interactions Dialysis is not effective with digoxin toxicity because of high tissue binding of digoxin

18 More About Digoxin Toxicity EKG Changes with Toxicity Increased automaticity with with impaired conduction is common (example: PAT with AV Block) Other Signs and Symptoms of Toxicity N & V, HA, Confusion Visual disturbances: halos, change in color perception

19 Patients Not Requiring Antiarrhythmics Because of proarrhythmias or exacerbations of existing arrhythmias antiarrhythmic therapy not indicated for: Asymptomatic atrial ectopy and unsustained SVT Asymptomatic ventricular ectopy without runs of VT Simple ventricular ectopy in AMI with no hemodynamic compromise Asymptomatic unsustained VT with no structural heart disease Asymptomatic WPW without known SVT Mildly symptomatic simple atrial or ventricular ectopy 37 Class Antiarrhythmics in Atrial Fibrillation Specific Medications Purpose of Medication Major Cardiac Side Effects Class I A Class I B Class I C Disopyramide Procainamide Quinidine Not used in atrial fibrillation Flecainide Propofenone Rhythm Control Rhythm Control Rhythm Control Rhythm Control Rhythm Control Torsade de pointes, HF Torsade de pointes Torsade de pointes Ventricular tachycardia, HF, Atrial Flutter Ventricular tachycardia, HF, Atrial Flutter Class II Beta Blockers Rate Control Class III Amiodarone Dofetilide Ibutilide Sotalol (also contains beta blocker) Rhythm / Rate Control Rhythm Control Rhythm Control Rhythm Control (also controls rate) Torsade de pointes (rare) * Organ toxicity Torsade de pointes Torsade de pointes Torsade de pointes, HF, Beta blocker side effects Class IV Calcium Channel Blockers Rate Control

20 Drugs Proven Most Effective for Pharmacological Cardioversion of Atrial Fibrillation (Class I Recommendation from ACC / AHA Guidelines Duration of Less than or Equal to 7 Days) Dofetilide * Flecainide Ibutilide Propofenone (* Also-class I recommendation for duration of Atrial Fibrillation > 7 days) 39 Medications Used to Maintain Sinus Rhythm in Patients with Atrial Fibrillation Amiodarone Disopyramide Dofetilide Flecainide Procainamide Propafenone Quinidine Sotalol

21 Medications Used to Maintain Sinus Rhythm in Special Patient Populations Special Patient Population Lone Atrial Fibrillation Medication Used to Maintain Sinus Rhythm Flecainide Propafenone Sotalol; Beta Blockers may also be tried Neurogenic Atrial Fibrillation Atrial Fibrillation in Heart Failure Disopyramide or flecainide (for vagal) Beta Blockers or sotalol (for adrenergic Amiodarone (less proarrhythmic effects) Dofetilide Atrial Fibrillation in Coronary Artery Disease Atrial fibrillation in Hypertensive Heart Disease with Left Ventricular Hypertrophy Sotalol (beta blocking properties) Propafenone (Class I C - does not prolong QT) Flecainide (Class I C - does not prolong QT) Amiodarone (if significant hypertrophy) 41 Emergency Antiarrhythmic Summary Atrial Fibrillation / Flutter Rate Control Normal LV (Class I Recommendations) Diltiazem Metoprolol Impaired LV (Class IIb Recommendations) Diltiazem Digoxin Amiodorone (Cordrone) (Class III) Conversion only if < 48 hour duration DC Cardioversion or Amiodrone (IIb) Other options only if LV preserved Ibutilide (Corvert) (Class III) Procainamide (Pronestyl) (Class IA) * Flecainide (Tambacor) (Class IC) * Propafenone (Rhythmol) (Class IC) * Not available in IV form in US

22 Emergency Antiarrhythmic Summary Atrial Fib in WPW DC Cardioversion if < 48 hours Preserved LV function Amiodarone Procainamide * Flecainide * Sotalol * Propofenone Impaired LV function Amiodorone only 43 Emergency Antiarrhythmic Summary Narrow Complex SVT (Initial Treatment) Vagal Adenosine

23 Emergency Antiarrhythmic Summary Stable Ventricular Tachycardia (Preserved LV Function) Monomorphic Procainamide Sotalol * Amiodarone Lidocaine Polymorphic Normal QT Beta Blockers (or) Lidocaine (or) Amiodarone (or) Procainide (or) Sotalol (or) Polymorphic Prolonged QT Magnesium (or) Lidocaine (or) Isoproterenol (or) Phenytoin (or) 45 Emergency Antiarrhythmic Summary Stable Ventricular Tachycardia (Monomorphic or Polymorphic: Normal or Prolonged QT) (Impaired Cardiac Function) * Amiodarone (or) Lidocaine

24 Summary New ACLS Guideline Changes Vasopressors or epinephrine for VF or pulseless VT when IV line in place Amiodarone preferred over lidocaine for VF and VT Epinephrine or vasopressin then atropine for asystole and PEA 47 Arrhythmias with ACS: ACC/AHA V-fib early in ACS Increase hospital mortality No increase in long term mortality Lidocaine prophylaxis Decrease V-fib Increase mortality Beta-blockers prophylaxis Decrease V-fib Correction of potassium and magnesium

25 Monomorphic VT: ACC/AHA DC cardioversion with sedation if unstable IV procainamide Stable VT Caution with CHF or severe LV dysfunction IV amiodarone Hemodynamically unstable Refractory to shock TTVP for pace termination Lidocaine if ischemia Class III: Calcium channel blockers in wide complex of unknown origin; especially if myocardial dysfunction 49 Repetitive Monomorphic VT: ACC/AHA IV amiodarone, beta-blocker, procainamide Generally idiopathic VT RV outflow tract May be provoked by exercise Beta-blockers or calcium channel blockers may be effective Ablation is successful treatment option

26 Polymorphic VT: ACC / AHA DC cardioversion with sedation when unstable IV beta-blockers if ischemia suspected Improve mortality IV amiodarone in absence of abnormal repolarization Urgent angiography to exclude ischemia Lidocaine may be reasonable if ischemia suspected 51 Class I Incessant VT VT Storm: ACC/AHA Revascularization and beta-blocker Followed by IV amiodarone or procainamide (if due to acute ischemia) Class IIa IV amiodarone or procainamide followed by VT ablation Important to understand substrate to target treatment

27 Thanks for Attending Cardiovascular Boot Camp You may contact us at 53 Gratitude

Antiarrhythmic Pharmacology: Important Practice Implications

Antiarrhythmic Pharmacology: Important Practice Implications Antiarrhythmic Pharmacology: Important Practice Implications NTI 2015 San Diego Session A75M457 Presented By: Karen Marzlin DNP, RN, CCNS, CCRN-CMC, CHFN 1 Methodology Rhythm Interpretation Patient Information

More information

Antiarrhythmic Drugs

Antiarrhythmic Drugs Antiarrhythmic Drugs DR ATIF ALQUBBANY A S S I S T A N T P R O F E S S O R O F M E D I C I N E / C A R D I O L O G Y C O N S U L T A N T C A R D I O L O G Y & I N T E R V E N T I O N A L E P A C H D /

More information

Chapter 9. Learning Objectives. Learning Objectives 9/11/2012. Cardiac Arrhythmias. Define electrical therapy

Chapter 9. Learning Objectives. Learning Objectives 9/11/2012. Cardiac Arrhythmias. Define electrical therapy Chapter 9 Cardiac Arrhythmias Learning Objectives Define electrical therapy Explain why electrical therapy is preferred initial therapy over drug administration for cardiac arrest and some arrhythmias

More information

PHARMACOLOGY OF ARRHYTHMIAS

PHARMACOLOGY OF ARRHYTHMIAS PHARMACOLOGY OF ARRHYTHMIAS Course: Integrated Therapeutics 1 Lecturer: Dr. E. Konorev Date: November 27, 2012 Materials on: Exam #5 Required reading: Katzung, Chapter 14 1 CARDIAC ARRHYTHMIAS Abnormalities

More information

Pediatrics ECG Monitoring. Pediatric Intensive Care Unit Emergency Division

Pediatrics ECG Monitoring. Pediatric Intensive Care Unit Emergency Division Pediatrics ECG Monitoring Pediatric Intensive Care Unit Emergency Division 1 Conditions Leading to Pediatric Cardiology Consultation 12.7% of annual consultation Is arrhythmias problems Geggel. Pediatrics.

More information

Rhythm Control: Is There a Role for the PCP? Blake Norris, MD, FACC BHHI Primary Care Symposium February 28, 2014

Rhythm Control: Is There a Role for the PCP? Blake Norris, MD, FACC BHHI Primary Care Symposium February 28, 2014 Rhythm Control: Is There a Role for the PCP? Blake Norris, MD, FACC BHHI Primary Care Symposium February 28, 2014 Financial disclosures Consultant Medtronic 3 reasons to evaluate and treat arrhythmias

More information

Chapter 26. Media Directory. Dysrhythmias. Diagnosis/Treatment of Dysrhythmias. Frequency in Population Difficult to Predict

Chapter 26. Media Directory. Dysrhythmias. Diagnosis/Treatment of Dysrhythmias. Frequency in Population Difficult to Predict Chapter 26 Drugs for Dysrythmias Slide 33 Slide 35 Media Directory Propranolol Animation Amiodarone Animation Upper Saddle River, New Jersey 07458 All rights reserved. Dysrhythmias Abnormalities of electrical

More information

Mr. Eknath Kole M.S. Pharm (NIPER Mohali)

Mr. Eknath Kole M.S. Pharm (NIPER Mohali) M.S. Pharm (NIPER Mohali) Drug Class Actions Therapeutic Uses Pharmacokinetics Adverse Effects Other Quinidine IA -Binds to open and inactivated Na+ -Decreases the slope of Phase 4 spontaneous depolarization

More information

Antiarrhythmic Drugs 1/31/2018 1

Antiarrhythmic Drugs 1/31/2018 1 Antiarrhythmic Drugs 1/31/2018 1 Normal conduction pathway: 1- SA node generates action potential and delivers it to the atria and the AV node 2- The AV node delivers the impulse to purkinje fibers Other

More information

Use of Antiarrhythmic Drugs for AF Who, What and How? Dr. Marc Cheng Queen Elizabeth Hospital

Use of Antiarrhythmic Drugs for AF Who, What and How? Dr. Marc Cheng Queen Elizabeth Hospital Use of Antiarrhythmic Drugs for AF Who, What and How? Dr. Marc Cheng Queen Elizabeth Hospital Content i. Rhythm versus Rate control ii. Anti-arrhythmic for Rhythm Control iii. Anti-arrhythmic for Rate

More information

Arrhythmias. Simple-dysfunction cause abnormalities in impulse formation and conduction in the myocardium.

Arrhythmias. Simple-dysfunction cause abnormalities in impulse formation and conduction in the myocardium. Arrhythmias Simple-dysfunction cause abnormalities in impulse formation and conduction in the myocardium. However, in clinic it present as a complex family of disorders that show variety of symptoms, for

More information

The most common. hospitalized patients. hypotension due to. filling time Rate control in ICU patients may be difficult as many drugs cause hypotension

The most common. hospitalized patients. hypotension due to. filling time Rate control in ICU patients may be difficult as many drugs cause hypotension Arrhythmias in the critically ill ICU patients: Approach for rapid recognition & management Objectives Be able to identify and manage: Atrial fibrillation with a rapid ventricular response Atrial flutter

More information

Dysrhythmias. Dysrythmias & Anti-Dysrhythmics. EKG Parameters. Dysrhythmias. Components of an ECG Wave. Dysrhythmias

Dysrhythmias. Dysrythmias & Anti-Dysrhythmics. EKG Parameters. Dysrhythmias. Components of an ECG Wave. Dysrhythmias Dysrhythmias Dysrythmias & Anti-Dysrhythmics Rhythm bad in the heart: Whitewater rafting Electrical impulses coordinate heart Reduction in Cardiac Output PEA Asystole Components of an ECG Wave EKG Parameters

More information

Arrhythmias. 1. beat too slowly (sinus bradycardia). Like in heart block

Arrhythmias. 1. beat too slowly (sinus bradycardia). Like in heart block Arrhythmias It is a simple-dysfunction caused by abnormalities in impulse formation and conduction in the myocardium. The heart is designed in such a way that allows it to generate from the SA node electrical

More information

WHAT DO YOU SEE WHEN YOU STIMULATE BETA

WHAT DO YOU SEE WHEN YOU STIMULATE BETA CARDIAC DRUG REVIEW WHAT DO YOU SEE WHEN YOU STIMULATE BETA VASODILATE BRONCHODILATE +CHRONOTROPE +INOTROPE EPI S OTHER NAME? ADRENALIN WHAT DOES EPI DO THAT NOREPI AND DOPAMINE DO NOT DO? BETA 2 BRONCHODILATOR

More information

CSI Skills Lab #5: Arrhythmia Interpretation and Treatment

CSI Skills Lab #5: Arrhythmia Interpretation and Treatment CSI 202 - Skills Lab #5: Arrhythmia Interpretation and Treatment Origins of the ACLS Approach: CSI 202 - Skills Lab 5 Notes ACLS training originated in Nebraska in the early 1970 s. Its purpose was to

More information

Alaska Nurse Practitioner Annual Conference 2009

Alaska Nurse Practitioner Annual Conference 2009 Alaska Nurse Practitioner Annual Conference 2009 LAURIE RACENET, RN, MSN, ANP, CEPS, CCDS Alaska Heart Institute Member: Boston Scientific Allied Professional Advisory Board Participant in Industry Sponsored

More information

Chapter 14. Agents used in Cardiac Arrhythmias

Chapter 14. Agents used in Cardiac Arrhythmias Chapter 14 Agents used in Cardiac Arrhythmias Cardiac arrhythmia Approximately 50% of post-myocardial infarction fatalities result from ventricular tachycarida (VT) or ventricular fibrillation (VF). These

More information

Atrial fibrillation in the ICU

Atrial fibrillation in the ICU Atrial fibrillation in the ICU Atrial fibrillation Preexisting or incident (new onset) among nearly one in three critically ill patients Formation of arrhythogenic substrate usually fibrosis (CHF, hypertension,

More information

Adenosine. poison/drug induced. flushing, chest pain, transient asystole. Precautions: tachycardia. fibrillation, atrial flutter. Indications: or VT

Adenosine. poison/drug induced. flushing, chest pain, transient asystole. Precautions: tachycardia. fibrillation, atrial flutter. Indications: or VT Adenosine Indications: 1. Narrow complex PSVT 2. Does not convert atrial fibrillation, atrial flutter or VT 1. Side effects include flushing, chest pain, transient asystole 2. May deteriorate widecomplex

More information

! YOU NEED TO MONITOR QT INTERVALS IN THESE PATIENTS.

! YOU NEED TO MONITOR QT INTERVALS IN THESE PATIENTS. Antiarrhythmic Pharmacopoeia Powerful drugs, split into 4 major classes, according to the predominant receptor they effect. Some fit into several classes at once, like sotolol. Some don t fit at all, owing

More information

ARRHYTHMIAS IN THE ICU

ARRHYTHMIAS IN THE ICU ARRHYTHMIAS IN THE ICU Nora Goldschlager, MD MACP, FACC, FAHA, FHRS SFGH Division of Cardiology UCSF IDENTIFIED VARIABLES IN ARRHYTHMOGENESIS Ischemia/infarction (scar) Electrolyte imbalance Proarrhythmia

More information

Drugs Controlling Myocyte Excitability and Conduction at the AV node Singh and Vaughan-Williams Classification

Drugs Controlling Myocyte Excitability and Conduction at the AV node Singh and Vaughan-Williams Classification Drugs Controlling Myocyte Excitability and Conduction at the AV node Singh and Vaughan-Williams Classification Class I Na Channel Blockers Flecainide Propafenone Class III K channel Blockers Dofetilide,

More information

ANTI-ARRHYTHMICS AND WARFARIN. Dr Nithish Jayakumar

ANTI-ARRHYTHMICS AND WARFARIN. Dr Nithish Jayakumar ANTI-ARRHYTHMICS AND WARFARIN Dr Nithish Jayakumar Contents 1. Anti-arrhythmics Pacemaker and myocardial potentials Drug classes mechanisms; s/e; contra-indications Management of common arrhythmias 2.

More information

Antiarrhythmic Drugs. Munir Gharaibeh MD, PhD, MHPE School of Medicine, The University of Jordan November 2018

Antiarrhythmic Drugs. Munir Gharaibeh MD, PhD, MHPE School of Medicine, The University of Jordan November 2018 Antiarrhythmic Drugs Munir Gharaibeh MD, PhD, MHPE School of Medicine, The University of Jordan November 2018 2 Ion Permeability Changes Potential Changes Genes and Proteins 3 Cardiac Na+ channels 5 6

More information

ANTI - ARRHYTHMIC DRUGS

ANTI - ARRHYTHMIC DRUGS ANTI - ARRHYTHMIC DRUGS CARDIAC ACTION POTENTIAL K Out Balance Ca in/k out Na in K Out GENERATION OF ARRHYTHMIAS Four mechanisms of arrhythmia generation; Increased normal automaticity Abnormal automaticity

More information

Arrhythmic Complications of MI. Teferi Mitiku, MD Assistant Clinical Professor of Medicine University of California Irvine

Arrhythmic Complications of MI. Teferi Mitiku, MD Assistant Clinical Professor of Medicine University of California Irvine Arrhythmic Complications of MI Teferi Mitiku, MD Assistant Clinical Professor of Medicine University of California Irvine Objectives Brief overview -Pathophysiology of Arrhythmia ECG review of typical

More information

APPROACH TO TACHYARRYTHMIAS

APPROACH TO TACHYARRYTHMIAS APPROACH TO TACHYARRYTHMIAS PROF.DR.MD.ZAKIR HOSSAIN PROFESSOR AND HEAD DEPARTMENT OF MEDICINE SZMCH TACHYARRYTHMIA Cardiac arrythmia is a disturbance of electrical rhythm of heart. Cardac arrythmia with

More information

B. 14 Antidysrhythmic drugs. a. Classify antidysrhythmics by their electrophysiological actions. Vaughan-Williams classification

B. 14 Antidysrhythmic drugs. a. Classify antidysrhythmics by their electrophysiological actions. Vaughan-Williams classification B. 14 Antidysrhythmic drugs a. Classify antidysrhythmics by their electrophysiological actions. Vaughan-Williams classification I II III IV membrane stabilizers all ERP, ERP/APD, all except c APD classified

More information

ARRHYTHMIAS IN THE ICU: DIAGNOSIS AND PRINCIPLES OF MANAGEMENT

ARRHYTHMIAS IN THE ICU: DIAGNOSIS AND PRINCIPLES OF MANAGEMENT ARRHYTHMIAS IN THE ICU: DIAGNOSIS AND PRINCIPLES OF MANAGEMENT Nora Goldschlager, M.D. MACP, FACC, FAHA, FHRS SFGH Division of Cardiogy UCSF CLINICAL VARIABLES IN ARRHYTHMOGENESIS Ischemia/infarction (scar)

More information

Anti arrhythmic drugs. Hilal Al Saffar College of medicine Baghdad University

Anti arrhythmic drugs. Hilal Al Saffar College of medicine Baghdad University Anti arrhythmic drugs Hilal Al Saffar College of medicine Baghdad University Mechanism of Arrhythmia Abnormal heart pulse formation Abnormal heart pulse conduction Classification of Arrhythmia Abnormal

More information

Advanced Cardiac Life Support

Advanced Cardiac Life Support Advanced Cardiac Life Support Algorithm Drugs Class I: definitely helpful, excellent Class II: Class II a -probably helpful; good to very good Class II b -possibly helpful; fair to good Class

More information

Antiarrhythmic Drugs. Munir Gharaibeh MD, PhD, MHPE School of Medicine, The University of Jordan November 2017

Antiarrhythmic Drugs. Munir Gharaibeh MD, PhD, MHPE School of Medicine, The University of Jordan November 2017 Antiarrhythmic Drugs Munir Gharaibeh MD, PhD, MHPE School of Medicine, The University of Jordan November 2017 Types of Cardiac Arrhythmias Abnormalities of Impulse Formation: Rate disturbances. Triggered

More information

Objectives: This presentation will help you to:

Objectives: This presentation will help you to: emergency Drugs Objectives: This presentation will help you to: Five rights for medication administration Recognize different cardiac arrhythmias and determine the common drugs used for each one List the

More information

ΚΟΛΠΙΚΗ ΜΑΡΜΑΡΥΓΗ ΦΑΡΜΑΚΕΥΤΙΚΗ ΗΛΕΚΤΡΙΚΗ ΑΝΑΤΑΞΗ. ΣΠΥΡΟΜΗΤΡΟΣ ΓΕΩΡΓΙΟΣ Καρδιολόγος, Ε/Α, Γ.Ν.Κατερίνης. F.E.S.C

ΚΟΛΠΙΚΗ ΜΑΡΜΑΡΥΓΗ ΦΑΡΜΑΚΕΥΤΙΚΗ ΗΛΕΚΤΡΙΚΗ ΑΝΑΤΑΞΗ. ΣΠΥΡΟΜΗΤΡΟΣ ΓΕΩΡΓΙΟΣ Καρδιολόγος, Ε/Α, Γ.Ν.Κατερίνης. F.E.S.C ΚΟΛΠΙΚΗ ΜΑΡΜΑΡΥΓΗ ΦΑΡΜΑΚΕΥΤΙΚΗ ΗΛΕΚΤΡΙΚΗ ΑΝΑΤΑΞΗ ΣΠΥΡΟΜΗΤΡΟΣ ΓΕΩΡΓΙΟΣ Καρδιολόγος, Ε/Α, Γ.Ν.Κατερίνης. F.E.S.C Definitions of AF: A Simplified Scheme Term Definition Paroxysmal AF AF that terminates

More information

ARRHYTHMIA SINUS RHYTHM

ARRHYTHMIA SINUS RHYTHM ARRHYTHMIA Dr. Ahmed A. Elberry, MBBCH, MSc, MD Assistant Professor of Clinical Pharmacy Faculty of pharmacy, KAU 1 SINUS RHYTHM SA node is cardiac pacemaker Normal sinus rhythm 60-100 beats/min Depolarisation

More information

ACLS Emergency Cardiac Drug Therapy (bolded = changes based on 2005 AHA ACLS Guidelines) revised 01/18/07

ACLS Emergency Cardiac Drug Therapy (bolded = changes based on 2005 AHA ACLS Guidelines) revised 01/18/07 Oxygen Acute Chest Pain Suspected hypoxemia of any cause or c/o SOB Cardiopulmonary Arrest correct hypoxemia by O2 tension O2 content tissue oxygenation O2 Toxicity with high FIO2s May cause CO2 if a CO2

More information

ECGs and Arrhythmias: Family Medicine Board Review 2009

ECGs and Arrhythmias: Family Medicine Board Review 2009 Rate Rhythm Intervals Hypertrophy ECGs and Arrhythmias: Family Medicine Board Review 2009 Axis Jess (Fogler) Waldura, MD University of California, San Francisco walduraj@nccc.ucsf.edu Ischemia Overview

More information

Core Content In Urgent Care Medicine

Core Content In Urgent Care Medicine Palpitations/Arrhythmias Ebrahim Barkoudah, MD Clinical Instructor in Internal Medicine Harvard Medical School Assistant in Internal Medicine & Pediatrics Massachusetts General Hospital MGH Chelsea Chelsea,

More information

Antidysrhythmics HST-151 1

Antidysrhythmics HST-151 1 HST-151 1 Antidysrhythmics I. Ventricular muscle cell action potential a. Phase 0: Upstroke b. Phase 1: Early-fast repolarization c. Phase 2: Plateau d. Phase 3: Repolarization e. Phase 4: Diastole HST-151

More information

I have nothing to disclose.

I have nothing to disclose. I have nothing to disclose. Antiarrhythmic Therapy in Pregnancy Prof. Ali Oto,MD,FESC,FACC,FHRS Department of Cardiology Hacettepe University,Faculty of Medicine Ankara Arrhythmias in pregnancy An increased

More information

ECGs and Arrhythmias: Family Medicine Board Review 2012

ECGs and Arrhythmias: Family Medicine Board Review 2012 Overview ECGs and Arrhythmias: Family Medicine Board Review 2012 Jess Waldura, MD University of California, San Francisco walduraj@nccc.ucsf.edu Bundle branch blocks Quick review of ischemia Arrhythmias

More information

Cost and Prevalence of A fib. Atrial Fibrillation: Guideline Directed Treatment. Prevalence of A Fib. Risk Factors for A Fib. Risk Factors for A Fib

Cost and Prevalence of A fib. Atrial Fibrillation: Guideline Directed Treatment. Prevalence of A Fib. Risk Factors for A Fib. Risk Factors for A Fib Atrial Fibrillation: Guideline Directed Treatment Melissa Wendell, FNP-C, MSN Heart Failure - Lead Nurse Practitioner, Aspirus Wausau Hospital and Aspirus Cardiology Cost and Prevalence of A fib 33.5 million

More information

Intraoperative and Postoperative Arrhythmias: Diagnosis and Treatment

Intraoperative and Postoperative Arrhythmias: Diagnosis and Treatment Intraoperative and Postoperative Arrhythmias: Diagnosis and Treatment Karen L. Booth, MD, Lucile Packard Children s Hospital Arrhythmias are common after congenital heart surgery [1]. Postoperative electrolyte

More information

Ventricular tachycardia Ventricular fibrillation and ICD

Ventricular tachycardia Ventricular fibrillation and ICD EKG Conference Ventricular tachycardia Ventricular fibrillation and ICD Samsung Medical Center CCU D.I. Hur Ji Won 2006.05.20 Ventricular tachyarrhythmia ventricular tachycardia ventricular fibrillation

More information

Chapter 16: Arrhythmias and Conduction Disturbances

Chapter 16: Arrhythmias and Conduction Disturbances Complete the following. Chapter 16: Arrhythmias and Conduction Disturbances 1. Cardiac arrhythmias result from abnormal impulse, abnormal impulse, or both mechanisms together. 2. is the ability of certain

More information

Treatment of Arrhythmias in the Emergency Setting

Treatment of Arrhythmias in the Emergency Setting Treatment of Arrhythmias in the Emergency Setting Zian H. Tseng, M.D. Assistant Professor of Medicine Cardiac Electrophysiology Section Cardiology Division University of California, San Francisco There

More information

The ABCs of EKGs/ECGs for HCPs. Al Heuer, PhD, MBA, RRT, RPFT Professor, Rutgers School of Health Related Professions

The ABCs of EKGs/ECGs for HCPs. Al Heuer, PhD, MBA, RRT, RPFT Professor, Rutgers School of Health Related Professions The ABCs of EKGs/ECGs for HCPs Al Heuer, PhD, MBA, RRT, RPFT Professor, Rutgers School of Health Related Professions Learning Objectives Review the basic anatomy of the heart Describe the cardiac conducting

More information

Dysrhythmias 11/7/2017. Disclosures. 3 reasons to evaluate and treat dysrhythmias. None. Eliminate symptoms and improve hemodynamics

Dysrhythmias 11/7/2017. Disclosures. 3 reasons to evaluate and treat dysrhythmias. None. Eliminate symptoms and improve hemodynamics Dysrhythmias CYDNEY STEWART MD, FACC NOVEMBER 3, 2017 Disclosures None 3 reasons to evaluate and treat dysrhythmias Eliminate symptoms and improve hemodynamics Prevent imminent death/hemodynamic compromise

More information

Heart Failure (HF) Treatment

Heart Failure (HF) Treatment Heart Failure (HF) Treatment Heart Failure (HF) Complex, progressive disorder. The heart is unable to pump sufficient blood to meet the needs of the body. Its cardinal symptoms are dyspnea, fatigue, and

More information

Arrhythmias. Sarah B. Murthi Department of Surgery University of Maryland Medical School R. Adams Cowley Shock Trauma Center

Arrhythmias. Sarah B. Murthi Department of Surgery University of Maryland Medical School R. Adams Cowley Shock Trauma Center Arrhythmias Sarah B. Murthi Department of Surgery University of Maryland Medical School R. Adams Cowley Shock Trauma Center 2012 Clinical Congress Presenter Disclosure Slide American College of Surgeons

More information

Atrial Fibrillation 10/2/2018. Depolarization & ECG. Atrial Fibrillation. Hemodynamic Consequences

Atrial Fibrillation 10/2/2018. Depolarization & ECG. Atrial Fibrillation. Hemodynamic Consequences Depolarization & ECG Atrial Fibrillation How to make ORDER out of CHAOS Julia Shih, VMD, DACVIM (Cardiology) October 27, 2018 Depolarization & ECG Depolarization & ECG Atrial Fibrillation Hemodynamic Consequences

More information

PEDIATRIC SVT MANAGEMENT

PEDIATRIC SVT MANAGEMENT PEDIATRIC SVT MANAGEMENT 1 INTRODUCTION Supraventricular tachycardia (SVT) can be defined as an abnormally rapid heart rhythm originating above the ventricles, often (but not always) with a narrow QRS

More information

Management of acute Cardiac Arrhythmias

Management of acute Cardiac Arrhythmias Management of acute Cardiac Arrhythmias Dr. Zulkeflee Muhammad MBChB (New Zealand), MRCP (United Kingdom) Cardiologist Electrophysiology Unit Istitut Jantung Negara Objectives Review the etiology and recognition

More information

Cardiac Drugs: Chapter 9 Worksheet Cardiac Agents. 1. drugs affect the rate of the heart and can either increase its rate or decrease its rate.

Cardiac Drugs: Chapter 9 Worksheet Cardiac Agents. 1. drugs affect the rate of the heart and can either increase its rate or decrease its rate. Complete the following. 1. drugs affect the rate of the heart and can either increase its rate or decrease its rate. 2. drugs affect the force of contraction and can be either positive or negative. 3.

More information

Sudden cardiac death: Primary and secondary prevention

Sudden cardiac death: Primary and secondary prevention Sudden cardiac death: Primary and secondary prevention By Kai Chi Chan Penultimate Year Medical Student St George s University of London at UNic Sheba Medical Centre Definition Sudden cardiac arrest (SCA)

More information

Antiarrhythmic Drugs Öner Süzer

Antiarrhythmic Drugs Öner Süzer Antiarrhythmic Drugs Öner Süzer www.onersuzer.com osuzer@istanbul.edu.tr Last update: 09.11.2009 1 Süzer Farmakoloji 3. Baskı 2005 2 1 Süzer Farmakoloji 3. Baskı 2005 3 Figure 14 1 Schematic representation

More information

The pill-in-the-pocket strategy for paroxysmal atrial fibrillation

The pill-in-the-pocket strategy for paroxysmal atrial fibrillation The pill-in-the-pocket strategy for paroxysmal atrial fibrillation KONSTANTINOS P. LETSAS, MD, FEHRA LABORATORY OF CARDIAC ELECTROPHYSIOLOGY EVANGELISMOS GENERAL HOSPITAL OF ATHENS ARRHYTHMIAS UPDATE,

More information

Atrial Fibrillation: It s Not so Simple Anymore

Atrial Fibrillation: It s Not so Simple Anymore Atrial Fibrillation: It s Not so Simple Anymore Karen Marzlin DNP, RN, CCNS, CCRN-CMC, CHFN 2014 www.cardionursing.com 1 2 Just a Thought Link your roots deeply into whatever task you are doing, for commitment

More information

Arrhythmias (I) Supraventricular Tachycardias. Disclosures

Arrhythmias (I) Supraventricular Tachycardias. Disclosures Arrhythmias (I) Supraventricular Tachycardias Amy Leigh Miller, MD, PhD Cardiovascular Electrophysiology, Brigham & Women s Hospital Disclosures None Short R-P Tachycardia REGULAR with 1:1 P/R relationship

More information

Chapter (9) Calcium Antagonists

Chapter (9) Calcium Antagonists Chapter (9) Calcium Antagonists (CALCIUM CHANNEL BLOCKERS) Classification Mechanism of Anti-ischemic Actions Indications Drug Interaction with Verapamil Contraindications Adverse Effects Treatment of Drug

More information

a lecture series by SWESEMJR

a lecture series by SWESEMJR Electrolyte disturbances Hypokalaemia Decreased extracellular potassium increases excitability in the myocardial cells and consequently the effect of very severe hypokalaemia is ventricular arrhythmia.

More information

Krittin Bunditanukul Pharm.D, BCPS Department of Pharmacy Practice, Faculty of Pharmaceutical Sciences, Chulalongkorn University

Krittin Bunditanukul Pharm.D, BCPS Department of Pharmacy Practice, Faculty of Pharmaceutical Sciences, Chulalongkorn University Krittin Bunditanukul Pharm.D, BCPS Department of Pharmacy Practice, Faculty of Pharmaceutical Sciences, Chulalongkorn University Cardiac arrest Cardiac arrest can be caused by 4 rhythms: Ventricular fibrillation

More information

2) Heart Arrhythmias 2 - Dr. Abdullah Sharif

2) Heart Arrhythmias 2 - Dr. Abdullah Sharif 2) Heart Arrhythmias 2 - Dr. Abdullah Sharif Rhythms from the Sinus Node Sinus Tachycardia: HR > 100 b/m Causes: o Withdrawal of vagal tone & Sympathetic stimulation (exercise, fight or flight) o Fever

More information

Cardiac Arrhythmias. For Pharmacists

Cardiac Arrhythmias. For Pharmacists Cardiac Arrhythmias For Pharmacists Agenda Overview of the normal Classification Management Therapy Conclusion Cardiac arrhythmias Overview of the normal Arrhythmia: definition From the Greek a-, loss

More information

Case #1. 73 y/o man with h/o HTN and CHF admitted with dizziness and SOB Treated for CHF exacerbation with Lasix Now HR 136

Case #1. 73 y/o man with h/o HTN and CHF admitted with dizziness and SOB Treated for CHF exacerbation with Lasix Now HR 136 Tachycardias Case #1 73 y/o man with h/o HTN and CHF admitted with dizziness and SOB Treated for CHF exacerbation with Lasix Now HR 136 Initial Assessment Check Telemetry screen if pt on tele Telemetry

More information

Review Packet EKG Competency This packet is a review of the information you will need to know for the proctored EKG competency test.

Review Packet EKG Competency This packet is a review of the information you will need to know for the proctored EKG competency test. Review Packet EKG Competency 2015 This packet is a review of the information you will need to know for the proctored EKG competency test. Normal Sinus Rhythm Rhythm: Regular Ventricular Rate: 60-100 bpm

More information

Knowing is not enough; we must apply. Willing is not enough; we must do.

Knowing is not enough; we must apply. Willing is not enough; we must do. Cardiovascular Boot Camp Basic Training Day 2: Cardiac Arrhythmias and Emergency Treatment Overview Cardiac Arrhythmias: Physiologic Links to Recognition and Management NTI 2014 Denver 2014 Karen Marzlin

More information

Acute Arrhythmias in the Hospitalized Patient

Acute Arrhythmias in the Hospitalized Patient Acute Arrhythmias in the Hospitalized Patient Gregory M Marcus, MD, MAS Associate Professor of Medicine Division of Cardiology University of California, San Francisc Disclosures Medtronic: Research Support

More information

CORONARY ARTERIES. LAD Anterior wall of the left vent Lateral wall of left vent Anterior 2/3 of interventricluar septum R & L bundle branches

CORONARY ARTERIES. LAD Anterior wall of the left vent Lateral wall of left vent Anterior 2/3 of interventricluar septum R & L bundle branches CORONARY ARTERIES RCA Right atrium Right ventricle SA node 55% AV node 90% Posterior wall of left ventricle in 90% Posterior third of interventricular septum 90% LAD Anterior wall of the left vent Lateral

More information

SHOCK THE PATIENT. Disclosures. Goals of the Talk. Tachyarrhythmias- Unstable 11/7/2017

SHOCK THE PATIENT. Disclosures. Goals of the Talk. Tachyarrhythmias- Unstable 11/7/2017 Disclosures Common Heart Rhythms in the Hospital Research Support: NIH, PCORI, Medtronic, Cardiogram Consulting: InCarda, Johnson & Johnson, Lifewatch Equity: InCarda Gregory M Marcus, MD, MAS Associate

More information

PEDIATRIC CARDIAC RHYTHM DISTURBANCES. -Jason Haag, CCEMT-P

PEDIATRIC CARDIAC RHYTHM DISTURBANCES. -Jason Haag, CCEMT-P PEDIATRIC CARDIAC RHYTHM DISTURBANCES -Jason Haag, CCEMT-P General: CARDIAC RHYTHM DISTURBANCES - More often the result and not the cause of acute cardiovascular emergencies - Typically the end result

More information

Huseng Vefali MD St. Luke s University Health Network Department of Cardiology

Huseng Vefali MD St. Luke s University Health Network Department of Cardiology Huseng Vefali MD St. Luke s University Health Network Department of Cardiology Learning Objectives Establish Consistent Approach to Interpreting ECGs Review Essential Cases for Paramedics and first responders

More information

ALS MODULE 7 Pharmacology

ALS MODULE 7 Pharmacology ALS MODULE 7 Pharmacology Relates to HLT404C Apply Advanced Resuscitation Techniques Introduction There are no studies that addressed the order of drug administration. There is inadequate evidence to define

More information

Step by step approach to EKG rhythm interpretation:

Step by step approach to EKG rhythm interpretation: Sinus Rhythms Normal sinus arrhythmia Small, slow variation of the R-R interval i.e. variation of the normal sinus heart rate with respiration, etc. Sinus Tachycardia Defined as sinus rhythm with a rate

More information

Atrial Fibrillation: An Evidence Based Approach to Comprehensive Management

Atrial Fibrillation: An Evidence Based Approach to Comprehensive Management Atrial Fibrillation: An Evidence Based Approach to Comprehensive Management A75M450 Karen Marzlin DNP, RN, CCNS, CCRN-CMC, CHFN 2014 1 Just a Thought Link your roots deeply into whatever task you are doing,

More information

Antiarrhythmics 17 I. OVERVIEW II. INTRODUCTION TO THE ARRHYTHMIAS

Antiarrhythmics 17 I. OVERVIEW II. INTRODUCTION TO THE ARRHYTHMIAS Antiarrhythmics 17 I. OVERVIEW In contrast to skeletal muscle, which contracts only when it receives a stimulus, the heart contains specialized cells that exhibit automaticity. This means that they can

More information

Current Guideline for AF Treatment. Young Keun On, MD, PhD, FHRS Samsung Medical Center Sungkyunkwan University School of Medicine

Current Guideline for AF Treatment. Young Keun On, MD, PhD, FHRS Samsung Medical Center Sungkyunkwan University School of Medicine Current Guideline for AF Treatment Young Keun On, MD, PhD, FHRS Samsung Medical Center Sungkyunkwan University School of Medicine Case 1 59 year-old lady Sudden palpitation and breathlessness for 12 hours

More information

Ablation Update and Case Studies. Lawrence Nair, MD, FACC Director of Electrophysiology Presbyterian Heart Group

Ablation Update and Case Studies. Lawrence Nair, MD, FACC Director of Electrophysiology Presbyterian Heart Group Ablation Update and Case Studies Lawrence Nair, MD, FACC Director of Electrophysiology Presbyterian Heart Group Disclosures No financial relationships to disclose Objectives At the conclusion of this activity,

More information

Rate and Rhythm Control of Atrial Fibrillation

Rate and Rhythm Control of Atrial Fibrillation Rate and Rhythm Control of Atrial Fibrillation April 21, 2017 춘계심혈관통합학술대회 Jaemin Shim, MD, PhD Arrhythmia Center Korea University Anam Hospital Treatment of AF Goal Reducing symptoms Preventing complication

More information

Ventricular arrhythmias

Ventricular arrhythmias Ventricular arrhythmias Assoc.Prof. Lucie Riedlbauchová, MD, PhD Department of Cardiology University HospitalMotol and2nd FacultyofMedicine, Charles University in Prague Definition and classification Ventricular

More information

CVD: Cardiac Arrhythmias. 1. Final Cardiac Arrhythmias_BMP. 1.1 Cardiovascular Disease. Notes:

CVD: Cardiac Arrhythmias. 1. Final Cardiac Arrhythmias_BMP. 1.1 Cardiovascular Disease. Notes: CVD: Cardiac Arrhythmias 1. Final Cardiac Arrhythmias_BMP 1.1 Cardiovascular Disease 1.2 Directions for taking this course 1.3 Content Experts 1.4 Disclosures 1.5 Accreditation Information 1.6 Learning

More information

EKG Competency for Agency

EKG Competency for Agency EKG Competency for Agency Name: Date: Agency: 1. The upper chambers of the heart are known as the: a. Atria b. Ventricles c. Mitral Valve d. Aortic Valve 2. The lower chambers of the heart are known as

More information

DECLARATION OF CONFLICT OF INTEREST. Consultant Sanofi Biosense Webster Honorarium Boehringer Ingelheim St Jude Medical

DECLARATION OF CONFLICT OF INTEREST. Consultant Sanofi Biosense Webster Honorarium Boehringer Ingelheim St Jude Medical DECLARATION OF CONFLICT OF INTEREST Consultant Sanofi Biosense Webster Honorarium Boehringer Ingelheim St Jude Medical ESC Congress Paris, France August 27-31, 2011 Risk & Complications of AADs for Rhythm

More information

Medical management of AF: drugs for rate and rhythm control

Medical management of AF: drugs for rate and rhythm control Medical management of AF: drugs for rate and rhythm control Adel Khalifa Sultan Hamad, BMS, MD, FGHRS, FRCP(Canada) Consultant Cardiologist & Interventional Cardiac Electrophysiologist Head of Electrophysiology

More information

7/21/2017. Learning Objectives. Current Cardiovascular Pharmacology. Epinephrine. Cardiotonic Agents. Epinephrine. Epinephrine. Arthur Jones, EdD, RRT

7/21/2017. Learning Objectives. Current Cardiovascular Pharmacology. Epinephrine. Cardiotonic Agents. Epinephrine. Epinephrine. Arthur Jones, EdD, RRT Learning Objectives Current Cardiovascular Pharmacology Arthur Jones, EdD, RRT Explain the actions, effects, indications, adverse effects, & precautions for agents from the following drug categories Cardiotonic

More information

Tachycardias II. Štěpán Havránek

Tachycardias II. Štěpán Havránek Tachycardias II Štěpán Havránek Summary 1) Supraventricular (supraventricular rhythms) Atrial fibrillation and flutter Atrial ectopic tachycardia / extrabeats AV nodal reentrant a AV reentrant tachycardia

More information

CRC 431 ECG Basics. Bill Pruitt, MBA, RRT, CPFT, AE-C

CRC 431 ECG Basics. Bill Pruitt, MBA, RRT, CPFT, AE-C CRC 431 ECG Basics Bill Pruitt, MBA, RRT, CPFT, AE-C Resources White s 5 th ed. Ch 6 Electrocardiography Einthoven s Triangle Chest leads and limb leads Egan s 10 th ed. Ch 17 Interpreting the Electrocardiogram

More information

1 Cardiology Acute Care Day 22 April 2013 Arrhythmia Tutorial Course Material

1 Cardiology Acute Care Day 22 April 2013 Arrhythmia Tutorial Course Material 1 Cardiology Acute Care Day 22 April 2013 Arrhythmia Tutorial Course Material Arrhythmia recognition This tutorial builds on the ECG lecture and provides a framework for approaching any ECG to allow the

More information

Amiodarone Prescribing and Monitoring: Back to the Future

Amiodarone Prescribing and Monitoring: Back to the Future Amiodarone Prescribing and Monitoring: Back to the Future Subha L. Varahan, MD, FHRS, CCDS Electrophysiologist Oklahoma Heart Hospital Oklahoma City, OK Friday, February, 8 th, 2019 Iodinated benzofuran

More information

Atrial Fibrillation and Common Supraventricular Tachycardias. Sunil Kapur MD

Atrial Fibrillation and Common Supraventricular Tachycardias. Sunil Kapur MD Atrial Fibrillation and Common Supraventricular Tachycardias Sunil Kapur MD Cardiac Electrophysiology Brigham and Women s Hospital Instructor, Harvard Medical School No disclosures Cardiac Conduction:

More information

Don t Forget the Basics

Don t Forget the Basics Scary Arrhythmias in the Hospital Gregory M Marcus, MD, MAS Assistant Professor of Medicine Division of Cardiology University of California, San Francisc Don t Forget the Basics 79 yo man with a history

More information

Emergency treatment to SVT Evidence-based Approach. Tran Thao Giang

Emergency treatment to SVT Evidence-based Approach. Tran Thao Giang Emergency treatment to SVT Evidence-based Approach Tran Thao Giang Description ECG manifestations: HR is extremely rapid and regular (240bpm ± 40) P wave is: usually invisible When visible: anormal P axis,

More information

Fundamentals of Pharmacology for Veterinary Technicians Chapter 8

Fundamentals of Pharmacology for Veterinary Technicians Chapter 8 Figure 8-1 Figure 8-2 Figure 8-3 Figure 8-4 Figure 8-5 Figure 8-7 Figure 8-8 Figure 8-9 TABLE 8-1 Blood Flow Through the Heart The right atrium receives blood from all tissues, except the lungs, through

More information

Based on the Guidelines 2000 for Cardiopulmonary Resuscitation & Emergency Cardiovascular Care EMERGENCY PHARMACOLOGY I & II. ADENOSINE (Adenocard)

Based on the Guidelines 2000 for Cardiopulmonary Resuscitation & Emergency Cardiovascular Care EMERGENCY PHARMACOLOGY I & II. ADENOSINE (Adenocard) EMERGENCY PHARMACOLOGY I & II Advanced Cardiac Life Support Seminole Community College Based on the Guidelines 2000 for Cardiopulmonary Resuscitation & Emergency Cardiovascular Care International Consensus

More information

ATRIAL FIBRILLATION: REVISITING CONTROVERSIES IN AN ERA OF INNOVATION

ATRIAL FIBRILLATION: REVISITING CONTROVERSIES IN AN ERA OF INNOVATION ATRIAL FIBRILLATION: REVISITING CONTROVERSIES IN AN ERA OF INNOVATION Frederick Schaller, DO, MACOI,FACP Adjunct Clinical Professor Touro University Nevada DISCLOSURES I have no financial relationships

More information

Jay Simonson, MD, FACC, FHRS Medical Director, Cardiac Electrophysiology Park Nicollet Heart and Vascular Center

Jay Simonson, MD, FACC, FHRS Medical Director, Cardiac Electrophysiology Park Nicollet Heart and Vascular Center Jay Simonson, MD, FACC, FHRS Medical Director, Cardiac Electrophysiology Park Nicollet Heart and Vascular Center A-Fib Facts Yes, you may be able to blame your parents It is more of a nuisance than a

More information

DYSRHYTHMIAS. D. Assess whether or not it is the arrhythmia that is making the patient unstable or symptomatic

DYSRHYTHMIAS. D. Assess whether or not it is the arrhythmia that is making the patient unstable or symptomatic DYSRHYTHMIAS GENERAL CONSIDERATIONS A. The 2015 American Heart Association Guidelines were referred to for this protocol development. Evidence-based science was implemented in those areas where the AHA

More information

AF and arrhythmia management. Dr Rhys Beynon Consultant Cardiologist and Electrophysiologist University Hospital of North Staffordshire

AF and arrhythmia management. Dr Rhys Beynon Consultant Cardiologist and Electrophysiologist University Hospital of North Staffordshire AF and arrhythmia management Dr Rhys Beynon Consultant Cardiologist and Electrophysiologist University Hospital of North Staffordshire Atrial fibrillation Paroxysmal AF recurrent AF (>2 episodes) that

More information

How do arrhythmias occur?

How do arrhythmias occur? How do arrhythmias occur? An arrhythmia is an abnormal heart rhythm (= dysrhythmia). Can be fast (tachy) or slow (brady). Brady arrhythmias are usually due to conduc;on block, while tachyarrhythmias are

More information