1. Name the components of the formed elements in the blood and mention one major function of each of them.

Size: px
Start display at page:

Download "1. Name the components of the formed elements in the blood and mention one major function of each of them."

Transcription

1 CLASS XI BIOLOGY Body Fluids And Circulation 1. Name the components of the formed elements in the blood and mention one major function of each of them. Formed Elements in Blood And Their Functions: Erythrocytes or red blood cells (RBC): These molecules play a significant role in transport of respiratory gases. Leucocytes or white blood cells (WBC): They are of two types, viz. granulocytes and agranulocytes. as they are Neutrophils, eosinophils and basophils are different types of granulocytes, while lymphocytes and monocytes are the agranulocytes. Neutrophils and monocytes (6-8 per cent) are phagocytic cells which destroy foreign organisms entering the body. Basophils secrete histamine, serotonin, heparin, etc., and are involved in inflammatory reactions. Eosinophils (2-3 per cent) resist infections and are also associated with allergic reactions. Lymphocytes (20-25 per cent) are of two major types B and T forms. Both B and T lymphocytes are responsible for immune responses of the body. Platelets or thrombocytes: Platelets can release a variety of substances most of which are involved in the coagulation or clotting of blood. 2. What is the importance of plasma proteins? Plasma Proteins: Fibrinogen, globulins and albumins are the major proteins. Fibrinogens are needed for clotting or coagulation of blood. Globulins primarily are involved in defense mechanisms of the body and the albumins help in osmotic balance. 3. Match Column I with Column II : (a) Eosinophils (i) Coagulation (b) RBC (ii) Universal Recipient (c) AB Group (iii) Resist Infections (d) Platelets (iv) Contraction of Heart (e) Systole (v) Gas transport Column I Eosinophils RBC AB Group Platelets Systole Column II Resist Infections Gas Transport Universal Recipient Coagulation Contraction of Heart

2 4. Why do we consider blood as a connective tissue? Connective Tissue: It is largely a category of exclusion rather than one with a precise definition, but all or most tissues in this category are similarly: (a) Involved in structure and support. (b) Derived from mesoderm, usually. (c) Characterized largely by the traits of non-living tissue. Blood is considered a connective tissue for two basic reasons: (1) embryologically, it has the same origin (mesodermal) as do the other connective tissue types and (2) blood connects the body systems together bringing the needed oxygen, nutrients, hormones and other signaling molecules, and removing the wastes. As the name implies, connective tissue serves a "connecting" function. It supports and binds other tissues. Unlike epithelial tissue, connective tissue typically has cells scattered throughout an extracellular matrix. Interestingly enough, blood is considered to be a type of connective tissue. Even though it has a different function in comparison to other connective tissues it does have an extracellular matrix. The matrix is the plasma and erythrocytes, leukocytes and platelets are suspended in the plasma. 5. What is the difference between lymph and blood? Lymph is the interstitial fluid found between the cells of the human body. It enters the lymph vessels by filtration through pores in the walls of capillaries. The lymph then travels to at least one lymph node before emptying ultimately into the right or the left subclavian vein, where it mixes back with blood. Lymph has a composition comparable to that of blood plasma, but it may differ slightly depending on the tissue served (drained). Lymph contains white blood cells. In particular, the lymph that leaves a lymph node is richer in lymphocytes. Likewise, the lymph formed in the digestive system called chyle is rich in triglycerides (fat), and looks milky white. 6. What is meant by double circulation? What is its significance? The double circulatory system of blood flow refers to the separate systems of pulmonary circulation and the systemic circulation in amphibians, birds and mammals (including humans.) In contrast, fish have a single circulation system

3 because they do not have lungs. All animals with lungs have a double circulatory system. For instance the adult human heart consists of two separated pumps, the right side with the right atrium and ventricle (which pumps deoxygenated blood into the pulmonary circulation), and the left side with the left atrium and ventricle (which pumps oxygenated blood into the systemic circulation). Blood in one circuit has to go through the heart to enter the other circuit. Double circulation system is more efficient as it prevents mixing of oxygenated and deoxygenated blood. There is optimum utilization of oxygen because of this type of system. 7. Write the differences between: (a) Blood and Lymph (b) Open and Closed system of circulation (c) Systole and Diastole (d) P-wave and T-wave (a) Blood contains RBCs and hence can transport gases. Lymph doesn t contain RBCs and cannot transport gases. Lymph mainly contains WBCs and play a role in the immune system of the body. (b) The Open Circulatory System is a system in which fluid (called hemolymph) in a cavity called the hemocoel bathes the organs directly with oxygen and nutrients and there is no distinction between blood and interstitial fluid; this combined fluid is called hemolymph or haemolymph. The cardiovascular systems of humans are closed, meaning that the blood never leaves the network of blood vessels. (c) Systole is the contraction of heart muscle and diastole is the dilatation of the heart muscle. (d) Each peak in the ECG is identified with a letter from P to T that corresponds to a specific electrical activity of the heart. The P-wave represents the electrical excitation (or depolarisation) of the atria, which leads to the contraction of both the atria. The QRS complex represents the depolarisation of the ventricles, which initiates the ventricular contraction. The contraction starts shortly after Q and marks the beginning of the systole. The T-wave represents the return of the ventricles from excited to normal state (repolarisation). The end of the T-wave marks the end of systole. 8. Describe the evolutionary change in the pattern of heart among the vertebrates. As is clear from the following diagram the heart of fish has two chambers. This means there is no separate circulation for oxygenated and deoxygenated blood. There is separation of two chambers in the atrium of amphibians. This has further

4 evolved to partial separation of ventricle as well in reptiles. Finally in birds there is complete separation of oxygenated and deoxygenated blood circulation with advent of four chambers in the heart. Mammal heart is the most developed having the most efficient double circulatory system. 9. Why do we call our heart myogenic? Cardiac muscles are capable of generating their own contraction. This type of contraction is called myogenic contractions. That is why heart is called myogenic. 10. Sino-atrial node is called the pacemaker of our heart. Why? Sino-atrial node is a bundle of nerves which initiates the conduction of heart beat. So, this is also called the pacemaker of our heart. 11. What is the significance of atrio-ventricular node and atrio-ventricular bundle in the functioning of heart? AV Node and atrio-ventricular bundles are responsible for conduction of cardiac beat cycle to further parts of heart. 12. Define a cardiac cycle and the cardiac output. Cardiac Cycle:

5 To begin with, all the four chambers of heart are in a relaxed state, i.e., they are in joint diastole. As the tricuspid and bicuspid valves are open, blood from the pulmonary veins and vena cava flows into the left and the right ventricle respectively through the left and right atria. The semilunar valves are closed at this stage. The SAN now generates an action potential which stimulates both the atria to undergo a simultaneous contraction the atrial systole. This increases the flow of blood into the ventricles by about 30 per cent. The action potential is conducted to the ventricular side by the AVN and AV bundle from where the bundle of HIS transmits it through the entire ventricular musculature. This causes the ventricular muscles to contract, (ventricular systole), the atria undergoes relaxation (diastole), coinciding with the ventricular systole. Ventricular systole increases the ventricular pressure causing the closure of tricuspid and bicuspid valves due to attempted backflow of blood into the atria. As the ventricular pressure increases further, the semilunar valves guarding the pulmonary artery (right side) and the aorta (left side) are forced open, allowing the blood in the ventricles to flow through these vessels into the circulatory pathways. The ventricles now relax (ventricular diastole) and the ventricular pressure falls causing the closure of semilunar valves which prevents the backflow of blood into the ventricles. As the ventricular pressure declines further, the tricuspid and bicuspid valves are pushed open by the pressure in the atria exerted by the blood which was being emptied into them by the veins. The blood now once again moves freely to the ventricles. The ventricles and atria are now again in a relaxed (joint diastole) state, as earlier. Soon the SAN generates a new action potential and the events described above are repeated in that sequence and the process continues. This sequential event in the heart which is cyclically repeated is called the cardiac cycle and it consists of systole and diastole of both the atria and ventricles. Cardiac Output: The heart beats 72 times per minute, i.e., that many cardiac cycles are performed per minute. From this it could be deduced that the duration of a cardiac cycle is 0.8 seconds. During a cardiac cycle, each ventricle pumps out approximately 70 ml of blood which is called the stroke volume. The stroke volume multiplied by the heart rate (no. of beats per min.) gives the cardiac output. Therefore, the cardiac output can be defined as the volume of blood pumped out by each ventricle per minute and averages 5000 ml or 5 litres in a healthy individual. 13. Explain heart sounds. The heart sounds are the noises (sound) generated by the beating heart and the resultant flow of blood through it. This is also called a heartbeat. In cardiac auscultation, an examiner uses a stethoscope to listen for these sounds, the

6 heartbeat sounds like bassdrum, which provide important information about the condition of the heart. In healthy adults, there are two normal heart sounds often described as a lub and a dub (or dup), that occur in sequence with each heart beat. These are the first heart sound (S1) and second heart sound (S2), produced by the closing of the AV valves and semilunar valves respectively. In addition to these normal sounds, a variety of other sounds may be present including heart murmurs, adventitious sounds, and gallop rhythms S3 and S Draw a standard ECG and explain the different segments in it. The P-wave represents the electrical excitation (or depolarisation) of the atria, which leads to the contraction of both the atria. The QRS complex represents the depolarisation of the ventricles, which initiates the ventricular contraction. The contraction starts shortly after Q and marks the beginning of the systole. The T-wave represents the return of the ventricles from excited to normal state (repolarisation). The end of the T-wave marks the end of systole. Obviously, by counting the number of QRS complexes that occur in a given time period, one can determine the heart beat rate of an individual. Since the ECGs obtained from different individuals have roughly the same shape for a given lead configuration, any deviation from this shape indicates a possible abnormality or disease. Hence, it is of a great clinical significance.

Class XI Chapter 18 Body Fluids and Circulation Biology

Class XI Chapter 18 Body Fluids and Circulation Biology Question 1: Name the components of the formed elements in the blood and mention one major function of each of them. The component elements in the blood are: (1) Erythrocytes: They are the most abundant

More information

CBSE Quick Revision Notes (Class-11 Biology) CHAPTER-18 BODY FLUIDS AND CIRCULATION

CBSE Quick Revision Notes (Class-11 Biology) CHAPTER-18 BODY FLUIDS AND CIRCULATION CBSE Quick Revision Notes (Class-11 Biology) CHAPTER-18 BODY FLUIDS AND CIRCULATION Body fluids are the medium of transport of nutrients, oxygen and other important substance in the body. Body Fluids Intracellular

More information

CHAPTER 18 BODY FLUIDS AND CIRCULATION MULTIPLE CHOICE QUESTIONS

CHAPTER 18 BODY FLUIDS AND CIRCULATION MULTIPLE CHOICE QUESTIONS 101 CHAPTER 18 BODY FLUIDS AND CIRCULATION MULTIPLE CHOICE QUESTIONS 1. Which of the following cells does not exhibit phagocytotic activity a. Monocyte b. Neutrophil c. Basophil d. Macrophage 2. One of

More information

CHAPTER 18 BODY FLUIDS AND CIRCULATION

CHAPTER 18 BODY FLUIDS AND CIRCULATION 278 BIOLOGY CHAPTER 18 BODY FLUIDS AND CIRCULATION 18.1 Blood 18.2 Lymph (Tissue Fluid) 18.3 Circulatory Pathways 18.4 Double Circulation 18.5 Regulation of Cardiac Activity 18.6 Disorders of Circulatory

More information

Transport in Animals. Gastrovascular cavities. Nutrients and gases can move by processes such as diffusion and active transport.

Transport in Animals. Gastrovascular cavities. Nutrients and gases can move by processes such as diffusion and active transport. Transport in Animals Gastrovascular cavities flatworms and cnidarians Nutrients and gases can move by processes such as diffusion and active transport. Figure 42.1 Internal transport in the cnidarian

More information

CHAPTER 26. Circulation and Gas Exchange

CHAPTER 26. Circulation and Gas Exchange CHAPTER 26 Circulation and Gas Exchange CO INTRODUCTION Every organism must exchange materials with its environment Exchanges ultimately occur at the cellular level In unicellular organisms, these exchanges

More information

Levels of Organization. Chapter 19 6/11/2012. Homeostasis & Organization of the animal body. 4 Primary Tissues

Levels of Organization. Chapter 19 6/11/2012. Homeostasis & Organization of the animal body. 4 Primary Tissues Levels of Organization Chapter 19 Homeostasis & Organization of the animal body Chemical Cellular Tissue Organs System Level Organismic 1-2 4 Primary Tissues 1. Epithelial Tissue: covers surfaces lines

More information

Circulatory System. Chapter 32

Circulatory System. Chapter 32 Circulatory System Chapter 32 Invertebrates w/o a Circulatory System If an organism has a sac body plan, circulatory systems are not necessary. Sac body plans mean cells are capable of gas and nutrient

More information

Circulatory Systems. All cells need to take in nutrients and expel metabolic wastes.

Circulatory Systems. All cells need to take in nutrients and expel metabolic wastes. Circulatory Systems All cells need to take in nutrients and expel metabolic wastes. Single celled organisms: nutrients from the environment can diffuse (or be actively transported) directly in to the cell

More information

Biology Unit 3 The Human Heart P

Biology Unit 3 The Human Heart P Biology 2201 Unit 3 The Human Heart P 314-321 Structure and Function of the Human Heart Structure of the Human Heart Has four Chambers (2 Atria and 2 Ventricles) Made of Cardiac Muscle Found in Chest Cavity

More information

CIRCULATION. Cardiovascular & lymphatic systems Functions. Transport Defense / immunity Homeostasis

CIRCULATION. Cardiovascular & lymphatic systems Functions. Transport Defense / immunity Homeostasis CIRCULATION CIRCULATION Cardiovascular & lymphatic systems Functions Transport Defense / immunity Homeostasis 2 Types of Circulatory Systems Open circulatory system Contains vascular elements Mixing of

More information

Topic 6: Human Physiology

Topic 6: Human Physiology Topic 6: Human Physiology 6.2 The Blood System D.4 The Heart Essential Questions: 6.2 The blood system continuously transports substances to cells and simultaneously collects waste products. D.3 The chemical

More information

Chapter 12. Capillaries. Circulation. The circulatory system connects with all body tissues

Chapter 12. Capillaries. Circulation. The circulatory system connects with all body tissues Chapter 12 Circulation The circulatory system connects with all body s In many animals, microscopic blood vessels called capillaries Form an intricate network among the Red blood cell song Figure 23.1A

More information

The Mammalian Circulatory System

The Mammalian Circulatory System The Mammalian Heart The Mammalian Circulatory System Recall: What are the 3 cycles of the mammalian circulatory system? What are their functions? What are the three main vessel types in the mammalian circulatory

More information

Points To Remember. Biology Class - 11

Points To Remember. Biology Class - 11 Points To Remember Blood : A special connective tissue that circulates in principal vascular system of man and other vertebrates consisting of fluid matrix, plasma and formed elements. Plasma : The liquid

More information

37 1 The Circulatory System

37 1 The Circulatory System H T H E E A R T 37 1 The Circulatory System The circulatory system and respiratory system work together to supply cells with the nutrients and oxygen they need to stay alive. a) The respiratory system:

More information

Circulation: Chapter 25. Cardiac Output. The Mammalian Heart Fig Right side of the heart

Circulation: Chapter 25. Cardiac Output. The Mammalian Heart Fig Right side of the heart Circulation: Chapter 25 1. Limits of Diffusion A. Small organisms use diffusion B. rapid over small distances 2. Most animals have circulatory systems A. Blood B. Pump (Heart) or propulsive structures

More information

The Circulatory System. The Heart, Blood Vessels, Blood Types

The Circulatory System. The Heart, Blood Vessels, Blood Types The Circulatory System The Heart, Blood Vessels, Blood Types The Closed Circulatory System Humans have a closed circulatory system, typical of all vertebrates, in which blood is confined to vessels and

More information

CIRCULATION & GAS EXCHANGE

CIRCULATION & GAS EXCHANGE AP BIOLOGY ACTIVITY2.13 Text:Campbell,v.8,chapter42 NAME DATE HOUR CIRCULATION & GAS EXCHANGE 1. In general, what is the function of transport systems? 2. What method/structure do most invertebrates use

More information

aliasyraf.wordpress.com

aliasyraf.wordpress.com aliasyraf.wordpress.com 1.1 Understanding the importance of having a transport system in some multicellular organisms 1.1 Understanding the importance of having a transport system in some multicellular

More information

CARDIOVASCULAR SYSTEM Worksheet

CARDIOVASCULAR SYSTEM Worksheet CARDIOVASCULAR SYSTEM Worksheet NAME Section A: Blood Basics http://www.psbc.org/hematology/01_index.htm Although blood appears to be red liquid it is actually composed of yellowish liquid called plasma

More information

Cardiac Cycle. Each heartbeat is called a cardiac cycle. First the two atria contract at the same time.

Cardiac Cycle. Each heartbeat is called a cardiac cycle. First the two atria contract at the same time. The Heartbeat Cardiac Cycle Each heartbeat is called a cardiac cycle. First the two atria contract at the same time. Next the two ventricles contract at the same time. Then all the chambers relax. http://www.youtube.com/watch?v=frd3k6lkhws

More information

Chapter 23. Circulation

Chapter 23. Circulation Chapter 23 Circulation Standards CORE: I can describe the components and function of blood. I can describe structure and function of blood vessels. I can compare and contrast systemic and pulmonary systems.

More information

Circulatory System Objective sheet 3

Circulatory System Objective sheet 3 Circulatory System Objective sheet 3 10. Functions of blood 1) Transport oxygen and nutrients 2) Transport of carbon dioxide and waste 3) Protection against disease causing micro-organisms 4) Clotting

More information

SAPTARSHI CLASSES PVT. LTD.

SAPTARSHI CLASSES PVT. LTD. SAPTARSHI CLASSES PVT. LTD. NEET TEST No 220317 Time : 1 Hr BIOLOGY CIRCULATION 1) c 2) a 3) d 4) c 5) c 6) c 7) c 8) a 9) d 10) d 11) d 12) c 13) d 14) b 15) b 16) c 17) a 18) b 19) c 20) a 21) b 22)

More information

Mr. Epithelium s Anatomy and Physiology Test SSSS

Mr. Epithelium s Anatomy and Physiology Test SSSS Mr. Epithelium s Anatomy and Physiology Test SSSS You have 50 minutes to complete this test packet. One 8.5 x 11 cheat sheet is allowed, along with 1 non-programmable calculator dedicated to computation.

More information

Health Science 20 Circulatory System Notes

Health Science 20 Circulatory System Notes Health Science 20 Circulatory System Notes Functions of the Circulatory System The circulatory system functions mainly as the body s transport system. It transports: o Oxygen o Nutrients o Cell waste o

More information

Objectives of the Heart

Objectives of the Heart Objectives of the Heart Electrical activity of the heart Action potential EKG Cardiac cycle Heart sounds Heart Rate The heart s beat separated into 2 phases Relaxed phase diastole (filling of the chambers)

More information

Lesson 10 Circulatory System (Nelson p.88-93)

Lesson 10 Circulatory System (Nelson p.88-93) Name: Date: Lesson 10 Circulatory System (Nelson p.88-93) Learning Goals: A. I can explain the primary functions of the circulatory system in animals. B. I can identify and explain all the parts of the

More information

4. The two inferior chambers of the heart are known as the atria. the superior and inferior vena cava, which empty into the left atrium.

4. The two inferior chambers of the heart are known as the atria. the superior and inferior vena cava, which empty into the left atrium. Answer each statement true or false. If the statement is false, change the underlined word to make it true. 1. The heart is located approximately between the second and fifth ribs and posterior to the

More information

1. Which of the following blood vessels has a thin elastic layer? A. Aorta. B. Pulmonary artery. C. Posterior vena cava. D. Mesenteric capillary.

1. Which of the following blood vessels has a thin elastic layer? A. Aorta. B. Pulmonary artery. C. Posterior vena cava. D. Mesenteric capillary. CIRCULATORY SYSTEM 1. Which of the following blood vessels has a thin elastic layer? A. Aorta. B. Pulmonary artery. C. Posterior vena cava. D. Mesenteric capillary. 2. Capillary beds are equipped with

More information

Chapter 23 Circulation

Chapter 23 Circulation Chapter 23 Circulation PowerPoint Lectures for Biology: Concepts & Connections, Sixth Edition Campbell, Reece, Taylor, Simon, and Dickey Lecture by Edward J. Zalisko Introduction: How Does Gravity Affect

More information

Visit For All NCERT solutions, CBSE sample papers, Question papers, Notes for Class 6 to 12. Chapter -18

Visit  For All NCERT solutions, CBSE sample papers, Question papers, Notes for Class 6 to 12. Chapter -18 Chapter -18 BODY FLUIDS AND CIRCULATION POINTS TO REMEMBER Blood : A special connective tissue that circulates in principal vascular system of man and other vertebrates consisting of fluid matrix, plasma

More information

Chapter 27 -The Heart & Blood Vessels

Chapter 27 -The Heart & Blood Vessels Chapter 27 -The Heart & Blood Vessels 3.2 Learning Objectives 3.2.2 Organisational Complexity of the human 1. Describe the structures and organisation of tissues in the closed circulatory system. 2. Discuss

More information

Table of Contents: #41: Comparative Circulatory System Assignment Page: #41: Monday January 9, 2017: Comparative Circulatory System

Table of Contents: #41: Comparative Circulatory System Assignment Page: #41: Monday January 9, 2017: Comparative Circulatory System NOTEBOOK Table of Contents: #41: Comparative Circulatory System Assignment Page: #41: Monday January 9, 2017: Comparative Circulatory System Agenda: 1. Comparative Circulatory System (Notes with Handout)

More information

Chapter 42: Circulation / Gas Exchange. d = t 2

Chapter 42: Circulation / Gas Exchange. d = t 2 Chapter 42: Circulation / Gas Exchange Transport systems connect organs of exchange with body cells Diffusion Lung Blood 100 m 1 s 1 mm 100 s 1 cm 10000 s d = t 2 Bulk Flow (Pressure) Blood Cells Methods

More information

Circulatory System Review

Circulatory System Review Circulatory System Review 1. Know the diagrams of the heart, internal and external. a) What is the pericardium? What is myocardium? What is the septum? b) Explain the 4 valves of the heart. What is their

More information

PLASMA, ERYTHROCYTES, LEUKOCYTES AND PLATELETS COMPOSITION AND FUNCTION OF BLOOD

PLASMA, ERYTHROCYTES, LEUKOCYTES AND PLATELETS COMPOSITION AND FUNCTION OF BLOOD PLASMA, ERYTHROCYTES, LEUKOCYTES AND PLATELETS COMPOSITION AND FUNCTION OF BLOOD FUNCTION OF BLOOD... Oxygen is carried to tissues Carbon dioxide is carried fro m tissues to lungs Glucose is carried from

More information

Pearson's Comprehensive Medical Assisting Administrative and Clinical Competencies

Pearson's Comprehensive Medical Assisting Administrative and Clinical Competencies Pearson's Comprehensive Medical Assisting Administrative and Clinical Competencies THIRD EDITION CHAPTER 27 The Cardiovascular System Lesson 1: Overview of the Cardiovascular System Lesson Objectives Upon

More information

Chapter 27 The Heart and Blood Vessels

Chapter 27 The Heart and Blood Vessels Chapter 27 The Heart and Blood Vessels Most animals have a closed blood system. The blood flows continuously in vessels back to the heart. In an open system the blood is pumped into open ended tubes and

More information

Exam 3 Study Guide. 4) The process whereby the binding of antibodies to antigens causes RBCs to clump is called:

Exam 3 Study Guide. 4) The process whereby the binding of antibodies to antigens causes RBCs to clump is called: Exam 3 Study Guide 1) Where does hematopoiesis produce new red blood cells: 2) Which of the following is a blood clotting disorder: 3) Treatment of hemophilia often involves: 4) The process whereby the

More information

Cardiovascular System. Biology 105 Lecture 15 Chapter 12

Cardiovascular System. Biology 105 Lecture 15 Chapter 12 Cardiovascular System Biology 105 Lecture 15 Chapter 12 Outline I. Functions of cardiovascular system II. Components of the cardiovascular system: I. Blood vessels II. Heart III. Regulation of the heartbeat

More information

Circulatory System. - Consists of a pumping heart and blood vessels. Two types of circulatory fluids: Blood OR Hemolymph

Circulatory System. - Consists of a pumping heart and blood vessels. Two types of circulatory fluids: Blood OR Hemolymph Introduction - The major transportation fluid in the body. - 8% of the total body fluids. Roles of the Cardiovascular system: 1- Transport of substances (O 2, CO 2, nutrients, and hormones) 2- Regulation

More information

Circulatory Systems AP Biology

Circulatory Systems AP Biology Circulatory Systems 2006-2007 Exchange of materials Animal cells exchange material across their cell membrane fuels for energy nutrients oxygen waste (urea, CO 2 ) If you are a 1-cell organism that s

More information

Section 5.1 The heart and heart disease

Section 5.1 The heart and heart disease Section 5.1 The heart and heart disease Mammals are too large to rely on diffusion. They need a circulatory system to move substances around the body. Blood moves down pressure gradients, from high to

More information

AP Biology. Circulatory Systems. Exchange of materials. Overcoming limitations of diffusion. Circulatory systems. In circulation

AP Biology. Circulatory Systems. Exchange of materials. Overcoming limitations of diffusion. Circulatory systems. In circulation Circulatory Systems 2008-2009 Exchange of materials nimal cells exchange material across their cell membrane fuels for energy nutrients oxygen waste (urea, C ) If you are a 1-cell organism that s easy!

More information

The Cardiovascular System home study course

The Cardiovascular System home study course The Cardiovascular System home study course harmony house holistic therapy treatment centre and training academy www.harmony-house.org 1 Copyright 2010 by Mark and Katy Rogers All rights reserved. No part

More information

The Heart. Made up of 3 different tissue: cardiac muscle tissue, nerve tissue, and connective tissue.

The Heart. Made up of 3 different tissue: cardiac muscle tissue, nerve tissue, and connective tissue. The Heart The Heart Made up of 3 different tissue: cardiac muscle tissue, nerve tissue, and connective tissue. Your heart pumps with a regular beat (Heart Rate) Your heart rate can change depending on

More information

Types of Circulatory Systems Vertebrate Cardiovascular System Vertebrate Vascular Systems

Types of Circulatory Systems Vertebrate Cardiovascular System Vertebrate Vascular Systems THE CIRCULATORY SYSTEM Types of Circulatory Systems Vertebrate Cardiovascular System Vertebrate Vascular Systems The Heart The Vascular System Blood The Lymphatic System Learning Objectives Types of Circulatory

More information

2. What makes up the most of your blood? least of your blood? 1. Look like red discs, have a pale center, no nucleus, similar in size

2. What makes up the most of your blood? least of your blood? 1. Look like red discs, have a pale center, no nucleus, similar in size .I Can Statements I can identify the major components of blood and where they are formed. Identify the four components of blood in the diagram below. 1. Label each section of the pie chart with the correct

More information

TOPIC 6: HUMAN HEALTH AND PHYSIOLOGY

TOPIC 6: HUMAN HEALTH AND PHYSIOLOGY TOPIC 6: HUMAN HEALTH AND PHYSIOLOGY 6.2 Transport System/Circulatory Draw and label a diagram of the heart showing the four chambers, associated blood vessels, valves and the route of blood through the

More information

Unit 10 Cardiovascular System

Unit 10 Cardiovascular System Unit 10 Cardiovascular System I. Functions Deliver nutrients to cells > O 2, sugars, amino acids, lipids, ions, H 2 O... Remove waste from cells > CO 2, pathogens, toxins, lactic acid... Fight off infection

More information

10. Thick deposits of lipids on the walls of blood vessels, called, can lead to serious circulatory issues. A. aneurysm B. atherosclerosis C.

10. Thick deposits of lipids on the walls of blood vessels, called, can lead to serious circulatory issues. A. aneurysm B. atherosclerosis C. Heart Student: 1. carry blood away from the heart. A. Arteries B. Veins C. Capillaries 2. What is the leading cause of heart attack and stroke in North America? A. alcohol B. smoking C. arteriosclerosis

More information

Scrub In: Red blood cells are called: Which component of blood is necessary for the initiation of the blood clotting process:

Scrub In: Red blood cells are called: Which component of blood is necessary for the initiation of the blood clotting process: Scrub In: Red blood cells are called: a. erythrocytes b. leukocytes c. melanocytes d. thrombocytes Which component of blood is necessary for the initiation of the blood clotting process: a. erythrocytes

More information

Chapter 12 Cardiovascular System

Chapter 12 Cardiovascular System Chapter 12 Cardiovascular System Cardiovascular System Includes Heart and Blood Vessels Transports, nutrients and wastes to and from the tissues 1 The Blood Vessels Three Types of Blood Vessels Arteries:

More information

Circulation and Respiration

Circulation and Respiration Lesson 10 Circulation and Respiration Introduction to Life Processes - SCI 102 1 Circulatory System: Features and Functions All circulatory systems have three major parts The heart: a pump that keeps blood

More information

Cardiovascular System. I. Structures of the heart A. : Pericardium sack that surrounds the heart

Cardiovascular System. I. Structures of the heart A. : Pericardium sack that surrounds the heart Cardiovascular System I. Structures of the heart A. : Pericardium sack that surrounds the heart 1. : Pericardial Cavity serous fluid filled space between the heart and the pericardium B. Heart Wall 1.

More information

Cardiovascular System Notes: Physiology of the Heart

Cardiovascular System Notes: Physiology of the Heart Cardiovascular System Notes: Physiology of the Heart Interesting Heart Fact Capillaries are so small it takes ten of them to equal the thickness of a human hair. Review What are the 3 parts of the cardiovascular

More information

The Cardiovascular System

The Cardiovascular System 11 PART A The Cardiovascular System PowerPoint Lecture Slide Presentation by Jerry L. Cook, Sam Houston University ESSENTIALS OF HUMAN ANATOMY & PHYSIOLOGY EIGHTH EDITION ELAINE N. MARIEB The Cardiovascular

More information

Circulation and Gas Exchange

Circulation and Gas Exchange Circulation and Gas Exchange Sponges (porifera) Flat worms (platyhelminthes) Round worms (nematoda) Segmented worms (annelida) Stinging celled (cnidaria) Squishy (mollusca) Hard shelled (arthropods) Spiny

More information

Circulatory system of mammals

Circulatory system of mammals Circulatory system of mammals Explain the cardiac cycle and its initiation Discuss the internal factors that control heart action Blood flows through the heart as a result of pressure differences Blood

More information

Transport in Animals (IGCSE Biology Syllabus )

Transport in Animals (IGCSE Biology Syllabus ) Transport in Animals (IGCSE Biology Syllabus 2016-2018) Blood o Red blood cells: heamoglobin and oxygen transport o White blood cells: phagocyte phagocytosis (engulf pathogen, vesicles fuse with vacuole,

More information

Biology 1442 Supplemental Instruction Worksheet Cardiovascular System Jacaruso - 1 -

Biology 1442 Supplemental Instruction Worksheet Cardiovascular System Jacaruso - 1 - Biology 1442 Supplemental Instruction Worksheet Cardiovascular System Jacaruso - 1-2. Organs of a closed circulatory system: A. Have valves a. Arteriole B. Regulate blood flow b. Artery C. Lead to heart

More information

The Cardiovascular System (Heart)

The Cardiovascular System (Heart) The Cardiovascular System The Cardiovascular System (Heart) A closed system of the heart and blood vessels The heart pumps blood Blood vessels allow blood to circulate to all parts of the body The function

More information

The circulatory system

The circulatory system The circulatory system Key words Vessels heart blood plasma platelets haemoglobin To engulf arteries capillaries veins venules lymphocytes Atrium / - a ventricle tricuspid bicuspid cardiac coronary Humans

More information

IB TOPIC 6.2 THE BLOOD SYSTEM

IB TOPIC 6.2 THE BLOOD SYSTEM IB TOPIC 6.2 THE BLOOD SYSTEM TERMS TO KNOW circulation ventricle artery vein THE BLOOD SYSTEM 6.2.U1 - Arteries convey blood at high pressure from the ventricles to the tissues of the body Circulation

More information

d) Cardiovascular System Higher Human Biology

d) Cardiovascular System Higher Human Biology d) Cardiovascular System Higher Human Biology What can your remember about the heart and blood vessels? What is the Cardiovascular System? The cardiovascular system, also known as the circulatory system,

More information

Cardiovascular. Function of the cardiovascular system is to transport blood containing: Nutrients Waste Hormones Immune cells Oxygen

Cardiovascular. Function of the cardiovascular system is to transport blood containing: Nutrients Waste Hormones Immune cells Oxygen Cardiovascular The Cardiovascular System - Arteries Arteries Cardiovascular System Function of the cardiovascular system is to transport blood containing: Carry blood away from heart Carotid arteries Deliver

More information

Questions on Transport

Questions on Transport Name: Questions on Transport Directions: The following questions are taken from previous IB Final Papers on Topic 6.2 (The Transport System). Answer all questions. This will serve as a study guide for

More information

Chapter 9 Homeostasis and Circulation

Chapter 9 Homeostasis and Circulation 1 Chapter 9 Homeostasis and Circulation Section 9.1 Homeostasis: Life in the Balance Outcomes: I can explain homeostasis I can describe the importance of homeostasis to living things I can explain the

More information

Aim: Transport- Why is it so important to multicellular organisms?

Aim: Transport- Why is it so important to multicellular organisms? Aim: Transport- Why is it so important to multicellular organisms? I.Transportthe absorption and circulation that allows substances to pass into or out of cells and move throughout the organism. A. absorptionsubstances

More information

Cardiovascular System. Supplementary Information

Cardiovascular System. Supplementary Information Cardiovascular System Supplementary Information THE CARDIOVASCULAR SYSTEM - 1 - THE CARDIOVASCULAR SYSTEM FUNCTION Transport system carrying nutrient, gases, hormones and waste products to and from the

More information

Cardiovascular System- Heart. Miss Wheeler Unit 8

Cardiovascular System- Heart. Miss Wheeler Unit 8 Cardiovascular System- Heart Miss Wheeler Unit 8 Overview CARDIOVASCULAR SYSTEM heart vessels Made up of heart, blood vessels, and blood Functions Heart- pump blood Vessels- (veins, arteries, capillaries)

More information

Lab 16. The Cardiovascular System Heart and Blood Vessels. Laboratory Objectives

Lab 16. The Cardiovascular System Heart and Blood Vessels. Laboratory Objectives Lab 16 The Cardiovascular System Heart and Blood Vessels Laboratory Objectives Describe the anatomical structures of the heart to include the pericardium, chambers, valves, and major vessels. Describe

More information

CIE Biology A-level Topic 8: Transport in mammals

CIE Biology A-level Topic 8: Transport in mammals CIE Biology A-level Topic 8: Transport in mammals Notes Circulatory systems can either be open, for instance in insects, or closed, like in fish and mammals where the blood is confined to blood vessels

More information

Mammalian Transport and The Heart

Mammalian Transport and The Heart Cardiovascular System AS-G, Chapters 8-9 Blood flows through the body in a closed system (circuit) driven by the pumping power of the heart Closed vs open: does the system have vessels contained the entire

More information

CIRCULATORY SYSTEM BLOOD VESSELS

CIRCULATORY SYSTEM BLOOD VESSELS Name: Block: CIRCULATORY SYSTEM Multicellular organisms (above the level of roundworms) rely on a circulatory system to bring nutrients to, and take wastes away from, cells. In higher organisms such as

More information

Blood Functions. Blood and the Cardiovascular System. Blood. Plasma. Erythrocytes (RBCs) Erythrocytes (RBCs) 4/7/2017

Blood Functions. Blood and the Cardiovascular System. Blood. Plasma. Erythrocytes (RBCs) Erythrocytes (RBCs) 4/7/2017 Blood Functions Blood and the Cardiovascular System Distribution Delivery of oxygen and nutrients to all body cells; Transport of wastes to lungs and excretory organs; Transport of hormones Regulation

More information

12.1 The Function of Circulation

12.1 The Function of Circulation 12.1 The Function of Circulation The Circulatory System Magnetic Resonance Angiography (MRA) Heart pump beats 100 000 times a day Deliver oxygen and nutrients Function of Circulation Multicellular organisms

More information

Glossary: The Cardiovascular System

Glossary: The Cardiovascular System This glossary includes terms that have been introduced in Lesson 14. Student Resource 14.14 Glossary: The Cardiovascular System Anatomy Terms aorta Large artery that transports blood from the left ventricle

More information

The Cardiovascular and Lymphatic Systems

The Cardiovascular and Lymphatic Systems BIOLOGY OF HUMANS Concepts, Applications, and Issues Fifth Edition Judith Goodenough Betty McGuire 12 The Cardiovascular and Lymphatic Systems Lecture Presentation Anne Gasc Hawaii Pacific University and

More information

The Cardiovascular and Lymphatic Systems Cardiovascular System Blood Vessels Blood Vessels Arteries Arteries Arteries

The Cardiovascular and Lymphatic Systems Cardiovascular System Blood Vessels Blood Vessels Arteries Arteries Arteries CH 12 The Cardiovascular and s The Cardiovascular and s OUTLINE: Cardiovascular System Blood Vessels Blood Pressure Cardiovascular System The cardiovascular system is composed of Blood vessels This system

More information

Cardiovascular System Note-Taking Guide

Cardiovascular System Note-Taking Guide FUNctions: Name: 3-27-14 Cardiovascular System Note-Taking Guide Heart: Pumps and delivers through the body Blood: Vessels: Delivers and to the body Carries waste and Maintains homeostasis - Carries blood

More information

Today s objectives:! - Learn BASICS of circulatory system (Heart, different veins and arteries)! - Appreciate effects and treatment for

Today s objectives:! - Learn BASICS of circulatory system (Heart, different veins and arteries)! - Appreciate effects and treatment for Today s objectives:! - Learn BASICS of circulatory system (Heart, different veins and arteries)! - Appreciate effects and treatment for hyperlipidemia! Agenda! - Review objectives for 6.2! - Video of circulatory

More information

The HEART. What is it???? Pericardium. Heart Facts. This muscle never stops working It works when you are asleep

The HEART. What is it???? Pericardium. Heart Facts. This muscle never stops working It works when you are asleep This muscle never stops working It works when you are asleep The HEART It works when you eat It really works when you exercise. What is it???? Located between the lungs in the mid thoracic region Apex

More information

Circulatory System. Circulatory System

Circulatory System. Circulatory System Circulatory System Transportation system of the body There are two types of circulatory systems: 1. Open Circulatory System pumps blood to open ended vessels into the body cavities containing organs, then

More information

Chapter 10 The Circulatory & Lymphatic Systems

Chapter 10 The Circulatory & Lymphatic Systems Biology 12 Name: Human Biology Per: Date: Chapter 10 The Circulatory & Lymphatic Systems Complete using BC Biology 12, pages 298 325 10.1 The Blood Vessels pages 298-299 1. Label the blood vessels in this

More information

Cardiovascular System

Cardiovascular System Cardiovascular System Purpose Transport oxygen and nutrients Take waste products away from tissues & organs Things we learned Blood pressure: the force of blood pushing against the walls of blood vessels

More information

Major Function of the Cardiovascular System. Transportation. Structures of the Cardiovascular System. Heart - muscular pump

Major Function of the Cardiovascular System. Transportation. Structures of the Cardiovascular System. Heart - muscular pump Structures of the Cardiovascular System Heart - muscular pump Blood vessels - network of tubes Blood - liquid transport vehicle brachiocephalic trunk superior vena cava right pulmonary arteries right pulmonary

More information

CIE Biology GCSE. 9: Transport in animals. Notes.

CIE Biology GCSE. 9: Transport in animals. Notes. CIE Biology GCSE 9: Transport in animals Notes The circulatory system acts as the main transport system in animals. It is made up of blood vessels such as arteries, veins and capillaries, in which blood

More information

2.02 Understand the functions and disorders of the circulatory system

2.02 Understand the functions and disorders of the circulatory system 2.02 Understand the functions and disorders of the circulatory system 2.02 Understand the functions and disorders of the circulatory system Essential questions: What are the functions of blood? What are

More information

Class X Chapter 7 The Circulatory System Biology REVIEW QUESTIONS: A. MULTIPLE CHOICE TYPE: (Select the most appropriate option in each case)

Class X Chapter 7 The Circulatory System Biology REVIEW QUESTIONS: A. MULTIPLE CHOICE TYPE: (Select the most appropriate option in each case) REVIEW QUESTIONS: A. MULTIPLE CHOICE TYPE: (Select the most appropriate option in each case) Question 1: Agranulocytes are: (a) lymphocytes and monocytes (b) lymphocytes and basophils (c) eosinophils and

More information

Lower Secondary Science Blood Circulatory System Notes / Advanced Notes

Lower Secondary Science Blood Circulatory System Notes / Advanced Notes Lower Secondary Science Blood Circulatory System Notes / Advanced Notes Double Circulation in Mammals In mammals, there is a double circulation (i.e. blood passes through the heart twice in one complete

More information

How does the Circulatory System maintain

How does the Circulatory System maintain How does the Circulatory System maintain -It supplies cells throughout the body with oxygen and nutrients while also ridding them of wastes. Transports materials such as: (to cells) (to attack foreign

More information

Circulation. Invertebrates on Land: such as insects, and such as earthworms also do not have a gastrovascular cavity.

Circulation. Invertebrates on Land: such as insects, and such as earthworms also do not have a gastrovascular cavity. Circulation A. Invertebrates in Water: Organisms that are a cells thick. Diffusion alone is sufficient for single-celled (amoeba and paramecium) and simple, multi-cellular animals such as (hydra, jellies,

More information

Chapter 9 Homeostasis and Circulation. Biology 2201

Chapter 9 Homeostasis and Circulation. Biology 2201 Chapter 9 Homeostasis and Circulation Biology 2201 Homeostasis The steady state of conditions inside a living organism that allows it to function properly Homeostasis is the dynamic equilibrium of the

More information

Lab #3: Electrocardiogram (ECG / EKG)

Lab #3: Electrocardiogram (ECG / EKG) Lab #3: Electrocardiogram (ECG / EKG) An introduction to the recording and analysis of cardiac activity Introduction The beating of the heart is triggered by an electrical signal from the pacemaker. The

More information

Blood and Heart. Student Learning Objectives:

Blood and Heart. Student Learning Objectives: Blood and Heart Student Learning Objectives: Identify the major components of the blood. Identify the primary structures associated with the heart Follow the blood through the path of the circulation.

More information

Circula/on and Gas Exchange

Circula/on and Gas Exchange Chapter 42 Circula/on and Gas Exchange BIOL 223 Simple animals such as cnidarians Body wall only two cells thick Flatworms Gastrovascular Cavi/es Encloses gastrovascular cavity diges/on and distribu/on

More information