namely 7-9 %. later been confirmed by Tigerstedt(4). Knowing the amount of blood in the lungs and the time spent on

Size: px
Start display at page:

Download "namely 7-9 %. later been confirmed by Tigerstedt(4). Knowing the amount of blood in the lungs and the time spent on"

Transcription

1 ON THE AMOUNT OF BLOOD IN BY YAS KUNO. THE LUNGS. (From the Physiological Laboratory, Japanese Medical School, Mukden.) THE quantity of blood in the lungs has already been investigated by various authors. Spehl(1), for example, found in rabbits that the amount of blood in the lungs is on an average 7x1 % of the total quantity in the body. The results of Menicanti(2) who made his researches on a dog, rabbits, cats, and frogs agree on the whole with those of Spehl, namely 7-9 %. The time needed for the blood flow through the lungs has been measured by Stewart(3). His result was 3-4 sec. This figure has later been confirmed by Tigerstedt(4). Knowing the amount of blood in the lungs and the time spent on the flow through this organ we can easily calculate the time needed for one whole circulation through the body because the total amount of blood must pass once through the lungs. The result of such a calculation using the above figures does not agree with that recorded by other authors working with other methods of research. From the above figures, if we take 1/14 of the whole blood for the quantity in the lungs and 4 seconds for the time of the blood flow through the lungs, then the period of one whole circulation must be 56 sec. This figure is rather too high. Krogh(5) found that the blood flow through the lungs (the minute volume) in man varies between very wide limits (from 2' litres per minute) dependingon the conditions of the circulation. According to this result and assuming that the whole amount of blood in the body is 1/20 of the weight of the body, the time of one whole circulation must vary between about 8-6 and 60 sec. Thus the above figure (56 sec.) corresponds to that of the slowest circulation, but not to those of the faster ones which are often met with in normal life. In all the researches which were carried out by the above mentioned authors for determining the amount of blood in the lungs, animals with

2 BLOOD IN LUNGS. 155 open thorax were used. It is beyond question that the circulation is abnormally slow under such conditions. In order to accelerate the circulation either the amount of blood in the lungs or the quickness of the flow through the lungs or both must be increased. In -a paper lately published on the pulmonary circulation(6) I recorded that the fall of pressure in the pulmonary circulation varies with the volume of the venous inflow, i.e., it becomes smaller as the venous inflow increases. These results would seem to suggest that the pulmonary vessels were dilated when the circulation increased. I have therefore carried out some experiments to determine the amount of blood in the lungs under different conditions of the circulation. Method. All experiments were carried out on the heart-lung preparation (dogs). Changes in the circulation were brought about by increasing or diminishing the blood flow into the heart. In order to determine the condition of the circulation, the output of the left ventricle was measured, and also the pressures in the aorta and in the vena cava recorded. The rib-cartilages were cut away on both sides. Both lungs were simultaneously ligatured by means of a strong thread which was previously passed round the hilus. The artificial respiration was stopped just before tying off the lungs so that the lungs were always tied in a condition of expiration. I estimated the quantity of blood in the lungs, cut off in this way, by Welcker's method. I minced up the lungs in small pieces, washed with distilled water, then rubbed with glass powder in a mortar, and repeatedly extracted with water until the water was no longer coloured. This I carried out on both lungs separately. 1 c.c. blood was taken as a sample from the blood reservoir at the end of each experiment and diluted 200 times with distilled water. This solution served as the standard of comparison. The comparison of colour was made in two test tubes of exactly the same diameter (17 mm.). Previously I practised this method with defibrinated blood and found that the error in comparison of colour is certainly smaller than 6 %. 1. The amount of blood in the lungs. Table I gives the details of 5 of the 15 experiments which were made. In all cases the arterial pressure was kept at a height of mm. Hg and the pulse rate was from per minute. It is impossible to determine how much blood there is in the body of animals used for the heart-lung preparation. I therefore estimated it according

3 -156 YAS KUNO. to the weight of the animals. The amount of blood in dogs was determined by various authors by Welcker's method. Their results agree fairly well, namely 6*2-8-9 % of the body weight. According to the chemical method which is more indirect these figures may be somewhat too high. Since, however, the authors who recorded the amount of blood in the lungs used the results obtained by Welcker's method to express the percentage to the total amount of blood in the body, and since I also used Welcker's method in these experiments I will, for the present, assume the whole quantity of blood to be 7 % of the weight of the body and calculate the. percentage of the amount of blood in the lungs in relation to that in the body. TABLE I. Amount of blood in Weight Weight Height of Output Amount of lungs in of of Arterial venous Pressure per blood in percentage body heart B.P. reservoir v.c. minute lungs of that (kilos) (grins.) (mm. Hg) (ems.) (mm. H20) (C.C.) (C.C.) in body * *38 4* *44 According to these results the amount of blood in the lungs is, as I expected, much larger than the earlier authors recorded, i.e., it varies from % of the total amount of blood. The amount of blood in the lungs increases with the acceleration of the circulation, i.e., the amount of blood is about 2-2 times larger when the circulation is fast than when it is slow (calculated from the figures in Table I). If we divide the output of the left ventricle per minute by the amount of blood in the lungs, the quotient means the number of times the blood changes in the lungs per minute. In this way we can calculate the time of the blood flow in the lungs. This time is in Table I 3.8, 1*98, 1-82, 2'18, and 2-2 sec. In other experiments these figures varied between 1'9 and 4-1 sec. These figures are proportional neither to the output of the ventricle nor to the amount of blood in the lungs. Although I was very careful not to touch the lungs and kept them always moist with Ringer's solution during the operation, it was difficult to keep the lungs in the heart-lung preparation absolutely under normal conditions. Thus my results are in this respect not free from fallacy. But still I think I may justly maintain that the amount of blood in the lungs may be more than twice as great when the circulation is fast than when it is

4 BLOOD IN LUNGS. slow. And the time needed for the blood flow in the lungs is also more than twice as great when the circulation is slow than when it is fast. These results well agree with the necessities of life since the amount of blood which comes in contact with the alveolar air may be directly proportional to the rapidity of the blood flow, or even increase in a higher ratio. When the blood used for the heart-lung preparation is somewhat old, the lungs get into an cedematous condition. Although I am not sure whether this condition is really analogous to the cedema which occurs in pathological cases, I have investigated the amount of blood in the lungs of two dogs under such conditions. The circulation of patients with cedema of the lungs must be very slow. In order to imitate this condition I kept the venous supply to the heart very small in these experiments. The following protocol shows the results of one experiment: Dog. Weight 258 kilos, weight of heart 19 grms. Height of venous reservoir 6 cm. Arterial pressure 94 mm. Hg, venous pressure 20 mntn water, pulse rate 163 per minute, output of the left ventricle 124 c.c. per minute. The lungs swelled considerably. Weight of both lungs 130*5 grms. (the right lung 71, the left one 59B5 grms.). The amount of blood in both lungs 51*3 c.c. (right 29, left 22.3). The assumed amount of blood in the body 196 c.c. Therefore the amount of blood in the lungs is 26B2 % of the whole quantity of blood In the other experiment this percentage was 23-4 %. From these results it is evident that the lungs may contain about one-quarter of the whole blood under a pathological condition although the circulation is very slow. 2. The difference in the weight of both lungs. 157 The difference in size between the right and the left lung in dogs is very remarkable. The weight of the left lung varied in my experiments between 1: 1-2 and 1: 2-03 (average 1: 1.52) as compared with the right one. I measured the amount of blood separatelv in both lungs. Table II shows the weight and the amount of blood of the right lung and of the left one. As this table shows, the relationship between the weights of the lungs and. that between the quantity of blood contained in them is almost the same. This proves on the one hand that the blood is distributed uniformly in the lungs, and on the other hand that the method used for the determination of the amount of blood involves no considerable error.

5 158 Weight of riht lung left lung (grms.) (grm) YAS KUNO. Weight of right lung=weight of left lung multiplied by *42 1*47 1*48 1* Average 1652 TABLE II. right lung (ac.) * *05 Amount of blood in left lung (C.c.) * X * Amount of blood in right lung =Amount of blood in left lung multiplied by * * Average 1'55 SUMMARY. The amount of blood in the lungs was measured by Welcker's method on the heart-lung preparation (dogs) under different conditions of the blood circulation brought about by increasing or diminishing the venous supply. The amount of blood in the lungs increases when the blood circulation becomes more vigorous. Depending on these conditions, the amount of blood in the lungs varies from 8, % of the amount of blood in the body (assuming this to be 7 % of the weight of the body). If the lungs are cedematous they may contain about one-quarter of the amount of blood in the body. The ratio of the weight of the left lung to that of the right lung varies in dogs from 1: 1-2 to 1: 2-03 (average 1 :1.52). (1) (2) (3) (4) (5) (6) REFERENCES. Spehl. De la r6partition du sang circulant dans l'wconomie. Bruxelles, Menicanti. Ztschr. f. Biol. 30, S Stewart. This Journal, 15, p Tigerstedt. Skand. Arch. f. PhysioL 14, S Krogh. Skand. Arch. f. Physiol. 27, S Kuno. This Journal, 50, p

(From the Physiological Laboratory, Japanese Medioal School, Mukden.)

(From the Physiological Laboratory, Japanese Medioal School, Mukden.) THE MECHANICAL EFFECT OF FLUID IN THE PERI- CARDIUM ON THE FUNCTION OF THE HEART. BY YAS KUNO. (From the Physiological Laboratory, Japanese Medioal School, Mukden.) THE fact that a rise of pressure in

More information

by Starling [1914] and Daly [1925].

by Starling [1914] and Daly [1925]. 612.13 PROPERTIES OF THE PERIPHERAL VASCULAR SYSTEM AND THEIR RELATION TO THE SYSTEMIC OUTPUT. BY HENRY BARCROFT. Harmsworth Scholar, St Mary's Hospital, London. (Experiments performed in the Physiological

More information

612.I73:6I2.I3. mammary and mediastinal vessels tied off. The thoracic wall on the left

612.I73:6I2.I3. mammary and mediastinal vessels tied off. The thoracic wall on the left 612.I73:6I2.I3 CARDIAC OUTPUT AND BLOOD DISTRIBUTION. By H. BAR CROFT (Harmsworth Scholar, St Mary's Hospital, London). (From the Physiological Laboratory, Cambridge.) THE methods for the measurement of

More information

Circulation," Anrep and Starling(l) were unable to obtain evidence of

Circulation, Anrep and Starling(l) were unable to obtain evidence of CARDIOVASCULAR REFLEXES. BY I. DE BURGH DALY AND E. B. VERNEY (Beit Memorial Research Fellow). (From the Physiology Institute, Cardi.) DURING an investigation of the "Central and Reflex Regulation of the

More information

Smith, Miller and Grab er(4) state that the maintenance of an efficient

Smith, Miller and Grab er(4) state that the maintenance of an efficient THE SIGNIFICANCE OF THE DIASTOLIC AND SYSTOLIC BLOOD-PRESSURES FOR THE MAINTENANCE OF THE CORONARY CIRCULATION. BY G. V. ANREP AND B. KING. (From the Physiological Laboratory, Cambridge.) IT is generally

More information

administration of adrenaline or in cases of increased perfusion pressure. approximately the same within fairly wide variations of the systemic

administration of adrenaline or in cases of increased perfusion pressure. approximately the same within fairly wide variations of the systemic 6I2. I72. I THE DISTRIBUTION OF THE BLOOD IN THE CORONARY BLOOD VESSELS. BY G. V. ANREP, A. BLALOCK AND M. HAMMOUDA. (From the Physiological Laboratory, Cambridge.) As a result of experiments on perfused

More information

(From the Physiotogicat Laboratory, Cambridge.)

(From the Physiotogicat Laboratory, Cambridge.) THE OXYGEN EXCHANGE OF THE SUPRARENAL GLAND. BY K. 0. NEUMAN. (From the Physiotogicat Laboratory, Cambridge.) THIS paper deals with the question of the amount of oxygen taken in by a unit weight of the

More information

determining factor in this adaptation has been shown to be the dilatation of the heart cavities rather than the pressure within them, so that

determining factor in this adaptation has been shown to be the dilatation of the heart cavities rather than the pressure within them, so that THE MECHANICAL REGULATION OF THE HEART BEAT IN THE TORTOISE. BY S. KOZAWA, M.D. (Osaka). (From the Institute of Physiology, University College, London.) IN recent papers(l) from this laboratory on the

More information

Cardiovascular system

Cardiovascular system Cardiovascular system L-4 Blood pressure & special circulation Dr Than Kyaw 27 February 2012 Blood Pressure (BP) Pressure generation and flow Blood is under pressure within its closed system. Pressure

More information

Franklin, 1933; Waterman, 1933]; indeed, the only negative findings, [Waterman, 1933]. Inasmuch, then, as Donegan was misled with

Franklin, 1933; Waterman, 1933]; indeed, the only negative findings, [Waterman, 1933]. Inasmuch, then, as Donegan was misled with 381 6I2.I34:6I2.893 THE CONSTRICTOR RESPONSE OF THE INFERIOR VENA CAVA TO STIMULATION OF THE SPLANCHNIC NERVE BY K. J. FRANKLIN AND A. D. McLACHLIN (From the University Department of Pharmacology, Oxford)

More information

University College, London.)

University College, London.) 6I2.I2I:547.472*3 LACTIC ACID FORMATION AND REMOVAL WITH CHANGE OF BLOOD REACTION. BY M. GRACE EGGLETON1 AND C. LOVATT EVANS. (From the Department of Physiology and Biochemistry, University College, London.)

More information

WHILE it is generally agreed that elevation

WHILE it is generally agreed that elevation The Derivation of Coronary Sinus Flow During Elevation of Right Ventricular Pressure By HERMAN M. GELLER, B.S., M.D., MARTIN BRANDFONBRENEU, M.D., AND CARL J. WIGGERS, M.D., The derivation of coronary

More information

(Received 22 January 1941)

(Received 22 January 1941) 510 J. Physiol. (94I) 99, 50-514 6I2.0I4.44:612.III EFFECT OF LIGHT ON RED BLOOD CELLS. THE LIGHT SENSITIVITY OF BLOOD FROM DIFFERENT VERTEBRATE SPECIES BY W. MEYERSTEIN (From the Department of Physiology,

More information

blood-pressure, but opinions differ as to how the other parts of the

blood-pressure, but opinions differ as to how the other parts of the 6I2.492.8:612.13 THE ACTION OF PITUITARY POSTERIOR LOBE EXTRACTS ON DIFFERENT PARTS OF THE CIRCULATORY SYSTEM. BY PETER HOLTZ. (From the Pharmacological Laboratory, Cambridge, and the National Institute

More information

6I :6I2.I83 BY ALISON S. DALE. concluded that the apparent vaso-constriction obtained by F r6 hli c h and

6I :6I2.I83 BY ALISON S. DALE. concluded that the apparent vaso-constriction obtained by F r6 hli c h and 6I2.313.87:6I2.I83 A REVERSED ACTION OF THE CHORDA TYMPANI ON THE VENOUS OUTFLOW FROM THE SUBMAXILLARY GLAND. BY ALISON S. DALE. (From the Physiological Laboratory, Cambridcgel.) INTRODUCTORY. FROiHLICH

More information

Capillary dilatation is the characteristic phenomenon of histamine

Capillary dilatation is the characteristic phenomenon of histamine HISTAMINE SHOCK. BY 0. INCHLEY. (From the Pharmacological Laboratory, Cambridge.) IT is generally accepted that histamine is a direct poison to capillaries, leading to their dilatation. Dale and Richards(1),

More information

described. The circulation through the rubber tubes and resistance corresponding to a pressure of 40 to 60 mm. Hg, the root of the

described. The circulation through the rubber tubes and resistance corresponding to a pressure of 40 to 60 mm. Hg, the root of the EXPERIMENTS ON THE PULMONARY CIRCULATION. BY H. F(YHNER AND E. H. STARLING. (From the In.stitute of Physiology, University Coll'ee, London.) THE many researches on the blood-pressure in the pulmonary artery

More information

What was the range of the resting heart rates in males after the exercise programme?

What was the range of the resting heart rates in males after the exercise programme? Q1.Scientists investigated the effect of a 6-week exercise programme on the resting heart rate of males and females. The scientists recruited a large group of male volunteers and a large group of female

More information

blood contained within the minute vessels were Fifteen experiments were performed on six normal

blood contained within the minute vessels were Fifteen experiments were performed on six normal DEMONSTRATION THAT THE CELL PLASMA RATIO OF BLOOD CONTAINED IN MINUTE VESSELS IS LOWER THAN THAT OF VENOUS BLOOD By RICHARD V. EBERT AND EUGENE A. STEAD, JR. (From the Medical Clinic of the Peter Bent

More information

corresponding to the pulsatile flow of blood normally produced by

corresponding to the pulsatile flow of blood normally produced by THE HEART, LUNG, KIDNEY PREPARATION. BY F. A. BAINBRIDGE AND C. L. EVANS. (From the Institute of Physiology, University College, London.) THE methods hitherto generally employed for the perfusion of isolated

More information

SOME OBSERVATIONS UPON SODIUM ALGINATE. By 0. M. SOLANDT. From the Physiological Laboratory, Cambridge.

SOME OBSERVATIONS UPON SODIUM ALGINATE. By 0. M. SOLANDT. From the Physiological Laboratory, Cambridge. 582.6 SOME OBSERVATIONS UPON SODIUM ALGINATE. By 0. M. SOLANDT. From the Physiological Laboratory, Cambridge. (Received for publication 13th December 1940.) ALGINIC acid was discovered by Stanford in 1883

More information

ansesthesia; an oncometer was used for measurement of the splenic Laboratory, Cambridge.)

ansesthesia; an oncometer was used for measurement of the splenic Laboratory, Cambridge.) 6I2.4I3:6I2.I43 CAUSE OF RHYTHMICAL. CONTRACTION OF THE SPLEEN. BY J. BARCROFT AN Y. NISIMARU' (Okayama). (From the Physiological Laboratory, Cambridge.) Roy [1881] was the first to discover the rhythmical

More information

activity the pars interinedia and pars nervosa of the fresh ox pituitary collected material, dried and powdered in a mortar, is used as a standard

activity the pars interinedia and pars nervosa of the fresh ox pituitary collected material, dried and powdered in a mortar, is used as a standard THE PHYSIOLOGICAL ACTIVITY OF THE PARS INTERMEDIA AND PARS NERVOSA OF THE OX PITUITARY QUANTITA- TIVELY COMPARED. By P. T. HERRING. (From the Physiology Department, University of St Andrews.) (With six

More information

Topic 8 Transport in humans. 1. Blood consists mostly of A. white blood cells B. red blood cells C. blood platelets D. water

Topic 8 Transport in humans. 1. Blood consists mostly of A. white blood cells B. red blood cells C. blood platelets D. water Topic 8 Transport in humans 1. Blood consists mostly of A. white blood cells B. red blood cells C. blood platelets D. water 2. Which of the following is not a correct match? Red blood cell White blood

More information

'the perfusion of the cat's lung a cannula was tied into the left auricle and :547.78I.5

'the perfusion of the cat's lung a cannula was tied into the left auricle and :547.78I.5 280 576.809.73:547.78I.5 LIBERATION OF HISTAMINE FROM THE PERFUSED LUNG BY STAPHYLOCOCCAL TOXIN BY W. FELDBERG AND E. V. KEOGH1 From The Walter and Eliza Hall Institute, Melbourne (Received 5 March 1937)

More information

Prom the Department of Pharmacology, McGill University, Montreal, Canada

Prom the Department of Pharmacology, McGill University, Montreal, Canada 365 J. Physiol. (I95I) II3, 365-37I EFFECTS OF NORADRENALINE ON CORONARY FLOW AND HEART CONTRACTION, AS RECORDED CONCURRENTLY IN THE ISOLATED RABBIT HEART BY F. C. LU* AND K. I. MELVILLE Prom the Department

More information

PHYSIOEX 3.0 EXERCISE 33B: CARDIOVASCULAR DYNAMICS

PHYSIOEX 3.0 EXERCISE 33B: CARDIOVASCULAR DYNAMICS PHYSIOEX 3.0 EXERCISE 33B: CARDIOVASCULAR DYNAMICS Objectives 1. To define the following: blood flow; viscosity; peripheral resistance; systole; diastole; end diastolic volume; end systolic volume; stroke

More information

Visscher(6) that the oxygen consumption of the heart-lung preparation

Visscher(6) that the oxygen consumption of the heart-lung preparation BY A. R. FEE1 AND A. HEMINGWAY. (From the Department of Physiology and Biochemistry, University College, London.) SEVERAL investigations of the metabolism of the kidney have been made to ascertain the

More information

The cardiovascular system is composed of a pump the heart and blood

The cardiovascular system is composed of a pump the heart and blood 5 E X E R C I S E Cardiovascular Dynamics O B J E C T I V E S 1. To understand the relationships among blood flow, pressure gradient, and resistance 2. To define resistance and describe the main factors

More information

Barsoum & Gaddum [1935a], working on dogs, found that the histamine. obtained a similar effect by severely restricting the arterial blood supply to

Barsoum & Gaddum [1935a], working on dogs, found that the histamine. obtained a similar effect by severely restricting the arterial blood supply to 297 J. Physiol. (I944) I03, 297-305 547*78iT5:6I6-005.2 LIBERATION OF HISTAMINE DURING REACTIVE HYPERAEMIA AND MUSCLE CONTRACTION IN MAN BY G. V. ANREP, G. S. BARSOUM, S. SALAMA AND Z. SOUIDAN From the

More information

comparable with the normal resting condition of the organ in the unopened contraction, to determine the haomoglobin percentage of the blood, and

comparable with the normal resting condition of the organ in the unopened contraction, to determine the haomoglobin percentage of the blood, and ON THE OUTPUT OF HAEMOGLOBIN AND BLOOD BY THE SPLEEN. BY E. W. H. CRUICKSHANK. (From the Physiological Laboratory, Cambridge.) BARCROFT'S(1) experiments on the protective effect of the spleen suggest that

More information

QUIZ 2. Tuesday, April 6, 2004

QUIZ 2. Tuesday, April 6, 2004 Harvard-MIT Division of Health Sciences and Technology HST.542J: Quantitative Physiology: Organ Transport Systems Instructors: Roger Mark and Jose Venegas MASSACHUSETTS INSTITUTE OF TECHNOLOGY Departments

More information

THE RELATION BETWEEN BODY WEIGHT AND ARTERIAL CROSS-SECTION

THE RELATION BETWEEN BODY WEIGHT AND ARTERIAL CROSS-SECTION VOL. VII, No. 3 JULY 1930 THE RELATION BETWEEN BODY WEIGHT AND ARTERIAL CROSS-SECTION BY R. M. MURRAY LYON. (From the Department of Pharmacology, University of Edinburgh.) (Received 6th December, 1929.)

More information

CHAPTER 4 Basic Physiological Principles

CHAPTER 4 Basic Physiological Principles 4-1 CHAPTER 4 Basic Physiological Principles Now that we have a working anatomical knowledge of the heart and circulatory system, we will next develop a functional and quantitative knowledge of the cardiovascular

More information

LOEwI, in his experiment, collected the fluid from a vagus-stimulated

LOEwI, in his experiment, collected the fluid from a vagus-stimulated A METHOD OF DEMONSTRATING THE HUMORAL TRANS- MISSION OF THE EFFECTS OF CARDIAC VAGUS STIMULATION IN THE FROG. By W. A. BAIN. From the Department of Physiology, University of Edinburgh. (With three figures

More information

KS4 Physical Education

KS4 Physical Education KS4 Physical Education The Circulatory System These icons indicate that teacher s notes or useful web addresses are available in the Notes Page. This icon indicates that the slide contains activities created

More information

normally observed after insulin to the action of bacterial contamination.

normally observed after insulin to the action of bacterial contamination. THE ACTION OF INSULIN ON THE ASEPTICALLY PERFUSED HEART. BY R. BODO AND H. P. MARKS. (From the National Institute for Medical Research, London.) Cousy (1), of Noyon's laboratory, has recently repeated

More information

capillaries, and a consequent increased transudation, without necessarily altering to any marked extent the total circulation of blood

capillaries, and a consequent increased transudation, without necessarily altering to any marked extent the total circulation of blood 612.463.4 THE CONTROL OF THE GLOMERULAR PRESSURE BY VASCULAR CHANGES WITHIN THE ISOLATED MAMMALIAN KIDNEY, DEMONSTRATED BY THE ACTIONS OF ADRENALINE. BY F. R. WINT0N (Beit Memorial Research Fellow). (Depaortment

More information

establishing perfusion and of collecting and analysing the effluent fluid 1934]. Comparable increases in serum potassium were obtained when

establishing perfusion and of collecting and analysing the effluent fluid 1934]. Comparable increases in serum potassium were obtained when 303 577.I74.5:612.I26 ACTION OF ADRENALINE ON THE SERUM POTASSIUM BY J. L. D'SILVA From the Department of Physiology, King's College, London (Received 24 March 1937) IN a previous communication it was

More information

The Circulatory System

The Circulatory System The Circulatory System Science Matters Chapter 8 Introduction Living things need a transport system to carry things around the body. In humans its called The Circulatory system. The parts of the system

More information

Cannon(3) and Elliott(4). The action of these fibres has thrown a new

Cannon(3) and Elliott(4). The action of these fibres has thrown a new ON THE PART PLAYED BY THE SUPRARENALS IN THE NORMAL VASCULAR REACTIONS OF THE BODY. BY G. VON ANREP. (From the Institute of Physiology, University College, London.) THE existence of secretory nerves to

More information

CAROTID SINUS REFLEX AND CONTRACTION

CAROTID SINUS REFLEX AND CONTRACTION Brit. J. Pharmacol. (1950), 5, 505. CAROTID SINUS REFLEX AND CONTRACTION OF THE SPLEEN BY ROBERT L. DRIVER AND MARTHE VOGT From the Department of Pharmacology, University of Edinburgh (Received July 12,

More information

CVS Hemodynamics. Faisal I. Mohammed, MD,PhD.

CVS Hemodynamics. Faisal I. Mohammed, MD,PhD. CVS Hemodynamics Faisal I. Mohammed, MD,PhD. Objectives point out the physical characteristics of the circulation: distribution of blood volume total cross sectional area velocity blood pressure List the

More information

One system involved in exercising is the respiratory system. The respiratory system includes three main parts breathing, lungs and blood.

One system involved in exercising is the respiratory system. The respiratory system includes three main parts breathing, lungs and blood. By Andrea.K 2012 Grade 3 There are many different systems that help us exercise and the three main systems are the respiratory system which is about how we breathe, the circulatory system which is about

More information

Blood Flow and Blood Pressure Regulation *

Blood Flow and Blood Pressure Regulation * OpenStax-CNX module: m44806 1 Blood Flow and Blood Pressure Regulation * OpenStax This work is produced by OpenStax-CNX and licensed under the Creative Commons Attribution License 4.0 By the end of this

More information

Heart and Lung Dissection

Heart and Lung Dissection Heart and Lung Dissection Name(s) Before you begin any work or dissection of your specimen, please try to identify the following. You will need to illustrate what you see, so make sure to note size, texture

More information

STUDIES IN BLOOD DIASTASE. FACTORS WHICH CAUSE. The effects of the following procedures on the blood diastase have

STUDIES IN BLOOD DIASTASE. FACTORS WHICH CAUSE. The effects of the following procedures on the blood diastase have STUDIES IN BLOOD DIASTASE. FACTORS WHICH CAUSE VARIATIONS IN THE AMOUNT OF DIASTASE IN THE BLOOD. By CHARLES REID and B. NARAYANA. From the Department of Physiology, Prince of Wales Medical College, Patna.

More information

PATCHING AND SECTION OF THE PULMONARY ORIFICE OF THE HEART.*

PATCHING AND SECTION OF THE PULMONARY ORIFICE OF THE HEART.* Published Online: 1 July, 1914 Supp Info: http://doi.org/10.1084/jem.20.1.3 Downloaded from jem.rupress.org on December 24, 2018 PATCHING AND SECTION OF THE PULMONARY ORIFICE OF THE HEART.* BY THEODORE

More information

Cardiovascular and Respiratory Systems

Cardiovascular and Respiratory Systems Cardiovascular and Respiratory Systems Learning Objectives 1. State the parts of the cardiovascular and respiratory systems and give the functions of each part. 2. Identify the parts of the cardiovascular

More information

THE TOXICITY OF XYLOCAINE

THE TOXICITY OF XYLOCAINE THE TOXICITY OF XYLOCAINE By A. R. HUNTER T HE local anaesthetic drug was discovered some years ago by Lofgren (1948), and has been used quite extensively in clinical anaesthesia in Sweden. It has proved

More information

Oxygen Carbon dioxide Water vapour Nitrogen

Oxygen Carbon dioxide Water vapour Nitrogen 1. The table shows the percentage of various gases in atmospheric air, exhaled air and in air samples collected from the alveoli and the trachea of a healthy human. Gas Atmospheric air(inhaled air) Exhaled

More information

THE ACTION OF INSULIN ON THE PERFUSED MAMMALIAN LIVER. Hampstead, London, N.W. 3.)

THE ACTION OF INSULIN ON THE PERFUSED MAMMALIAN LIVER. Hampstead, London, N.W. 3.) THE ACTION OF INSULIN ON THE PERFUSED MAMMALIAN LIVER. BY R. BODO AND H. P. MARKS. (From the National Institute for Medical Research, Hampstead, London, N.W. 3.) INTRODUCTION. THE striking reappearance

More information

Regional Venous Drainage of the Human Heart*

Regional Venous Drainage of the Human Heart* Brit. HeartyJ., 1968, 30, 105. Regional Venous Drainage of the Human Heart* WILLIAM B. HOOD, JR.t From the Cardiac Department, St. Thomas's Hospital, London, S.E.1 Blood samples obtained from the coronary

More information

normally contains 029 to 2-17 p.c. of protein. As we were concerned question has been aided by the recently published figures of directly

normally contains 029 to 2-17 p.c. of protein. As we were concerned question has been aided by the recently published figures of directly THE CIRCULATION OF BODY FLUIDS IN THE FROG. BY EDWARD D. CHURCHILL, FUSAKICHI NAKAZAWA AND CECIL K. DRINKER. (From the Laboratory of Zoophysiology, University of Copenhagen.) IN the course of experiments

More information

CIE Biology GCSE. 9: Transport in animals. Notes.

CIE Biology GCSE. 9: Transport in animals. Notes. CIE Biology GCSE 9: Transport in animals Notes The circulatory system acts as the main transport system in animals. It is made up of blood vessels such as arteries, veins and capillaries, in which blood

More information

unsatisfactory because (among other reasons) it gave no information experiments, three were obtained which are worth recording.

unsatisfactory because (among other reasons) it gave no information experiments, three were obtained which are worth recording. THE RELATION BETWEEN THE SIZE OF THE HEART AND THE OXYGEN CONTENT OF THE ARTERIAL BLOOD. BY K. TAKEUCIHI. (From the Physiological Laboratory, Cambridge.) THE object of the following research was to correlate

More information

Heart Rate, Blood Pressure, and Exercise. Evaluation copy

Heart Rate, Blood Pressure, and Exercise. Evaluation copy Heart Rate, Blood Pressure, and Exercise Computer 11 The adaptability of the heart can be observed during exercise, when the metabolic activity of skeletal muscles increases. The cardiovascular system,

More information

simultaneously excreted. They also brought forward some evidence to

simultaneously excreted. They also brought forward some evidence to THE EXCRETION OF CHLORIDES AND BICARBON- ATES BY THE HUMAN KIDNEY. BY H. W. DAVIES, M.B., B.S., J. B. S. HALDANE, M.A. AND G. L. PESKETT, B.A. (From the Laboratory, Cherwell, Oxford.) AM BARD and PAPI

More information

body is influenced in addition by a great number of changes in the

body is influenced in addition by a great number of changes in the THE CENTRAL AND REFLEX REGULATION OF THE HEART RATE. BY G. V. ANREP AND H. N. SEGALL. (From the Department of Physiology and Biochemistry, University College, London.) THE adaptation of the heart beat

More information

Cardiovascular System Notes: Physiology of the Heart

Cardiovascular System Notes: Physiology of the Heart Cardiovascular System Notes: Physiology of the Heart Interesting Heart Fact Capillaries are so small it takes ten of them to equal the thickness of a human hair. Review What are the 3 parts of the cardiovascular

More information

HEALTH FITNESS AND SPORT

HEALTH FITNESS AND SPORT BOOK 4 HEALTH FITNESS AND SPORT SECTION 3 EXERCISE AND FITNESS IN HUMANS THE STRUCTURE OF THE NERVOUS SYSTEM The human nervous system consists of: the central nervous system (CNS) the brain and spinal

More information

College of Medicine, Newcastle-upon-Tyne.)

College of Medicine, Newcastle-upon-Tyne.) GLUCOSE ABSORPTION IN THE RENAL TUBULES OF THE FROG. BY G. A. CLARK. (From the Physiological Laboratory of the University of Durham College of Medicine, Newcastle-upon-Tyne.) OPINION is divided on the

More information

University of Edinburgh.)

University of Edinburgh.) THE ACTION OF DIURETICS. BY ARTHUR R. CUSHNY AND C. G. LAMBIE. (From the Pharmacological Laboratory, University of Edinburgh.) IN the study of the action of diuretics', the first question to determine

More information

GLUCOSE is the most important diffusible substance in the blood which

GLUCOSE is the most important diffusible substance in the blood which ON THE ACTION OF PHLORHIZIN ON THE KIDNEY. By E. B. MAYRS. (From the Department of Pharmacology, Edinburgh.) GLUCOSE is the most important diffusible substance in the blood which is completely held back

More information

Student. produces extensive intravascular coagutlation. Working alone, and in collaboration with Prof. Halliburton 12

Student. produces extensive intravascular coagutlation. Working alone, and in collaboration with Prof. Halliburton 12 THE COAGULABILITY OF THE BLOOD OF ALBINOS. BY J. W. PICKERING, D.Sc. (Lond.), George Henry Lewes Student. THEI recent researches of Prof. Halliburton and Dr T. G. Brodie1 have demonstrated that the intravenous

More information

INTESTINAL ABSORPTION OF AMINO ACIDS I. THE EFFECT OF VITAMIN B6 ON THE ABSORPTION OF L-AMINO ACIDS THROUGH THE INTESTINE

INTESTINAL ABSORPTION OF AMINO ACIDS I. THE EFFECT OF VITAMIN B6 ON THE ABSORPTION OF L-AMINO ACIDS THROUGH THE INTESTINE The Journal of Biochemistry, Vol. 47, No. 1, 1960 INTESTINAL ABSORPTION OF AMINO ACIDS I. THE EFFECT OF VITAMIN B6 ON THE ABSORPTION OF L-AMINO ACIDS THROUGH THE INTESTINE By HITOSHI AKEDO, TADASHI SUGAWA,

More information

Major Function of the Cardiovascular System. Transportation. Structures of the Cardiovascular System. Heart - muscular pump

Major Function of the Cardiovascular System. Transportation. Structures of the Cardiovascular System. Heart - muscular pump Structures of the Cardiovascular System Heart - muscular pump Blood vessels - network of tubes Blood - liquid transport vehicle brachiocephalic trunk superior vena cava right pulmonary arteries right pulmonary

More information

Large veins of the thorax Brachiocephalic veins

Large veins of the thorax Brachiocephalic veins Large veins of the thorax Brachiocephalic veins Right brachiocephalic vein: formed at the root of the neck by the union of the right subclavian & the right internal jugular veins. Left brachiocephalic

More information

The Heart 1 of 34 Boardworks Ltd 2012

The Heart 1 of 34 Boardworks Ltd 2012 The Heart 1 of 34 Boardworks Ltd 2012 2 of 34 Boardworks Ltd 2012 What does the heart do? 3 of 34 Boardworks Ltd 2012 The heart is a muscular organ located in the thorax. It pumps blood continuously around

More information

ACTIVITY: The Heart Cycle

ACTIVITY: The Heart Cycle ACTIVITY: The Heart Cycle In this activity, you will follow the flow of blood through the heart. Your heart has two jobs to do, and its two sides have separate responsibilities: The left side pumps oxygen-enriched

More information

name F septum ; D bicuspid / mitral / atrioventricular, valve ; aorta pulmonary artery K semilunar valve ; right atrium right ventricle ; [6]

name F septum ; D bicuspid / mitral / atrioventricular, valve ; aorta pulmonary artery K semilunar valve ; right atrium right ventricle ; [6] Question Mark Guidance 1 (a) function letter on Fig. 1.1 name structure that separates oxygenated and deoxygenated blood structure that prevents backflow of blood from ventricle to atrium F septum ; D

More information

CIRCULATION. Cardiovascular & lymphatic systems Functions. Transport Defense / immunity Homeostasis

CIRCULATION. Cardiovascular & lymphatic systems Functions. Transport Defense / immunity Homeostasis CIRCULATION CIRCULATION Cardiovascular & lymphatic systems Functions Transport Defense / immunity Homeostasis 2 Types of Circulatory Systems Open circulatory system Contains vascular elements Mixing of

More information

possibility of a secretion of adrenaline from the suprarenal glands resulting

possibility of a secretion of adrenaline from the suprarenal glands resulting 355 J Physiol. (I942) IOI, 355-36I 6i2.014.465:577 I74.5 THE EFFECT OF ANAESTHESIA ON THE ADRENALINE CONTENT OF THE SUPRARENAL GLANDS BY P. C. ELMES AND A. A. JEFFERSON From the Department of Pharmacology,

More information

Cardiovascular Physiology

Cardiovascular Physiology Cardiovascular Physiology Lecture 1 objectives Explain the basic anatomy of the heart and its arrangement into 4 chambers. Appreciate that blood flows in series through the systemic and pulmonary circulations.

More information

(From the Physiological Laboratory, Cambridge.) difference between the two. the circulation just before the diversion of the inferior vena cava blood,

(From the Physiological Laboratory, Cambridge.) difference between the two. the circulation just before the diversion of the inferior vena cava blood, THE GASEOUS METABOLISM OF THE LIVER. PART I. IN FASTING AND LATE DIGESTION. BY J. BARCROFT AND L. E. SHORE. (From the Physiological Laboratory, Cambridge.) To determine the gaseous exchange of the liver

More information

exposed with cocaine. In some experiments Pernocton, c.c./kg. body-weight, was injected intramuscularly before carrying out local

exposed with cocaine. In some experiments Pernocton, c.c./kg. body-weight, was injected intramuscularly before carrying out local 547.435-292 612.215.3 577. 174.5 THE ACTION OF DRUGS ON THE ISOLATED PERFUSED LUNGS OF THE PIG. By B. PETROVSKAIA. From the Physiology Department, Edinburgh University. (Received for publication 25th June

More information

Wellcome Physiological Research Laboratories.)

Wellcome Physiological Research Laboratories.) THE ACTION OF ADRENALIN AND ERGOTAMINE ON THE UTERUS OF THE RABBIT. BY J. H. GADDUM. (From the Wellcome Physiological Research Laboratories.) WHEN a rabbit's uterus is cut in pieces and tested with ergot

More information

DISSECTING A PIG S HEART

DISSECTING A PIG S HEART DISSECTING A PIG S HEART LAB 59 OBSERVATION STUDENT BOOK Chapter 6, page 185 Goal Locate and observe structures of a mammal s heart. Observation criteria Identify the structures of the heart indicated

More information

Determination of Cardiac Output By Equating Venous Return Curves With Cardiac Response Curves1

Determination of Cardiac Output By Equating Venous Return Curves With Cardiac Response Curves1 Determination of Cardiac Output By Equating Venous Return Curves With Cardiac Response Curves1 ARTHUR C. GUYTQN From the Department of Physiology and Biophysics, School of Medicine, University of Mississippi,

More information

THE ABSORPTION OF CHLORIDE IONS BY THE ANAL PAPILLAE OF DIPTERA LARVAE BY H. J. KOCH

THE ABSORPTION OF CHLORIDE IONS BY THE ANAL PAPILLAE OF DIPTERA LARVAE BY H. J. KOCH 5 THE ABSORPTION OF CHLORIDE IONS BY THE ANAL PAPILLAE OF DIPTERA LARVAE BY H. J. KOCH From the Laboratory of Zoophysiology, University of Copenhagen (Received February 937) (With One Text-figure) UNTIL

More information

Multicellular Organisms. Sub-Topic 2.6 Transport Systems in Animals

Multicellular Organisms. Sub-Topic 2.6 Transport Systems in Animals Multicellular Organisms Sub-Topic 2.6 Transport Systems in Animals On completion of this sub-topic I will be able to state that: In mammals a transport system is required to deliver essential substances

More information

Ch 9 Transport of substances in humans

Ch 9 Transport of substances in humans Ch 9 Transport of substances in humans Think about (Ch 9, p.2) 1. Blood transports various substances and distributes heat around the body. It also plays a role in body defence. 2. Blood is a liquid tissue

More information

Monday 14 th May The Body Anatomy and Physiology Lesson 10 Cardio-Respiratory System

Monday 14 th May The Body Anatomy and Physiology Lesson 10 Cardio-Respiratory System Monday 14 th May 2018 The Body Anatomy and Physiology Lesson 10 Cardio-Respiratory System Homework 1. What is the function of the cardiovascular system? 2. List the main components of blood and describe

More information

Lower Secondary Science Blood Circulatory System Notes / Advanced Notes

Lower Secondary Science Blood Circulatory System Notes / Advanced Notes Lower Secondary Science Blood Circulatory System Notes / Advanced Notes Double Circulation in Mammals In mammals, there is a double circulation (i.e. blood passes through the heart twice in one complete

More information

Identify and describe the circulation system that is missing from the organizer above.

Identify and describe the circulation system that is missing from the organizer above. Lesson 15.1 NOTES: The Circulatory System (Unlock) Essential Question: -What are the structures and functions of the circulatory system? Learning Target(s): -I can identify structures and explain functions

More information

gland, the tongue and the sweat glands of the cat. The submaxillary

gland, the tongue and the sweat glands of the cat. The submaxillary 306 547.435-292:6I2.8I7 THE LIBERATION OF ACETYLCHOLINE BY POTASSIUM. BY W. FELDBERG1 AND J. A. GUIMARAIS1,2. (From the National Institute for Medical Research, London, N.W. 3.) (Received November 22,

More information

conductivity after its precipitation indicated that salts had been held freezing point or conductivity than the precipitation of the same

conductivity after its precipitation indicated that salts had been held freezing point or conductivity than the precipitation of the same THE EFFECT ON THE MOLECULAR CONCENTRATION AND ELECTRICAL CONDUCTIVITY OF MUSCLE EXTRACTS OF REMOVAL OF THE PROTEIDS. BY G. N. STEWART, Western Reserve University, Cleveland, U.S.A. (Preliminary Note.)

More information

Langendorff(2) and Maas(3) that arrest of the heart diminished the

Langendorff(2) and Maas(3) that arrest of the heart diminished the THE CORONARY CIRCULATION IN THE ISOLATED HEART. BY M. HAMMOUDA AND R. KINOSITA. (From the Department of Physiology and Biochemistry, University College, London.) THE correct interpretation of experiments

More information

injection with insulin have been made by Collip(2) and by Robertson (From the Physiological Laboratories, The University, Manchester.

injection with insulin have been made by Collip(2) and by Robertson (From the Physiological Laboratories, The University, Manchester. INSULIN AND THE PRODUCTION OF ACETONE BODIES BY THE PERFUSED LIVER. BY H. S. RAPER AND E. C. SMITH'. (From the Physiological Laboratories, The University, Manchester.) ONE of the striking features of the

More information

slowing of the muscle. Bronk [1933] has given a striking

slowing of the muscle. Bronk [1933] has given a striking 106 6I2.74I.I2 THE EFFECT OF ACTIVITY ON THE FORM OF THE MUSCLE TWITCH. BY J. L. PARKINSON. (From the Department of Physiology and Biochemistry, University College, London.) IT has been found by various

More information

WELS~~~~ THE mode of action of acetyl choline upon the isolated ventricular strip

WELS~~~~ THE mode of action of acetyl choline upon the isolated ventricular strip THE ANTAGONISM OF ACETYL CHOLINE BY ATROPINE. BY A. J. CLARK. (From the Pharmacological Department, University College, London.) THE mode of action of acetyl choline upon the isolated ventricular strip

More information

Oxytocic activity. It is stated that 1 c.c. of oxytocin contains 12 units. single, multivalent, active principle, or whether a number of active

Oxytocic activity. It is stated that 1 c.c. of oxytocin contains 12 units. single, multivalent, active principle, or whether a number of active SOME PROPERTIES OF THE SEPARATED ACTIVE PRINCIPLES OF THE PITUITARY (POSTERIOR LOBE). BY J. H. GADDUM (National Institute for Medical Research). EXTRACTS of the posterior lobe of the pituitary gland have

More information

THE CIRCULATORY SYSTEM. NATURAL SCIENCE 2 nd ESO

THE CIRCULATORY SYSTEM. NATURAL SCIENCE 2 nd ESO THE CIRCULATORY SYSTEM NATURAL SCIENCE 2 nd ESO THE CIRCULATORY SYSTEM The circulatory system is made up of: CIRCULATORY SYSTEM HEART BLOOD BLOOD VESSELS THE CIRCULATORY SYSTEM The heart pumps the blood

More information

Under Pressure. Dr. Robert Keyes CAEP -- Critical Care May 31, 2015

Under Pressure. Dr. Robert Keyes CAEP -- Critical Care May 31, 2015 Under Pressure Dr. Robert Keyes CAEP -- Critical Care May 31, 2015 Disclosures 1. No disclosures, commercial supports, or conflicts of interest. Learning Objectives 1. To understand the principles of pressure

More information

BIPN100 F15 Human Physiol I (Kristan) Lecture 14 Cardiovascular control mechanisms p. 1

BIPN100 F15 Human Physiol I (Kristan) Lecture 14 Cardiovascular control mechanisms p. 1 BIPN100 F15 Human Physiol I (Kristan) Lecture 14 Cardiovascular control mechanisms p. 1 Terms you should understand: hemorrhage, intrinsic and extrinsic mechanisms, anoxia, myocardial contractility, residual

More information

HISTORY. Question: What category of heart disease is suggested by this history? CHIEF COMPLAINT: Heart murmur present since early infancy.

HISTORY. Question: What category of heart disease is suggested by this history? CHIEF COMPLAINT: Heart murmur present since early infancy. HISTORY 18-year-old man. CHIEF COMPLAINT: Heart murmur present since early infancy. PRESENT ILLNESS: Although normal at birth, a heart murmur was heard at the six week check-up and has persisted since

More information

Blood flows away from the heart in arteries, to the capillaries and back to the heart in the veins

Blood flows away from the heart in arteries, to the capillaries and back to the heart in the veins Cardiovascular System Summary Notes The cardiovascular system includes: The heart, a muscular pump The blood, a fluid connective tissue The blood vessels, arteries, veins and capillaries Blood flows away

More information

Echocardiography as a diagnostic and management tool in medical emergencies

Echocardiography as a diagnostic and management tool in medical emergencies Echocardiography as a diagnostic and management tool in medical emergencies Frank van der Heusen MD Department of Anesthesia and perioperative Care UCSF Medical Center Objective of this presentation Indications

More information

Further Studies on the Effect of Arteriovenous Fistulas and Elevations of Sinus Pressure

Further Studies on the Effect of Arteriovenous Fistulas and Elevations of Sinus Pressure Further Studies on the Effect of Arteriovenous Fistulas and Elevations of Sinus Pressure on Mortality Rates Following Acute Coronary Occlusions By GEORGE SMITH, F.R.C.S., JAMES DEMMING, MORTON ELEFF, AND

More information

Performance Enhancement. Cardiovascular/Respiratory Systems and Athletic Performance

Performance Enhancement. Cardiovascular/Respiratory Systems and Athletic Performance Performance Enhancement Cardiovascular/Respiratory Systems and Athletic Performance Functions of the Cardiovascular System Deliver oxygen & nutrients to body tissues Carry wastes from the cells Anatomy

More information