The Function of an ECG in Diagnosing Heart Conditions. A useful guide to the function of the heart s electrical system for patients receiving an ECG

Size: px
Start display at page:

Download "The Function of an ECG in Diagnosing Heart Conditions. A useful guide to the function of the heart s electrical system for patients receiving an ECG"

Transcription

1 The Function of an ECG in Diagnosing Heart Conditions A useful guide to the function of the heart s electrical system for patients receiving an ECG Written by Erhan Selvi July 28, 2014

2 Audience and Scope The purpose of this document is to describe the electrical activity of the heart and how it relates to an ECG (electrocardiogram) for patients if they receive one during a visit to the hospital. The focus will be placed on anatomical and physiological functions of the heart. Further focus will be directed towards abnormalities in the heart and how they can be diagnosed by using an ECG. Everyone is familiar with the typical heart beat pulse that is monitoring a patient in the hospital that is often dramatized in TV shows or movies. That waveform that is displayed on the machine s screen is a typical readout from an ECG machine. This document will inform patients who are going to receive an ECG test about how the ECG produces the waveform and what different waveforms in the readout mean. Receiving an ECG is very simple procedure that is both brief and painless, but is very important to ensure the wellbeing of an individual. Background Anatomy Information An ECG is a test that is used to determine the electrical activity of the heart. The information produced from an ECG can be further interpreted to determine the heart rate, heart rhythm, and contractility of the heart. If a patient experience symptoms that include, chest pain, uneven heartbeat, breathing issues, unusual fatigue, and abnormal heart sounds, a physician may recommend an ECG to diagnose the cause of these symptoms. An ECG examination may also be part of a routine checkup to ensure the heart s conduction system is working properly. Autorhythmic cells and Action Potentials The heart beats with a steady rhythm, and that is the result of specialized cells in the heart that are known as autorhythmic cells. Autorhythmic cells have the ability to contract the entire heart due to its electrical features. These cells go through a process known as an action potential. The action potential is a quick change in the electrical voltage of a heart cell. For instance, when a heart cell is at rest it has a voltage of -70 millivolts. During an action potential, the voltage of the cell will quickly become very positive (depolarization), and then immediately drop back down to a negative value (repolarization). This action potential causes the heart cells to contract. Most cells in the human body need an external agent to cause an action potential; autorhythmic cells can go through an action potential on their own. Autorhythmic cell a cell that can undergo action potentials, and thus contractions, on its own Action potential a rapid depolarization and repolarization that results in the cell contracting SA node specialized group of autorhythmic cells that undergo action potentials at the fastest rate; sets heart rate in healthy hearts; causes atrial contraction AV node specialized group of autorhythmic cells that that receives action potential signals from the SA node; spreads signal to ventricular fibers Specialized Autorhythmic Cells Multiple regions of the heart have autorhythmic cells so that different parts of the heart may contract at different times. The first and most important group of autorhythmic cells is located at the top of the right atrium and is called the SA node as seen in figure 1. These cells undergo action potentials at the fastest rate. Therefore the SA node is often called the pacemaker of the heart. Another important node of autorhythmic cells is the AV node, located at the bottom of the right atrium. When the SA node undergoes an action potential, its action potential signal is sent to the AV node which 1

3 signals cells in that region to contract. After the AV node, there are fibers that are spread out in the ventricles that will also relay the action potential signals that were started at the SA node. Therefore, after the AV node receives the signal from the SA node, the signal moves to the fibers which signal the ventricles to contract last. Figure 1 Anatomical Structure of the Heart Source: Gap Junctions Gap junctions play an important role in the contraction of the entire heart. The heart can contract without the help of the SA node. While there are the specialized groups of autorhythmic cells such as the SA and AV nodes, autorhythmic cells are located all throughout the heart. All cells in the heart also contain a structure called gap junctions that link neighboring cells together. This structure acts like an open doorway for voltages to move from one cell to the other. This is important because the spread of voltages from one cell will cause depolarization of the cells in that region, and this ultimately results in the spread of action potentials and contractions in the heart cells (heart cells contract after undergoing an action potential). With the ability for a heart to spread an action potential through the gap junctions in its cells with the help of the SA node setting the Ventricular fibers receive action potential signals from AV node and send the signal to ventricular cells; causes ventricular contraction Gap junction linkage between neighboring all cardiac cells that allows for the spread of voltage and thus contraction 2

4 pace of action potentials, the heart can successfully beat in a coordinated rhythm that delivers blood efficiently to the body. ECG Readings Electrical signals can be detected using an ECG with sensors placed on different parts of the body. The sum of all the action potentials that occur in the heart is what an ECG measures. Sensors (or leads) can be placed on several parts of the body such that when action potentials occur in its region, they will detect the change in voltages. These changes in voltage from the ECG waveform are seen in figure 2. Figure 2 Typical ECG Waveform Source: lessons4medicos.blogspot.com The level point at the beginning of the wave is known as the isoelectric point and this represents a resting voltage value where there are no major action potentials occurring. The first major event to occur is the P wave. The P wave is the depolarization of the atria of the heart. Following the P wave is the QRS complex, and this P wave atrial depolarization and contraction QRS complex ventricular depolarization and contraction T wave - ventricular repolarization and relaxation Arrhythmia heartbeat that is out of rhythm represents the ventricular depolarization. Lastly is the T wave which is the ventricular repolarization. The atrial repolarization is not seen in the ECG waveform because the overall magnitude of it is not strong enough for it to create a distinguishable wave. For the sake of simplicity, when a region of the heart depolarizes, that means the cells in that region will contract. 3

5 Diagnosis of Heart Abnormalities An ECG test is useful to detect when the heart does not beat in rhythm (arrhythmia). The sequence of contraction in the heart starts with both atria at the same time contracting into the ventricles, followed by both ventricles contracting blood into the body. This order is dependent upon the heart s electrical system and the order that it follows. The order of contraction is SA node, atrial cells, AV node, then ventricular cells. Any abnormalities that occur in this sequence result in arrhythmia. Figure 3 shows the ECGs of several different arrhythmias that reveal abnormalities in the heart and how it contracts. Second-degree block is seen as the first graph in figure 3. This ECG differs from the normal waveform in that not every P wave is followed by a QRS complex. Since the P wave is associated with atrial contraction and the QRS complex is associated with ventricular contraction, so there must be a problem with the conduction of action potentials from the atria to the ventricles, so the malfunctioning component of the heart is the AV node. Figure 3 ECG waveform of second-degree heart block Source: cnx.org/content/m46664/latest/ In the atrial fibrillation ECG graph in figure 4, the only noticeable wave is the QRS complex, and the rest of the graph is just peaks and valleys of weak signals. These small deflections in the wave are representative of the autorhythmic cells of the atria contracting on their own without any order. Thus, it can be concluded that atrial fibrillation is the result of the SA node not properly sending its signal and setting the pace for the rest of the heart to beat. 4

6 Figure 4 ECG waveform of atrial fibrillation Source: cnx.org/content/m46664/latest/ Ventricular fibrillation, seen in figure 5, is similar to atrial fibrillation, except that there are none of the distinguishable waves of a normal ECG present. The peaks and valleys are seen again, however they are slightly larger. This is due to there being more ventricular cells than atrial cells. Thus in ventricular fibrillation, all of the autorhythmic cells of the ventricles are beating on their own without any coordination and this results in an extremely ineffective pumping of the blood. The cause of ventricular fibrillation is not exactly known, but it is clear that the pathway of the electrical signal starting in the SA node is not reaching the AV node and the subsequent fibers that allow the heart to contract in order and rhythm. Figure 5 ECG waveform of ventricular fibrillation Source: cnx.org/content/m46664/latest/ Third-degree heart block is represented in figure 6 and is the result of miscommunication between the atria and ventricles contracting. The most notable feature is the slower rate of QRS complexes appearing. The reason for this is that the since the SA node and AV node are not communicating correctly, the AV node takes over the pace-making responsibilities because it contracts and the next fastest rate. However, this rate is significantly slower than the rate at which the SA node sets for the heart. This loss of signal from the SA node that doesn t reach the ventricles results in the long interval between ventricular contractions. 5

7 Figure 6 ECG waveform of third-degree heart block Source: cnx.org/content/m46664/latest/ Conclusion The heart s electrical system is the spark behind the action of the heart and is the reason why it can pump blood through the human body so effectively. The electrical system of the heart is made up of the SA node, AV node, ventricular fibers, and all the other autorhythmic cells located throughout the heart. The SA node sets the pace for the heartbeat because it undergoes action potentials at the fastest rate, and that action potential spreads throughout the entire heart resulting in ordered contraction of the atria first, followed by the ventricles. When the SA node fails, the AV will take up responsibility for setting the pace of the heartbeat, but it will produce action potentials at a slower rate than the SA node. If both the SA node and the AV node fail, then the remaining autorhythmic cells in the heart will contract independently without any specific pace or rhythm. Second-degree heart block - AV node malfunctioning resulting in atrial contraction that is always not immediately followed by ventricular contraction Atrial fibrillation SA node malfunctioning resulting in uncoordinated contractions of atrial cells Ventricular fibrillation uncoordinated contraction of ventricular cells most likely due to a malfunctioning SA and AV node Third-degree block SA node malfunctioning resulting in slower heart rate and uncoordinated atrial contraction Understanding how the heart works and how an ECG monitors its functions is useful to become an informed patient. Some of these abnormalities are asymptomatic, so it would be impossible to determine whether or not one has it without an ECG examination. Therefore, it is important to have regular appointments with a physician to ensure that the heart it pumping properly and that there are no issues in the wiring of the heart s electrical system. Note: Most of the information comes from prior knowledge of the author from college-level coursework so cited materials were used as general reference Works Cited "Cardiac Muscle and Electrical Activity." OpenStax CNX. OpenStax College, 19 June Web. 27 July 6

8 2014. "Understanding the Heart's Electrical System and EKG Results." National Heart, Lung, and Blood Institute. National Institute of Health, n.d. Web. 27 July "What Is Atrial Fibrillation?" National Heart, Lung, and Blood Institute. National Institute of Health, n.d. Web. 27 July "What Is an Electrocardiogram?" National Heart, Lung, and Blood Institute. National Institute of Health, n.d. Web. 27 July Figure 1. (cropped) Electrical System of the Heart. Digital image. HeartValveSurgery.com. HeartValveSurgery.com, Web. 27 July Figure 2. Normal ECG waveform. Digital image. Medicine Decoded. N.p., 18 June Web. 27 July Figure 3. (cropped) Common ECG Abnormalities. Digital image. Cardiac Muscle and Electrical Activity. OpenStax College, 19 June Web. 27 July Figure 4. (cropped) Common ECG Abnormalities. Digital image. Cardiac Muscle and Electrical Activity. OpenStax College, 19 June Web. 27 July Figure 5. (cropped) Common ECG Abnormalities. Digital image. Cardiac Muscle and Electrical Activity. OpenStax College, 19 June Web. 27 July Figure 6. (cropped) Common ECG Abnormalities. Digital image. Cardiac Muscle and Electrical Activity. OpenStax College, 19 June Web. 27 July

Electrical Conduction

Electrical Conduction Sinoatrial (SA) node Electrical Conduction Sets the pace of the heartbeat at 70 bpm AV node (50 bpm) and Purkinje fibers (25 40 bpm) can act as pacemakers under some conditions Internodal pathway from

More information

Cardiac Cycle. Each heartbeat is called a cardiac cycle. First the two atria contract at the same time.

Cardiac Cycle. Each heartbeat is called a cardiac cycle. First the two atria contract at the same time. The Heartbeat Cardiac Cycle Each heartbeat is called a cardiac cycle. First the two atria contract at the same time. Next the two ventricles contract at the same time. Then all the chambers relax. http://www.youtube.com/watch?v=frd3k6lkhws

More information

Full file at

Full file at MULTIPLE CHOICE. Choose the one alternative that best completes the statement or answers the question. 1) What electrical event must occur for atrial kick to occur? 1) A) Atrial repolarization B) Ventricular

More information

EKG Abnormalities. Adapted from:

EKG Abnormalities. Adapted from: EKG Abnormalities Adapted from: http://www.bem.fi/book/19/19.htm Some key terms: Arrhythmia-an abnormal rhythm or sequence of events in the EKG Flutter-rapid depolarizations (and therefore contractions)

More information

Interpreting Electrocardiograms (ECG) Physiology Name: Per:

Interpreting Electrocardiograms (ECG) Physiology Name: Per: Interpreting Electrocardiograms (ECG) Physiology Name: Per: Introduction The heart has its own system in place to create nerve impulses and does not actually require the brain to make it beat. This electrical

More information

Practice Exercises for the Cardiovascular System

Practice Exercises for the Cardiovascular System Practice Exercises for the Cardiovascular System On the diagram below, color the oxygen-rich blood red and the oxygen-poor blood blue. Label the parts: Continued on the next page... Label the parts on

More information

Collin County Community College

Collin County Community College Collin County Community College BIOL. 2402 Anatomy & Physiology WEEK 5 The Heart 1 The Heart Beat and the EKG 2 1 The Heart Beat and the EKG P-wave = Atrial depolarization QRS-wave = Ventricular depolarization

More information

Lab 2. The Intrinsic Cardiac Conduction System. 1/23/2016 MDufilho 1

Lab 2. The Intrinsic Cardiac Conduction System. 1/23/2016 MDufilho 1 Lab 2 he Intrinsic Cardiac Conduction System 1/23/2016 MDufilho 1 Figure 18.13 Intrinsic cardiac conduction system and action potential succession during one heartbeat. Superior vena cava ight atrium 1

More information

Lab #3: Electrocardiogram (ECG / EKG)

Lab #3: Electrocardiogram (ECG / EKG) Lab #3: Electrocardiogram (ECG / EKG) An introduction to the recording and analysis of cardiac activity Introduction The beating of the heart is triggered by an electrical signal from the pacemaker. The

More information

The Electrocardiogram

The Electrocardiogram The Electrocardiogram Chapters 11 and 13 AUTUMN WEDAN AND NATASHA MCDOUGAL The Normal Electrocardiogram P-wave Generated when the atria depolarizes QRS-Complex Ventricles depolarizing before a contraction

More information

3/26/15 HTEC 91. EKG Sign-in Book. The Cardiac Cycle. Parts of the ECG. Waves. Waves. Review of protocol Review of placement of chest leads (V1, V2)

3/26/15 HTEC 91. EKG Sign-in Book. The Cardiac Cycle. Parts of the ECG. Waves. Waves. Review of protocol Review of placement of chest leads (V1, V2) EKG Sign-in Book HTEC 91 Review of protocol Review of placement of chest leads (V1, V2) Medical Office Diagnostic Tests Week 2 http://www.cvphysiology.com/arrhythmias/a013c.htm The Cardiac Cycle Represents

More information

Human Anatomy and Physiology II Laboratory Cardiovascular Physiology

Human Anatomy and Physiology II Laboratory Cardiovascular Physiology Human Anatomy and Physiology II Laboratory Cardiovascular Physiology 1 This lab involves two exercises: 1) Conduction System of the Heart and Electrocardiography and 2) Human Cardiovascular Physiology:

More information

BIPN100 F15 Human Physiology I (Kristan) Problem set #5 p. 1

BIPN100 F15 Human Physiology I (Kristan) Problem set #5 p. 1 BIPN100 F15 Human Physiology I (Kristan) Problem set #5 p. 1 1. Dantrolene has the same effect on smooth muscles as it has on skeletal muscle: it relaxes them by blocking the release of Ca ++ from the

More information

Anatomy Review: The Heart Graphics are used with permission of A.D.A.M. Software, Inc. and Benjamin/Cummings Publishing Co.

Anatomy Review: The Heart Graphics are used with permission of A.D.A.M. Software, Inc. and Benjamin/Cummings Publishing Co. Anatomy Review: The Heart Graphics are used with permission of A.D.A.M. Software, Inc. and Benjamin/Cummings Publishing Co. Anatomy Views Label the diagrams of the heart below: Interactive Physiology Study

More information

Electrocardiography for Healthcare Professionals

Electrocardiography for Healthcare Professionals Electrocardiography for Healthcare Professionals Kathryn A. Booth Thomas O Brien Chapter 10: Pacemaker Rhythms and Bundle Branch Block Learning Outcomes 10.1 Describe the various pacemaker rhythms. 10.2

More information

Birmingham Regional Emergency Medical Services System

Birmingham Regional Emergency Medical Services System Birmingham Regional Emergency Medical Services System 2018 ALCTE Summer Conference EKG Basics Brian Gober, MAT, ATC, NRP, CSCS Education Services Manager ECC Training Center Coordinator Birmingham Regional

More information

Lab 16. The Cardiovascular System Heart and Blood Vessels. Laboratory Objectives

Lab 16. The Cardiovascular System Heart and Blood Vessels. Laboratory Objectives Lab 16 The Cardiovascular System Heart and Blood Vessels Laboratory Objectives Describe the anatomical structures of the heart to include the pericardium, chambers, valves, and major vessels. Describe

More information

Science in Sport. 204a ECG demonstration (Graph) Read. The Electrocardiogram. ECG Any 12 bit EASYSENSE. Sensors: Loggers: Logging time: 10 seconds

Science in Sport. 204a ECG demonstration (Graph) Read. The Electrocardiogram. ECG Any 12 bit EASYSENSE. Sensors: Loggers: Logging time: 10 seconds Sensors: Loggers: ECG Any 12 bit EASYSENSE Science in Sport Logging time: 10 seconds 204a ECG demonstration (Graph) Read Regular medical check ups are essential part of the life of a professional sports

More information

4. The two inferior chambers of the heart are known as the atria. the superior and inferior vena cava, which empty into the left atrium.

4. The two inferior chambers of the heart are known as the atria. the superior and inferior vena cava, which empty into the left atrium. Answer each statement true or false. If the statement is false, change the underlined word to make it true. 1. The heart is located approximately between the second and fifth ribs and posterior to the

More information

Circulatory system of mammals

Circulatory system of mammals Circulatory system of mammals Explain the cardiac cycle and its initiation Discuss the internal factors that control heart action Blood flows through the heart as a result of pressure differences Blood

More information

PART I. Disorders of the Heart Rhythm: Basic Principles

PART I. Disorders of the Heart Rhythm: Basic Principles PART I Disorders of the Heart Rhythm: Basic Principles FET01.indd 1 1/11/06 9:53:05 AM FET01.indd 2 1/11/06 9:53:06 AM CHAPTER 1 The Cardiac Electrical System The heart spontaneously generates electrical

More information

Electrocardiography Abnormalities (Arrhythmias) 7. Faisal I. Mohammed, MD, PhD

Electrocardiography Abnormalities (Arrhythmias) 7. Faisal I. Mohammed, MD, PhD Electrocardiography Abnormalities (Arrhythmias) 7 Faisal I. Mohammed, MD, PhD 1 Causes of Cardiac Arrythmias Abnormal rhythmicity of the pacemaker Shift of pacemaker from sinus node Blocks at different

More information

Biology 212: Anatomy and Physiology II. Lab #5: Physiology of the Cardiovascular System For Labs Associated With Dr. Thompson s Lectures

Biology 212: Anatomy and Physiology II. Lab #5: Physiology of the Cardiovascular System For Labs Associated With Dr. Thompson s Lectures Biology 212: Anatomy and Physiology II Lab #5: Physiology of the Cardiovascular System For Labs Associated With Dr. Thompson s Lectures References: Saladin, KS: Anatomy and Physiology, The Unity of Form

More information

Outline. Electrical Activity of the Human Heart. What is the Heart? The Heart as a Pump. Anatomy of the Heart. The Hard Work

Outline. Electrical Activity of the Human Heart. What is the Heart? The Heart as a Pump. Anatomy of the Heart. The Hard Work Electrical Activity of the Human Heart Oguz Poroy, PhD Assistant Professor Department of Biomedical Engineering The University of Iowa Outline Basic Facts about the Heart Heart Chambers and Heart s The

More information

Cardiac physiology. b. myocardium -- cardiac muscle and fibrous skeleton of heart

Cardiac physiology. b. myocardium -- cardiac muscle and fibrous skeleton of heart I. Heart anatomy -- general gross. A. Size/orientation - base/apex B. Coverings D. Chambers 1. parietal pericardium 2. visceral pericardium 3. Layers of heart wall a. epicardium Cardiac physiology b. myocardium

More information

Objectives of the Heart

Objectives of the Heart Objectives of the Heart Electrical activity of the heart Action potential EKG Cardiac cycle Heart sounds Heart Rate The heart s beat separated into 2 phases Relaxed phase diastole (filling of the chambers)

More information

Cardiovascular Physiology

Cardiovascular Physiology Cardiovascular Physiology The mammalian heart is a pump that pushes blood around the body and is made of four chambers: right and left atria and right and left ventricles. The two atria act as collecting

More information

WHAT S THAT RHYTHM I AM HEARING? GUIDE TO AUSCULTATION OF ARRHYTHMIAS IN HORSES

WHAT S THAT RHYTHM I AM HEARING? GUIDE TO AUSCULTATION OF ARRHYTHMIAS IN HORSES WHAT S THAT RHYTHM I AM HEARING? GUIDE TO AUSCULTATION OF ARRHYTHMIAS IN HORSES Michelle Henry Barton DVM, PhD, DACVIM University of Georgia, Athens, GA INTRODUCTION The purpose of this talk is to review

More information

Cardiovascular system

Cardiovascular system BIO 301 Human Physiology Cardiovascular system The Cardiovascular System: consists of the heart plus all the blood vessels transports blood to all parts of the body in two 'circulations': pulmonary (lungs)

More information

12.2 Monitoring the Human Circulatory System

12.2 Monitoring the Human Circulatory System 12.2 Monitoring the Human Circulatory System Video 1: 3D Animation of Heart Pumping Blood blood flow through the heart... Video 2: Hank Reviews Everything on the Heart https://www.youtube.com/watch?v=x9zz6tcxari

More information

current, and acting like

current, and acting like Heart 10 IV. HEART PHYSIOLOGY - How the heart beats. How the heart depolarizes the myocardium, which leads to a contraction. A) INTRINSIC CONTROL - Heart controls its own rhythm. HOW? The presence of gap

More information

The cardiovascular system is composed of the heart and blood vessels that carry blood to and from the body s organs. There are 2 major circuits:

The cardiovascular system is composed of the heart and blood vessels that carry blood to and from the body s organs. There are 2 major circuits: 1 The cardiovascular system is composed of the heart and blood vessels that carry blood to and from the body s organs. There are 2 major circuits: pulmonary and systemic. The pulmonary goes out to the

More information

Cardiovascular System Notes: Physiology of the Heart

Cardiovascular System Notes: Physiology of the Heart Cardiovascular System Notes: Physiology of the Heart Interesting Heart Fact Capillaries are so small it takes ten of them to equal the thickness of a human hair. Review What are the 3 parts of the cardiovascular

More information

BIO 360: Vertebrate Physiology Performing and analyzing an EKG Lab 11: Performing and analyzing an EKG Lab report due April 17 th

BIO 360: Vertebrate Physiology Performing and analyzing an EKG Lab 11: Performing and analyzing an EKG Lab report due April 17 th BIO 60: Vertebrate Physiology Lab : Lab report due April 7 th All muscles produce an electrical current when they contract. The heart is no exception. An electrocardiogram (ECG or EKG) is a graphical recording

More information

Chapter 20 (2) The Heart

Chapter 20 (2) The Heart Chapter 20 (2) The Heart ----------------------------------------------------------------------------------------------------------------------------------------- Describe the component and function of

More information

LABORATORY INVESTIGATION

LABORATORY INVESTIGATION LABORATORY INVESTIGATION Recording Electrocardiograms The taking of an electrocardiogram is an almost universal part of any complete physical examination. From the ECG record of the electrical activity

More information

Cardiovascular System Notes: Heart Disease & Disorders

Cardiovascular System Notes: Heart Disease & Disorders Cardiovascular System Notes: Heart Disease & Disorders Interesting Heart Facts The Electrocardiograph (ECG) was invented in 1902 by Willem Einthoven Dutch Physiologist. This test is still used to evaluate

More information

Project Title Temporary Pacemaker Training Simulator

Project Title Temporary Pacemaker Training Simulator Project Title Temporary Pacemaker Training Simulator Project Description Problem: There is no available training device for temporary pacemakers (pacemakers). A training device will have to essentially

More information

37 1 The Circulatory System

37 1 The Circulatory System H T H E E A R T 37 1 The Circulatory System The circulatory system and respiratory system work together to supply cells with the nutrients and oxygen they need to stay alive. a) The respiratory system:

More information

Analyzing the Heart with EKG

Analyzing the Heart with EKG Analyzing the Heart with EKG LabQuest An electrocardiogram (ECG or EKG) is a graphical recording of the electrical events occurring within the heart. In a healthy heart there is a natural pacemaker in

More information

QUIZ/TEST REVIEW NOTES SECTION 1 CARDIAC MYOCYTE PHYSIOLOGY [CARDIOLOGY]

QUIZ/TEST REVIEW NOTES SECTION 1 CARDIAC MYOCYTE PHYSIOLOGY [CARDIOLOGY] QUIZ/TEST REVIEW NOTES SECTION 1 CARDIAC MYOCYTE PHYSIOLOGY [CARDIOLOGY] Learning Objectives: Describe the ionic basis of action potentials in cardiac contractile and autorhythmic cells Explain the relationship

More information

HUMAN ANATOMY AND PHYSIOLOGY

HUMAN ANATOMY AND PHYSIOLOGY HUMAN ANATOMY AND PHYSIOLOGY NAME Detection of heart sounds. Clean the ear pieces of the stethoscope before using. The ear pieces should be pointing slightly forward when inserted into the ears because

More information

CASE 10. What would the ST segment of this ECG look like? On which leads would you see this ST segment change? What does the T wave represent?

CASE 10. What would the ST segment of this ECG look like? On which leads would you see this ST segment change? What does the T wave represent? CASE 10 A 57-year-old man presents to the emergency center with complaints of chest pain with radiation to the left arm and jaw. He reports feeling anxious, diaphoretic, and short of breath. His past history

More information

Figure 1 muscle tissue to its resting state. By looking at several beats you can also calculate the rate for each component.

Figure 1 muscle tissue to its resting state. By looking at several beats you can also calculate the rate for each component. ANALYZING THE HEART WITH EKG WITH LABQUEST LAB From Human Physiology with Vernier Westminster College INTRODUCTION An electrocardiogram (ECG or EKG) is a graphical recording of the electrical events occurring

More information

Lab Activity 24 EKG. Portland Community College BI 232

Lab Activity 24 EKG. Portland Community College BI 232 Lab Activity 24 EKG Reference: Dubin, Dale. Rapid Interpretation of EKG s. 6 th edition. Tampa: Cover Publishing Company, 2000. Portland Community College BI 232 Graph Paper 1 second equals 25 little boxes

More information

Lab 4: Introduction to Physiological Measurements - Cardiovascular

Lab 4: Introduction to Physiological Measurements - Cardiovascular Lab 4: Introduction to Physiological Measurements - Cardiovascular INTRODUCTION: This lab will demonstrate cardiovascular measurements by creating an ECG with instruments used in previous labs. Students

More information

UNDERSTANDING YOUR ECG: A REVIEW

UNDERSTANDING YOUR ECG: A REVIEW UNDERSTANDING YOUR ECG: A REVIEW Health professionals use the electrocardiograph (ECG) rhythm strip to systematically analyse the cardiac rhythm. Before the systematic process of ECG analysis is described

More information

Sample. Analyzing the Heart with EKG. Computer

Sample. Analyzing the Heart with EKG. Computer Analyzing the Heart with EKG Computer An electrocardiogram (ECG or EKG) is a graphical recording of the electrical events occurring within the heart. In a healthy heart there is a natural pacemaker in

More information

Lab 7. Physiology of Electrocardiography

Lab 7. Physiology of Electrocardiography 7.1 Lab 7. Physiology of Electrocardiography The heart is a muscular pump that circulates blood throughout the body. To efficiently pump the blood, cardiac contractions must be coordinated and are regulated

More information

Where are the normal pacemaker and the backup pacemakers of the heart located?

Where are the normal pacemaker and the backup pacemakers of the heart located? CASE 9 A 68-year-old woman presents to the emergency center with shortness of breath, light-headedness, and chest pain described as being like an elephant sitting on her chest. She is diagnosed with a

More information

THE CARDIOVASCULAR SYSTEM. Heart 2

THE CARDIOVASCULAR SYSTEM. Heart 2 THE CARDIOVASCULAR SYSTEM Heart 2 PROPERTIES OF CARDIAC MUSCLE Cardiac muscle Striated Short Wide Branched Interconnected Skeletal muscle Striated Long Narrow Cylindrical PROPERTIES OF CARDIAC MUSCLE Intercalated

More information

CRC 431 ECG Basics. Bill Pruitt, MBA, RRT, CPFT, AE-C

CRC 431 ECG Basics. Bill Pruitt, MBA, RRT, CPFT, AE-C CRC 431 ECG Basics Bill Pruitt, MBA, RRT, CPFT, AE-C Resources White s 5 th ed. Ch 6 Electrocardiography Einthoven s Triangle Chest leads and limb leads Egan s 10 th ed. Ch 17 Interpreting the Electrocardiogram

More information

Sheet 5 physiology Electrocardiography-

Sheet 5 physiology Electrocardiography- *questions asked by some students Sheet 5 physiology Electrocardiography- -why the ventricles lacking parasympathetic supply? if you cut both sympathetic and parasympathetic supply of the heart the heart

More information

The conduction system

The conduction system The conduction system In today s lecture we will discuss the conducting system of the heart. If we placed the heart in a special solution that contains Ca+ it will keep on contracting, keep in mind that

More information

CIRCULATION. Cardiovascular & lymphatic systems Functions. Transport Defense / immunity Homeostasis

CIRCULATION. Cardiovascular & lymphatic systems Functions. Transport Defense / immunity Homeostasis CIRCULATION CIRCULATION Cardiovascular & lymphatic systems Functions Transport Defense / immunity Homeostasis 2 Types of Circulatory Systems Open circulatory system Contains vascular elements Mixing of

More information

Electrocardiogram and Heart Sounds

Electrocardiogram and Heart Sounds Electrocardiogram and Heart Sounds Five physiologic properties of cardiac muscle Automaticity: SA node is the primary pacemaker of the heart, but any cells in the conduction system can initiate their

More information

The HEART. What is it???? Pericardium. Heart Facts. This muscle never stops working It works when you are asleep

The HEART. What is it???? Pericardium. Heart Facts. This muscle never stops working It works when you are asleep This muscle never stops working It works when you are asleep The HEART It works when you eat It really works when you exercise. What is it???? Located between the lungs in the mid thoracic region Apex

More information

Cardiac Telemetry Self Study: Part One Cardiovascular Review 2017 THINGS TO REMEMBER

Cardiac Telemetry Self Study: Part One Cardiovascular Review 2017 THINGS TO REMEMBER Please review the above anatomy of the heart. THINGS TO REMEMBER There are 3 electrolytes that affect cardiac function o Sodium, Potassium, and Calcium When any of these electrolytes are out of the normal

More information

CARDIAC CYCLE CONTENTS. Divisions of cardiac cycle 11/13/13. Definition. Badri Paudel GMC

CARDIAC CYCLE CONTENTS. Divisions of cardiac cycle 11/13/13. Definition. Badri Paudel GMC CARDIAC CYCLE Badri Paudel GMC CONTENTS Ø DEFINATION Ø DIVISION OF CARDIAC CYCLE Ø SUB DIVISION AND DURATION OF CARDIAC CYCLE Ø SYSTOLE Ø DIASTOLE Ø DESCRIPTION OF EVENTS OF CARDIAC CYCLE Ø SUMMARY Ø ELECTROCARDIOGRAPHY

More information

THE HEART THE CIRCULATORY SYSTEM

THE HEART THE CIRCULATORY SYSTEM THE HEART THE CIRCULATORY SYSTEM There are three primary closed cycles: 1) Cardiac circulation pathway of blood within the heart 2) Pulmonary circulation blood from the heart to lungs and back 3) Systemic

More information

Principles of Anatomy and Physiology

Principles of Anatomy and Physiology Principles of Anatomy and Physiology 14 th Edition CHAPTER 20 The Cardiovascular System: The Heart Introduction The purpose of the chapter is to: 1. Learn about the components of the cardiovascular system

More information

About atrial fibrillation (AFib) Atrial Fibrillation (AFib) What is AFib? What s the danger? Who gets AFib?

About atrial fibrillation (AFib) Atrial Fibrillation (AFib) What is AFib? What s the danger? Who gets AFib? Understanding AFib Atrial Fibrillation (AFib) About AFib 3 How Your Heart Works 4 Types of AFib 5 Symptoms 5 Risk Factors 5 How is AFib Diagnosed? 6 Treatment 6 What to Ask Your Doctor 7 A normal heartbeat

More information

Biology 212: Anatomy and Physiology II Lab #4: CARDIOVASCULAR PHYSIOLOGY AND THE ELECTROCARDIOGRAM

Biology 212: Anatomy and Physiology II Lab #4: CARDIOVASCULAR PHYSIOLOGY AND THE ELECTROCARDIOGRAM Biology 212: Anatomy and Physiology II Lab #4: CARDIOVASCULAR PHYSIOLOGY AND THE ELECTROCARDIOGRAM References: Saladin, KS: Anatomy and Physiology, The Unity of Form and Function 7 th (2015). Be sure you

More information

How Do We Sense, Think, and Move? -- Lab #11 Bioelectronics Measuring Electrical Properties of the Body

How Do We Sense, Think, and Move? -- Lab #11 Bioelectronics Measuring Electrical Properties of the Body How Do We Sense, Think, and Move? -- Lab #11 Bioelectronics Measuring Electrical Properties of the Body Experiment #1 Your Body's Resistance Equipment: Digital multimeter, Banana leads Important Equipment

More information

5- The normal electrocardiogram (ECG)

5- The normal electrocardiogram (ECG) 5- The (ECG) Introduction Electrocardiography is a process of recording electrical activities of heart muscle at skin surface. The electrical current spreads into the tissues surrounding the heart, a small

More information

The Mammalian Circulatory System

The Mammalian Circulatory System The Mammalian Heart The Mammalian Circulatory System Recall: What are the 3 cycles of the mammalian circulatory system? What are their functions? What are the three main vessel types in the mammalian circulatory

More information

Heart. Heart 2-Tunica media: middle layer (media ='middle') muscle fibers (smooth or cardiac).

Heart. Heart 2-Tunica media: middle layer (media ='middle') muscle fibers (smooth or cardiac). t. innermost lumenal General Circulatory system heart and blood vessels walls have 3 layers (inside to outside) 1-Tunica interna: aka tunica intima layer--lumenal layer epithelium--endothelium simple squamous

More information

Chapter 12: Cardiovascular Physiology System Overview

Chapter 12: Cardiovascular Physiology System Overview Chapter 12: Cardiovascular Physiology System Overview Components of the cardiovascular system: Heart Vascular system Blood Figure 12-1 Plasma includes water, ions, proteins, nutrients, hormones, wastes,

More information

Department of medical physiology 7 th week and 8 th week

Department of medical physiology 7 th week and 8 th week Department of medical physiology 7 th week and 8 th week Semester: winter Study program: Dental medicine Lecture: RNDr. Soňa Grešová, PhD. Department of medical physiology Faculty of Medicine PJŠU Cardiovascular

More information

Chapter 13 The Cardiovascular System: Cardiac Function

Chapter 13 The Cardiovascular System: Cardiac Function Chapter 13 The Cardiovascular System: Cardiac Function Overview of the Cardiovascular System The Path of Blood Flow through the Heart and Vasculature Anatomy of the Heart Electrical Activity of the Heart

More information

Human Biology Chapter 8.3: Cardiac Muscle and Electrical Activity *

Human Biology Chapter 8.3: Cardiac Muscle and Electrical Activity * OpenStax-CNX module: m57994 1 Human Biology Chapter 8.3: Cardiac Muscle and Electrical Activity * Willy Cushwa Based on Cardiac Muscle and Electrical Activity by OpenStax This work is produced by OpenStax-CNX

More information

Electrocardiography Normal 5. Faisal I. Mohammed, MD, PhD

Electrocardiography Normal 5. Faisal I. Mohammed, MD, PhD Electrocardiography Normal 5 Faisal I. Mohammed, MD, PhD 1 Objectives 2 1. Describe the different waves in a normal electrocardiogram. 2. Recall the normal P-R and Q-T interval time of the QRS wave. 3.

More information

Paroxysmal Supraventricular Tachycardia PSVT.

Paroxysmal Supraventricular Tachycardia PSVT. Atrial Tachycardia; is the name for an arrhythmia caused by a disorder of the impulse generation in the atrium or the AV node. An area in the atrium sends out rapid signals, which are faster than those

More information

CARDIOVASCULAR SYSTEM Worksheet

CARDIOVASCULAR SYSTEM Worksheet CARDIOVASCULAR SYSTEM Worksheet NAME Section A: Blood Basics http://www.psbc.org/hematology/01_index.htm Although blood appears to be red liquid it is actually composed of yellowish liquid called plasma

More information

Cardiac Conduction System

Cardiac Conduction System Cardiac Conduction System What causes the Heart to Beat? Heart contracts by electrical signals! Cardiac muscle tissue contracts on its own an electrical signal is sent out by the heart so that all cells

More information

Cardiac Muscle and Electrical Activity *

Cardiac Muscle and Electrical Activity * OpenStax-CNX module: m60384 1 Cardiac Muscle and Electrical Activity * Suzanne Wakim Based on Cardiac Muscle and Electrical Activity by OpenStax This work is produced by OpenStax-CNX and licensed under

More information

BUSINESS. Articles? Grades Midterm Review session

BUSINESS. Articles? Grades Midterm Review session BUSINESS Articles? Grades Midterm Review session REVIEW Cardiac cells Myogenic cells Properties of contractile cells CONDUCTION SYSTEM OF THE HEART Conduction pathway SA node (pacemaker) atrial depolarization

More information

UNDERSTANDING ELECTROPHYSIOLOGY STUDIES

UNDERSTANDING ELECTROPHYSIOLOGY STUDIES UNDERSTANDING ELECTROPHYSIOLOGY STUDIES Testing and Treating Your Heart s Electrical System A Problem with Your Heart Rhythm The speed and pattern of a heartbeat is called the heart rhythm. The rhythm

More information

This presentation will deal with the basics of ECG description as well as the physiological basics of

This presentation will deal with the basics of ECG description as well as the physiological basics of Snímka 1 Electrocardiography basics This presentation will deal with the basics of ECG description as well as the physiological basics of Snímka 2 Lecture overview 1. Cardiac conduction system functional

More information

Lab #3: Electrocardiogram (ECG / EKG)

Lab #3: Electrocardiogram (ECG / EKG) Lab #3: Electrocardiogram (ECG / EKG) An introduction to the recording and analysis of cardiac activity Introduction The beating of the heart is triggered by an electrical signal from the pacemaker. The

More information

Topic 6: Human Physiology

Topic 6: Human Physiology Topic 6: Human Physiology 6.2 The Blood System D.4 The Heart Essential Questions: 6.2 The blood system continuously transports substances to cells and simultaneously collects waste products. D.3 The chemical

More information

CARDIOVASCULAR SYSTEM

CARDIOVASCULAR SYSTEM CARDIOVASCULAR SYSTEM Overview Heart and Vessels 2 Major Divisions Pulmonary Circuit Systemic Circuit Closed and Continuous Loop Location Aorta Superior vena cava Right lung Pulmonary trunk Base of heart

More information

EKG Competency for Agency

EKG Competency for Agency EKG Competency for Agency Name: Date: Agency: 1. The upper chambers of the heart are known as the: a. Atria b. Ventricles c. Mitral Valve d. Aortic Valve 2. The lower chambers of the heart are known as

More information

Catheter Ablation. Patient Education

Catheter Ablation. Patient Education Catheter Ablation Patient Education Allina Health System Your heart has four chambers. Two upper chambers (atria) pump blood to the two lower chambers (ventricles). In order for the heart to pump, it requires

More information

Atrial Fibrillation: What Should You Know? I (888)

Atrial Fibrillation: What Should You Know?   I (888) Atrial Fibrillation: What Should You Know? I was exhausted doing simple tasks because of my AFib. I couldn t walk from the store to my car in the parking lot. Then, I had a MAZE procedure. It was a very

More information

Storage is accomplished through the following mechanisms:

Storage is accomplished through the following mechanisms: NROSCI/BIOSC 1070 and MSNBIO 2070 September 13, 2017 Examples of Coordinated Autonomic and Motor Responses and Return to the Cardiovascular System 1) Micturition Micturition, or the process of emptying

More information

Special health. guide. Hugh Calkins, M.D., and Ronald Berger, M.D., Ph.D. Guide to Understanding. Atrial Fibrillation WITH

Special health. guide. Hugh Calkins, M.D., and Ronald Berger, M.D., Ph.D. Guide to Understanding. Atrial Fibrillation WITH Hugh Calkins, M.D., and Ronald Berger, M.D., Ph.D. Guide to Understanding Atrial Fibrillation WITH Table of Contents Atrial Fibrillation: An Introduction... 1 How AF Affects the Heart... 2 Who Gets AF?...

More information

CRITICAL THINKING QUESTIONS AND ANSWERS AND CYCLE 2 LAB EXAM TEMPLATE. There are two main mechanisms that work in conjunction to return the blood

CRITICAL THINKING QUESTIONS AND ANSWERS AND CYCLE 2 LAB EXAM TEMPLATE. There are two main mechanisms that work in conjunction to return the blood CRITICAL THINKING QUESTIONS AND ANSWERS AND CYCLE 2 LAB EXAM TEMPLATE There are two main mechanisms that work in conjunction to return the blood THE CARDIAC PUMP 1) The forward pull(vis a fronte) This

More information

BASIC CONCEPT OF ECG

BASIC CONCEPT OF ECG BASIC CONCEPT OF ECG Electrocardiogram The electrocardiogram (ECG) is a recording of cardiac electrical activity. The electrical activity is readily detected by electrodes attached to the skin. After the

More information

Patient Resources: Arrhythmias and Congenital Heart Disease

Patient Resources: Arrhythmias and Congenital Heart Disease Patient Resources: Arrhythmias and Congenital Heart Disease Overview Arrhythmias (abnormal heart rhythms) can develop in patients with congenital heart disease (CHD) due to thickening/weakening of their

More information

Collin County Community College. ! BIOL Anatomy & Physiology! WEEK 5. The Heart

Collin County Community College. ! BIOL Anatomy & Physiology! WEEK 5. The Heart Collin County Community College! BIOL. 2402 Anatomy & Physiology! WEEK 5 The Heart 1 (1578-1657) A groundbreaking work in the history of medicine, English physician William Harvey s Anatomical Essay on

More information

CORONARY ARTERIES. LAD Anterior wall of the left vent Lateral wall of left vent Anterior 2/3 of interventricluar septum R & L bundle branches

CORONARY ARTERIES. LAD Anterior wall of the left vent Lateral wall of left vent Anterior 2/3 of interventricluar septum R & L bundle branches CORONARY ARTERIES RCA Right atrium Right ventricle SA node 55% AV node 90% Posterior wall of left ventricle in 90% Posterior third of interventricular septum 90% LAD Anterior wall of the left vent Lateral

More information

Management strategies for atrial fibrillation Thursday, 20 October :27

Management strategies for atrial fibrillation Thursday, 20 October :27 ALTHOUGH anyone who has had to run up a flight of steps or has had a frightening experience is quite familiar with a racing heartbeat, for the more than 2 million Americans who suffer from atrial fibrillation

More information

I PART I. Timing Cycles and Troubleshooting Review COPYRIGHTED MATERIAL

I PART I. Timing Cycles and Troubleshooting Review COPYRIGHTED MATERIAL I PART I Timing Cycles and Troubleshooting Review COPYRIGHTED MATERIAL 1 SECTION 1 Calculating Rates and Intervals Figure 1.1 Few clinicians can escape their training without having to learn to read a

More information

Aim: Transport- Why is it so important to multicellular organisms?

Aim: Transport- Why is it so important to multicellular organisms? Aim: Transport- Why is it so important to multicellular organisms? I.Transportthe absorption and circulation that allows substances to pass into or out of cells and move throughout the organism. A. absorptionsubstances

More information

The Heart and Heart Disease

The Heart and Heart Disease The Heart and Heart Disease Illustration of the heart by Leonardo DaVinci heart-surgeon.com/ history.html 2/14/2010 1 I. Location, Size and Position of the Heart A. Triangular organ located 1. of mass

More information

Physical Fitness Biology Concepts of Biology 13.1

Physical Fitness Biology Concepts of Biology 13.1 Physical Fitness Biology 100 - Concepts of Biology 13.1 Name Instructor Lab Section Objectives: To gain an understanding of: What is meant by the term physical fitness Various tests used to measure an

More information

Electrocardiography Biomedical Engineering Kaj-Åge Henneberg

Electrocardiography Biomedical Engineering Kaj-Åge Henneberg Electrocardiography 31650 Biomedical Engineering Kaj-Åge Henneberg Electrocardiography Plan Function of cardiovascular system Electrical activation of the heart Recording the ECG Arrhythmia Heart Rate

More information

Chapter 18 - Heart. I. Heart Anatomy: size of your fist; located in mediastinum (medial cavity)

Chapter 18 - Heart. I. Heart Anatomy: size of your fist; located in mediastinum (medial cavity) Chapter 18 - Heart I. Heart Anatomy: size of your fist; located in mediastinum (medial cavity) A. Coverings: heart enclosed in double walled sac called the pericardium 1. Fibrous pericardium: dense connective

More information

A. Incorrect! The left ventricle receives oxygenated blood from the lungs via the left atrium.

A. Incorrect! The left ventricle receives oxygenated blood from the lungs via the left atrium. Anatomy and Physiology - Problem Drill 16: The Cardiovascular System No. 1 of 10 Instruction: (1) Read the problem statement and answer choices carefully (2) Work the problems on paper as needed (3) Pick

More information