1 ADJUSTMENT THRESHOLD-N. United States Patent (19) Donehoo et al. 5,660,184. Aug. 26, 1997 PATIENT'S HEARTBEAT PACEMAKEREVENT QRS DETECTION THRESHOLD

Size: px
Start display at page:

Download "1 ADJUSTMENT THRESHOLD-N. United States Patent (19) Donehoo et al. 5,660,184. Aug. 26, 1997 PATIENT'S HEARTBEAT PACEMAKEREVENT QRS DETECTION THRESHOLD"

Transcription

1 United States Patent (19) Donehoo et al. US00566O184A 11 Patent Number: 45 Date of Patent: 5,660,184 Aug. 26, PACEMAKER PULSE DETECTION AND ARTIFACT REJECTION 75 Inventors: Robert F. Donehoo, Lutz; David W. Browne. Tampa, both of Fla. (73) Assignee: Johnson & Johnson Medical, Inc., New Brunswick, N.J. (21) Appl. No.: 440, Filed: May 15, 1995 (51 int. Cl.... A61B 5/ U.S. Cl /696 58) Field of Search /413.06; 607/27; 128/696, 697, 701, 704, 708, References Cited U.S. PATENT DOCUMENTS 4,934,376 6/1990 Amington /697 5,012,814 5/1991 Mills et al /697 5,033,473 7/1991 Wang et al /696 Primary Examiner-William E. Kamm Assistant Examiner-George R. Evanisko Attorney, Agent, or Firm-Woodcock Washburn Kurtz Mackiewicz & Norris LLP 57 ABSTRACT A method and apparatus for detecting a pacemaker pulse in an electrocardiogram signal (ECG signal) from characteris tic artifacts introduced into said ECG signal by the filtering process to allow identification and removal of the pacemaker pulse from the ECG signal. Upon detection of the pacemaker event, the amplitude threshold used in the detection of the QRS complex is raised to a higher level following the pacemaker pulse so that the characteristic artifacts do not exceed the threshold. The amplitude threshold is decayed to the normal QRS threshold level over a time interval deter mined in accordance with the characteristics of the filter which introduced the artifacts so that the artifacts will remain below the amplitude threshold. This technique is desired since prior art techniques requiring removal of the pacemaker pulse and any artifacts associated with the pace maker pulse before QRS complex detection also remove any QRS complexes occurring in the blanking window. By using a variable threshold, the amplitude of the QRS complex will exceed the threshold while the artifacts caused by the pacemaker pulse will remain below the threshold so that no blanking is necessary. 8 Claims, 5 Drawing Sheets THRESHOLD-N. an ECG SIGNAL a?ma alam m. -1 PACEMAKEREVENT QRS DETECTION THRESHOLD 1 ADJUSTMENT ARTIFACT GENERATED BY HARDWARE FILTERS PATIENT'S HEARTBEAT (GRS COMPLEX)

2 U.S. Patent Aug. 26, 1997 Sheet 1 of 5 5,660,184 - Ozºf /\!!!!!!!!!!!) ;? WIW0 003

3 U.S. Patent Aug. 26, 1997 Sheet 2 of 5 5,660,184 DIGITIZED, FILTERED, ECG DATA? NON-PACED PATIENT 30 DIGITAL FILTERING 32 PACEMAKER ARTIFACT PROCESSING HEART RATE CALCULATION QRS DETECTION

4 U.S. Patent Aug. 26, 1997 Sheet 3 of 5 5,660,184 - PACEMAKEREVENT ARTIFACT GENERATED BY / HAROWARE FILTERS ECG SIGNAL ZFig. 3 ECG WAVEFORM ECGSIGNAL QRS COMPLEX (HEART BEAT) N Y a. s sea as a QRS DETECTION AMPLTUDE THRESHOLD es - a ECGSIGNAL PACEMAKER EVENT ARTIFACT GENERATED BY / HARDWARE FILTERS Zig a. PATIENT'S (QRS COMPLEX) HEART BEAT

5

6

7 PACEMAKER PULSE DETECTION AND ARTIFACT RELECTION FIELD OF THE INVENTION This invention relates to a method and apparatus for detecting pacemaker pulses in electrocardiogram signals and for eliminating from electrocardiogram signals artifacts introduced by such pacemaker pulses, and, more particularly, to a technique for detecting pacemaker pulses from characteristic artifacts introduced by filtering of the pacemaker pulses and for providing an adjustable threshold which prevents false detection of QRS complexes in the electro-cardiogram signal because of the pacemaker pulses and their artifacts. BACKGROUND OF THE INVENTION Electrocardiographs (ECGs) with pacemaker detection capability are known in the art. Since the pacemaker pulse is generally a high frequency, large amplitude pulse, con ventional ECGs with pacemaker detection capability typi cally detect the pacemaker pulse using hardware which compares the electrocardiogram signal to an amplitude threshold. Then, once the pacemaker pulse is detected, the portion of the electrocardiogram signal containing the pace maker pulse and any artifacts such as overshoot and ringing associated with filtering of the pacemaker pulse are blanked (removed) from the electrocardiogram signal using gates and the like before the electrocardiogram signal is pro cessed. The QRS detection portion of the ECG monitor is then notified that there was a pacemaker event at the blanked portion of the waveform. Unfortunately, removal of the pacemaker pulse and its artifacts often has the unintended result of removing any QRS complexes which occur during the same time window. On the other hand, prior art ECG monitors which detect pacemaker pulses but do not blank (remove) the artifacts associated with each pacemaker pulse before it enters any filtering process may cause QRS complexes to be falsely detected if the patient's heart does not respond to the pacemaker. Also, since QRS detectors are allowed by regu latory standards to detect signals as Small as 0.15 mv, the artifacts following a pacemaker pulse can be large enough to be counted as a heartbeat under some circumstances. This result is obviously undesirable. Many prior art ECG monitors accomplish these pace maker detection and rejection tasks using specially designed circuitry. Unfortunately, such systems are typically quite costly and relatively inflexible. Other ECG monitors typi cally determine the extent of the pacemaker artifact using a hardware detection circuit and then blank out a region following the pacemaker pulses using a software routine so that the artifacts following the pacemaker pulses do not falsely trigger the QRS detection portion of the ECG moni tor. The period of time that must be blanked is determined by the hardware filter characteristics and can be quite long, for example, 45 ms. As in the prior art hardware embodiments, in addition to removing the artifact from the signal going to the QRS detector, the users are deprived of any information in the electrocardiogram signal (such as QRS complexes) which occur during the blanked interval. Accordingly, it is desired to overcome these problems in the prior art by blanking only the pacemaker pulse and by adjusting the QRS detection operation so that pacemaker artifacts in a time window following detected pacemaker pulses do not cause false QRS complex detections. The present invention has been designed to meet these needs in the art. 5,660, SUMMARY OF THE INVENTION A device and a method are described which meet the above-mentioned needs in the art by providing an electro cardiograph (ECG) monitor which detects a pacemaker pulse in a digitized and filtered electrocardiogram signal based on the characteristic artifacts introduced into the electrocardiogram signal by the filtering process. QRS com plexes in the electro-cardiogram signal are then detected by comparing the filtered, digitized electrocardiogram signal to a variable amplitude threshold. In accordance with the invention, the amplitude threshold has a first level related to the amplitude of the patient's QRS complexes and a second level, greater than the first level, which is used for a time interval immediately after detection of a pacemaker pulse. Preferably, the amplitude threshold decays from the second level to the first level over a predetermined amount of time after the pacemaker event so as to substantially prevent characteristic "ringing artifacts caused by filtering of the pacemaker event from being detected as a QRS complex. Generally, the second leveland the predetermined amount of time are set in accordance with known artifact producing characteristics of the filter which created the artifacts. The pacemaker event and the characteristic artifacts may then be ignored without missing any QRS complexes which occur in the same time window. BRIEF DESCRIPTION OF THE DRAWINGS The present invention will be better understood after reading the following detailed description of the presently preferred embodiments thereof with reference to the appended drawings, of which: FIG. 1 illustrates an electrocardiograph (ECG) monitor modified to include the pacemaker pulse detection and artifact rejection techniques of the invention. FIG. 2 illustrates aflow chart of the processing performed by microprocessor 22 of the ECG monitor of FIG. 1. FIG. 3 illustrates a pacemaker pulse and its associated artifacts generated by filters in the ECG monitor. FIG. 4 illustrates an electrocardiogram waveform and a variable threshold used to detect a QRS complex. FIG. 5 illustrates an electrocardiogram waveform having a pacemaker pulse and artifacts large enough to be counted as a heartbeat under certain circumstances. FIG. 6 illustrates an electrocardiogram waveform having a pacemaker pulse and artifacts compared to an amplitude threshold modified in accordance with the invention so that the artifacts are not counted as a heartbeat. FIG. 7 illustrates an electrocardiogram waveform having a pacemaker pulse and artifacts occurring simultaneously with a QRS complex but an amplitude threshold modified in accordance with the invention to permit detection of the QRS complex despite the artifacts. DETALED DESCRIPTION OF THE PRESENTLY PREFERRED EMBODMENT A system and method which meets the above-mentioned objects and provides other beneficial features in accordance with the presently preferred exemplary embodiment of the invention will be described below with reference to FIGS Those skilled in the art will readily appreciate that the description given herein with respect to those figures is for explanatory purposes only and is not intended in any way to limit the scope of the invention. All questions regarding the scope of the invention should be resolved by referring to the appended claims.

8 3 FIG. 1 illustrates an electrocardiograph (ECG) monitor modified to include the pacemaker pulse detection and artifact rejection techniques of the invention. As illustrated, a patient 10 is connected in a conventional manner to QRS leads from a lead input circuit 12 for detection of the electrocardiogram signal of the patient. The resulting elec trocardiogram signal is amplified by instrumentation ampli fier 14 and filtered by analog filter 16 to remove noise components before being converted into a digital signal by A/D converter 18. Of course, the electrocardiogram signal can be converted to digital form before being filtered by a digital filter. The resulting digital ECG signal 21 passes through patient isolation circuitry 20 of the type known in the art before being processed by software of microproces sor 22 to calculate heart rate and the like. The processed digital electrocardiogram signal is then displayed on display device 24 and is optionally recorded by recording device 26. Generally, microprocessor 22 processes ECG signal 21 to detect and remove pacemaker pulses, to eliminate artifacts caused by filtering of the pacemaker pulses, and to calculate the patient's heart rate from the resulting data. FIG. 2 illustrates a flow chart of the processing performed by microprocessor 22. As shown, the ECG signal 21 is pro cessed by pacemaker detection software 28 to detect whether a pacemaker event is present in the ECG signal 21. As indicated, use of pacemaker detection software 28 may be optional, depending upon whether use of a pacemaker by the patient is known. If it is known that the patient does not use a pacemaker, the ECG signal 21 may be applied directly to digital filtering software 30. Otherwise, the ECG signal21 is processed by pacemaker detection software 28 to detect a pacemaker pulse. Although the pacemaker pulse may be detected using known hardware and software detection techniques of the type mentioned above, it is preferred that the pacemaker pulse be detected by searching for the char acteristic overshoot and other filter artifacts introduced into the ECG signal 21 by analog filter 16. This may be done, for example, by comparing the input ECG signal 21 to a template for the analog filter 16. Such an approach is contrary to conventional techniques since the conventional wisdom is that the artifacts should be removed-not used to detect a pacemaker event. The ECG signal 21 is next filtered by digital filter 30 to remove the high frequency pacemaker pulse. However, as will be explained below, in accordance with the invention, the pacemaker artifacts are not removed by digital filter 30. Instead, the artifacts are allowed to remain so that coincident QRS complexes are not also filtered out. Next, the ECG signal 21 is processed by pacemaker artifact processing software 32 to remove the artifacts and by QRS detection routine 34 to detect QRS complexes. Such techniques will be described in more detail below with respect to FIGS Finally, the heart rate is calculated from the QRS complexes by heart rate calculation software 36 using conventional techniques. FIG. 3 illustrates a pacemaker pulse and its associated artifacts generated by filters in the ECG monitor. As noted above, the filters, such as analog filter 16 of the ECG monitor of FIG. 1, introduce characteristic overshoot and ringing artifacts into the ECG signal 21 because of the filtering of the high frequency, large amplitude pacemaker pulse. As noted above, in accordance with the invention, these characteristic artifacts for the particular filter are used to determine that a pacemaker pulse is indeed present in the input ECG signal 21. QRS detectors in ECG monitors often use amplitude as a basis for detection of heart beats. As shown in FIG. 4, in 5,660, accordance with the invention, an amplitude threshold is determined from the patient's own QRS complexes as a fraction of the amplitude of the QRS complexes and is decayed over time to allow new QRS complexes to be detected. The resulting amplitude threshold is the dotted line illustrated in FIG. 4. Unfortunately, since QRS detectors are allowed by regulatory standards to detect signals as Small as 0.15 mv. artifacts following pacemaker pulse can be large enough to be counted as a heart beat against such an amplitude threshold under certain circumstances. For example, as illustrated in FIG. 5, the amplitude of the artifacts following the pacemaker pulse may well exceed the amplitude of the QRS complex. Because of this, further modification of the threshold measurement technique is needed to account for the pacemaker artifacts. FIG. 6 illustrates an electrocardiogram waveform having a pacemaker pulse and artifacts which is compared to an amplitude threshold modified in accordance with the inven tion so that the artifacts are not counted as a heartbeat. As noted above, by characterizing the filters of the ECG monitor, the extent of the artifact following a pacemaker pulse can be determined. Once this information is known, the QRS complex detection amplitude thresholds can be modified following detection of a pacemaker pulse by pacemaker detection software 28 so that the artifacts fol lowing a pacemaker pulse are not counted as a heartbeat. As shown in FIG. 6, this is accomplished by moving the QRS detection threshold to a level just above the known artifact amplitude characteristic immediately after the known pace maker pulse and then lowering the QRS detection threshold in such a manner that it stays just above the artifact ampli tude characteristic. Over a predetermined amount of time, the QRS detection threshold after a pacemaker pulse is decayed back to the normal level for QRS complex detec tion. Of course, the amount of time for the decay is depen dent on the known artifact amplitude characteristics for the particular filter 16 used by the ECG monitor. Of course, a QRS complex may occur simultaneously with a pacemaker pulse and its artifacts. As noted above, it is important that the QRS complex not be overlooked during the removal of the pacemaker pulse and its artifacts. FIG. 7 illustrates such an electrocardiogramwaveformin which the pacemaker pulse and artifacts occur simultaneously with the QRS complex. As shown, since the amplitude threshold after a known pacemaker pulse is modified in accordance with the invention to a level just above the known artifacts, the fact that the artifacts and QRS complex amplitudes will add together to exceed the modified QRS detection threshold will permit detection of the QRS complex despite the artifacts. As in the conventional case (without a pacemaker pulse) illustrated in FIG. 4, the QRS detection threshold would then decay in the normal manner after detection of a QRS complex. Those skilled in the art will appreciate that the technique of the invention makes it possible to detect a pacemaker pulse in a straightforward way despite any noise in the ECG signal and makes it possible through intelligent control of the QRS amplitude detection thresholds to detect QRS complexes despite the presence of substantial artifacts intro duced by filtering of the pacemaker pulse signal. The technique of the invention works for both hardware and software filtering techniques since in each case the artifact characteristics of the filters provide a fingerprint which may be readily used by those skilled in the art to provide a template for matching to similar characteristics in received ECG signals. Those skilled in the art will also appreciate that the foregoing has set forth the presently preferred embodiment

9 5 of the invention but that numerous alternative embodiments are possible without departing from the novel teachings and advantages of the invention. Accordingly, all such modifi cation are intended to be included within the scope of the appended claims. We claim: 1. An electrocardiograph (ECG) monitor which monitors patient's electrocardiogram and detects pacemaker events in said electrocardiogram, said ECG monitor comprising: means for detecting an electrocardiogram signal of the patient, including any pacemaker events in said elec trocardiogram signal; a filter which filters said electrocardiogram signal and introduces characteristic noise artifacts into said elec trocardiogram signal upon filtering of a pacemaker event; and processing means for setting an amplitude threshold, for detecting said pacemaker event in said filtered electro cardiogram signal, and for detecting a QRS complex in said filtered electrocardiogram signal by comparing said filtered electrocardiogram signal to said amplitude threshold, said amplitude threshold having a first level which is a fraction of an amplitude of said patient's QRS complexes and a second level, greater than said first level, immediately after a detected pacemaker event, said amplitude threshold decaying from said second level to said first level over a predetermined amount of time after said detected pacemaker event so as to substantially prevent a false detection of said characteristic noise artifacts as a QRS complex. 2. An ECG monitor as in claim 1, wherein said second level and said predetermined amount of time are set by said processing means in accordance with known noise artifact producing characteristics of said filter. 3. An electrocardiograph (ECG) monitor which monitors a patient's electrocardiogram and detects pacemaker events in said electrocardiogram, said ECG monitor comprising: means for detecting an electrocardiogram signal of the patient, including any pacemaker events in said elec trocardiogram signal; a filter which filters said electrocardiogram signal and introduces characteristic noise artifacts into said elec trocardiogram signal upon filtering of a pacemaker event; and processing means for detecting said pacemaker event in said filtered electrocardiogram signal from the presence of said characteristic noise artifacts introduced into said electrocardiogram signal by said filter. 4. An ECG monitor as in claim3, wherein said processing means includes means for removing said pacemaker event 5,660, and said characteristic noise artifacts from said filtered electrocardiogram signal. 5. A method of detecting a QRS complex in an electro cardiogram signal of a patient, comprising the steps of: 5 detecting said electrocardiogram signal of the patient, including any pacemaker events in said electrocardio gram signal; filtering said electrocardiogram signal with a filter which introduces characteristic noise artifacts into said elec trocardiogram signal upon filtering of a pacemaker event; detecting said pacemaker event in said filtered electrocar diogram signal; 15 setting an amplitude threshold, said amplitude threshold having a first level which is a fraction of an amplitude of said patient's QRS complexes and a second level, greater than said first level, immediately after said detected pacemaker event, said amplitude threshold decaying from said second level to said first level over a predetermined amount of time after sai: detected pacemaker event; comparing said filtered electrocardiogram signal to said amplitude threshold; and determining that a QRS complex is present when said filtered electrocardiogram signal exceeds said ampli tude threshold signal artifacts caused by said pace maker event as a QRS complex. 6. Amethod as in claim.5, wherein said step of setting said amplitude threshold includes the step of setting said second level and said predetermined amount of time in accordance with known noise artifact producing characteristics of said filter. 7. A method of detecting a pacemaker event in an elec trocardiogram signal of a patient, comprising the steps of: detecting said electrocardiogram signal of the patient, including any pacemaker events in said electrocardio gram signal; filtering said electrocardiogram signal with filter which introduces characteristic noise artifacts into said elec trocardiogram signal upon filtering of a pacemaker event; and detecting the presence of said characteristic noise artifacts in said filtered electrocardiogram signal as indicative of the occurrence of said pacemaker event immediately prior to said characteristic noise artifacts. 8. A method as in claim 7, comprising the further step of removing said pacemaker event and said characteristic noise artifacts from said filtered electrocardiogram signal. ck k :: *k sk

(12) United States Patent (10) Patent No.: US 6,691,578 B1

(12) United States Patent (10) Patent No.: US 6,691,578 B1 USOO6691578B1 (12) United States Patent (10) Patent No.: US 6,691,578 B1 Puskas (45) Date of Patent: Feb. 17, 2004 (54) MEASUREMENT SYSTEMS FOR 4,710,233 A 12/1987 Hohmann et al.... 205/701 ULTRASOUND

More information

(12) United States Patent

(12) United States Patent US007043040B2 (12) United States Patent Westerkull (10) Patent No.: (45) Date of Patent: May 9, 2006 (54) HEARING AID APPARATUS (75) Inventor: Patrick Westerkull, Hovås (SE) (73) Assignee: P&B Research

More information

IIII. United States Patent (19) Nolan et al. 11 Patent Number: 5,776,150 45) Date of Patent: Jul. 7, 1998

IIII. United States Patent (19) Nolan et al. 11 Patent Number: 5,776,150 45) Date of Patent: Jul. 7, 1998 United States Patent (19) Nolan et al. 54) SUTURE ASSIST DEVICE 75) Inventors: Leo J. Nolan; John P. Measamer, both of Cincinnati; James D. Staley, Jr., Loveland; Robert F. Welch, Maineville, all of Ohio

More information

U.S. Cl /14. 58) Field of Search /14, / / /14 - ATRAL RATE - VENTRICULAR RATE FLYWHEEL

U.S. Cl /14. 58) Field of Search /14, / / /14 - ATRAL RATE - VENTRICULAR RATE FLYWHEEL United States Patent (19) Stoop IIII USOO5792.193A 11 Patent Number: 5,792,193 45) Date of Patent: Aug. 11, 1998 54 PACEMAKER SYSTEM AND METHOD WTH VENTRICULAR RATE SMOOTHING DURING HGH RATE ATRAL ARRHYTHMA

More information

United States Patent (19) Hensel

United States Patent (19) Hensel United States Patent (19) Hensel - 54 75 73 1 51 5 58 56) FLUID BEARNG CONSTRUCTION EMPLOYING THRUST PLATE WITH PRESSURE COMPENSATION PORTS Inventor: Robert J. Hensel, Gaston, Oreg. Assignee: Synektron

More information

y 2. (12) United States Patent VbOt W N 35 (10) Patent No.: US 8,855,348 B2 HAD CIRCUIT ACTIVE TELECOIL (45) Date of Patent: Oct.

y 2. (12) United States Patent VbOt W N 35 (10) Patent No.: US 8,855,348 B2 HAD CIRCUIT ACTIVE TELECOIL (45) Date of Patent: Oct. USOO8855348B2 (12) United States Patent Johnson (54) TELECOIL INA DETACHABLE DIRECT AUDIO INPUT ACCESSORY (75) Inventor: Andrew Joseph Johnson, Edina, MN (US) (73) Assignee: Starkey Laboratories, Inc.,

More information

(12) Patent Application Publication (10) Pub. No.: US 2007/ A1

(12) Patent Application Publication (10) Pub. No.: US 2007/ A1 US 20070050.058A1 (19) United States (12) Patent Application Publication (10) Pub. No.: US 2007/0050058 A1 Zuziak et al. (43) Pub. Date: Mar. 1, 2007 (54) PLACEMAT FOR CALCULATING AND Related U.S. Application

More information

(12) Patent Application Publication (10) Pub. No.: US 2006/ A1

(12) Patent Application Publication (10) Pub. No.: US 2006/ A1 (19) United States US 20060074454A1 (12) Patent Application Publication (10) Pub. No.: US 2006/0074454 A1 Freeberg (43) Pub. Date: (54) METHODS AND SYSTEMS FOR SELECTION OF CARDAC PACING ELECTRODE CONFIGURATIONS

More information

TEPZZ _ 849 A_T EP A1 (19) (11) EP A1. (12) EUROPEAN PATENT APPLICATION published in accordance with Art.

TEPZZ _ 849 A_T EP A1 (19) (11) EP A1. (12) EUROPEAN PATENT APPLICATION published in accordance with Art. (19) TEPZZ _ 849 A_T (11) EP 3 138 493 A1 (12) EUROPEAN PATENT APPLICATION published in accordance with Art. 3(4) EPC (43) Date of publication: 08.03.17 Bulletin 17/ (21) Application number: 786271. (22)

More information

(12) Patent Application Publication (10) Pub. No.: US 2009/ A1

(12) Patent Application Publication (10) Pub. No.: US 2009/ A1 (19) United States US 2009.02451 05A1 (12) Patent Application Publication (10) Pub. No.: US 2009/0245105 A1 HO (43) Pub. Date: Oct. 1, 2009 (54) METHOD FOR NETWORK TRANSMISSION (30) Foreign Application

More information

(12) Patent Application Publication (10) Pub. No.: US 2008/ A1

(12) Patent Application Publication (10) Pub. No.: US 2008/ A1 US 20080082047A1 (19) United States (12) Patent Application Publication (10) Pub. No.: US 2008/0082047 A1 Harmon (43) Pub. Date: Apr. 3, 2008 (54) VEIN HOLDER (52) U.S. Cl.... 604/115 (76) Inventor: Stoney

More information

United States Patent (19) James

United States Patent (19) James United States Patent (19) James 54 DEVICE FOR DISPENSING MEDICAMENTS (75) Inventor: Michael James, Welwyn Garden City, England Allen & Hanburys Limited, London, 73 Assignee: England (21) Appl. No.: 767,518

More information

(12) Patent Application Publication (10) Pub. No.: US 2003/ A1

(12) Patent Application Publication (10) Pub. No.: US 2003/ A1 US 2003O130096A1 (19) United States (12) Patent Application Publication (10) Pub. No.: US 2003/0130096 A1 LaCroce (43) Pub. Date: Jul. 10, 2003 (54) BARBELL WITH PLURAL HAND GRIPPING Publication Classification

More information

Panorama. Arrhythmia Analysis Frequently Asked Questions

Panorama. Arrhythmia Analysis Frequently Asked Questions Panorama Arrhythmia Analysis Frequently Asked Questions What ECG vectors are used for Beat Detection? 3-wire lead set 5-wire lead set and 12 lead What ECG vectors are used for Beat Typing? 3-wire lead

More information

United States Patent (19)

United States Patent (19) United States Patent (19) Figone et al. 11 Patent Number: 4,834,212 (45) Date of Patent: May 30, 1989 54) (76) 21) 22 (51) (52) (58) SOUND MUFFLER FOR COVERING THE MOUTH Inventors: Moira J. Figone; Frank

More information

(12) Patent Application Publication (10) Pub. No.: US 2001/ A1

(12) Patent Application Publication (10) Pub. No.: US 2001/ A1 (19) United States US 20010038703A1 (12) Patent Application Publication (10) Pub. No.: US 2001/0038703 A1 Paczkowski (43) Pub. Date: Nov. 8, 2001 (54) HEARING-AIDASSEMBLY USING FOLDED FLEX CIRCUITS (76)

More information

IHIH IIII. United States Patent (19) 11 Patent Number: 5,417, Date of Patent: May 23, Kawai et al.

IHIH IIII. United States Patent (19) 11 Patent Number: 5,417, Date of Patent: May 23, Kawai et al. United States Patent (19) Kawai et al. 54 METHOD FOR EXTRACTING AMARGIN LINE FOR DESIGNING AN ARTIFICIAL CROWN 75) Inventors: Masaharu Kawai, Kanagawa; Katsuya Miyoshi, Tokyo; Masami Baba, Saitama, all

More information

(12) Patent Application Publication (10) Pub. No.: US 2007/ A1

(12) Patent Application Publication (10) Pub. No.: US 2007/ A1 (19) United States (12) Patent Application Publication (10) Pub. No.: US 2007/0036385 A1 Harvey et al. US 2007.0036385A1 (43) Pub. Date: Feb. 15, 2007 (54) (75) (73) (21) (22) (60) HIGH-FIDELITY EARPIECE

More information

(12) Patent Application Publication (10) Pub. No.: US 2015/ A1

(12) Patent Application Publication (10) Pub. No.: US 2015/ A1 US 20150254235A1 (19) United States (12) Patent Application Publication (10) Pub. No.: US 2015/0254235 A1 Whitley (43) Pub. Date: Sep. 10, 2015 (54) SIGN LANGUAGE TRANSLATION (57) ABSTRACT The instant

More information

(12) United States Patent (10) Patent No.: US 6,937,901 B2. Zhu et al. (45) Date of Patent: Aug. 30, 2005

(12) United States Patent (10) Patent No.: US 6,937,901 B2. Zhu et al. (45) Date of Patent: Aug. 30, 2005 USOO6937901B2 (12) United States Patent (10) Patent No.: Zhu et al. (45) Date of Patent: Aug. 30, 2005 (54) CAPTURE VERIFICATION FOR CARDIAC 5,003,975 A * 4/1991 Hafelfinger et al.... 607/28 RESYNCHRONIZATION

More information

(12) Patent Application Publication (10) Pub. No.: US 2009/ A1

(12) Patent Application Publication (10) Pub. No.: US 2009/ A1 (19) United States US 20090305855A1 (12) Patent Application Publication (10) Pub. No.: US 2009/0305855A1 Terre (43) Pub. Date: Dec. 10, 2009 (54) ABDOMINAL EXERCISE MACHINE (57) ABSTRACT An abdominal exercise

More information

(12) Patent Application Publication (10) Pub. No.: US 2008/ A1

(12) Patent Application Publication (10) Pub. No.: US 2008/ A1 (19) United States US 20080040891A1 (12) Patent Application Publication (10) Pub. No.: US 2008/0040891 A1 Tyler (43) Pub. Date: Feb. 21, 2008 (54) EXERCISE EQUIPMENT HANDLE GRIPS Publication Classification

More information

Display IIII. United States Patent (19) Hosaka et al. Primary Examiner-Robert L. Nasser. (CPU) for computing the values of parameters ol, and Busing

Display IIII. United States Patent (19) Hosaka et al. Primary Examiner-Robert L. Nasser. (CPU) for computing the values of parameters ol, and Busing United States Patent (19) Hosaka et al. 54 MULTI-FUNCTIONAL BLOOD PRESSURE MONITOR (75) Inventors: Hidehiro Hosaka, Takashi Nakaya; Yoshihiro Sugo; Hiromitsu Kasuya; Rie Tanaka, all of Tokyo, Japan 73)

More information

(12) Patent Application Publication (10) Pub. No.: US 2007/ A1. (51) Int. Cl. s 8

(12) Patent Application Publication (10) Pub. No.: US 2007/ A1. (51) Int. Cl. s 8 (19) United States US 2007.0049567A1 (12) Patent Application Publication (10) Pub. No.: US 2007/0049567 A1 Wiley (43) Pub. Date: Mar. 1, 2007 (54) HORMONE REPLACEMENT COMPOSITION AND METHOD (76) Inventor:

More information

(12) Patent Application Publication (10) Pub. No.: US 2005/ A1

(12) Patent Application Publication (10) Pub. No.: US 2005/ A1 (19) United States US 2005.0054940A1 (12) Patent Application Publication (10) Pub. No.: US 2005/005494.0 A1 Almen (43) Pub. Date: Mar. 10, 2005 (54) APPARATUS AND METHOD FOR (57) ABSTRACT MONITORING HEART

More information

(12) United States Patent (10) Patent No.: US 6,282,443 B1

(12) United States Patent (10) Patent No.: US 6,282,443 B1 USOO6282443B1 (12) United States Patent (10) Patent No.: US 6,282,443 B1 Mann et al. (45) Date of Patent: Aug. 28, 2001 (54) METHOD OF TREATMENT OF (56) References Cited DYSMENORRHEA OR RELIEVING MENSTRUAL

More information

(12) Patent Application Publication (10) Pub. No.: US 2008/ A1

(12) Patent Application Publication (10) Pub. No.: US 2008/ A1 (19) United States US 2008O1771.57A1 (12) Patent Application Publication (10) Pub. No.: US 2008/0177157 A1 Pasricha et al. (43) Pub. Date: (54) LIE DETECTION VIA ELECTROGASTROGRAPHY (76) Inventors: Pankaj

More information

United States Patent (19) Lidow

United States Patent (19) Lidow United States Patent (19) Lidow 54 SLEEP STATE INHIBITED WAKE-UP ALARM (75) Inventor: 73 Assignee: Derek Lidow, Beverly Hills, Calif, International Rectifier Corporation, Los Angeles, Calif. (21) Appl.

More information

(12) Patent Application Publication (10) Pub. No.: US 2007/ A1

(12) Patent Application Publication (10) Pub. No.: US 2007/ A1 (19) United States (12) Patent Application Publication (10) Pub. No.: US 2007/0093719 A1 Nichols, JR. et al. US 200700.93719A1 (43) Pub. Date: Apr. 26, 2007 (54) (76) (21) (22) (51) (52) PERSONAL HEART

More information

(12) United States Patent (10) Patent No.: US 6,879,850 B2

(12) United States Patent (10) Patent No.: US 6,879,850 B2 USOO687985OB2 (12) United States Patent (10) Patent No.: Kimball (45) Date of Patent: Apr. 12, 2005 (54) PULSE OXIMETER WITH MOTION 5,505,199 A 4/1996 Kim DETECTION 5,587,785 A 12/1996 Kato et al. 5,662,106

More information

(12) United States Patent Li et a].

(12) United States Patent Li et a]. US008700126B2 (12) United States Patent Li et a]. (10) Patent N0.: (45) Date of Patent: Apr. 15, 2014 (54) SYSTEM AND METHOD FOR COMPUTER AIDED SEPTAL DEFECT DIAGNOSIS AND SURGERY FRAMEWORK (75) Inventors:

More information

(12) Patent Application Publication (10) Pub. No.: US 2012/ A1

(12) Patent Application Publication (10) Pub. No.: US 2012/ A1 (19) United States US 2012O063621A1 (12) Patent Application Publication (10) Pub. No.: US 2012/0063621 A1 NAUMANN (43) Pub. Date: (54) CONNECTOR FOR HEARING INSTRUMENT, HEARING INSTRUMENT AND HEARING INSTRUMENT

More information

Assessment of Reliability of Hamilton-Tompkins Algorithm to ECG Parameter Detection

Assessment of Reliability of Hamilton-Tompkins Algorithm to ECG Parameter Detection Proceedings of the 2012 International Conference on Industrial Engineering and Operations Management Istanbul, Turkey, July 3 6, 2012 Assessment of Reliability of Hamilton-Tompkins Algorithm to ECG Parameter

More information

Piersch (45) Date of Patent: Jun. 29, 1993

Piersch (45) Date of Patent: Jun. 29, 1993 United States Patent (19) 11) USOO5222902A Patent Number: 5,222,902 Piersch (45) Date of Patent: Jun. 29, 1993 54 INTERLOCKING BLOCKS 3,890,738 6/1975 Bassani... 44.6/1 3,900,985 8/1975 Yoen... 44.6/124

More information

(12) United States Patent

(12) United States Patent (12) United States Patent US006319006B1 (10) Patent N0.: US 6,319,006 B1 Scherer et al. (45) Date of Patent: Nov. 20, 2001 (54) METHOD FOR PRODUCINGA DRILL 5,967,777 * 10/1999 Klein 5 a1...... 433/75 ASSISTANCE

More information

United States Patent (19) Groesch et al.

United States Patent (19) Groesch et al. United States Patent (19) Groesch et al. 54 DUMMY FOR CAR CRASH TESTING 75) Inventors: Lothar Groesch; Gabriel Netzer, both of Stuttgart; Lothar Kassing, Nufringen, all of Fed. Rep. of Germany 73) Assignee:

More information

(12) United States Patent (10) Patent No.: US 6,276,248 B1. Cranna (45) Date of Patent: Aug. 21, 2001

(12) United States Patent (10) Patent No.: US 6,276,248 B1. Cranna (45) Date of Patent: Aug. 21, 2001 USOO6276248B1 (12) United States Patent (10) Patent No.: Cranna () Date of Patent: Aug. 21, 2001 (54) BAND SAW BLADE HAVING REDUCED 5,331,876 * 7/1994 Hayden, Sr.... 83/851 NOISE AND UNIFORM TOOTH LOADING

More information

(12) Patent Application Publication (10) Pub. No.: US 2010/ A1

(12) Patent Application Publication (10) Pub. No.: US 2010/ A1 US 2010.0043807A1 (19) United States (12) Patent Application Publication (10) Pub. No.: US 2010/0043807 A1 Kim (43) Pub. Date: Feb. 25, 2010 (54) NOVEL METHODS OF PHALLOPLASTY (52) U.S. Cl.... 128/898

More information

(12) United States Patent (10) Patent No.: US 7, B2

(12) United States Patent (10) Patent No.: US 7, B2 US007052479B2 (12) United States Patent (10) Patent No.: US 7,052.479 B2 Drennan (45) Date of Patent: May 30, 2006 (54) TRACTION DEVICE 3,762.405 A * 10/1973 De George... 602/23 3,771,519 A * 11/1973 Haake......

More information

(12) United States Patent Clapp et al. US 7,206,386 B2 Apr. 17, 2007 US B2. (45) Date of Patent:

(12) United States Patent Clapp et al. US 7,206,386 B2 Apr. 17, 2007 US B2. (45) Date of Patent: US007206386B2 (12) United States Patent Clapp et al. (io) Patent No.: (45) Date of Patent: US 7,206,386 B2 Apr. 17, 2007 (54) METHOD AND SYSTEM FOR ELECTRONIC COMMUNICATION WITH THE HEARING IMPAIRED (75)

More information

(12) Patent Application Publication (10) Pub. No.: US 2015/ A1

(12) Patent Application Publication (10) Pub. No.: US 2015/ A1 (19) United States (12) Patent Application Publication (10) Pub. No.: US 2015/0113348 A1 Douskey et al. US 2015O113348A1 (43) Pub. Date: Apr. 23, 2015 (54) (71) (72) (73) (21) (22) IMPLEMENTING MISR COMPRESSION

More information

( 12 ) United States Patent

( 12 ) United States Patent ( 12 ) United States Patent Ingwer et al. US009907655B2 ( 10 ) Patent No. : US 9, 907, 655 B2 ( 45 ) Date of Patent : Mar. 6, 2018 ( 54 ) COMPONENTS FOR ARTIFICIAL JOINTS ( 56 ) References Cited U. S.

More information

(12) Patent Application Publication (10) Pub. No.: US 2005/ A1

(12) Patent Application Publication (10) Pub. No.: US 2005/ A1 US 20050228296A1 (19) United States (12) Patent Application Publication (10) Pub. No.: US 2005/0228296A1 Banet (43) Pub. Date: Oct. 13, 2005 (54) CUFFLESS SYSTEM FOR MEASURING Publication Classification

More information

III USOO A. 54 AUTOMATIC DESIGN OF FRAUD 5,345,595 9/1994 Johnson et al /33.

III USOO A. 54 AUTOMATIC DESIGN OF FRAUD 5,345,595 9/1994 Johnson et al /33. United States Patent (19) Fawcett et al. III USOO5790645A 11 Patent Number: 5,790,645 45) Date of Patent: Aug. 4, 1998 54 AUTOMATIC DESIGN OF FRAUD 5,345,595 9/1994 Johnson et al...... 455/33. DETECTION

More information

(12) Patent Application Publication (10) Pub. No.: US 2009/ A1

(12) Patent Application Publication (10) Pub. No.: US 2009/ A1 (19) United States (12) Patent Application Publication (10) Pub. No.: US 2009/0039210 A1 Yates et al. US 20090039210A1 (43) Pub. Date: Feb. 12, 2009 (54) (76) (21) (22) (60) CPAP HOSE SUPPORT SYSTEM Inventors:

More information

(12) United States Patent (10) Patent No.: US 6,278,894 B1

(12) United States Patent (10) Patent No.: US 6,278,894 B1 USOO6278894B1 (12) United States Patent (10) Patent No.: US 6,278,894 B1 Salo et al. (45) Date of Patent: Aug. 21, 2001 (54) MULTI-SITE IMPEDANCE SENSOR USING FOREIGN PATENT DOCUMENTS CORONARY SINUS/VEIN

More information

(12) Patent Application Publication (10) Pub. No.: US 2005/ A1

(12) Patent Application Publication (10) Pub. No.: US 2005/ A1 US 2005.0020415A1 (19) United States (12) Patent Application Publication (10) Pub. No.: US 2005/0020415 A1 Reno (43) Pub. Date: (54) ISOMETRIC EXERCISE EQUIPMENT WITH Publication Classification PORTABLE

More information

(12) (10) Patent No.: US 7,112,065 B2 Kopelman et al. (45) Date of Patent: Sep. 26, 2006

(12) (10) Patent No.: US 7,112,065 B2 Kopelman et al. (45) Date of Patent: Sep. 26, 2006 United States Patent US007 112065B2 (12) (10) Patent No.: US 7,112,065 B2 Kopelman et al. (45) Date of Patent: Sep. 26, 2006 (54) METHOD FOR DEFINING A FINISH LINE 5,372,502 A 12/1994 Massen et al. OF

More information

United States Patent (19)

United States Patent (19) United States Patent (19) Truax (54) DENTAL UNDERCUT APPLICATION DEVICE AND METHOD OF USE 75) Inventor: Lloyd H. Truax, Rochester, Minn. 73) Assignee: Tru-Tain, Inc., Rochester, Minn. (21) Appl. No.: 782,159

More information

(12) United States Patent

(12) United States Patent US00895.3827B2 (12) United States Patent Sacha et al. (10) Patent No.: (45) Date of Patent: US 8,953,827 B2 Feb. 10, 2015 (54) (75) (73) (*) (21) (22) (65) (60) (51) (52) (58) HEARNGAD WITH INTEGRATED

More information

inm sity aawaayawasa United States Patent (19) -l', all \ 2 27 Bl Cinquin 11 Patent Number: 5,865,171 (45) Date of Patent: Feb. 2, g co m 2 BO

inm sity aawaayawasa United States Patent (19) -l', all \ 2 27 Bl Cinquin 11 Patent Number: 5,865,171 (45) Date of Patent: Feb. 2, g co m 2 BO United States Patent (19) Cinquin 54 NEBULIZER WITH PRESSURE SENSOR 75 Inventor: Gérard Cinquin, Villeneuve-sur-Lot, France 73 Assignee: System Assistance Medical, Villeneuve-Sur-Lot, France 21 Appl. No.:

More information

United States Patent (19) Annoni

United States Patent (19) Annoni United States Patent (19) Annoni (54. TOOTH TRANSILLUMINATING LIGHT HOLDER 76) Inventor: Jerry D. Annoni, 450 Maple Ave., Vallejo, Calif. 94591 (21) Appl. No.: 427,850 22 Filed: Sep. 29, 1982 51) Int.

More information

(12) United States Patent

(12) United States Patent USOO8584.853B2 (12) United States Patent Knight et al. (10) Patent No.: (45) Date of Patent: US 8,584.853 B2 Nov. 19, 2013 (54) METHOD AND APPARATUS FORAN ORTHOPEDCFXATION SYSTEM (75) Inventors: Adam T.

More information

(12) Patent Application Publication (10) Pub. No.: US 2004/ A1

(12) Patent Application Publication (10) Pub. No.: US 2004/ A1 (19) United States US 2004O23O254A1 (12) Patent Application Publication (10) Pub. No.: US 2004/0230254A1 Harrison et al. (43) Pub. Date: Nov. 18, 2004 (54) HYBRID IMPLANTABLE COCHLEAR STIMULATOR HEARING

More information

SDIVISION. Attorney Docket No Date: 14 May 2008

SDIVISION. Attorney Docket No Date: 14 May 2008 SDIVISION DEPARfMENT OF THE NAVY NAVAL UNDERSEA WARFARE CENTER NEWPORT OFFICE OF COUNSEL PHONE: (401) 832-3653 FAX: (401) 832-4432 NEWPORT DSN: 432-3653 Attorney Docket No. 95764 Date: 14 May 2008 The

More information

(12) United States Patent

(12) United States Patent US008556757B2 (12) United States Patent Kilshaw (10) Patent No.: (45) Date of Patent: Oct. 15, 2013 (54) BICYCLE GEAR MECHANISM (76) Inventor: Richard J. Kilshaw, Lake Oswego, OR (US) *) Notice: Subject

More information

(12) Patent Application Publication (10) Pub. No.: US 2012/ A1

(12) Patent Application Publication (10) Pub. No.: US 2012/ A1 (19) United States (12) Patent Application Publication (10) Pub. No.: US 2012/0221070 A1 Betzold et al. US 20120221070A1 (43) Pub. Date: Aug. 30, 2012 (54) (75) (73) (21) (22) (63) MINIMUMVENTRICULAR PACING

More information

An electrocardiogram (ECG) is a recording of the electricity of the heart. Analysis of ECG

An electrocardiogram (ECG) is a recording of the electricity of the heart. Analysis of ECG Introduction An electrocardiogram (ECG) is a recording of the electricity of the heart. Analysis of ECG data can give important information about the health of the heart and can help physicians to diagnose

More information

(12) United States Patent

(12) United States Patent USOO951 0624B2 (12) United States Patent Li et al. (10) Patent No.: (45) Date of Patent: US 9,510,624 B2 Dec. 6, 2016 (54) DISPOSABLE ELECTRONIC CIGARETTE (75) Inventors: Yonghai Li, Shenzhen (CN); Zhongli

More information

(12) United States Patent (10) Patent No.: US 7,785,823 B2

(12) United States Patent (10) Patent No.: US 7,785,823 B2 USOO7785823B2 (12) United States Patent (10) Patent No.: US 7,785,823 B2 Sim et al. (45) Date of Patent: Aug. 31, 2010 (54) METHOD FOR SELECTIVE SEPARATION OF (56) References Cited FREE-ASTAXANTHN FROM

More information

available as a signal. The considerable data reduction asso

available as a signal. The considerable data reduction asso USOO5928.6A United States Patent (19) 11 Patent Number: Krumbiegel et al. () Date of Patent: Jul. 27, 1999 54 PROCESS AND DEVICE FOR THE 4,428,381 1/1984 Hepp... 128/773 AUTOMATIC DETECTION OF ABNORMAL

More information

USOO A United States Patent (19) 11 Patent Number: 5,974,342 Petrofsky (45) Date of Patent: Oct. 26, 1999

USOO A United States Patent (19) 11 Patent Number: 5,974,342 Petrofsky (45) Date of Patent: Oct. 26, 1999 USOO5974342A United States Patent (19) 11 Patent Number: 5,974,342 Petrofsky (45) Date of Patent: Oct. 26, 1999 54 ELECTRICAL STIMULATION THERAPY 56) References Cited METHOD AND APPARATUS N U.S. PATENT

More information

...d. EEEEEEE/EE/EE. (12) Patent Application Publication (10) Pub. No.: US 2008/ A1. (19) United States

...d. EEEEEEE/EE/EE. (12) Patent Application Publication (10) Pub. No.: US 2008/ A1. (19) United States (19) United States US 200802684.85A1 (12) Patent Application Publication (10) Pub. No.: US 2008/0268485 A1 Guarino et al. (43) Pub. Date: Oct. 30, 2008 (54) ICONIC DISPLAY OF MARKERS FOR A METER (76) Inventors:

More information

United States Patent (19) 3,787,641 Santori - 45) Jan. 22, 1974

United States Patent (19) 3,787,641 Santori - 45) Jan. 22, 1974 United States Patent (19) 3,787,641 Santori - 45) Jan. 22, 1974 (54) BoNE CONDUCTION MICROPHONE ASSEMBLY Primary Examiner-Ralph D. Blakeslee 75 Inventor: Charles - M. Santori, San Jose, Calif., Attorney,

More information

(12) Patent Application Publication (10) Pub. No.: US 2014/ A1. Owen et al. (43) Pub. Date: Feb. 27, 2014

(12) Patent Application Publication (10) Pub. No.: US 2014/ A1. Owen et al. (43) Pub. Date: Feb. 27, 2014 (19) United States US 20140058469A1 (12) Patent Application Publication (10) Pub. No.: US 2014/0058469 A1 Owen et al. (43) Pub. Date: Feb. 27, 2014 (54) PULSE DETECTION USING PATIENT Publication Classification

More information

Berry (43) Pub. Date: May 6, (76) Inventor: Bret Berry, Cordova, TN (US) (57) ABSTRACT

Berry (43) Pub. Date: May 6, (76) Inventor: Bret Berry, Cordova, TN (US) (57) ABSTRACT US 20040O88054A1 (19) United States (12) Patent Application Publication (10) Pub. No.: US 2004/0088054A1 Berry (43) Pub. Date: (54) LATERALLY EXPANDABLE CAGE (52) U.S. Cl.... 623/17.11 (76) Inventor: Bret

More information

(12) United States Patent

(12) United States Patent USOO948.0458B2 (12) United States Patent Chiang et al. (10) Patent No.: (45) Date of Patent: Nov. 1, 2016 (54) (71) (72) (73) (*) (21) (22) (65) (62) (30) ULTRASONIC POSITONING DEVICE FOR EPIDURAL SPACE

More information

(12) Patent Application Publication (10) Pub. No.: US 2014/ A1

(12) Patent Application Publication (10) Pub. No.: US 2014/ A1 (19) United States (12) Patent Application Publication (10) Pub. No.: US 2014/0193020 A1 Krissman et al. US 2014O193020A1 (43) Pub. Date: (54) (71) (72) (73) (21) HEADPHONE ASSEMBLY Applicant: THE KETCHUM

More information

11/18/13 ECG SIGNAL ACQUISITION HARDWARE DESIGN. Origin of Bioelectric Signals

11/18/13 ECG SIGNAL ACQUISITION HARDWARE DESIGN. Origin of Bioelectric Signals ECG SIGNAL ACQUISITION HARDWARE DESIGN Origin of Bioelectric Signals 1 Cell membrane, channel proteins Electrical and chemical gradients at the semi-permeable cell membrane As a result, we get a membrane

More information

(12) (10) Patent No.: US 7,806,821 B2. Kim (45) Date of Patent: Oct. 5, 2010

(12) (10) Patent No.: US 7,806,821 B2. Kim (45) Date of Patent: Oct. 5, 2010 United States Patent USOO7806821B2 (12) (10) Patent No.: US 7,806,821 B2 Kim (45) Date of Patent: Oct. 5, 2010 (54) METHODS OF PHALLOPLASTY USING 2006/0096.603 A1* 5/2006 Choi et al.... 128/898 MULTIPLE

More information

Ulllted States Patent [19] [11] Patent Number: 6,120,471

Ulllted States Patent [19] [11] Patent Number: 6,120,471 US006120471A Ulllted States Patent [19] [11] Patent Number: 6,120,471 Varn [45] Date of Patent: Sep. 19, 2000 [54] DORSAL RESTING HAND ORTHOSIS 5,637,078 6/1997 Varn..... 602/21 5,746,707 5/1998 Eck.....

More information

(12) United States Patent

(12) United States Patent USOO8105083B2 (12) United States Patent Sanchez (10) Patent No.: US 8,105,083 B2 (45) Date of Patent: Jan. 31, 2012 (54) (76) (*) (21) (22) (65) (60) (51) (52) (58) FOAM TEETH CLEANING AND STAN REMOVING

More information

(12) United States Patent

(12) United States Patent USOO7672702B2 (12) United States Patent Hwang et al. (54) NONINVASIVE IN VIVO MEASURING SYSTEMAND NONINVASIVE IN VIVO MEASURING METHOD BY CORRECTING INFLUENCE OF HEMOGLOBIN (75) Inventors: In Duk Hwang,

More information

(12) United States Patent (10) Patent N0.: US 8,702,568 B2 Klabunde et a]. 45 Date of Patent: A r

(12) United States Patent (10) Patent N0.: US 8,702,568 B2 Klabunde et a]. 45 Date of Patent: A r USOO87068B2 (12) United States Patent (10) Patent N0.: Klabunde et a]. Date of Patent: A r. 22 2014 a (54) EXERCISE SYSTEM AND A METHOD FOR (52) US. Cl. COMMUNICATION USPC..... 482/8; 482/ 1; 482/9; 482/901

More information

(12) Patent Application Publication (10) Pub. No.: US 2005/ A1

(12) Patent Application Publication (10) Pub. No.: US 2005/ A1 (19) United States US 2005O130094A1 (12) Patent Application Publication (10) Pub. No.: US 2005/0130094A1 Graham (43) Pub. Date: Jun. 16, 2005 (54) ORTHODONTIC ACCESSORY ARCH BAR (52) U.S. Cl.... 433/20

More information

(12) United States Patent (10) Patent No.: US 6,413,232 B1

(12) United States Patent (10) Patent No.: US 6,413,232 B1 USOO6413232B1 (12) United States Patent (10) Patent No.: US 6,413,232 B1 Townsend et al. (45) Date of Patent: Jul. 2, 2002 (54) ORTHOPEDIC KNEE BRACE HAVING AN 5,807,294. A 9/1998 Cawley et al. ADJUSTABLE

More information

TEPZZ 85_Z 4A_T EP A1 (19) (11) EP A1 (12) EUROPEAN PATENT APPLICATION

TEPZZ 85_Z 4A_T EP A1 (19) (11) EP A1 (12) EUROPEAN PATENT APPLICATION (19) TEPZZ 8_Z 4A_T (11) EP 2 81 034 A1 (12) EUROPEAN PATENT APPLICATION (43) Date of publication: 2.03.1 Bulletin 1/13 (21) Application number: 1022.2 (1) Int Cl.: A61C /02 (06.01) A61C 19/04 (06.01)

More information

(12) Patent Application Publication (10) Pub. No.: US 2006/ A1

(12) Patent Application Publication (10) Pub. No.: US 2006/ A1 US 20060264767A1 (19) United States (12) Patent Application Publication (10) Pub. No.: US 2006/0264767 A1 Shennib (43) Pub. Date: (54) PROGRAMMABLE ECG SENSOR PATCH (52) U.S. Cl.... 6OO/SO9 (75) Inventor:

More information

(12) United States Patent (10) Patent No.: US 7,128,575 B1. Sohn (45) Date of Patent: Oct. 31, 2006

(12) United States Patent (10) Patent No.: US 7,128,575 B1. Sohn (45) Date of Patent: Oct. 31, 2006 US007128575B1 (12) United States Patent (10) Patent No.: US 7,128,575 B1 Sohn (45) Date of Patent: Oct. 31, 2006 (54) TOOTHELEVATOR 1,762,888 A 6/1930 Roberts... 433/159 2,030,798 A 2/1936 Krajeski......

More information

(12) Patent Application Publication (10) Pub. No.: US 2008/ A1

(12) Patent Application Publication (10) Pub. No.: US 2008/ A1 (19) United States (12) Patent Application Publication (10) Pub. No.: US 2008/0254.184 A1 Horlacher et al. US 200802541 84A1 (43) Pub. Date: (54) (76) (21) (22) (30) POWDER CONTAINING POLYUNSATURATED FATTY

More information

(12) Patent Application Publication (10) Pub. No.: US 2004/0267,527 A1

(12) Patent Application Publication (10) Pub. No.: US 2004/0267,527 A1 (19) United States US 2004O267527A1 (12) Patent Application Publication (10) Pub. No.: US 2004/0267,527 A1 Creamer et al. (43) Pub. Date: Dec. 30, 2004 (54) VOICE-TO-TEXT REDUCTION FOR REAL TIME IM/CHAT/SMS

More information

United States Patent (19)

United States Patent (19) United States Patent (19) Fung (54) DENTAL CROWN 76) Inventor: John Fung, 627 George Street, Sydney, NSW 2000, Australia (21) Appl. No.: 969,186 (22) PCT Filed: Jul. 5, 1991 (86). PCT No.: PCT/AU91/00300

More information

(12) Patent Application Publication (10) Pub. No.: US 2009/ A1

(12) Patent Application Publication (10) Pub. No.: US 2009/ A1 US 20090287233A1 (19) United States (12) Patent Application Publication (10) Pub. No.: US 2009/0287233 A1 Huculak (43) Pub. Date: Nov. 19, 2009 (54) SMALL GAUGE MECHANICAL TISSUE Publication Classification

More information

E. }2. E. 156/578 X mountant on the Slide to Spread evenly over the Slide with a

E. }2. E. 156/578 X mountant on the Slide to Spread evenly over the Slide with a USOO.5989386A United States Patent (19) 11 Patent Number: 5,989,386 Elliott (45) Date of Patent: Nov. 23, 1999 54 COVERSLIPPICK-UP AND LAYDOWN 4,428,793 1/1984 Sato et al.. APPARATUS 4,455,188 6/1984 Stormby.

More information

(12) United States Patent (10) Patent No.: US 8,359,123 B2

(12) United States Patent (10) Patent No.: US 8,359,123 B2 USOO83591.23B2 (12) United States Patent (10) Patent No.: US 8,359,123 B2 Tong et al. (45) Date of Patent: Jan. 22, 2013 (54) ROBOTIC SYSTEMANDTRAINING (56) References Cited METHOD FOR REHABILITATION USING

More information

(12) Patent Application Publication (10) Pub. No.: US 2003/ A1

(12) Patent Application Publication (10) Pub. No.: US 2003/ A1 (19) United States US 20030093102A1 (12) Patent Application Publication (10) Pub. No.: US 2003/0093102 A1 Cimino (43) Pub. Date: (54) PULSED ULTRASONIC DEVICE AND METHOD (76) Inventor: William W. Cimino,

More information

(12) Patent Application Publication (10) Pub. No.: US 2006/ A1

(12) Patent Application Publication (10) Pub. No.: US 2006/ A1 (19) United States US 2006O115435A1 (12) Patent Application Publication (10) Pub. No.: US 2006/0115435 A1 Wilkens (43) Pub. Date: (54) DENTAL TOOTHPASTE, SOLUTION, TABLET AND SYSTEM WITH PLAOUE COLOR INDICATOR

More information

(12) (10) Patent No.: US 7,010,136 B1. Roberts et al. (45) Date of Patent: Mar. 7, 2006

(12) (10) Patent No.: US 7,010,136 B1. Roberts et al. (45) Date of Patent: Mar. 7, 2006 United States Patent USOO7010136B1 (12) (10) Patent No.: US 7,010,136 B1 Roberts et al. (45) Date of Patent: Mar. 7, 2006 (54) RESONANT RESPONSE MATCHING 5,502,769 A 3/1996 Gilbertson... 381/68 CIRCUIT

More information

(12) United States Patent (10) Patent No.: US 7,744,043 B2

(12) United States Patent (10) Patent No.: US 7,744,043 B2 USOO774.4043B2 (12) United States Patent () Patent No.: Otinger (45) Date of Patent: Jun. 29, 20 (54) CPAP HOSETENDER 6,854,694 B1* 2/2005 Van Etten... 248,75 7,040,581 B2 * 5/2006 Noelke et al.... 248,75

More information

(12) United States Patent Garman

(12) United States Patent Garman (12) United States Patent Garman US006299445B1 (10) Patent N0.: (45) Date of Patent: Oct. 9, 2001 (54) ENDODONTIC INSTRUMENT, INSTRUMENT BLANK AND METHOD OF MANUFACTURE (75) Inventor: Gary T. Garman, La

More information

LABVIEW based expert system for Detection of heart abnormalities

LABVIEW based expert system for Detection of heart abnormalities LABVIEW based expert system for Detection of heart abnormalities Saket Jain Piyush Kumar Monica Subashini.M School of Electrical Engineering VIT University, Vellore - 632014, Tamil Nadu, India Email address:

More information

&S 36 IHHHHHHHHHII 38' United States Patent (19) 11 Patent Number: 5,240,414 (45) Date of Patent: Aug. 31, Thompson

&S 36 IHHHHHHHHHII 38' United States Patent (19) 11 Patent Number: 5,240,414 (45) Date of Patent: Aug. 31, Thompson United States Patent (19) Thompson 54 METHOD FOR SHADE SELECTION IN RESTORATIVE DENTISTRY 76 Inventor: Charles C. Thompson, Rt. 4, Box, Ellisville, Miss. 39437 (21) Appl. No.: 855 22 Filed: Jan. 5, 1993

More information

Patent Application Publication May 27, 2010 Sheet 1 of 10 US 2010/ A FIG. 1

Patent Application Publication May 27, 2010 Sheet 1 of 10 US 2010/ A FIG. 1 (19) United States (12) Patent Application Publication (10) Pub. No.: US 2010/0131028A1 HSU et al. US 20100131028A1 (43) Pub. Date: May 27, 2010 (54) REMOTE SLEEP QUALITY DETECTING SYSTEMAND METHOD THEREOF

More information

(12) Patent Application Publication (10) Pub. No.: US 2016/ A1

(12) Patent Application Publication (10) Pub. No.: US 2016/ A1 US 2016O1 OO694A1 (19) United States (12) Patent Application Publication (10) Pub. No.: US 2016/0100694 A1 PELLETER (43) Pub. Date: Apr. 14, 2016 (54) KNEE PILLOW Publication Classification (71) Applicant:

More information

(12) Patent Application Publication (10) Pub. No.: US 2010/ A1

(12) Patent Application Publication (10) Pub. No.: US 2010/ A1 (19) United States US 20100324626A1 (12) Patent Application Publication (10) Pub. No.: US 2010/0324626 A1 Lefkovitz (43) Pub. Date: Dec. 23, 2010 (54) ELECTROTHERAPY STIMILATOR FOR OSTEOARTHRTIS (51) Int.

More information

Method and apparatus for bone sensing

Method and apparatus for bone sensing Iowa State University Patents Iowa State University Research Foundation, Inc. 6-22-2004 Method and apparatus for bone sensing Peter V. Boesen John A. Roberts Iowa State University, jarobert@iastate.edu

More information

(12) Patent Application Publication (10) Pub. No.: US 2017/ A1

(12) Patent Application Publication (10) Pub. No.: US 2017/ A1 (19) United States US 201701 65099A1 (12) Patent Application Publication (10) Pub. No.: US 2017/0165099 A1 Buddharaju (43) Pub. Date: Jun. 15, 2017 (54) CONDOM CATHETER (52) U.S. Cl. CPC... A61F 5/453

More information

(12) Patent Application Publication (10) Pub. No.: US 2016/ A1

(12) Patent Application Publication (10) Pub. No.: US 2016/ A1 (19) United States US 20160213850A1 (12) Patent Application Publication (10) Pub. No.: US 2016/0213850 A1 LOOF et al. (43) Pub. Date: Jul. 28, 2016 (54) MEDICAMENT DELIVERY DEVICE Publication Classification

More information

50 3 % % 2. ta. SN & (12) United States Patent US 7, B1. Jun. 10, (45) Date of Patent: (10) Patent No.:

50 3 % % 2. ta. SN & (12) United States Patent US 7, B1. Jun. 10, (45) Date of Patent: (10) Patent No.: USOO7384414B1 (1) United States Patent Marshall et al. () Patent No.: (45) Date of Patent: US 7,384.414 B1 Jun., 008 (54) SAFETY PEN NEEDLE WITH (75) (73) (*) (1) () (51) (5) (58) (56) NON-INUECTION END

More information

(12) United States Patent

(12) United States Patent (12) United States Patent Teoh et al. USOO65664B1 (10) Patent No.: () Date of Patent: May 20, 2003 (54) ELASTOMERIC GLOVES (75) Inventors: Seng Chin Teoh, Penang (MY); Seong Fong Chen, Penang (MY) (73)

More information