What would be the response of the sympathetic system to this patient s decrease in arterial pressure?

Size: px
Start display at page:

Download "What would be the response of the sympathetic system to this patient s decrease in arterial pressure?"

Transcription

1 CASE 51 A 62-year-old man undergoes surgery to correct a herniated disc in his spine. The patient is thought to have an uncomplicated surgery until he complains of extreme abdominal distention and pain about 1 hour after surgery. He is noted to be hypotensive and tachycardic. On examination, his abdomen is distended and tense, with severe rebound pain indicating peritoneal irritation. He is taken back immediately to the operating room, where they find a large amount of blood in his abdomen (2 L) and a small puncture site in the descending aorta with active bleeding. A graft is placed in the aorta to stop the bleeding and repair the injury site. The patient is transfused with blood intraoperatively and is taken to the intensive care unit in critical condition. What would be the response of the sympathetic system to this patient s decrease in arterial pressure? What would be the response of the renin-angiotensin-aldosterone system to the decreased arterial pressure? How would antidiuretic hormone (ADH) play a role in this situation?

2 410 CASE FILES: PHYSIOLOGY ANSWERS TO CASE 51: HEMORRHAGIC SHOCK Summary: A 62-year-old man presents for back surgery, which is complicated by injury to the aorta with resultant hemorrhagic shock. Response of sympathetic system: Increased heart rate and contractility, and increased total peripheral resistance. Response of the renin-angiotensin-aldosterone system: Increased angiotensin II causes further vasoconstriction, and aldosterone increases sodium-chloride reabsorption in the kidney to increase blood volume. Response of ADH: Causes vasoconstriction and increases water reabsorption in the kidney. CLINICAL CORRELATION Circulatory shock can have many different etiologies, including hemorrhage, sepsis, and neurogenic causes. The physiologic response is essentially the same for all the etiologies. All the processes include hypotension, which triggers stimulation of the sympathetic system, increases renin production leading to aldosterone production, and increases ADH secretion. If the circulatory volume is not replaced quickly, the resulting peripheral vasoconstriction, so as to maintain blood supply to the heart, lung, and brain, will result in ischemia to other end organs, such as the kidney and liver. Monitoring urine output is a good way to assess intravascular volume. If the patient is making adequate urine, the kidneys are being perfused and the intravascular volume is probably adequate. After replacement of fluids and/or blood, the underlying cause needs to be addressed and treated. APPROACH TO PHYSIOLOGIC ADAPTATION TO HEMORRHAGE Objectives 1. Know the causes of circulatory shock. 2. Understand the body s response to shock (shunt to brain, heart, and lungs). 3. Know the role of blood pressure as an indicator of shock state. 4. Describe the treatment of circulatory shock. Definitions Circulatory shock: A condition in which cardiac output is compromised and no longer meets the metabolic demands of the tissues, leading to damage to the peripheral circulation. Heart failure: A condition in which the ability of the heart to pump blood through the circulation is compromised; the heart tissue has been damaged.

3 CLINICAL CASES 411 DISCUSSION Regulation of the cardiovascular system and blood flow to the tissues constitute a complex process involving the function of both the heart and the systemic circulation. Circulatory shock is a condition that can be characterized as peripheral circulatory failure in which there is inadequate perfusion of the peripheral tissues. The peripheral circulation no longer meets the metabolic demands of the tissues. This differs from heart failure, in which the ability of the heart to pump blood is compromised; this, of course, can lead to circulatory shock. The causes of circulatory shock are varied. Several conditions can lead to circulatory shock, as outlined below: 1. Inadequate circulatory volume. The reduced blood volume leads to a reduction in cardiac output as a result of inadequate venous pressure (reduced ventricular filling pressure). This typically occurs with hemorrhage, sepsis, or conditions of hypovolemia. 2. Impaired ability of the heart to pump blood to the circulation. In these conditions, the heart tissue is compromised so that it cannot pump adequate blood to the circulation even if the venous pressure is normal or elevated. This is, of course, observed in heart failure (reduced contractility). 3. A compromise in the autonomic system that controls the vasculature. Loss of autonomic control leads to reduced vascular tone, causing venous pooling and arteriolar dilation that ultimately result in a reduction in venous and arterial pressure. This can be caused by lesions of the central nervous system. Conditions leading to shock are normally progressive. A loss of blood volume, by hemorrhage, for example, will lead to sequential decreases in circulating blood volume, venous return, ventricular filling, stroke volume, cardiac output, and in turn mean arterial pressure. If blood loss is greater than 30 percent, or so, or if mean arterial pressure falls much below 70 mm Hg, as may occur in heart failure, progression into circulatory shock can occur if the problem leading to these conditions is not corrected rapidly. During the initial hypotensive states, a number of cardiovascular reflexes are activated in an attempt to compensate for a fall in mean arterial pressure. The reduced blood volume and the fall in mean arterial pressure are sensed by low-pressure receptors (volume receptors in the atria, pulmonary veins) and high-pressure baroreceptors (carotid, aortic, and afferent arteriole baroreceptors), respectively; both types of receptors sense the pressure/volume changes and induce an increase in sympathetic nervous activity. This leads to an increase in heart rate, cardiac contractility, and venoconstriction that will serve to elevate mean arterial pressure. Interestingly, this response also leads to selective arteriolar constriction of the extremities, including the skin, skeletal muscle, kidney, and gastrointestinal tract, thereby shunting

4 412 CASE FILES: PHYSIOLOGY blood away from those tissues. Although local autoregulatory mechanism may respond to this constriction by inducing a subsequent easing of this constriction, partially returning blood flow toward normal, sympathetic-induced vasoconstriction will prevail in severe cases of hypotension. However, the vasculature serving the brain and heart and to some extent the lungs is not markedly vasoconstricted, and normal autoregulation of blood flow prevails so that blood flow to these tissues is not compromised to the same degree. Hence, the system tries to maintain adequate blood flow to these two vital organs at the expense of other tissues and organs. Further, other systems come into play in an attempt to restore blood volume and mean arterial pressure. The low blood pressure and the increased sympathetic activity induce the release of renin from the afferent arteriole of the kidney, activating the reninangiotensin-aldosterone system and leading to aldosterone-induced reabsorption of Na + and Cl - from the cortical collecting duct of the kidney, along with water retention. The hypotension also leads to secretion of ADH from the posterior pituitary, leading to enhanced water reabsorption along the entire length of the cortical and medullary collecting ducts of the kidney in an attempt to return extracellular volume toward normal. Other secondary compensatory processes are also active (see the references at the end of this case). If the compensatory systems noted above do not restore mean arterial pressure adequately, the circulatory system will continue to deteriorate with a further fall in blood pressure in which perfusion of peripheral tissues may be compromised irreversibly, a condition referred to as irreversible shock. In these conditions, the fall in arterial pressure will not reverse even if blood volume is restored to normal levels. The reasons underlying irreversible shock are many. Ischemic tissues release metabolites and other vasodilator molecules that counteract the vasoconstrictor stimuli. Desensitization of the vascular adrenoceptors or depletion of neurotransmitters may contribute to the loss of vasoconstrictor ability. Compromised perfusion of heart tissue can lead to necrosis of heart muscle, and release of cardiotoxic molecules from various organs can lead to reduced contractility. Various other factors may contribute to the decline in the cardiovascular system (see the references at the end of this case). The end result is that the cardiovascular system becomes so compromised that the system will not recover, even with intervention, and the patient eventually will die. Although the fall in blood pressure would appear to be the defining factor leading to shock, it is really a fall in cardiac output that is most critical. During the progression of shock, mean arterial pressure is observed to fall. The body has numerous processes in place to attempt to correct for alterations in low blood pressure, such as baroreceptors, the renin-angiotensin-aldosterone system, and ADH, as outlined above, and so a sudden drop in blood pressure will be defended against. Even so, cardiac output may be reduced so that the underlying problem can be masked partially. Other signs of reduced cardiac output should be apparent, however, such as low urine output caused by reduced blood flow to the kidney, elevated ADH levels, and pale and cold skin resulting from increased sympathetic activity.

5 CLINICAL CASES 413 The treatment of circulatory shock includes only a limited number of options. The primary defect is low cardiac output that arises from a reduced venous pressure or ventricular filling pressure. This has been treated most successfully by expansion of the blood volume or resuscitation. Three categories of volume expanders traditionally have been employed: (1) whole blood, (2) cell-free fluids with colloids (added plasma for oncotic balance), and (3) colloid-free metabolic fluids. Good results typically have been observed with the colloid-free fluids, such as lactated Ringer solution, although plasma or whole blood can be more effective in less severe cases. As circulatory shock continues, the capillaries become highly permeable, allowing leakage of macromolecules such as plasma proteins. Normally, the permeability to macromolecules is low so that plasma proteins represent a major osmotic solute (osmotic pressure) in the capillary, and this is critical to osmotic reabsorption of fluid that filtered out of the capillaries. With a highly leaky state of the capillaries during shock, the plasma proteins are so permeable across the capillary wall that they do not provide a significant osmotic force. This leads to movement of fluid into the interstitial space, causing pooling or edema. Hence, although plasma or whole blood generally is most effective, along with volume expanders in the more severe cases, the colloid-free fluids, such as lactated Ringer solution, tend to be just as effective if not more so. Of course, only erythrocytes can provide oxygen-carrying capacity through hemoglobin. Regardless of the volume expander employed, treatment with any volume expander will lead to considerable peripheral edema. However, the benefits of an increased cardiac output far outweigh the problems associated with peripheral edema. COMPREHENSION QUESTIONS [51.1] An individual comes to the emergency room complaining of weakness, dizziness, and fatigue. She states that she has had diarrhea for several days. Examination reveals a low blood pressure and tachycardia consistent with low cardiac output. Plasma bicarbonate is low, and other plasma electrolytes are unremarkable. Urine volume was minimal. The patient most likely has which of the following? A. Congestive heart failure B. Edema C. Excessive fluid loss in the stool D. Internal hemorrhage E. Renal failure

6 414 CASE FILES: PHYSIOLOGY [51.2] An individual was in a car accident and is brought to the emergency room in an unconscious state. Examination shows a very low blood pressure (80/40 mm Hg), tachycardia, a very weak thready pulse, a distended abdomen, and clammy skin. Laboratory values indicate a very low hematocrit (18%) and hypoalbuminemia. He is diagnosed as having internal hemorrhage leading to severe hypovolemia and circulatory shock. To avoid having the patient go into irreversible shock, the emergency room doctor immediately should initiate which of the following treatments? A. Administration of colloid-free volume expanders (eg, normal saline or lactated Ringer solution) B. Administration of epinephrine to induce vasoconstriction C. Administration of oxygen to improve blood oxygenation D. Initiation of a platelet transfusion [51.3] A 35-year-old man had a tractor accident and lost approximately 1500 ml of blood. His initial blood pressure is 90/60 mm Hg, and the heart rate is 120 beats per minute. On resuscitation with intravenous lactated Ringer solution, his blood pressure increases to 110/70 mm Hg. Two hours later, he is noted to have significant peripheral edema of the hands and feet. Which of the following is the best explanation for the edema? A. Capillary leakage B. High-output congestive heart failure C. Infiltration of the intravenous line through the vein D. Low oncotic pressure Answers [51.1] C. Diarrhea over several days can lead to dehydration from loss of fluid in the stool. In severe cases, the individual can become volumedepleted to the point of circulatory collapse. The reduced blood volume and the fall in mean arterial pressure will be sensed by both low-pressure receptors (volume receptors in the atria, pulmonary veins) and high-pressure baroreceptors (carotid, aortic, and afferent arteriole baroreceptors), inducing increased sympathetic nervous activity. This leads to an increase in heart rate, cardiac contractility, and venoconstriction that will serve to elevate mean arterial pressure. In addition, the increase in sympathetic nervous activity stimulates the release of renin from the afferent arteriole, activating the renin-angiotensin-aldosterone system and leading to aldosterone-induced reabsorption of Na + and Cl from the cortical collecting duct; this also stimulates secretion of ADH from the posterior pituitary, leading to enhanced water reabsorption along the entire length of the cortical and medullary collecting ducts of the kidney. All responses to the hypovolemia represent an attempt to return extracellular volume toward normal. To correct the problem fully, the cause of the diarrhea must be addressed.

7 CLINICAL CASES 415 [51.2] A. The best immediate therapy for a person in hemorrhagic shock is usually isotonic crystalloid colloid-free solution such as normal saline, until red blood cells are available. These agents are usually stocked immediately in the emergency center, whereas blood products require the blood bank to ensure matching blood type. The infusion will increase vascular volume and restore hemodynamics to near normal. Crystalloid such as normal saline cannot restore the hematocrit, but a patient normally can withstand a decrease in hematocrit of up to 20% or so without serious consequences. The use of vasoconstrictors and oxygen can be helpful, but again, if the volume depletion is severe, replacement of fluids will be essential to avoid having the patient go into irreversible shock. [51.3] A. Diffuse capillary leakage is the primary reason for the peripheral edema that occurs regardless of which resuscitation fluid is used. PHYSIOLOGY PEARLS Circulatory shock can arise from many causes, such as heart failure, hemorrhage, sepsis, hypovolemia, and lesions of the central nervous system. The primary defect in circulatory shock is inadequate cardiac output, not just a fall in mean arterial pressure. The body aggressively defends against a reduction in mean arterial pressure by activating multiple processes, including baroreceptor reflexes and the sympathetic nervous system, carotid bodies, the renin-angiotensin-aldosterone system, and ADH release. Blood volume expanders can be used to treat circulatory shock, but only if the patient has not reached the irreversible phase of shock. REFERENCES Boulpaep EL. Integrated control of the cardiovascular system. In: Boron WF, Boulpaep EL, eds. Medical Physiology: A Cellular and Molecular Approach. New York: Saunders; 2003:Chap 24. Downey JM. Heart failure and circulatory shock. In: Johnson LR, ed. Essential Medical Physiology. 3rd ed. San Diego, CA: Elsevier Academic Press; 2003:Chap 64.

8 This page intentionally left blank

Hypovolemic Shock: Regulation of Blood Pressure

Hypovolemic Shock: Regulation of Blood Pressure CARDIOVASCULAR PHYSIOLOGY 81 Case 15 Hypovolemic Shock: Regulation of Blood Pressure Mavis Byrne is a 78-year-old widow who was brought to the emergency room one evening by her sister. Early in the day,

More information

Physiological Response to Hypovolemic Shock Dr Khwaja Mohammed Amir MD Assistant Professor(Physiology) Objectives At the end of the session the

Physiological Response to Hypovolemic Shock Dr Khwaja Mohammed Amir MD Assistant Professor(Physiology) Objectives At the end of the session the Physiological Response to Hypovolemic Shock Dr Khwaja Mohammed Amir MD Assistant Professor(Physiology) Objectives At the end of the session the students should be able to: List causes of shock including

More information

12/1/2009. Chapter 19: Hemorrhage. Hemorrhage and Shock Occurs when there is a disruption or leak in the vascular system Internal hemorrhage

12/1/2009. Chapter 19: Hemorrhage. Hemorrhage and Shock Occurs when there is a disruption or leak in the vascular system Internal hemorrhage Chapter 19: Hemorrhage Hemorrhage and Shock Occurs when there is a disruption or leak in the vascular system External hemorrhage Internal hemorrhage Associated with higher morbidity and mortality than

More information

Blood Pressure Regulation Graphics are used with permission of: Pearson Education Inc., publishing as Benjamin Cummings (http://www.aw-bc.

Blood Pressure Regulation Graphics are used with permission of: Pearson Education Inc., publishing as Benjamin Cummings (http://www.aw-bc. Blood Pressure Regulation Graphics are used with permission of: Pearson Education Inc., publishing as Benjamin Cummings (http://www.aw-bc.com) Page 1. Introduction There are two basic mechanisms for regulating

More information

Cardiovascular System B L O O D V E S S E L S 2

Cardiovascular System B L O O D V E S S E L S 2 Cardiovascular System B L O O D V E S S E L S 2 Blood Pressure Main factors influencing blood pressure: Cardiac output (CO) Peripheral resistance (PR) Blood volume Peripheral resistance is a major factor

More information

Lab Period: Name: Physiology Chapter 14 Blood Flow and Blood Pressure, Plus Fun Review Study Guide

Lab Period: Name: Physiology Chapter 14 Blood Flow and Blood Pressure, Plus Fun Review Study Guide Lab Period: Name: Physiology Chapter 14 Blood Flow and Blood Pressure, Plus Fun Review Study Guide Main Idea: The function of the circulatory system is to maintain adequate blood flow to all tissues. Clinical

More information

-Cardiogenic: shock state resulting from impairment or failure of myocardium

-Cardiogenic: shock state resulting from impairment or failure of myocardium Shock chapter Shock -Condition in which tissue perfusion is inadequate to deliver oxygen, nutrients to support vital organs, cellular function -Affects all body systems -Classic signs of early shock: Tachycardia,tachypnea,restlessness,anxiety,

More information

HYPOVOLEMIA AND HEMORRHAGE UPDATE ON VOLUME RESUSCITATION HEMORRHAGE AND HYPOVOLEMIA DISTRIBUTION OF BODY FLUIDS 11/7/2015

HYPOVOLEMIA AND HEMORRHAGE UPDATE ON VOLUME RESUSCITATION HEMORRHAGE AND HYPOVOLEMIA DISTRIBUTION OF BODY FLUIDS 11/7/2015 UPDATE ON VOLUME RESUSCITATION HYPOVOLEMIA AND HEMORRHAGE HUMAN CIRCULATORY SYSTEM OPERATES WITH A SMALL VOLUME AND A VERY EFFICIENT VOLUME RESPONSIVE PUMP. HOWEVER THIS PUMP FAILS QUICKLY WITH VOLUME

More information

CASE 13. What neural and humoral pathways regulate arterial pressure? What are two effects of angiotensin II?

CASE 13. What neural and humoral pathways regulate arterial pressure? What are two effects of angiotensin II? CASE 13 A 57-year-old man with long-standing diabetes mellitus and newly diagnosed hypertension presents to his primary care physician for follow-up. The patient has been trying to alter his dietary habits

More information

Cardiovascular system: Blood vessels, blood flow. Latha Rajendra Kumar, MD

Cardiovascular system: Blood vessels, blood flow. Latha Rajendra Kumar, MD Cardiovascular system: Blood vessels, blood flow Latha Rajendra Kumar, MD Outline 1- Physical laws governing blood flow and blood pressure 2- Overview of vasculature 3- Arteries 4. Capillaries and venules

More information

Veins. VENOUS RETURN = PRELOAD = End Diastolic Volume= Blood returning to heart per cardiac cycle (EDV) or per minute (Venous Return)

Veins. VENOUS RETURN = PRELOAD = End Diastolic Volume= Blood returning to heart per cardiac cycle (EDV) or per minute (Venous Return) Veins Venous system transports blood back to heart (VENOUS RETURN) Capillaries drain into venules Venules converge to form small veins that exit organs Smaller veins merge to form larger vessels Veins

More information

Blood Pressure. a change in any of these could cause a corresponding change in blood pressure

Blood Pressure. a change in any of these could cause a corresponding change in blood pressure Blood Pressure measured as mmhg Main factors affecting blood pressure: 1. cardiac output 2. peripheral resistance 3. blood volume a change in any of these could cause a corresponding change in blood pressure

More information

BIPN100 F15 Human Physiol I (Kristan) Lecture 14 Cardiovascular control mechanisms p. 1

BIPN100 F15 Human Physiol I (Kristan) Lecture 14 Cardiovascular control mechanisms p. 1 BIPN100 F15 Human Physiol I (Kristan) Lecture 14 Cardiovascular control mechanisms p. 1 Terms you should understand: hemorrhage, intrinsic and extrinsic mechanisms, anoxia, myocardial contractility, residual

More information

Heart. Large lymphatic vessels Lymph node. Lymphatic. system Arteriovenous anastomosis. (exchange vessels)

Heart. Large lymphatic vessels Lymph node. Lymphatic. system Arteriovenous anastomosis. (exchange vessels) Venous system Large veins (capacitance vessels) Small veins (capacitance vessels) Postcapillary venule Thoroughfare channel Heart Large lymphatic vessels Lymph node Lymphatic system Arteriovenous anastomosis

More information

Physiology of Circulation

Physiology of Circulation Physiology of Circulation Dr. Ali Ebneshahidi Blood vessels Arteries: Blood vessels that carry blood away from the heart to the lungs and tissues. Arterioles are small arteries that deliver blood to the

More information

Cardiovascular System. Blood Vessel anatomy Physiology & regulation

Cardiovascular System. Blood Vessel anatomy Physiology & regulation Cardiovascular System Blood Vessel anatomy Physiology & regulation Path of blood flow Aorta Arteries Arterioles Capillaries Venules Veins Vena cava Vessel anatomy: 3 layers Tunica externa (adventitia):

More information

NROSCI/BIOSC 1070 and MSNBIO 2070 Exam # 2 October 25, 2013 Total POINTS: % of grade in class

NROSCI/BIOSC 1070 and MSNBIO 2070 Exam # 2 October 25, 2013 Total POINTS: % of grade in class NROSCI/BIOSC 1070 and MSNBIO 2070 Exam # 2 October 25, 2013 Total POINTS: 100 20% of grade in class 1) During exercise, plasma levels of Renin increase moderately. Why should Renin levels be elevated during

More information

SHOCK AETIOLOGY OF SHOCK (1) Inadequate circulating blood volume ) Loss of Autonomic control of the vasculature (3) Impaired cardiac function

SHOCK AETIOLOGY OF SHOCK (1) Inadequate circulating blood volume ) Loss of Autonomic control of the vasculature (3) Impaired cardiac function SHOCK Shock is a condition in which the metabolic needs of the body are not met because of an inadequate cardiac output. If tissue perfusion can be restored in an expeditious fashion, cellular injury may

More information

Blood pressure. Formation of the blood pressure: Blood pressure. Formation of the blood pressure 5/1/12

Blood pressure. Formation of the blood pressure: Blood pressure. Formation of the blood pressure 5/1/12 Blood pressure Blood pressure Dr Badri Paudel www.badripaudel.com Ø Blood pressure means the force exerted by the blood against the vessel wall Ø ( or the force exerted by the blood against any unit area

More information

Why would epidural analgesia cause these symptoms? How would increasing the blood volume change venous pressure (VP)?

Why would epidural analgesia cause these symptoms? How would increasing the blood volume change venous pressure (VP)? CASE 12 A 25-year-old pregnant woman is in labor at the hospital. She has no medical problems and has had no complications with this pregnancy. She is in the active phase of labor, feeling intense contractions,

More information

Blood Pressure Regulation. Faisal I. Mohammed, MD,PhD

Blood Pressure Regulation. Faisal I. Mohammed, MD,PhD Blood Pressure Regulation Faisal I. Mohammed, MD,PhD 1 Objectives Outline the short term and long term regulators of BP Know how baroreceptors and chemoreceptors work Know function of the atrial reflex.

More information

Mechanism: 1- waterretention from the last part of the nephron which increases blood volume, venous return EDV, stroke volume and cardiac output.

Mechanism: 1- waterretention from the last part of the nephron which increases blood volume, venous return EDV, stroke volume and cardiac output. Blood pressure regulators: 1- Short term regulation:nervous system Occurs Within secondsof the change in BP (they are short term because after a while (2-3 days) they adapt/reset the new blood pressure

More information

BIOH122 Session 6 Vascular Regulation

BIOH122 Session 6 Vascular Regulation BIOH122 Session 6 Vascular Regulation To complete this worksheet, select: Module: Distribution Title: Vascular Regulation Introduction 1. a. How do Mean Arterial Blood Pressure (MABP) and Systemic Vascular

More information

Means failure of heart to pump enough blood to satisfy the need of the body.

Means failure of heart to pump enough blood to satisfy the need of the body. Means failure of heart to pump enough blood to satisfy the need of the body. Due to an impaired ability of the heart to adequately to fill or eject blood. HEART FAILURE Heart failure (HF) means decreased

More information

BIPN100 F15 Human Physiology (Kristan) Lecture 18: Endocrine control of renal function. p. 1

BIPN100 F15 Human Physiology (Kristan) Lecture 18: Endocrine control of renal function. p. 1 BIPN100 F15 Human Physiology (Kristan) Lecture 18: Endocrine control of renal function. p. 1 Terms you should understand by the end of this section: diuresis, antidiuresis, osmoreceptors, atrial stretch

More information

I. Cardiac Output Chapter 14

I. Cardiac Output Chapter 14 10/24/11 I. Cardiac Output Chapter 14 Cardiac Output, Blood Flow, and Blood Pressure Lecture PowerPoint Copyright The McGraw-Hill Companies, Inc. Permission required for reproduction or display. Cardiac

More information

Cardiovascular Responses to Exercise

Cardiovascular Responses to Exercise CARDIOVASCULAR PHYSIOLOGY 69 Case 13 Cardiovascular Responses to Exercise Cassandra Farias is a 34-year-old dietician at an academic medical center. She believes in the importance of a healthy lifestyle

More information

Regulation of Body Fluids: Na + and Water Linda Costanzo, Ph.D.

Regulation of Body Fluids: Na + and Water Linda Costanzo, Ph.D. Regulation of Body Fluids: Na + and Water Linda Costanzo, Ph.D. OBJECTIVES: After studying this lecture, the student should understand: 1. Why body sodium content determines ECF volume and the relationships

More information

Case year old female nursing home resident with a hx CAD, PUD, recent hip fracture Transferred to ED with decreased mental status BP in ED 80/50

Case year old female nursing home resident with a hx CAD, PUD, recent hip fracture Transferred to ED with decreased mental status BP in ED 80/50 Case 1 65 year old female nursing home resident with a hx CAD, PUD, recent hip fracture Transferred to ED with decreased mental status BP in ED 80/50 Case 1 65 year old female nursing home resident with

More information

(D) (E) (F) 6. The extrasystolic beat would produce (A) increased pulse pressure because contractility. is increased. increased

(D) (E) (F) 6. The extrasystolic beat would produce (A) increased pulse pressure because contractility. is increased. increased Review Test 1. A 53-year-old woman is found, by arteriography, to have 5% narrowing of her left renal artery. What is the expected change in blood flow through the stenotic artery? Decrease to 1 2 Decrease

More information

Renal Regulation of Sodium and Volume. Dr. Dave Johnson Associate Professor Dept. Physiology UNECOM

Renal Regulation of Sodium and Volume. Dr. Dave Johnson Associate Professor Dept. Physiology UNECOM Renal Regulation of Sodium and Volume Dr. Dave Johnson Associate Professor Dept. Physiology UNECOM Maintaining Volume Plasma water and sodium (Na + ) are regulated independently - you are already familiar

More information

Structure and organization of blood vessels

Structure and organization of blood vessels The cardiovascular system Structure of the heart The cardiac cycle Structure and organization of blood vessels What is the cardiovascular system? The heart is a double pump heart arteries arterioles veins

More information

Renal Quiz - June 22, 21001

Renal Quiz - June 22, 21001 Renal Quiz - June 22, 21001 1. The molecular weight of calcium is 40 and chloride is 36. How many milligrams of CaCl 2 is required to give 2 meq of calcium? a) 40 b) 72 c) 112 d) 224 2. The extracellular

More information

The Cardiovascular System. The Structure of Blood Vessels. The Structure of Blood Vessels. The Blood Vessels. Blood Vessel Review

The Cardiovascular System. The Structure of Blood Vessels. The Structure of Blood Vessels. The Blood Vessels. Blood Vessel Review The Cardiovascular System The Blood Vessels The Structure of Blood Vessels Blood Vessel Review Arteries carry blood away from the heart Pulmonary trunk to lungs Aorta to everything else Microcirculation

More information

Bachelor of Chinese Medicine Shock

Bachelor of Chinese Medicine Shock BCM Year 2 Dr. Irene Ng Jan 28, 2003 9:30 am 1:00 pm Rm 004 UPB Bachelor of Chinese Medicine 2002 2003 Shock Learning objectives Be able to: know the definition of shock know the classification and causes

More information

Chapter 19 The Urinary System Fluid and Electrolyte Balance

Chapter 19 The Urinary System Fluid and Electrolyte Balance Chapter 19 The Urinary System Fluid and Electrolyte Balance Chapter Outline The Concept of Balance Water Balance Sodium Balance Potassium Balance Calcium Balance Interactions between Fluid and Electrolyte

More information

Blood Pressure Regulation 2. Faisal I. Mohammed, MD,PhD

Blood Pressure Regulation 2. Faisal I. Mohammed, MD,PhD Blood Pressure Regulation 2 Faisal I. Mohammed, MD,PhD 1 Objectives Outline the intermediate term and long term regulators of ABP. Describe the role of Epinephrine, Antidiuretic hormone (ADH), Renin-Angiotensin-Aldosterone

More information

Blood Pressure Regulation 2. Faisal I. Mohammed, MD,PhD

Blood Pressure Regulation 2. Faisal I. Mohammed, MD,PhD Blood Pressure Regulation 2 Faisal I. Mohammed, MD,PhD 1 Objectives Outline the intermediate term and long term regulators of ABP. Describe the role of Epinephrine, Antidiuretic hormone (ADH), Renin-Angiotensin-Aldosterone

More information

Regulation of Arterial Blood Pressure 2 George D. Ford, Ph.D.

Regulation of Arterial Blood Pressure 2 George D. Ford, Ph.D. Regulation of Arterial Blood Pressure 2 George D. Ford, Ph.D. OBJECTIVES: 1. Describe the Central Nervous System Ischemic Response. 2. Describe chemical sensitivities of arterial and cardiopulmonary chemoreceptors,

More information

Glomerular Capillary Blood Pressure

Glomerular Capillary Blood Pressure Glomerular Capillary Blood Pressure Fluid pressure exerted by blood within glomerular capillaries Depends on Contraction of the heart Resistance to blood flow offered by afferent and efferent arterioles

More information

Blood pressure control Contin. Reflex Mechanisms. Dr. Hiwa Shafiq

Blood pressure control Contin. Reflex Mechanisms. Dr. Hiwa Shafiq Blood pressure control Contin. Reflex Mechanisms Dr. Hiwa Shafiq 17-12-2018 A. Baroreceptor reflexes Baroreceptors (stretch receptors) located in the walls of several large systemic arteries( specially

More information

SHOCK. Pathophysiology

SHOCK. Pathophysiology SHOCK Dr. Ahmed Saleem FICMS TUCOM / 3rd Year / 2015 Shock is the most common and therefore the most important cause of death of surgical patients. Death may occur rapidly due to a profound state of shock,

More information

Blood Pressure Regulation. Slides 9-12 Mean Arterial Pressure (MAP) = 1/3 systolic pressure + 2/3 diastolic pressure

Blood Pressure Regulation. Slides 9-12 Mean Arterial Pressure (MAP) = 1/3 systolic pressure + 2/3 diastolic pressure Sheet physiology(18) Sunday 24-November Blood Pressure Regulation Slides 9-12 Mean Arterial Pressure (MAP) = 1/3 systolic pressure + 2/3 diastolic pressure MAP= Diastolic Pressure+1/3 Pulse Pressure CO=MAP/TPR

More information

How Normal Body Processes Are Altered By Disease and Injury

How Normal Body Processes Are Altered By Disease and Injury 1 Chapter 4, General Principles of Pathophysiology Part 1 How Normal Body Processes Are Altered By Disease and Injury 2 How Cells Respond to Change and Injury 3 Pathology & Pathophysiology : the study

More information

Taking the shock factor out of shock

Taking the shock factor out of shock Taking the shock factor out of shock Julie Antonellis, BS, LVT, VTS (ECC) Northern Virginia Regional Director for the VALVT Technician Supervisor VCA Animal Emergency Critical Care Business owner Antonellis

More information

Circulation. Blood Pressure and Antihypertensive Medications. Venous Return. Arterial flow. Regulation of Cardiac Output.

Circulation. Blood Pressure and Antihypertensive Medications. Venous Return. Arterial flow. Regulation of Cardiac Output. Circulation Blood Pressure and Antihypertensive Medications Two systems Pulmonary (low pressure) Systemic (high pressure) Aorta 120 mmhg Large arteries 110 mmhg Arterioles 40 mmhg Arteriolar capillaries

More information

Blood Pressure Fox Chapter 14 part 2

Blood Pressure Fox Chapter 14 part 2 Vert Phys PCB3743 Blood Pressure Fox Chapter 14 part 2 T. Houpt, Ph.D. 1 Cardiac Output and Blood Pressure How to Measure Blood Pressure Contribution of vascular resistance to blood pressure Cardiovascular

More information

Physiology of Circulation. Dr. Hiwa Shafiq 16/12/2018

Physiology of Circulation. Dr. Hiwa Shafiq 16/12/2018 Physiology of Circulation Dr. Hiwa Shafiq 16/12/2018 Overview of the circulation The function of the circulation is to: 1. transport nutrients to the body tissues 2. transport waste products away 3. conduct

More information

REGULATION OF CARDIOVASCULAR SYSTEM

REGULATION OF CARDIOVASCULAR SYSTEM REGULATION OF CARDIOVASCULAR SYSTEM Jonas Addae Medical Sciences, UWI REGULATION OF CARDIOVASCULAR SYSTEM Intrinsic Coupling of cardiac and vascular functions - Autoregulation of vessel diameter Extrinsic

More information

Contents. Page 1. Homework 11 Chapter Blood Vessels Due: Week 6 Lec 11

Contents. Page 1. Homework 11 Chapter Blood Vessels Due: Week 6 Lec 11 Page 1 Homework 11 Chapter 18-19 Blood Vessels Due: Week 6 Lec 11 Contents When printing, make sure that you specify the page range that you want to print out! Learning objectives for Lecture 11:...pg

More information

Blood Pressure Regulation -1

Blood Pressure Regulation -1 CVS Physiology Lecture 18 Blood Pressure Regulation -1 Please study the previous sheet before studying this one, even if the first part in this sheet is revision. In the previous lecture we were talking

More information

Physiology Chapter 14 Key Blood Flow and Blood Pressure, Plus Fun Review Study Guide

Physiology Chapter 14 Key Blood Flow and Blood Pressure, Plus Fun Review Study Guide Physiology Chapter 14 Key Blood Flow and Blood Pressure, Plus Fun Review Study Guide 1 Main Idea: The function of the circulatory system is to maintain adequate blood flow to all tissues. Clinical Application

More information

BIPN100 F15 Human Physiology (Kristan) Problem Set #8 Solutions p. 1

BIPN100 F15 Human Physiology (Kristan) Problem Set #8 Solutions p. 1 BIPN100 F15 Human Physiology (Kristan) Problem Set #8 Solutions p. 1 1. a. Proximal tubule. b. Proximal tubule. c. Glomerular endothelial fenestrae, filtration slits between podocytes of Bowman's capsule.

More information

Human Urogenital System 26-1

Human Urogenital System 26-1 Human Urogenital System 26-1 Urogenital System Functions Filtering of blood, Removal of wastes and metabolites Regulation of blood volume and composition concentration of blood solutes ph of extracellular

More information

IV Fluids. I.V. Fluid Osmolarity Composition 0.9% NaCL (Normal Saline Solution, NSS) Uses/Clinical Considerations

IV Fluids. I.V. Fluid Osmolarity Composition 0.9% NaCL (Normal Saline Solution, NSS) Uses/Clinical Considerations IV Fluids When administering IV fluids, the type and amount of fluid may influence patient outcomes. Make sure to understand the differences between fluid products and their effects. Crystalloids Crystalloid

More information

Blood Pressure Regulation 2. Faisal I. Mohammed, MD,PhD

Blood Pressure Regulation 2. Faisal I. Mohammed, MD,PhD Blood Pressure Regulation 2 Faisal I. Mohammed, MD,PhD 1 Objectives Outline the intermediate term and long term regulators of ABP. Describe the role of Epinephrine, Antidiuretic hormone (ADH), Renin-Angiotensin-Aldosterone

More information

Introduction to Emergency Medical Care 1

Introduction to Emergency Medical Care 1 Introduction to Emergency Medical Care 1 OBJECTIVES 6.1 Define key terms introduced in this chapter. Slides 11, 15, 17, 26, 27, 31, 33, 37, 40 42, 44, 45, 51, 58 6.2 Describe the basic roles and structures

More information

Vasoactive Medications. Matthew J. Korobey Pharm.D., BCCCP Critical Care Clinical Specialist Mercy St. Louis

Vasoactive Medications. Matthew J. Korobey Pharm.D., BCCCP Critical Care Clinical Specialist Mercy St. Louis Vasoactive Medications Matthew J. Korobey Pharm.D., BCCCP Critical Care Clinical Specialist Mercy St. Louis Objectives List components of physiology involved in blood pressure Review terminology related

More information

RNPDC CCNP Anatomy and Physiology: Renal System Pre-Quiz 2015

RNPDC CCNP Anatomy and Physiology: Renal System Pre-Quiz 2015 RNPDC CCNP Anatomy and Physiology: Renal System Pre-Quiz 2015 1. In which abdominal cavity do the kidneys lie? a) Peritoneum. b) Anteperitoneal. c) Retroperitoneal. d) Parietal peritoneal 2. What is the

More information

Bleeding and Shock. Circulatory System

Bleeding and Shock. Circulatory System Bleeding and Shock Aaron J. Katz, AEMT-P, CIC www.es26medic.net 2013 Circulatory System Composed of heart, blood vessels and blood A closed system Pumps oxygenated blood and nutrients to body tissues Delivers

More information

Responses to Changes in Posture QUESTIONS. Case PHYSIOLOGY CASES AND PROBLEMS

Responses to Changes in Posture QUESTIONS. Case PHYSIOLOGY CASES AND PROBLEMS 64 PHYSIOLOGY CASES AND PROBLEMS Case 12 Responses to Changes in Posture Joslin Chambers is a 27-year-old assistant manager at a discount department store. One morning, she awakened from a deep sleep and

More information

Fluids and electrolytes

Fluids and electrolytes Body Water Content Fluids and electrolytes Infants have low body fat, low bone mass, and are 73% or more water Total water content declines throughout life Healthy males are about 60% water; healthy females

More information

Regulation of fluid and electrolytes balance

Regulation of fluid and electrolytes balance Regulation of fluid and electrolytes balance Three Compartment Fluid Compartments Intracellular = Cytoplasmic (inside cells) Extracellular compartment is subdivided into Interstitial = Intercellular +

More information

Collage of medicine Cardiovascular Physiology 3- Arterial and venous blood Pressure.

Collage of medicine Cardiovascular Physiology 3- Arterial and venous blood Pressure. University of Babylon Collage of medicine Dr. Ghafil Seyhood Hassan Al-Shujiari Cardiovascular Physiology 3- Arterial and venous blood Pressure. UArterial blood pressureu: Arterial pressure = COP X Peripheral

More information

The Cardiovascular system: physiology of circulation

The Cardiovascular system: physiology of circulation Chapter 21 The Cardiovascular system: physiology of circulation blood vessel structure and function physiology of circulation: blood flow, blood pressure, and resistance blood flow the amount of blood

More information

Special circulations, Coronary, Pulmonary. Faisal I. Mohammed, MD,PhD

Special circulations, Coronary, Pulmonary. Faisal I. Mohammed, MD,PhD Special circulations, Coronary, Pulmonary Faisal I. Mohammed, MD,PhD 1 Objectives Describe the control of blood flow to different circulations (Skeletal muscles, pulmonary and coronary) Point out special

More information

How Normal Body Processes Are Altered By Disease and Injury

How Normal Body Processes Are Altered By Disease and Injury 1 Chapter 4, GENERAL PRINCIPLES OF PATHOPHYSIOLOGY. Part 1 How Normal Body Processes Are Altered By Disease and Injury 2 How Cells Respond to Change and Injury 3 Pathology & Pathophysiology : the study

More information

Circulatory System Review

Circulatory System Review Circulatory System Review 1. Know the diagrams of the heart, internal and external. a) What is the pericardium? What is myocardium? What is the septum? b) Explain the 4 valves of the heart. What is their

More information

HOW LOW CAN YOU GO? HYPOTENSION AND THE ANESTHETIZED PATIENT.

HOW LOW CAN YOU GO? HYPOTENSION AND THE ANESTHETIZED PATIENT. HOW LOW CAN YOU GO? HYPOTENSION AND THE ANESTHETIZED PATIENT. Donna M. Sisak, CVT, LVT, VTS (Anesthesia/Analgesia) Seattle Veterinary Specialists Kirkland, WA dsisak@svsvet.com THE ANESTHETIZED PATIENT

More information

Control of blood tissue blood flow. Faisal I. Mohammed, MD,PhD

Control of blood tissue blood flow. Faisal I. Mohammed, MD,PhD Control of blood tissue blood flow Faisal I. Mohammed, MD,PhD 1 Objectives List factors that affect tissue blood flow. Describe the vasodilator and oxygen demand theories. Point out the mechanisms of autoregulation.

More information

CARDIOVASCULAR SYSTEM

CARDIOVASCULAR SYSTEM CARDIOVASCULAR SYSTEM 1. Resting membrane potential of the ventricular myocardium is: A. -55 to-65mv B. --65 to-75mv C. -75 to-85mv D. -85 to-95 mv E. -95 to-105mv 2. Regarding myocardial contraction:

More information

BIOL 219 Spring Chapters 14&15 Cardiovascular System

BIOL 219 Spring Chapters 14&15 Cardiovascular System 1 BIOL 219 Spring 2013 Chapters 14&15 Cardiovascular System Outline: Components of the CV system Heart anatomy Layers of the heart wall Pericardium Heart chambers, valves, blood vessels, septum Atrioventricular

More information

Extracellular fluid (ECF) compartment volume control

Extracellular fluid (ECF) compartment volume control Water Balance Made Easier Joon K. Choi, DO. Extracellular fluid (ECF) compartment volume control Humans regulate ECF volume mainly by regulating body sodium content. Several major systems work together

More information

The Cardiovascular System

The Cardiovascular System The Cardiovascular System The Cardiovascular System A closed system of the heart and blood vessels The heart pumps blood Blood vessels allow blood to circulate to all parts of the body The function of

More information

Physio 12 -Summer 02 - Renal Physiology - Page 1

Physio 12 -Summer 02 - Renal Physiology - Page 1 Physiology 12 Kidney and Fluid regulation Guyton Ch 20, 21,22,23 Roles of the Kidney Regulation of body fluid osmolarity and electrolytes Regulation of acid-base balance (ph) Excretion of natural wastes

More information

FLUID THERAPY: IT S MORE THAN JUST LACTATED RINGERS

FLUID THERAPY: IT S MORE THAN JUST LACTATED RINGERS FLUID THERAPY: IT S MORE THAN JUST LACTATED RINGERS Elisa M. Mazzaferro, MS, DVM, PhD, DACVECC Cornell University Veterinary Specialists, Stamford, CT, USA Total body water constitutes approximately 60%

More information

** TMP mean page 340 in 12 th edition. Questions 1 and 2 Use the following clinical laboratory test results for questions 1 and 2:

** TMP mean page 340 in 12 th edition. Questions 1 and 2 Use the following clinical laboratory test results for questions 1 and 2: QUESTION Questions 1 and 2 Use the following clinical laboratory test results for questions 1 and 2: Urine flow rate = 1 ml/min Urine inulin concentration = 100 mg/ml Plasma inulin concentration = 2 mg/ml

More information

describe the location of the kidneys relative to the vertebral column:

describe the location of the kidneys relative to the vertebral column: Basic A & P II Dr. L. Bacha Chapter Outline (Martini & Nath 2010) list the three major functions of the urinary system: by examining Fig. 24-1, list the organs of the urinary system: describe the location

More information

PHYSIOLOGY MeQ'S (Morgan) All the following statements related to blood volume are correct except for: 5 A. Blood volume is about 5 litres. B.

PHYSIOLOGY MeQ'S (Morgan) All the following statements related to blood volume are correct except for: 5 A. Blood volume is about 5 litres. B. PHYSIOLOGY MeQ'S (Morgan) Chapter 5 All the following statements related to capillary Starling's forces are correct except for: 1 A. Hydrostatic pressure at arterial end is greater than at venous end.

More information

SHOCK Susanna Hilda Hutajulu, MD, PhD

SHOCK Susanna Hilda Hutajulu, MD, PhD SHOCK Susanna Hilda Hutajulu, MD, PhD Div Hematology and Medical Oncology Department of Internal Medicine Universitas Gadjah Mada Yogyakarta Outline Definition Epidemiology Physiology Classes of Shock

More information

Emergency Medical Training Services Emergency Medical Technician Paramedic Program Outlines Outline Topic: Shock Revised: 11/2013

Emergency Medical Training Services Emergency Medical Technician Paramedic Program Outlines Outline Topic: Shock Revised: 11/2013 Emergency Medical Training Services Emergency Medical Technician Paramedic Program Outlines Outline Topic: Shock Revised: 11/2013 (12 questions on trauma exam from this outline) DEFINITIONS Aerobic metabolism

More information

OT Exam 3, August 19, 2002 Page 1 of 6. Occupational Therapy Physiology, Summer Examination 3. August 19, 2002

OT Exam 3, August 19, 2002 Page 1 of 6. Occupational Therapy Physiology, Summer Examination 3. August 19, 2002 Page 1 of 6 Occupational Therapy Physiology, Summer 2002 Examination 3 August 19, 2002 There are 20 questions and each question is worth 5 points for a total of 100 points. Dr. Heckman's section is questions

More information

Cardiovascular System. Heart

Cardiovascular System. Heart Cardiovascular System Heart Electrocardiogram A device that records the electrical activity of the heart. Measuring the relative electrical activity of one heart cycle. A complete contraction and relaxation.

More information

Bleeding and Shock *** CME Version *** Aaron J. Katz, AEMT-P, CIC

Bleeding and Shock *** CME Version *** Aaron J. Katz, AEMT-P, CIC Bleeding and Shock *** CME Version *** Aaron J. Katz, AEMT-P, CIC www.es26medic.net Circulatory System Composed of heart, blood vessels and blood A closed system Pumps oxygenated blood and nutrients to

More information

Cardiovascular System: Vessels and Circulation (Chapter 21)

Cardiovascular System: Vessels and Circulation (Chapter 21) Cardiovascular System: Vessels and Circulation (Chapter 21) Lecture Materials for Amy Warenda Czura, Ph.D. Suffolk County Community College Eastern Campus Primary Sources for figures and content: Marieb,

More information

014 Chapter 14 Created: 9:25:14 PM CST

014 Chapter 14 Created: 9:25:14 PM CST 014 Chapter 14 Created: 9:25:14 PM CST Student: 1. Functions of the kidneys include A. the regulation of body salt and water balance. B. hydrogen ion homeostasis. C. the regulation of blood glucose concentration.

More information

Vascular System Part One

Vascular System Part One Vascular System Part One Objectives Trace the route taken by blood as it leaves, and then returns to the heart. Describe the structure of the walls of arteries and veins. Discuss the structure and function

More information

Body Water Content Infants have low body fat, low bone mass, and are 73% or more water Total water content declines throughout life Healthy males are

Body Water Content Infants have low body fat, low bone mass, and are 73% or more water Total water content declines throughout life Healthy males are Fluid, Electrolyte, and Acid-Base Balance Body Water Content Infants have low body fat, low bone mass, and are 73% or more water Total water content declines throughout life Healthy males are about 60%

More information

How and why I give IV fluid Disclosures SCA Fluids and public health 4/1/15. Andrew Shaw MB FRCA FCCM FFICM

How and why I give IV fluid Disclosures SCA Fluids and public health 4/1/15. Andrew Shaw MB FRCA FCCM FFICM How and why I give IV fluid Andrew Shaw MB FRCA FCCM FFICM Professor and Chief Cardiothoracic Anesthesiology Vanderbilt University Medical Center 2015 Disclosures Consultant for Grifols manufacturer of

More information

BIOL 2402 Fluid/Electrolyte Regulation

BIOL 2402 Fluid/Electrolyte Regulation Dr. Chris Doumen Collin County Community College BIOL 2402 Fluid/Electrolyte Regulation 1 Body Water Content On average, we are 50-60 % water For a 70 kg male = 40 liters water This water is divided into

More information

Chapter 25 The Urinary System

Chapter 25 The Urinary System Chapter 25 The Urinary System 10/30/2013 MDufilho 1 Kidney Functions Removal of toxins, metabolic wastes, and excess ions from the blood Regulation of blood volume, chemical composition, and ph Gluconeogenesis

More information

Urinary System Organization. Urinary System Organization. The Kidneys. The Components of the Urinary System

Urinary System Organization. Urinary System Organization. The Kidneys. The Components of the Urinary System Urinary System Organization The Golden Rule: The Job of The Urinary System is to Maintain the Composition and Volume of ECF remember this & all else will fall in place! Functions of the Urinary System

More information

Questions? Homework due in lab 6. PreLab #6 HW 15 & 16 (follow directions, 6 points!)

Questions? Homework due in lab 6. PreLab #6 HW 15 & 16 (follow directions, 6 points!) Questions? Homework due in lab 6 PreLab #6 HW 15 & 16 (follow directions, 6 points!) Part 3 Variations in Urine Formation Composition varies Fluid volume Solute concentration Variations in Urine Formation

More information

Shock Management. Seyed Tayeb Moradian MSc, Critical Care Nursing Ph.D Candidate. PDF created with pdffactory Pro trial version

Shock Management. Seyed Tayeb Moradian MSc, Critical Care Nursing Ph.D Candidate. PDF created with pdffactory Pro trial version Shock Management Seyed Tayeb Moradian MSc, Critical Care Nursing Ph.D Candidate Definition of Shock The definition of shock does not involve low blood pressure, rapid pulse or cool clammy skin - these

More information

Understand the pathophysiology to better serve your patients

Understand the pathophysiology to better serve your patients Understand the pathophysiology to better serve your patients By Paul E. Phrampus, MD Center for Emergency Medicine OF WESTERN PENNSYLVANIA The JEMS continuing education program is coordinated by the Center

More information

BUFFERING OF HYDROGEN LOAD

BUFFERING OF HYDROGEN LOAD BUFFERING OF HYDROGEN LOAD 1. Extracellular space minutes 2. Intracellular space minutes to hours 3. Respiratory compensation 6 to 12 hours 4. Renal compensation hours, up to 2-3 days RENAL HYDROGEN SECRETION

More information

1. a)label the parts indicated above and give one function for structures Y and Z

1. a)label the parts indicated above and give one function for structures Y and Z Excretory System 1 1. Excretory System a)label the parts indicated above and give one function for structures Y and Z W- renal cortex - X- renal medulla Y- renal pelvis collecting center of urine and then

More information

Cardiovascular Boot Camp April 2009

Cardiovascular Boot Camp April 2009 Advanced Cardiac Dynamics Presented by: Karen Marzlin BSN, RN, CCRN-CMC CNEA 2009 1 Hemodynamics does not equal invasive monitoring Paradigm Shift 2 www.cardionursing.com 1 3 Circulation: Heart Arteries

More information

Therefore MAP=CO x TPR = HR x SV x TPR

Therefore MAP=CO x TPR = HR x SV x TPR Regulation of MAP Flow = pressure gradient resistance CO = MAP TPR Therefore MAP=CO x TPR = HR x SV x TPR TPR is the total peripheral resistance: this is the combined resistance of all blood vessels (remember

More information