Antiarrhythmic Drugs

Size: px
Start display at page:

Download "Antiarrhythmic Drugs"

Transcription

1 Antiarrhythmic Drugs DR ATIF ALQUBBANY A S S I S T A N T P R O F E S S O R O F M E D I C I N E / C A R D I O L O G Y C O N S U L T A N T C A R D I O L O G Y & I N T E R V E N T I O N A L E P A C H D / E P & C O M P L E X A B L A T I O N K S A U - HS K I N G F A I S A L C A R D I A C C E N T E R K I N G A B D U L A Z I Z M E D I C A L C I T Y

2 How not to harm a patient with Antiarrhythmic Medications

3 No disclosures

4 Outline Antiarrhythmic Medications Basics of myocyte cell physiology - Ion channels Types and mechanisms of action of AADs Clinical Scenarios To illustrate some major considerations when prescribing antiarrhythmic medications

5

6

7 Antiarrhythmic Medication Purpose: To alter the electrophysiological characteristics of the myocytes To reduce automaticity in spontaneous arrhythmias To decrease the tachycardia zone in re-entrant arrhythmias Mechanism: Interaction with the cardiac ion channels Alteration in conduction velocity and refractory period.

8 Antiarrhythmic Medication

9 2 fundamentally different ways of action Class I drugs slow down conduction Class III drugs prolong refractoriness

10 Class Ia Antiarrhythmic Medication Slow Phase 0 upstroke Class Ib Minimal Phase 0 effect Class Ic Marked slowing Phase 0

11 Class I Na channel blockers Inhibit depolarization & slow conduction velocity Convert areas of slow conduction or unidirectional block into bidirectional block inhibit reentrant arrhythmias

12

13 Antiarrhythmic Medication Class III Prolong AP duration Increase refractoriness Prolong QT Minimal effect on conduction velocity

14 2 fundamentally different ways of action Class I drugs slows down conduction: fewer active Na+ channels Class III drugs prolong refractoriness: blocking K+ channel outward activity. Increase action potential duration.

15 Refractory period Propagating wavefront

16

17 Proarrhythmia risk of TdP Early studies CAST and SWORD. More studies in the field that demonstrates safety with proper patient selection. Correlates with QT prolongation (mainly class III) and early afterdepolarization. Dose independent like class 1A Dose dependent like Sotalol

18

19 Proarrhythmia due to QT prolongation and TdP Risk factors include: Bradycardia baseline QT prolongation female gender Hypokalemia Hypomagnesemia

20 Antiarrhythmic Medication Problems with the Vaughan Williams Classification Classification scheme over simplified. Most AADs have multiple actions (e.g amiodarone or its metabolites blocks sodium, potassium, calcium, and betaadrenergic receptors). Actions differ in different cardiac tissues. Sicilian Gambit Refined classification system 1991 Based on effects of AADs on channels and receptors

21 Drug Na Ca K r K s Fast Med Slow Channels Receptors Pumps Alph a Beta M 2 Na-K ATPase Clinical Effects LV Functio n Quinidine H M L Procainamide H M Disopyramide H M L Lidocaine L Mexiletine L Flecainide H H L Propafenone H Propranolol L H Amiodarone L M H M M M Sotalol H H Ibutilide* L Dofetilide H Verapamil L H Diltiazem M Digoxin H Sinus Rate

22 Class IA drugs quinidine, procainamide, and disopyramide Depress phase 0 (Na-dependent) depolarization, thereby slowing conduction. They also have moderate potassium channel blocking activity (which tends to slow the rate of repolarization and prolong APD). Anticholinergic activity. They tend to depress myocardial contractility.

23 Procainamide Used in atrial and ventricular arrhythmias. Hemodynamics: hypotension during IV administration due to decrease sympathetic efferent activity. Watch BP and QRS duration during administration.

24 Class IB drugs lidocaine and mexiletine Used in ventricular arrhythmias. Side Effects: GI and CNS effects most prominent which are dose and concentration related. Tremor usually the first sign of CNS toxicity. Proarrhythmia: Incidence of serious proarrhythmia due to mexiletine is very low.

25 Class IC drugs flecainide and propafenone Block both the open and inactivated Na channels and slow conduction. They also have K channel blocking activity and can increase the APD in ventricular myocytes.

26 Flecainide Mainly in Atrial arrhythmias Side effects: CNS including blurred vision, headache, ataxia. Use dependency (greater efficacy at faster heart rate) Proarrhythmia: CAST Trial. In treating Atrial arrhythmias, flecainide may 1:1 AV conduction when AV nodal block is not accomplished. Ventricular proarrhythmia with structurally normal hearts is exceedingly rare.

27 Propafenone Mainly in Atrial arrhythmias Side effects: Nausea, dizziness, and metallic taste especially with dairy products are the most common. Approximately 10-25% of patients discontinue propafenone treatment because of side effects. Use dependency (greater efficacy at faster heart rate) Proarrhythmia: 1:1 AV conduction when AV nodal block is not accomplished. Ventricular proarrhythmia with structurally normal hearts is exceedingly rare.

28 Class III amiodarone, ibutilide, and sotalol Block the K channels, thereby prolonging repolarization, the APD, and the refractory period. 28 These changes are manifested on the surface ECG by prolongation of the QT interval, providing the substrate for torsade de pointes. Amiodarone is an exception, with very little proarrhythmic activity.

29 These drugs also have other antiarrhythmic effects. 29 Sotalol has beta blocking activity Amiodarone can block Na channels in depolarized tissues and may block Ca channels, K channels, and adrenergic receptors Ibutilide, enhances the slow, delayed inward Na current as well as blocking K channels during repolarization.

30 Some of the class III agents, such as sotalol and ibutilide, exhibit reverse use-dependent effects on repolarization. 30 Thus, the QT interval is longer at slower heart rates and decreases as the heart rate increases. Proarrhythmia typically dose dependent (especially in the case of Sotalol).

31 Adenosine Used for AV nodal blockade for therapeutic or diagnostic uses. Short duration of action (5 seconds) Side effects: Chest pain and dyspnea during administration are very common but short lived. Proarrhythmia: AF up to 12% (which can be sustained) due to decrease in atrial refractoriness. This may be a problem in patients with bypass tract mediated narrow complex SVT converted to pre-excited AF.

32 In most cases, AAD should be started at the lowest possible dose and titrated upwards. Therapeutic efficacy monitored with reference to PR interval (flecainide, propafenone, sotalol and amiodarone) QRS (flecainide, propafenone) QT intervals (sotalol and amiodarone) at rest (sotalol) or with exercise (Class IC agents)

33 Use dependence and reverse use dependence Class I drugs, display use dependence: at faster HR, the Na-channel block increases. Result of binding kinetics, which reflects that at faster HR, there is less time for the drug to unbind from the Na channel before the next action potential begins; thus, at faster HR, the drugs have a more profound effect on conduction velocity than they have at slower HR.

34 reverse use dependence For Class III drugs, however, the strength of blockade decreases as the HR increases It means that at slower heart rates, the prolongation of the action potential is most pronounced; at faster HR, the effect diminishes. Drug s binding characteristics. Drugs that preferentially bind to closed K channels, for instance, display significant reverse use dependence because phase 4 of the action potential is longer when the HR is slow.

35 Reverse use dependence has two potential undesirable effects: It causes some Class III drugs to lose potency with rapid heart rates, just when their potency is needed most. Potentiates the tendency of these drugs to cause the pause-dependent Eads that produce torsades de pointes.

36 Amiodarone is a unique Class III agent as it binds preferentially to open K channels and therefore displays much less reverse use dependence. Consequently, amiodarone does not lose its effect when heart rate increases. The low magnitude of reverse use dependence seen with amiodarone may explain not only its remarkable efficacy against tachyarrhythmias but also its low incidence of producing torsades de pointes.

37 Clinical Scenario 1 30 year old male Presents for outpatient evaluation following syncopal episode No documented arrhythmias Normal LV function on echo FHx sudden cardiac death Father died suddenly age 50 ECG:

38 Brugada Syndrome - Type I ECG pattern

39

40 Brugada Syndrome Antiarrhythmic medications considerations Beta blockers and Amiodarone do not prevent recurrences of ventricular arrhythmias Class I AADs increase risk of ventricular arrhythmias Most Class I AADs and IV Amiodarone worsen electrical storms Isoproterenol has a beneficial effect in settling electrical storms

41 Clinical Scenario 2 60 year old female Presents to emergency department with symptomatic tachycardia No history of coronary disease ECG:

42 Heart rate = 150bpm Atrial Flutter with 2:1 AV conduction

43 Arrhythmia misdiagnosed as atrial fibrillation with rapid ventricular response. Patient received IV Flecainide

44 Heart rate = 250bpm Atrial Flutter with 1:1 AV conduction

45 Atrial Flutter with 2:1 AV conduction Flutter re-entrant circuit s conduction velocity is shorter than AV node refractory period. Atrial Flutter with 1:1 AV conduction AVN refractory period shorter than flutter circuit This tachycardia poorly tolerated hemodynamically Occurs when: AVN conduction increases in presence of high adrenergic tone Or when the Atrial Flutter circuit is slow

46 Atrial Flutter Flecainide Class Ic Sodium channel blocker Slows conduction velocity through the atrial tissue Slows Atrial Flutter circuit

47 Atrial Flutter Therapeutic implications RATE CONTROL with Beta blocker or Calcium Channel blocker should be achieved prior to giving a Class 1 medication.

48 Clinical Scenario 3 31 year old female Presents to emergency with 2 hour history of palpitations Hx recurrent palpitations for 15 years No history of coronary disease or LV dysfunction ECG:

49 Heart rate = 250bpm Supraventricular tachycardia (DDx AVNRT / AVRT / AT)

50 31 year old female Adenosine 6mg IV bolus and 10ml saline flush no effect Adenosine 12mg IV bolus ECG:

51 Pre-excited atrial fibrillation

52

53 31 year old female Patient remained hemodynamically stable and cardioverted with IV Procainamide

54 Wolff Parkinson White Syndrome

55 Therapeutic Considerations Adenosine causes SVT to convert to Atrial Fibrillation in ~12% patients Pre-excited AF could potentially degenerate into VF Small risk of cardiac arrest Risk increased if Accessory Pathway Effective Refractory Period is <240ms

56 Summary Appropriate use of antiarrhythmic medication and avoidance of harm involves an understanding of: The interaction of the drugs with cardiac ion channels The electrophysiological mechanism of the arrhythmia Always consider EPS + ablation

57 THANK YOU

58 Use dependence and reverse use dependence Drugs that interact with their receptors more at faster heart rates are said to display use dependence. Sodium channel blockers display such characteristics depressing the rate of rise of Vmax more during rapid hear rates. It is postulated that these drugs interact more with their receptors when they are in the open or inactive state rather than in the resting state. Potassium channel blockers, on the other hand, interact more with the receptor in the resting state. This is termed reverse use dependence. An example of the latter is the greater risk of torsade de pointe following a pause or at slow heart rates, the management of torsade de pointe includes pacing or the administration of isoproterenol to accelerate the heart rate and reduce the potential for torsade to recur. Antiarrhythmic agents that exhibit reverse use-dependence are more efficacious at preventing a tachyarrhythmia than converting someone into normal sinus rhythm

59 During faster heart rates, less time exists for the drug to dissociate from the receptor, resulting in an increased number of blocked channels and enhanced blockade. These pharmacologic effects may cause a progressive decrease in impulse conduction velocity and a widening of the QRS complex. This property is known as "use-dependence" and is seen most frequently with the class IC agents, less frequently with the class IA drugs, and rarely with the class IB agents

PHARMACOLOGY OF ARRHYTHMIAS

PHARMACOLOGY OF ARRHYTHMIAS PHARMACOLOGY OF ARRHYTHMIAS Course: Integrated Therapeutics 1 Lecturer: Dr. E. Konorev Date: November 27, 2012 Materials on: Exam #5 Required reading: Katzung, Chapter 14 1 CARDIAC ARRHYTHMIAS Abnormalities

More information

Rhythm Control: Is There a Role for the PCP? Blake Norris, MD, FACC BHHI Primary Care Symposium February 28, 2014

Rhythm Control: Is There a Role for the PCP? Blake Norris, MD, FACC BHHI Primary Care Symposium February 28, 2014 Rhythm Control: Is There a Role for the PCP? Blake Norris, MD, FACC BHHI Primary Care Symposium February 28, 2014 Financial disclosures Consultant Medtronic 3 reasons to evaluate and treat arrhythmias

More information

Mr. Eknath Kole M.S. Pharm (NIPER Mohali)

Mr. Eknath Kole M.S. Pharm (NIPER Mohali) M.S. Pharm (NIPER Mohali) Drug Class Actions Therapeutic Uses Pharmacokinetics Adverse Effects Other Quinidine IA -Binds to open and inactivated Na+ -Decreases the slope of Phase 4 spontaneous depolarization

More information

Chapter 9. Learning Objectives. Learning Objectives 9/11/2012. Cardiac Arrhythmias. Define electrical therapy

Chapter 9. Learning Objectives. Learning Objectives 9/11/2012. Cardiac Arrhythmias. Define electrical therapy Chapter 9 Cardiac Arrhythmias Learning Objectives Define electrical therapy Explain why electrical therapy is preferred initial therapy over drug administration for cardiac arrest and some arrhythmias

More information

Antiarrhythmic Drugs 1/31/2018 1

Antiarrhythmic Drugs 1/31/2018 1 Antiarrhythmic Drugs 1/31/2018 1 Normal conduction pathway: 1- SA node generates action potential and delivers it to the atria and the AV node 2- The AV node delivers the impulse to purkinje fibers Other

More information

Arrhythmias. Simple-dysfunction cause abnormalities in impulse formation and conduction in the myocardium.

Arrhythmias. Simple-dysfunction cause abnormalities in impulse formation and conduction in the myocardium. Arrhythmias Simple-dysfunction cause abnormalities in impulse formation and conduction in the myocardium. However, in clinic it present as a complex family of disorders that show variety of symptoms, for

More information

Pediatrics ECG Monitoring. Pediatric Intensive Care Unit Emergency Division

Pediatrics ECG Monitoring. Pediatric Intensive Care Unit Emergency Division Pediatrics ECG Monitoring Pediatric Intensive Care Unit Emergency Division 1 Conditions Leading to Pediatric Cardiology Consultation 12.7% of annual consultation Is arrhythmias problems Geggel. Pediatrics.

More information

Chapter 16: Arrhythmias and Conduction Disturbances

Chapter 16: Arrhythmias and Conduction Disturbances Complete the following. Chapter 16: Arrhythmias and Conduction Disturbances 1. Cardiac arrhythmias result from abnormal impulse, abnormal impulse, or both mechanisms together. 2. is the ability of certain

More information

The most common. hospitalized patients. hypotension due to. filling time Rate control in ICU patients may be difficult as many drugs cause hypotension

The most common. hospitalized patients. hypotension due to. filling time Rate control in ICU patients may be difficult as many drugs cause hypotension Arrhythmias in the critically ill ICU patients: Approach for rapid recognition & management Objectives Be able to identify and manage: Atrial fibrillation with a rapid ventricular response Atrial flutter

More information

Chapter 14. Agents used in Cardiac Arrhythmias

Chapter 14. Agents used in Cardiac Arrhythmias Chapter 14 Agents used in Cardiac Arrhythmias Cardiac arrhythmia Approximately 50% of post-myocardial infarction fatalities result from ventricular tachycarida (VT) or ventricular fibrillation (VF). These

More information

Antiarrhythmic Drugs. Munir Gharaibeh MD, PhD, MHPE School of Medicine, The University of Jordan November 2018

Antiarrhythmic Drugs. Munir Gharaibeh MD, PhD, MHPE School of Medicine, The University of Jordan November 2018 Antiarrhythmic Drugs Munir Gharaibeh MD, PhD, MHPE School of Medicine, The University of Jordan November 2018 2 Ion Permeability Changes Potential Changes Genes and Proteins 3 Cardiac Na+ channels 5 6

More information

Arrhythmias. 1. beat too slowly (sinus bradycardia). Like in heart block

Arrhythmias. 1. beat too slowly (sinus bradycardia). Like in heart block Arrhythmias It is a simple-dysfunction caused by abnormalities in impulse formation and conduction in the myocardium. The heart is designed in such a way that allows it to generate from the SA node electrical

More information

Antiarrhythmic Drugs. Munir Gharaibeh MD, PhD, MHPE School of Medicine, The University of Jordan November 2017

Antiarrhythmic Drugs. Munir Gharaibeh MD, PhD, MHPE School of Medicine, The University of Jordan November 2017 Antiarrhythmic Drugs Munir Gharaibeh MD, PhD, MHPE School of Medicine, The University of Jordan November 2017 Types of Cardiac Arrhythmias Abnormalities of Impulse Formation: Rate disturbances. Triggered

More information

Antidysrhythmics HST-151 1

Antidysrhythmics HST-151 1 HST-151 1 Antidysrhythmics I. Ventricular muscle cell action potential a. Phase 0: Upstroke b. Phase 1: Early-fast repolarization c. Phase 2: Plateau d. Phase 3: Repolarization e. Phase 4: Diastole HST-151

More information

Drugs Controlling Myocyte Excitability and Conduction at the AV node Singh and Vaughan-Williams Classification

Drugs Controlling Myocyte Excitability and Conduction at the AV node Singh and Vaughan-Williams Classification Drugs Controlling Myocyte Excitability and Conduction at the AV node Singh and Vaughan-Williams Classification Class I Na Channel Blockers Flecainide Propafenone Class III K channel Blockers Dofetilide,

More information

Atrial Fibrillation 10/2/2018. Depolarization & ECG. Atrial Fibrillation. Hemodynamic Consequences

Atrial Fibrillation 10/2/2018. Depolarization & ECG. Atrial Fibrillation. Hemodynamic Consequences Depolarization & ECG Atrial Fibrillation How to make ORDER out of CHAOS Julia Shih, VMD, DACVIM (Cardiology) October 27, 2018 Depolarization & ECG Depolarization & ECG Atrial Fibrillation Hemodynamic Consequences

More information

The pill-in-the-pocket strategy for paroxysmal atrial fibrillation

The pill-in-the-pocket strategy for paroxysmal atrial fibrillation The pill-in-the-pocket strategy for paroxysmal atrial fibrillation KONSTANTINOS P. LETSAS, MD, FEHRA LABORATORY OF CARDIAC ELECTROPHYSIOLOGY EVANGELISMOS GENERAL HOSPITAL OF ATHENS ARRHYTHMIAS UPDATE,

More information

! YOU NEED TO MONITOR QT INTERVALS IN THESE PATIENTS.

! YOU NEED TO MONITOR QT INTERVALS IN THESE PATIENTS. Antiarrhythmic Pharmacopoeia Powerful drugs, split into 4 major classes, according to the predominant receptor they effect. Some fit into several classes at once, like sotolol. Some don t fit at all, owing

More information

Chapter 26. Media Directory. Dysrhythmias. Diagnosis/Treatment of Dysrhythmias. Frequency in Population Difficult to Predict

Chapter 26. Media Directory. Dysrhythmias. Diagnosis/Treatment of Dysrhythmias. Frequency in Population Difficult to Predict Chapter 26 Drugs for Dysrythmias Slide 33 Slide 35 Media Directory Propranolol Animation Amiodarone Animation Upper Saddle River, New Jersey 07458 All rights reserved. Dysrhythmias Abnormalities of electrical

More information

ANTI-ARRHYTHMICS AND WARFARIN. Dr Nithish Jayakumar

ANTI-ARRHYTHMICS AND WARFARIN. Dr Nithish Jayakumar ANTI-ARRHYTHMICS AND WARFARIN Dr Nithish Jayakumar Contents 1. Anti-arrhythmics Pacemaker and myocardial potentials Drug classes mechanisms; s/e; contra-indications Management of common arrhythmias 2.

More information

Use of Antiarrhythmic Drugs for AF Who, What and How? Dr. Marc Cheng Queen Elizabeth Hospital

Use of Antiarrhythmic Drugs for AF Who, What and How? Dr. Marc Cheng Queen Elizabeth Hospital Use of Antiarrhythmic Drugs for AF Who, What and How? Dr. Marc Cheng Queen Elizabeth Hospital Content i. Rhythm versus Rate control ii. Anti-arrhythmic for Rhythm Control iii. Anti-arrhythmic for Rate

More information

ANTI - ARRHYTHMIC DRUGS

ANTI - ARRHYTHMIC DRUGS ANTI - ARRHYTHMIC DRUGS CARDIAC ACTION POTENTIAL K Out Balance Ca in/k out Na in K Out GENERATION OF ARRHYTHMIAS Four mechanisms of arrhythmia generation; Increased normal automaticity Abnormal automaticity

More information

I have nothing to disclose.

I have nothing to disclose. I have nothing to disclose. Antiarrhythmic Therapy in Pregnancy Prof. Ali Oto,MD,FESC,FACC,FHRS Department of Cardiology Hacettepe University,Faculty of Medicine Ankara Arrhythmias in pregnancy An increased

More information

Antiarrhythmic Drugs Öner Süzer

Antiarrhythmic Drugs Öner Süzer Antiarrhythmic Drugs Öner Süzer www.onersuzer.com osuzer@istanbul.edu.tr Last update: 09.11.2009 1 Süzer Farmakoloji 3. Baskı 2005 2 1 Süzer Farmakoloji 3. Baskı 2005 3 Figure 14 1 Schematic representation

More information

Antiarrhythmic Pharmacology. The Electronics

Antiarrhythmic Pharmacology. The Electronics Antiarrhythmic Pharmacology Linking Pharmacological Treatment to the Patient and the Rhythm Presented By: Karen Marzlin BSN, RN,C, CCRN-CMC CNEA 2009 1 The Electronics Action Potential of Cardiac Cells

More information

ARRHYTHMIA SINUS RHYTHM

ARRHYTHMIA SINUS RHYTHM ARRHYTHMIA Dr. Ahmed A. Elberry, MBBCH, MSc, MD Assistant Professor of Clinical Pharmacy Faculty of pharmacy, KAU 1 SINUS RHYTHM SA node is cardiac pacemaker Normal sinus rhythm 60-100 beats/min Depolarisation

More information

1 Cardiology Acute Care Day 22 April 2013 Arrhythmia Tutorial Course Material

1 Cardiology Acute Care Day 22 April 2013 Arrhythmia Tutorial Course Material 1 Cardiology Acute Care Day 22 April 2013 Arrhythmia Tutorial Course Material Arrhythmia recognition This tutorial builds on the ECG lecture and provides a framework for approaching any ECG to allow the

More information

Emergency Medical Training Services Emergency Medical Technician Paramedic Program Outlines Outline Topic: WPW Revised: 11/2013

Emergency Medical Training Services Emergency Medical Technician Paramedic Program Outlines Outline Topic: WPW Revised: 11/2013 Emergency Medical Training Services Emergency Medical Technician Paramedic Program Outlines Outline Topic: WPW Revised: 11/2013 Wolff-Parkinson-White syndrome (WPW) is a syndrome of pre-excitation of the

More information

B. 14 Antidysrhythmic drugs. a. Classify antidysrhythmics by their electrophysiological actions. Vaughan-Williams classification

B. 14 Antidysrhythmic drugs. a. Classify antidysrhythmics by their electrophysiological actions. Vaughan-Williams classification B. 14 Antidysrhythmic drugs a. Classify antidysrhythmics by their electrophysiological actions. Vaughan-Williams classification I II III IV membrane stabilizers all ERP, ERP/APD, all except c APD classified

More information

Dysrhythmias. Dysrythmias & Anti-Dysrhythmics. EKG Parameters. Dysrhythmias. Components of an ECG Wave. Dysrhythmias

Dysrhythmias. Dysrythmias & Anti-Dysrhythmics. EKG Parameters. Dysrhythmias. Components of an ECG Wave. Dysrhythmias Dysrhythmias Dysrythmias & Anti-Dysrhythmics Rhythm bad in the heart: Whitewater rafting Electrical impulses coordinate heart Reduction in Cardiac Output PEA Asystole Components of an ECG Wave EKG Parameters

More information

ARRHYTHMIAS IN THE ICU

ARRHYTHMIAS IN THE ICU ARRHYTHMIAS IN THE ICU Nora Goldschlager, MD MACP, FACC, FAHA, FHRS SFGH Division of Cardiology UCSF IDENTIFIED VARIABLES IN ARRHYTHMOGENESIS Ischemia/infarction (scar) Electrolyte imbalance Proarrhythmia

More information

Rate and Rhythm Control of Atrial Fibrillation

Rate and Rhythm Control of Atrial Fibrillation Rate and Rhythm Control of Atrial Fibrillation April 21, 2017 춘계심혈관통합학술대회 Jaemin Shim, MD, PhD Arrhythmia Center Korea University Anam Hospital Treatment of AF Goal Reducing symptoms Preventing complication

More information

ΚΟΛΠΙΚΗ ΜΑΡΜΑΡΥΓΗ ΦΑΡΜΑΚΕΥΤΙΚΗ ΗΛΕΚΤΡΙΚΗ ΑΝΑΤΑΞΗ. ΣΠΥΡΟΜΗΤΡΟΣ ΓΕΩΡΓΙΟΣ Καρδιολόγος, Ε/Α, Γ.Ν.Κατερίνης. F.E.S.C

ΚΟΛΠΙΚΗ ΜΑΡΜΑΡΥΓΗ ΦΑΡΜΑΚΕΥΤΙΚΗ ΗΛΕΚΤΡΙΚΗ ΑΝΑΤΑΞΗ. ΣΠΥΡΟΜΗΤΡΟΣ ΓΕΩΡΓΙΟΣ Καρδιολόγος, Ε/Α, Γ.Ν.Κατερίνης. F.E.S.C ΚΟΛΠΙΚΗ ΜΑΡΜΑΡΥΓΗ ΦΑΡΜΑΚΕΥΤΙΚΗ ΗΛΕΚΤΡΙΚΗ ΑΝΑΤΑΞΗ ΣΠΥΡΟΜΗΤΡΟΣ ΓΕΩΡΓΙΟΣ Καρδιολόγος, Ε/Α, Γ.Ν.Κατερίνης. F.E.S.C Definitions of AF: A Simplified Scheme Term Definition Paroxysmal AF AF that terminates

More information

Arrhythmias (I) Supraventricular Tachycardias. Disclosures

Arrhythmias (I) Supraventricular Tachycardias. Disclosures Arrhythmias (I) Supraventricular Tachycardias Amy Leigh Miller, MD, PhD Cardiovascular Electrophysiology, Brigham & Women s Hospital Disclosures None Short R-P Tachycardia REGULAR with 1:1 P/R relationship

More information

Antiarrhythmic Drugs Öner Süzer

Antiarrhythmic Drugs Öner Süzer Antiarrhythmic Drugs Öner Süzer www.onersuzer.com osuzer@istanbul.edu.tr Last update: 13.01.2009 1 Süzer Farmakoloji 3. Baskı 2005 2 1 Süzer Farmakoloji 3. Baskı 2005 3 Figure 14 1 Schematic representation

More information

Management of acute Cardiac Arrhythmias

Management of acute Cardiac Arrhythmias Management of acute Cardiac Arrhythmias Dr. Zulkeflee Muhammad MBChB (New Zealand), MRCP (United Kingdom) Cardiologist Electrophysiology Unit Istitut Jantung Negara Objectives Review the etiology and recognition

More information

ARRHYTHMIAS IN THE ICU: DIAGNOSIS AND PRINCIPLES OF MANAGEMENT

ARRHYTHMIAS IN THE ICU: DIAGNOSIS AND PRINCIPLES OF MANAGEMENT ARRHYTHMIAS IN THE ICU: DIAGNOSIS AND PRINCIPLES OF MANAGEMENT Nora Goldschlager, M.D. MACP, FACC, FAHA, FHRS SFGH Division of Cardiogy UCSF CLINICAL VARIABLES IN ARRHYTHMOGENESIS Ischemia/infarction (scar)

More information

Amiodarone Prescribing and Monitoring: Back to the Future

Amiodarone Prescribing and Monitoring: Back to the Future Amiodarone Prescribing and Monitoring: Back to the Future Subha L. Varahan, MD, FHRS, CCDS Electrophysiologist Oklahoma Heart Hospital Oklahoma City, OK Friday, February, 8 th, 2019 Iodinated benzofuran

More information

Core Content In Urgent Care Medicine

Core Content In Urgent Care Medicine Palpitations/Arrhythmias Ebrahim Barkoudah, MD Clinical Instructor in Internal Medicine Harvard Medical School Assistant in Internal Medicine & Pediatrics Massachusetts General Hospital MGH Chelsea Chelsea,

More information

Pharmacology: Arrhythmias PC PHPP 515 (IT I) Fall JACOBS Wed, Dec. 03 4:00 5:50 PM

Pharmacology: Arrhythmias PC PHPP 515 (IT I) Fall JACOBS Wed, Dec. 03 4:00 5:50 PM Pharmacology: Arrhythmias PC PHPP 515 (IT I) Fall 2014 JACOBS Wed, Dec. 03 4:00 5:50 PM Required Reading (via Access Pharmacy) Katzung: Chapters 14 Recommended Reading (via Access Pharmacy) Goodman and

More information

Supraventricular Tachycardia: From Fetus to Adult. Mohamed Hamdan, MD

Supraventricular Tachycardia: From Fetus to Adult. Mohamed Hamdan, MD Supraventricular Tachycardia: From Fetus to Adult Mohamed Hamdan, MD Learning Objectives Define type of SVT by age Describe clinical approach Describe prenatal and postnatal management of SVT 2 SVT Across

More information

Alaska Nurse Practitioner Annual Conference 2009

Alaska Nurse Practitioner Annual Conference 2009 Alaska Nurse Practitioner Annual Conference 2009 LAURIE RACENET, RN, MSN, ANP, CEPS, CCDS Alaska Heart Institute Member: Boston Scientific Allied Professional Advisory Board Participant in Industry Sponsored

More information

Anti arrhythmic drugs. Hilal Al Saffar College of medicine Baghdad University

Anti arrhythmic drugs. Hilal Al Saffar College of medicine Baghdad University Anti arrhythmic drugs Hilal Al Saffar College of medicine Baghdad University Mechanism of Arrhythmia Abnormal heart pulse formation Abnormal heart pulse conduction Classification of Arrhythmia Abnormal

More information

Arrhythmic Complications of MI. Teferi Mitiku, MD Assistant Clinical Professor of Medicine University of California Irvine

Arrhythmic Complications of MI. Teferi Mitiku, MD Assistant Clinical Professor of Medicine University of California Irvine Arrhythmic Complications of MI Teferi Mitiku, MD Assistant Clinical Professor of Medicine University of California Irvine Objectives Brief overview -Pathophysiology of Arrhythmia ECG review of typical

More information

Dysrhythmias 11/7/2017. Disclosures. 3 reasons to evaluate and treat dysrhythmias. None. Eliminate symptoms and improve hemodynamics

Dysrhythmias 11/7/2017. Disclosures. 3 reasons to evaluate and treat dysrhythmias. None. Eliminate symptoms and improve hemodynamics Dysrhythmias CYDNEY STEWART MD, FACC NOVEMBER 3, 2017 Disclosures None 3 reasons to evaluate and treat dysrhythmias Eliminate symptoms and improve hemodynamics Prevent imminent death/hemodynamic compromise

More information

CVD: Cardiac Arrhythmias. 1. Final Cardiac Arrhythmias_BMP. 1.1 Cardiovascular Disease. Notes:

CVD: Cardiac Arrhythmias. 1. Final Cardiac Arrhythmias_BMP. 1.1 Cardiovascular Disease. Notes: CVD: Cardiac Arrhythmias 1. Final Cardiac Arrhythmias_BMP 1.1 Cardiovascular Disease 1.2 Directions for taking this course 1.3 Content Experts 1.4 Disclosures 1.5 Accreditation Information 1.6 Learning

More information

Atrial Fibrillation and Common Supraventricular Tachycardias. Sunil Kapur MD

Atrial Fibrillation and Common Supraventricular Tachycardias. Sunil Kapur MD Atrial Fibrillation and Common Supraventricular Tachycardias Sunil Kapur MD Cardiac Electrophysiology Brigham and Women s Hospital Instructor, Harvard Medical School No disclosures Cardiac Conduction:

More information

ECGs and Arrhythmias: Family Medicine Board Review 2009

ECGs and Arrhythmias: Family Medicine Board Review 2009 Rate Rhythm Intervals Hypertrophy ECGs and Arrhythmias: Family Medicine Board Review 2009 Axis Jess (Fogler) Waldura, MD University of California, San Francisco walduraj@nccc.ucsf.edu Ischemia Overview

More information

Huseng Vefali MD St. Luke s University Health Network Department of Cardiology

Huseng Vefali MD St. Luke s University Health Network Department of Cardiology Huseng Vefali MD St. Luke s University Health Network Department of Cardiology Learning Objectives Establish Consistent Approach to Interpreting ECGs Review Essential Cases for Paramedics and first responders

More information

APPROACH TO TACHYARRYTHMIAS

APPROACH TO TACHYARRYTHMIAS APPROACH TO TACHYARRYTHMIAS PROF.DR.MD.ZAKIR HOSSAIN PROFESSOR AND HEAD DEPARTMENT OF MEDICINE SZMCH TACHYARRYTHMIA Cardiac arrythmia is a disturbance of electrical rhythm of heart. Cardac arrythmia with

More information

ECGs and Arrhythmias: Family Medicine Board Review 2012

ECGs and Arrhythmias: Family Medicine Board Review 2012 Overview ECGs and Arrhythmias: Family Medicine Board Review 2012 Jess Waldura, MD University of California, San Francisco walduraj@nccc.ucsf.edu Bundle branch blocks Quick review of ischemia Arrhythmias

More information

Cardiac arrhythmias. Janusz Witowski. Department of Pathophysiology Poznan University of Medical Sciences. J. Witowski

Cardiac arrhythmias. Janusz Witowski. Department of Pathophysiology Poznan University of Medical Sciences. J. Witowski Cardiac arrhythmias Janusz Witowski Department of Pathophysiology Poznan University of Medical Sciences A 68-year old man presents to the emergency department late one evening complaining of increasing

More information

Medical management of AF: drugs for rate and rhythm control

Medical management of AF: drugs for rate and rhythm control Medical management of AF: drugs for rate and rhythm control Adel Khalifa Sultan Hamad, BMS, MD, FGHRS, FRCP(Canada) Consultant Cardiologist & Interventional Cardiac Electrophysiologist Head of Electrophysiology

More information

Cardiac Arrhythmias. For Pharmacists

Cardiac Arrhythmias. For Pharmacists Cardiac Arrhythmias For Pharmacists Agenda Overview of the normal Classification Management Therapy Conclusion Cardiac arrhythmias Overview of the normal Arrhythmia: definition From the Greek a-, loss

More information

PEDIATRIC SVT MANAGEMENT

PEDIATRIC SVT MANAGEMENT PEDIATRIC SVT MANAGEMENT 1 INTRODUCTION Supraventricular tachycardia (SVT) can be defined as an abnormally rapid heart rhythm originating above the ventricles, often (but not always) with a narrow QRS

More information

Ablation Update and Case Studies. Lawrence Nair, MD, FACC Director of Electrophysiology Presbyterian Heart Group

Ablation Update and Case Studies. Lawrence Nair, MD, FACC Director of Electrophysiology Presbyterian Heart Group Ablation Update and Case Studies Lawrence Nair, MD, FACC Director of Electrophysiology Presbyterian Heart Group Disclosures No financial relationships to disclose Objectives At the conclusion of this activity,

More information

SHOCK THE PATIENT. Disclosures. Goals of the Talk. Tachyarrhythmias- Unstable 11/7/2017

SHOCK THE PATIENT. Disclosures. Goals of the Talk. Tachyarrhythmias- Unstable 11/7/2017 Disclosures Common Heart Rhythms in the Hospital Research Support: NIH, PCORI, Medtronic, Cardiogram Consulting: InCarda, Johnson & Johnson, Lifewatch Equity: InCarda Gregory M Marcus, MD, MAS Associate

More information

Treatment of Arrhythmias in the Emergency Setting

Treatment of Arrhythmias in the Emergency Setting Treatment of Arrhythmias in the Emergency Setting Zian H. Tseng, M.D. Assistant Professor of Medicine Cardiac Electrophysiology Section Cardiology Division University of California, San Francisco There

More information

Atrial fibrillation in the ICU

Atrial fibrillation in the ICU Atrial fibrillation in the ICU Atrial fibrillation Preexisting or incident (new onset) among nearly one in three critically ill patients Formation of arrhythogenic substrate usually fibrosis (CHF, hypertension,

More information

Case #1. 73 y/o man with h/o HTN and CHF admitted with dizziness and SOB Treated for CHF exacerbation with Lasix Now HR 136

Case #1. 73 y/o man with h/o HTN and CHF admitted with dizziness and SOB Treated for CHF exacerbation with Lasix Now HR 136 Tachycardias Case #1 73 y/o man with h/o HTN and CHF admitted with dizziness and SOB Treated for CHF exacerbation with Lasix Now HR 136 Initial Assessment Check Telemetry screen if pt on tele Telemetry

More information

Intraoperative and Postoperative Arrhythmias: Diagnosis and Treatment

Intraoperative and Postoperative Arrhythmias: Diagnosis and Treatment Intraoperative and Postoperative Arrhythmias: Diagnosis and Treatment Karen L. Booth, MD, Lucile Packard Children s Hospital Arrhythmias are common after congenital heart surgery [1]. Postoperative electrolyte

More information

Paramedic Rounds. Tachyarrhythmia's. Sean Sutton Dallas Wood

Paramedic Rounds. Tachyarrhythmia's. Sean Sutton Dallas Wood Paramedic Rounds Tachyarrhythmia's Sean Sutton Dallas Wood Objectives At the end of this session, the paramedic will be able to: State the key components of the cardiac conduction pathway, along with the

More information

Sustained tachycardia with wide QRS

Sustained tachycardia with wide QRS Sustained tachycardia with wide QRS Courtesy from Prof. Antonio Américo Friedmann. Electrocardiology Service of University of Faculty of São Paulo. Opinions from colleagues Greetings to everyone, In a

More information

Case-Based Practical ECG Interpretation for the Generalist

Case-Based Practical ECG Interpretation for the Generalist Case-Based Practical ECG Interpretation for the Generalist Paul D. Varosy, MD, FACC, FAHA, FHRS Director of Cardiac Electrophysiology VA Eastern Colorado Health Care System Associate Professor of Medicine

More information

ELECTRICAL SIGNALS CONTROL THE CARDIAC ACTIVITY

ELECTRICAL SIGNALS CONTROL THE CARDIAC ACTIVITY ELECTRICAL SIGNALS CONTROL THE CARDIAC ACTIVITY The heart beat begins when an electrical impulse from the sinoatrial node (SA node or sinus node) moves through it. The normal electrical sequence begins

More information

DECLARATION OF CONFLICT OF INTEREST. Consultant Sanofi Biosense Webster Honorarium Boehringer Ingelheim St Jude Medical

DECLARATION OF CONFLICT OF INTEREST. Consultant Sanofi Biosense Webster Honorarium Boehringer Ingelheim St Jude Medical DECLARATION OF CONFLICT OF INTEREST Consultant Sanofi Biosense Webster Honorarium Boehringer Ingelheim St Jude Medical ESC Congress Paris, France August 27-31, 2011 Risk & Complications of AADs for Rhythm

More information

2/1/2013. Poisoning pitfalls. The original pitfall

2/1/2013. Poisoning pitfalls. The original pitfall The original pitfall Poisoning pitfalls Craig Smollin MD Associate Medical Director, California Poison Control System - SF Division Assistant Professor of Emergency Medicine, UCSF What will we talk about?

More information

Antiarrhythmias. Edward JN Ishac, Ph.D. Smith Building, Room

Antiarrhythmias. Edward JN Ishac, Ph.D. Smith Building, Room Antiarrhythmias Edward JN Ishac, Ph.D. Smith Building, Room 72 eishac@vcu.edu 828-2127 Department of Pharmacology and Toxicology Medical College of Virginia Campus of Virginia Commonwealth University Richmond,

More information

3. AV Block 1. First-degree AV block 1. Delay in AV node 2. Long PR interval 3. QRS complex follows each P wave 4. Benign, no tx

3. AV Block 1. First-degree AV block 1. Delay in AV node 2. Long PR interval 3. QRS complex follows each P wave 4. Benign, no tx 1. Rhythms & arrhythmias SA nodal rhythms Sinus rhythm Sinus tachycardia Sinus bradycardia Sinus arrhythmia Sick sinus syndrome SA block Sinus arrest AV blocks First-degree Second-degree Mobitz Type I

More information

ARRHYTHMIAS. REENTERY occurs when propagating impulse fails to die out after normal activation of heart and persist to re excite the heart.

ARRHYTHMIAS. REENTERY occurs when propagating impulse fails to die out after normal activation of heart and persist to re excite the heart. ARRHYTHMIAS Arrhythmia is defined as loss of cardiac rhythm, especially irregularity of heartbeat. PATHOPHYSIOLOGY Ectopic complexes (ectopic beats) 1. By definition, arise from a site other than the sinus

More information

Current Guideline for AF Treatment. Young Keun On, MD, PhD, FHRS Samsung Medical Center Sungkyunkwan University School of Medicine

Current Guideline for AF Treatment. Young Keun On, MD, PhD, FHRS Samsung Medical Center Sungkyunkwan University School of Medicine Current Guideline for AF Treatment Young Keun On, MD, PhD, FHRS Samsung Medical Center Sungkyunkwan University School of Medicine Case 1 59 year-old lady Sudden palpitation and breathlessness for 12 hours

More information

How do arrhythmias occur?

How do arrhythmias occur? How do arrhythmias occur? An arrhythmia is an abnormal heart rhythm (= dysrhythmia). Can be fast (tachy) or slow (brady). Brady arrhythmias are usually due to conduc;on block, while tachyarrhythmias are

More information

Tachycardias II. Štěpán Havránek

Tachycardias II. Štěpán Havránek Tachycardias II Štěpán Havránek Summary 1) Supraventricular (supraventricular rhythms) Atrial fibrillation and flutter Atrial ectopic tachycardia / extrabeats AV nodal reentrant a AV reentrant tachycardia

More information

Practical Approach to Arrhythmias

Practical Approach to Arrhythmias Outline Practical Approach to Arrhythmias Julia Shih, VMD, DACVIM (Cardiology) October 27, 2018 Conduction System ECG Acquisition ECG Interpretation Heart rate Rhythm Arrhythmias Tachyarrhythmias Supraventricular

More information

Pediatrics. Arrhythmias in Children: Bradycardia and Tachycardia Diagnosis and Treatment. Overview

Pediatrics. Arrhythmias in Children: Bradycardia and Tachycardia Diagnosis and Treatment. Overview Pediatrics Arrhythmias in Children: Bradycardia and Tachycardia Diagnosis and Treatment See online here The most common form of cardiac arrhythmia in children is sinus tachycardia which can be caused by

More information

Nathan Cade, MD Brandon Fainstad, MD Andrew Prouse, MD

Nathan Cade, MD Brandon Fainstad, MD Andrew Prouse, MD Nathan Cade, MD Brandon Fainstad, MD Andrew Prouse, MD OBJECTIVES 1. Identify the basic electrophysiology of the four causes of wide complex tachycardia. 2. Develop a simple framework for acute management

More information

«Aσθενής με ασυμπτωματικό WPW και παροξυσμική κολπική μαρμαρυγή» Χάρης Κοσσυβάκης Επιμελητής A Καρδιολογικό Τμήμα Γ.Ν.Α. «Γ.

«Aσθενής με ασυμπτωματικό WPW και παροξυσμική κολπική μαρμαρυγή» Χάρης Κοσσυβάκης Επιμελητής A Καρδιολογικό Τμήμα Γ.Ν.Α. «Γ. «Aσθενής με ασυμπτωματικό WPW και παροξυσμική κολπική μαρμαρυγή» Χάρης Κοσσυβάκης Επιμελητής A Καρδιολογικό Τμήμα Γ.Ν.Α. «Γ. ΓΕΝΝΗΜΑΤΑΣ» the primary mechanism of SCD in patients with WPW is the rapid conduction

More information

Supraventricular Tachycardia (SVT)

Supraventricular Tachycardia (SVT) Supraventricular Tachycardia (SVT) Bruce Stambler, MD Piedmont Heart Atlanta, GA Supraventricular Tachycardia Objectives Types and mechanisms AV nodal reentrant tachycardia (AVNRT) AV reciprocating tachycardia

More information

There are future perspectives in the pharmacological treatment of arrhythmias

There are future perspectives in the pharmacological treatment of arrhythmias There are future perspectives in the pharmacological treatment of arrhythmias George Andrikopoulos, MD, PhD, FESC, Cardiologist, Director, 1st Department of Cardiology/ Department of Electrophysiology

More information

TACHYARRHYTHMIAs. Pawel Balsam, MD, PhD

TACHYARRHYTHMIAs. Pawel Balsam, MD, PhD TACHYARRHYTHMIAs Pawel Balsam, MD, PhD SupraVentricular Tachycardia Atrial Extra Systole Sinus Tachycardia Focal A. Tachycardia AVRT AVNRT Atrial Flutter Atrial Fibrillation Ventricular Tachycardia Ventricular

More information

Emergency treatment to SVT Evidence-based Approach. Tran Thao Giang

Emergency treatment to SVT Evidence-based Approach. Tran Thao Giang Emergency treatment to SVT Evidence-based Approach Tran Thao Giang Description ECG manifestations: HR is extremely rapid and regular (240bpm ± 40) P wave is: usually invisible When visible: anormal P axis,

More information

ALS MODULE 7 Pharmacology

ALS MODULE 7 Pharmacology ALS MODULE 7 Pharmacology Relates to HLT404C Apply Advanced Resuscitation Techniques Introduction There are no studies that addressed the order of drug administration. There is inadequate evidence to define

More information

V. TACHYCARDIAS Rapid rhythm abnormalities

V. TACHYCARDIAS Rapid rhythm abnormalities V. TACHYCARDIAS Rapid rhythm abnormalities Tachyarrhythmias currently account for up to 350,000 deaths annually in the US. In addition to these clearly dangerous rhythm disturbances, other forms of more

More information

Pharmacotherapy of Antiarrhythmias

Pharmacotherapy of Antiarrhythmias Pharmacotherapy of Antiarrhythmias Edward JN Ishac, Ph.D. Smith Building, Room 72 eishac@vcu.edu 828-2127 Department of Pharmacology and Toxicology Medical College of Virginia Campus of Virginia Commonwealth

More information

CSI Skills Lab #5: Arrhythmia Interpretation and Treatment

CSI Skills Lab #5: Arrhythmia Interpretation and Treatment CSI 202 - Skills Lab #5: Arrhythmia Interpretation and Treatment Origins of the ACLS Approach: CSI 202 - Skills Lab 5 Notes ACLS training originated in Nebraska in the early 1970 s. Its purpose was to

More information

Sudden cardiac death: Primary and secondary prevention

Sudden cardiac death: Primary and secondary prevention Sudden cardiac death: Primary and secondary prevention By Kai Chi Chan Penultimate Year Medical Student St George s University of London at UNic Sheba Medical Centre Definition Sudden cardiac arrest (SCA)

More information

Paroxysmal Supraventricular Tachycardia PSVT.

Paroxysmal Supraventricular Tachycardia PSVT. Atrial Tachycardia; is the name for an arrhythmia caused by a disorder of the impulse generation in the atrium or the AV node. An area in the atrium sends out rapid signals, which are faster than those

More information

AF and arrhythmia management. Dr Rhys Beynon Consultant Cardiologist and Electrophysiologist University Hospital of North Staffordshire

AF and arrhythmia management. Dr Rhys Beynon Consultant Cardiologist and Electrophysiologist University Hospital of North Staffordshire AF and arrhythmia management Dr Rhys Beynon Consultant Cardiologist and Electrophysiologist University Hospital of North Staffordshire Atrial fibrillation Paroxysmal AF recurrent AF (>2 episodes) that

More information

Heart Failure (HF) Treatment

Heart Failure (HF) Treatment Heart Failure (HF) Treatment Heart Failure (HF) Complex, progressive disorder. The heart is unable to pump sufficient blood to meet the needs of the body. Its cardinal symptoms are dyspnea, fatigue, and

More information

Ventricular tachycardia Ventricular fibrillation and ICD

Ventricular tachycardia Ventricular fibrillation and ICD EKG Conference Ventricular tachycardia Ventricular fibrillation and ICD Samsung Medical Center CCU D.I. Hur Ji Won 2006.05.20 Ventricular tachyarrhythmia ventricular tachycardia ventricular fibrillation

More information

ECG Workshop. Carolyn Shepherd And Anya Horne UWE Principles of Cardiac Care

ECG Workshop. Carolyn Shepherd And Anya Horne UWE Principles of Cardiac Care ECG Workshop Carolyn Shepherd And Anya Horne UWE Principles of Cardiac Care ECG workshop case study1 44 Year old male. Reports SOB, Lethargy, tiredness. PMH: Hypertension, nil else. What tests? What treatment?

More information

ECG S: A CASE-BASED APPROACH December 6,

ECG S: A CASE-BASED APPROACH December 6, ECG S: A CASE-BASED APPROACH December 6, 2018 1 Faculty Disclosure Faculty: Lorne Gula MD, FRCPC Professor, Western University Cardiologist, Hearth Rhythm Specialist Director, Electrophysiology Laboratory,

More information

Asymptomatic WPW Syndrome; Observation or Ablation? 전남대학교병원순환기내과 박형욱

Asymptomatic WPW Syndrome; Observation or Ablation? 전남대학교병원순환기내과 박형욱 Asymptomatic WPW Syndrome; Observation or Ablation? 전남대학교병원순환기내과 박형욱 Let It Be? Vs. Just Do It? Natural history of asymptomatic WPW Incidence of sudden cardiac death in natural history studies involving

More information

Lecture outline. Electrical properties of the heart. Automaticity. Excitability. Refractoriness. The ABCs of ECGs Back to Basics Part I

Lecture outline. Electrical properties of the heart. Automaticity. Excitability. Refractoriness. The ABCs of ECGs Back to Basics Part I Lecture outline The ABCs of ECGs Back to Basics Part I Meg Sleeper VMD, DACVIM (cardiology) University of Florida Veterinary School Electrical properties of the heart Action potentials Normal intracardiac

More information

Step by step approach to EKG rhythm interpretation:

Step by step approach to EKG rhythm interpretation: Sinus Rhythms Normal sinus arrhythmia Small, slow variation of the R-R interval i.e. variation of the normal sinus heart rate with respiration, etc. Sinus Tachycardia Defined as sinus rhythm with a rate

More information

Acute Arrhythmias in the Hospitalized Patient

Acute Arrhythmias in the Hospitalized Patient Acute Arrhythmias in the Hospitalized Patient Gregory M Marcus, MD, MAS Associate Professor of Medicine Division of Cardiology University of California, San Francisc Disclosures Medtronic: Research Support

More information

Where are the normal pacemaker and the backup pacemakers of the heart located?

Where are the normal pacemaker and the backup pacemakers of the heart located? CASE 9 A 68-year-old woman presents to the emergency center with shortness of breath, light-headedness, and chest pain described as being like an elephant sitting on her chest. She is diagnosed with a

More information

Clinical Cardiac Electrophysiology

Clinical Cardiac Electrophysiology Clinical Cardiac Electrophysiology Certification Examination Blueprint Purpose of the exam The exam is designed to evaluate the knowledge, diagnostic reasoning, and clinical judgment skills expected of

More information

Atrial Fibrillation: Rate vs. Rhythm. Michael Curley, MD Cardiac Electrophysiology

Atrial Fibrillation: Rate vs. Rhythm. Michael Curley, MD Cardiac Electrophysiology Atrial Fibrillation: Rate vs. Rhythm Michael Curley, MD Cardiac Electrophysiology I have no relevant financial disclosures pertaining to this topic. A Fib Epidemiology #1 Most common heart rhythm disturbance

More information

ECG Cases and Questions. Ashish Sadhu, MD, FHRS, FACC Electrophysiology/Cardiology

ECG Cases and Questions. Ashish Sadhu, MD, FHRS, FACC Electrophysiology/Cardiology ECG Cases and Questions Ashish Sadhu, MD, FHRS, FACC Electrophysiology/Cardiology 32 yo female Life Insurance Physical 56 yo male with chest pain Terminology Injury ST elevation Ischemia T wave inversion

More information