Long QT Syndrome. Dominic J. Abrams, MD, MRCP; Calum A. MacRae, MD, PhD

Size: px
Start display at page:

Download "Long QT Syndrome. Dominic J. Abrams, MD, MRCP; Calum A. MacRae, MD, PhD"

Transcription

1 Clinician Update Long QT Syndrome Dominic J. Abrams, MD, MRCP; Calum A. MacRae, MD, PhD Case Presentation A 34-year-old female who is 4 months postpartum presents after a nocturnal seizure. She was awakened at night by an alarm clock to feed her baby, spoke briefly with her husband, and suddenly lost consciousness, appearing to have epileptic-type movements before spontaneously recovering. On further questioning, she reported several syncopal events over the past 15 years, once when standing suddenly, also thought at the time to be a seizure. Previous neurological investigations were normal. A 12-lead ECG (Figure 1A) revealed a corrected QT interval of 550 ms with low-amplitude, notched T-waves. Background and Prevalence Long QT syndrome (LQTS) is an inherited cardiac condition caused by genetically encoded abnormalities in cardiac ion channels, characterized clinically by palpitations, syncope, and sudden cardiac death, with varying degrees of QT prolongation and T-wave morphological abnormalities on the surface ECG. Advances in molecular and genetic cardiology over the past 20 years, coupled with increasing awareness of inherited conditions in the etiology of sudden cardiac death, have moved LQTS from the periphery to mainstream clinical medicine. A recent clinical and genetic analysis of neonates suggests the prevalence to be in the range of 1: Genetic and Molecular Mechanism of Long QT Syndrome LQTS typically displays autosomal dominant Mendelian inheritance with variable penetrance 2 and rarely is inherited in a recessive fashion associated with sensorineural deafness. De novo variants of particularly severe forms are now being recognized. Linkage analysis first identified the potassium ion channel proteins KvLQT1 (KCNQ1) and HERG (KCNH2) as the basis for LQT types 1 and 2, and the sodium channel protein NaV1.5 (SCN5A) for type 3. Approximately 70% of patients with a clinical diagnosis will have identifiable mutations in 1 of the 12 genes now associated with the condition, with most located in genes encoding varying components of the potassium channel. 3 Depolarization (phase 0) of the cardiac action potential results from rapid sodium influx (I Na ), whereas repolarization (phases 2 and 3) is driven by potassium efflux via the slow (I ks ) and rapid (I kr ) components of the delayed rectifier current (Figure 2A). LQT1 and LQT2 result from mutations within α subunits of I ks and I kr, respectively, that reduce net potassium current and delay repolarization. Importantly, heterozygous loss of function mutations do not reproduce the LQTS 1 and 2 phenotypes, suggesting more complex effects at the genomic, RNA, or protein level. LQT3 results from gain of function in I Na, leading to persistent late, slow sodium influx (Figure 2B). Arrhythmia in LQT is thought to result from variable ion channel function and transmural dispersion of repolarization (TDR) across the ventricular myocardium, initiating an increase in calcium influx, sodium-calcium exchange current, and calcium overload. This triggers further fluxes in transmembrane gradient manifest as early afterdepolarizations (EADs) during phase 2/3, initiating torsades de pointes (TdP), the hallmark arrhythmia of LQTS. Subendocardial focal triggers generate scrolls of rotating excitation which bifurcate and terminate as a result of functional conduction block, explaining both the classical ECG appearance and high propensity for TdP to spontaneously terminate (Figure 1B). From the Inherited Cardiac Arrhythmia Program, Boston Children s Hospital (D.J.A.) and Cardiovascular Genetics Program, Brigham and Women s Hospital (C.A.M.), Boston, MA. Correspondence to Dominic J. Abrams, MD, MRCP, Department of Cardiology, Cardiac Arrhythmia Service, Children s Hospital, 300 Longwood Avenue, Boston, MA dominic.abrams@cardio.chboston.org (Circulation. 2014;129: ) 2014 American Heart Association, Inc. Circulation is available at DOI: /CIRCULATIONAHA

2 Abrams and MacRae Long QT Syndrome 1525 Figure 1. Electrocardiographic traces from leads II and V5 (A,C F) and lead II (B) in patients with long QT syndrome. A, ECG traces from the initial patient described showing low-amplitude, notched T-waves characteristic of LQT2. B, Alternating T-wave axis and morphology (T-wave alternans) leading to an episode of torsades de pointes (TdP) triggered by a ventricular ectopic beat. C, Traces from a previously asymptomatic individual who suffered significant QT prolongation (QTc 570 ms) and ventricular fibrillation following a head injury and intracranial hemorrhage. D, On recovery his QT interval normalized (QTc 440 ms), but (E) showed marked prolongation 2 minutes into recovery on exercise testing (QTc 550 ms). Genetic analysis identified deletion of 10 amino acid residues in KCNQ1. F, Severe QT prolongation (QTc 740 ms) in a 9-year-old child presenting with nocturnal seizures. Despite propranolol therapy he continued to have short runs of TdP and underwent primary prevention ICD implantation. A functionally deleterious missense mutation previously associated with severe phenotype was identified in SCN5A (c.g1231a; p.v411m). Genotype Phenotype Correlation Early analysis of families with LQTS assumed a penetrance of close to 100%, until genotyping identified a number of asymptomatic family members considered unaffected on clinical evaluation who nevertheless harbored familial mutations, with an average penetrance (ie, the ratio of clinically affected to the total number of mutation carriers) of 25%. 2 The highly variable penetrance of LQTS within families is now established, necessitating detailed and sequential clinical and

3 1526 Circulation April 8, 2014 Figure 2. Cardiac action potentials displayed with corresponding QRS-T wave complex on surface ECG (ECG). A, In the normal situation sodium influx (I Na ) initiates cellular depolarization during phase 0 (blue arrows) and potassium efflux via I kr and I Ks determines repolarization in phases 2 and 3 (red arrows). B, In long QT syndrome persistent sodium channel influx or reduced potassium efflux leads to prolongation of both action potential duration and QT interval. C, QT prolonging agents further inhibit I kr function leading to greater degrees of QT prolongation and often unmasks otherwise quiescent LQTS. genetic screening to identify affected family members (cascade screening). This highly variable penetrance and the paroxysmal nature of the arrhythmias are likely a result of multiple other inherited and acquired factors, most of which have yet to be identified, but which include autonomic innervation, hormonal influences, environmental factors, and even behavioral components. Some of the variation in penetrance may in part be explained by common genetic variants identified in genome-wide association studies. The presence of 2 variants in the NOS1AP gene in 205 South African patients with the same founder LQT mutation (KCNQ1: A431V) has been associated with significantly longer QT intervals and a greater probability of symptoms. 4 Clinical Manifestations LQTS may present at any time from fetal life onward. However, many individuals will be asymptomatic life-long. The natural history of 647 untreated patients aged >28 years found 13% suffered a cardiac arrest or sudden death before the age of Clinical events may be precipitated by specific triggers, in a broadly but not exclusively type-specific manner, such as exercise and specifically swimming in LQT1, emotion and auditory stimulation especially on waking in LQT2, and rest in LQT 3. As seizure activity attributable to cerebral anoxia during ventricular arrhythmias is relatively common, LQTS continues to be misdiagnosed as epilepsy, 5 although there may be discrete forms of LQTS associated with independent neurological phenotypes with specific seizure disorders. Symptomatic QT prolongation may be acquired secondary to severe electrolyte disturbance, medications, cerebral trauma, and myocardial disease. Differentiation between true secondary QT prolongation and unmasking of otherwise quiescent congenital LQTS have important implications for the individual and family (Figure 1C).

4 Abrams and MacRae Long QT Syndrome 1527 The risk of cardiac events relates to many interconnected factors which facilitate risk stratification: QT interval - Longer QT intervals represent enhanced electric instability within the myocardium and hence greater arrhythmic risk. 3,6 Patients who carry disease-causing mutations yet have normal QT intervals have a significantly lower risk compared to those with QT prolongation (4% versus 15% by the age of 40), yet their event rate remains 10-fold that of unaffected family members. 6 Age - Symptomatic infants represent an extreme end of the disease spectrum, typically with severe QT prolongation, and a significantly higher cumulative event rate in later life. 7 Ion channel mutations with proven functional effect have been associated with 10% of sudden infant death cases, with SCN5A mutations significantly overrepresented (>50%) compared with familial LQTS. 8 Although traditionally associated with younger patients, there is a continued risk of cardiac events in those over 40 years of age. Sex - Males are typically at higher risk during childhood and females from teenage life onward. 9 The QTc shortens by 20 ms in males but not females postpuberty, most likely because of the enhancing effects of testosterone and detrimental effects of estrogen on I kr current. The inhibitory effect of estrogen is thought contributory to the increased event rate seen in females with LQT2 postpuberty, postpartum, and postmenopause. LQT genotype - LQT1 is associated with a shorter QT interval (466±44 ms), lower cumulative cardiac event rate (30%), and lower incidence of cardiac arrest or sudden death (0.3%/yr) by 40 years of age compared with either LQT2 (490±49 ms; 46% and 0.6%/yr) or LQT3 (496±49 ms; 42% and 0.56%/yr). 3 A more complex genotype typically confers greater QT prolongation and higher risk of cardiac events, as seen in the autosomal recessive Jervell-Lange Nielsen syndrome 10 and potentially those with compound heterozygosity/digenic inheritance. Time-dependent syncope - recurrent syncope, particularly in the recent past, is associated with a significantly increased risk of subsequent cardiac arrest independent from other risk factors. 9 It remains difficult to develop truly robust risk prediction algorithms as a result of the high rate of new mutations in the most penetrant families. Most of the current risk predictors are not clearly corrected for other familial contributions. For example, family history itself has a complex relationship to risk, as the most severe phenotypes are unlikely to have a positive family history. The large families that populate many of the extant clinical studies may be difficult to assess without extensive genetic and clinical characterization of unaffected family members. In practice, risk assessment remains highly dependent on careful evaluation of each family by an expert clinician with genetic insight. Investigations Clinical Evaluation The corrected QT interval on 12-lead ECG forms the basis of investigation, 11 although miscalculation is common leading either to overdiagnosis and inappropriate treatment or a missed diagnosis in an at-risk individual. 5,11,12 The 99th percentile for QTc in adult males is 470 ms and in adult females 480 ms, with significant overlap between the normal spectrum and genetically affected individuals with no or only mild QT prolongation. 12 Other supportive ECG features with greater specificity but more subjectivity are T-wave morphological abnormalities and T-wave alternans (Figure 1). Concealed LQTS may be unmasked by either standing, exercise testing, or epinephrine challenge, which may lead to QT prolongation and T-wave morphological abnormalities in a type-specific manner As with the resting 12-lead, ECG parameters during provocation testing show overlap between LQT patients and the normal population. Repolarization abnormalities are seen in many other forms of inherited heart disease. Therefore, it is important to undertake echocardiography to exclude underlying structural heart disease. Ultimately, the clinical features are best understood in the context of the extended family. Genetic Evaluation Comprehensive genetic testing is an important component of the family evaluation, although careful counseling regarding the potential diagnostic, prognostic, and psychological impact of the test, future issues regarding insurance, and the genetic information nondiscrimination act (GINA) should be conducted before testing. The presence of many genetic variants of unknown significance ensures that ascribing true pathogenicity remains challenging. Segregation of genetic variants with phenotype across kindreds remains perhaps the most powerful predictor, facilitated by detailed familial evaluation within a single cardiovascular genetic center. 16 De novo variants in isolated cases, variants located in highly conserved pore regions absent in large population-based reference sequences, and truncating, indels, or splice variants with concordant disease mechanism all suggest pathogenicity. In vitro demonstration of disease-specific protein dysfunction may provide supportive evidence of variant pathogenicity, although detailed functional analysis cannot be performed for every identified mutation. Importantly, in vitro findings do not always translate to the complex in vivo physiological environment. Successful identification of disease-causing mutations has important implications for both proband and relatives and is a cost-effective mechanism for familial management. 17 Mutation-specific cascade testing of family members is a highly sensitive and specific mechanism (with rigorously defined pathogenic mutations) to

5 1528 Circulation April 8, 2014 identify genetically affected individuals, especially in those with ambiguous clinical findings or nonpenetrant disease. 16 Treatment Anti-Adrenergic Therapy (β-blockers and Cardiac Sympathectomy) Beta-blockers are firmly established as first line therapy in LQTS, 9 particularly nadolol and propranolol. 18 This beneficial effect is most pronounced in long QT 1, although it has recently been demonstrated in long QT Recurrent symptoms in long QT1 patients appropriately treated are almost exclusively attributable to noncompliance or to the concomitant use of QT prolonging agents. 20 Interruption of the upper thoracic sympathetic chain by left cardiac sympathetic denervation (LCSD) to reduce adrenergic stimulation of the heart has been used in LQTS, either as a mechanism to reduce arrhythmia burden in highly symptomatic individuals receiving repeated ICD therapies as an alternative strategy when β-blockers are contraindicated, 18 or for high risk infants with severe QT prolongation. Alternatively, LCSD may be an intermediate step between medical therapy and defibrillator implantation in select patients. Implantable Cardioverter- Defibrillators (ICD) Given the potential for sudden cardiac death, ICDs are frequently used in the management of LQTS, although the majority of patients will be adequately protected by medical therapy. Based on the findings of a recent European ICD registry, 21 the following indications were proposed for ICD implantation: (1) cardiac arrest on therapy, (2) cardiac arrest off therapy (although for LQT1 patients β-blockade may be sufficient), 20 (3) syncope on β-blockade where LCSD is unavailable or declined by the patient, (4) compound heterozygous/homozygous patients with syncope on β-blockade, (5) primary prevention in exceptional cases of extreme QT prolongation with other high risk features. Lifestyle Modification Although LQTS management should be highly individualized, a uniform rule is avoidance of all QT prolonging medications, a comprehensive list of which can be found at Pharmacological inhibition of I kr (Figure 2C) can produce significant QT prolongation and increased risk of life-threatening arrhythmia. 20 Disqualification from competitive sports and activities has been the recommendation for the majority of patients. The 36th Bethesda Conference recommends restriction to class 1A activities for all symptomatic individuals irrespective of QTc or genotype, asymptomatic males with QTc >470 ms and females >480 ms, and those with ICDs. Genetically positive patients with normal QT intervals may participate in competitive sports, with the exception of LQT1 patients and competitive swimming. Restriction of an individual from recreational or competitive activities is always a challenging decision, representing a balance between the risk of exertional sudden death and the medical, social, and psychological benefits of sport and exercise. The recent finding of only 2 events in 650 athlete-years follow-up in 60 appropriately counseled and treated LQTS patients (12±7 years; QTc 501±46 ms) is of interest. Both events occurred in the same boy with LQT1 who admitted β-blocker noncompliance on each occasion. This finding may prompt revision of current recommendations regarding inclusion in competitive sports. It also demonstrates the importance of patient/familial autonomy and self-determination on the background of detailed clinical assessment and counseling. 22 Future Developments Since the seminal finding that genetically-encoded ion channel variants are associated with LQTS, progress has been made in defining the molecular substrate and improving clinical management. Major challenges remain in accurate and individualized risk stratification and understanding the different mutation-specific, epigenetic, and environmental influences on ion channel gene expression. In vitro modeling of LQTS using induced pluripotent stem cells allows creation of patient-derived cardiomyocytes that recapitulate the LQT phenotype with regard to alterations in transmembrane ion current, prolonged action potential duration, after depolarizations, and arrhythmia. The ability to recreate patient-specific disease models has promise for future studies on the molecular and genetic substrate of LQTS and response to different pharmacological agents. Case Presentation: Outcome The history, QT interval, and T-wave morphology strongly supported the diagnosis of LQT2. She is currently asymptomatic on nadolol, titrated to a maximal tolerated dose of 120 mg daily. After genetic counseling, she underwent genetic testing. A missense mutation was identified in KCNH2 (c.c1682t; p.a561v), leading to a substitution of the amino acid alanine to valine at codon 561. Alanine at this position is highly conserved across species and on functional analysis, this mutation has detrimental effects on channel function. Cascade screening revealed the patient s daughter and sister both carried the variant. Disclosures Dr MacRae holds patents for modeling drug-induced repolarization disorders in the zebrafish. Dr Abrams reports no conflicts. References 1. Schwartz PJ, Stramba-Badiale M, Crotti L, Pedrazzini M, Besana A, Bosi G, Gabbarini F, Goulene K, Insolia R, Mannarino S, Mosca F, Nespoli L, Rimini A, Rosati E, Salice P, Spazzolini C. Prevalence of the congenital long-qt syndrome. Circulation. 2009;120: Priori SG, Napolitano C, Schwartz PJ. Low penetrance in the long-qt syndrome: clinical impact. Circulation. 1999;99: Priori SG, Schwartz PJ, Napolitano C, Bloise R, Ronchetti E, Grillo M, Vicentini A, Spazzolini C, Nastoli J, Bottelli G, Folli R, Cappelletti D. Risk stratification in the long-qt syndrome. N Engl J Med. 2003;348:

6 Abrams and MacRae Long QT Syndrome Crotti L, Monti MC, Insolia R, Peljto A, Goosen A, Brink PA, Greenberg DA, Schwartz PJ, George AL Jr. NOS1AP is a genetic modifier of the long-qt syndrome. Circulation. 2009;120: MacCormick JM, McAlister H, Crawford J, French JK, Crozier I, Shelling AN, Eddy CA, Rees MI, Skinner JR. Misdiagnosis of long QT syndrome as epilepsy at first presentation. Ann Emerg Med. 2009;54: Goldenberg I, Horr S, Moss AJ, Lopes CM, Barsheshet A, McNitt S, Zareba W, Andrews ML, Robinson JL, Locati EH, Ackerman MJ, Benhorin J, Kaufman ES, Napolitano C, Platonov PG, Priori SG, Qi M, Schwartz PJ, Shimizu W, Towbin JA, Vincent GM, Wilde AA, Zhang L. Risk for lifethreatening cardiac events in patients with genotype-confirmed long-qt syndrome and normal-range corrected QT intervals. J Am Coll Cardiol. 2011;57: Spazzolini C, Mullally J, Moss AJ, Schwartz PJ, McNitt S, Ouellet G, Fugate T, Goldenberg I, Jons C, Zareba W, Robinson JL, Ackerman MJ, Benhorin J, Crotti L, Kaufman ES, Locati EH, Qi M, Napolitano C, Priori SG, Towbin JA, Vincent GM. Clinical implications for patients with long QT syndrome who experience a cardiac event during infancy. J Am Coll Cardiol. 2009;54: Arnestad M, Crotti L, Rognum TO, Insolia R, Pedrazzini M, Ferrandi C, Vege A, Wang DW, Rhodes TE, George AL Jr, Schwartz PJ. Prevalence of long-qt syndrome gene variants in sudden infant death syndrome. Circulation. 2007;115: Goldenberg I, Moss AJ, Peterson DR, McNitt S, Zareba W, Andrews ML, Robinson JL, Locati EH, Ackerman MJ, Benhorin J, Kaufman ES, Napolitano C, Priori SG, Qi M, Schwartz PJ, Towbin JA, Vincent GM, Zhang L. Risk factors for aborted cardiac arrest and sudden cardiac death in children with the congenital long-qt syndrome. Circulation. 2008;117: Schwartz PJ, Spazzolini C, Crotti L, Bathen J, Amlie JP, Timothy K, Shkolnikova M, Berul CI, Bitner-Glindzicz M, Toivonen L, Horie M, Schulze-Bahr E, Denjoy I. The Jervell and Lange-Nielsen syndrome: natural history, molecular basis, and clinical outcome. Circulation. 2006;113: Postema P, De Jong JSSG, Van der Bilt IAC, Wilde AA. Accurate electrocardiographic assessment of the QT interval. Heart Rhythm 2008; 5: Taggart NW, Haglund CM, Tester DJ, Ackerman MJ. Diagnostic miscues in congenital long-qt syndrome. Circulation. 2007;115: Adler A, van der Werf C, Postema PG, Rosso R, Bhuiyan ZA, Kalman JM, Vohra JK, Guevara-Valdivia ME, Marquez MF, Halkin A, Benhorin J, Antzelevitch C, Wilde AA, Viskin S. The phenomenon of QT stunning : the abnormal QT prolongation provoked by standing persists even as the heart rate returns to normal in patients with long QT syndrome. Heart Rhythm. 2012;9: Sy RW, van der Werf C, Chattha IS, Chockalingam P, Adler A, Healey JS, Perrin M, Gollob MH, Skanes AC, Yee R, Gula LJ, Leong-Sit P, Viskin S, Klein GJ, Wilde AA, Krahn AD. Derivation and validation of a simple exercise-based algorithm for prediction of genetic testing in relatives of LQTS probands. Circulation. 2011;124: Vyas H, Hejlik J, Ackerman MJ. Epinephrine QT stress testing in the evaluation of congenital long-qt syndrome: diagnostic accuracy of the paradoxical QT response. Circulation. 2006;113: Ashley EA, Hershberger RE, Caleshu C, Ellinor PT, Garcia JG, Herrington DM, Ho CY, Johnson JA, Kittner SJ, Macrae CA, Mudd-Martin G, Rader DJ, Roden DM, Scholes D, Sellke FW, Towbin JA, Van Eyk J, Worrall BB; American Heart Association Advocacy Coordinating Committee. Genetics and cardiovascular disease: a policy statement from the American Heart Association. Circulation. 2012;126: Perez MV, Kumarasamy NA, Owens DK, Wang PJ, Hlatky MA. Cost-effectiveness of genetic testing in family members of patients with long-qt syndrome. Circ Cardiovasc Qual Outcomes. 2011;4: Chockalingam P, Crotti L, Girardengo G, Johnson JN, Harris KM, van der Heijden JF, Hauer RN, Beckmann BM, Spazzolini C, Rordorf R, Rydberg A, Clur SA, Fischer M, van den Heuvel F, Kääb S, Blom NA, Ackerman MJ, Schwartz PJ, Wilde AA. Not all beta-blockers are equal in the management of long QT syndrome types 1 and 2: higher recurrence of events under metoprolol. J Am Coll Cardiol. 2012;60: Wilde AA, Kaufman ES, Shimizu W, Moss AJ, Benhorin J, Lopes CM, Towbin JA, Spazzolini C, Crotti L, Zareba W, Goldenberg I, Kanters JK, Robinson JL, Qi M, Hofman N, Tester DJ, Bezzina CR, Alders M, Makimoto H, Kamakura S, Miyamoto Y, Kamakura S, Miyamoto Y, Andres ML, McNitt S, Schwartz PJ, Ackerman MJ. Sodium channel mutations, risk of cardiac events, and efficacy of beta-blocker therapy in type 3 long QT syndrome. Heart Rhythm 2012; 9:S Vincent GM, Schwartz PJ, Denjoy I, Swan H, Bithell C, Spazzolini C, Crotti L, Piippo K, Lupoglazoff JM, Villain E, Priori SG, Napolitano C, Zhang L. High efficacy of beta-blockers in long-qt syndrome type 1: contribution of noncompliance and QT-prolonging drugs to the occurrence of beta-blocker treatment failures. Circulation. 2009;119: Schwartz PJ, Spazzolini C, Priori SG, Crotti L, Vicentini A, Landolina M, Gasparini M, Wilde AA, Knops RE, Denjoy I, Toivonen L, Mönnig G, Al-Fayyadh M, Jordaens L, Borggrefe M, Holmgren C, Brugada P, De Roy L, Hohnloser SH, Brink PA.. Who are the long-qt patients who receive an implantable cardioverter-defibrillator and what happens to them? Data from the European Long-QT syndrome implantable cardioverter-defibrillator (LQTS ICD) registry. 22. Johnson JN, Ackerman MJ. Return to play? Athletes with congenital long QT syndrome. Br J Sports Med. 2013;47:28 33.

Long Q. Long QT Syndrome. A Guide for

Long Q. Long QT Syndrome. A Guide for Long Q Long QT Syndrome A Guide for Introduction Long QT syndrome (LQTS) is a genetic heart disorder due to the malfunction of cardiac ion channels that results in 4,000 deaths annually in the United States

More information

Left cardiac sympathectomy to manage beta-blocker resistant LQT patients

Left cardiac sympathectomy to manage beta-blocker resistant LQT patients Left cardiac sympathectomy to manage beta-blocker resistant LQT patients Lexin Wang, M.D., Ph.D. Introduction Congenital long QT syndrome (LQTS) is a disorder of prolonged cardiac repolarization, manifested

More information

Stage I: Binning Dashboard

Stage I: Binning Dashboard Stage I: Binning Dashboard P[ GENE/GENE PANEL: KCNQ1, KCNH2, SCN5A DISORDER: Romano-Ward Long QT Syndrome HGNC ID: 6294, 6251, 10593 OMIM ID: 192500, 613688, 603830 ACTIONABILITY PENETRANCE 1. Is there

More information

Prolonged QT Syndromes: Congenital and Acquired

Prolonged QT Syndromes: Congenital and Acquired Prolonged QT Syndromes: Congenital and Acquired April 30, 2014 Elizabeth S. Kaufman, MD I have no financial disclosures. MetroHealth Campus, Case Western Reserve University Prolonged QT Syndromes Congenital

More information

Epidemiology and clinical aspects of sudden cardiac death in the young van der Werf, C.

Epidemiology and clinical aspects of sudden cardiac death in the young van der Werf, C. UvA-DARE (Digital Academic Repository) Epidemiology and clinical aspects of sudden cardiac death in the young van der Werf, C. Link to publication Citation for published version (APA): van der Werf, C.

More information

Syncope in patients with inherited arrhythmogenic syndromes. Is it enough to justify ICD implantation?

Syncope in patients with inherited arrhythmogenic syndromes. Is it enough to justify ICD implantation? Innovations in Interventional Cardiology and Electrophysiology Thessaloniki 2014 Syncope in patients with inherited arrhythmogenic syndromes. Is it enough to justify ICD implantation? K. Letsas, MD, FESC

More information

Tailored therapy in long QT syndrome

Tailored therapy in long QT syndrome Tailored therapy in long QT syndrome Dominic Abrams St. Bartholomew s & Great Ormond Street Hospitals London, UK Disclosures None Tailored therapy in long QTS Which patients should have tailored therapy...?...

More information

FANS Long QT Syndrome Investigation Protocol (including suspected mutation carriers)

FANS Long QT Syndrome Investigation Protocol (including suspected mutation carriers) Clinical Features FANS Long QT Syndrome Investigation Protocol (including suspected mutation carriers) History Syncope or presyncope compatible with ventricular tachyarrhythmia, especially relating to

More information

Clinical Implications for Patients With Long QT Syndrome Who Experience a Cardiac Event During Infancy

Clinical Implications for Patients With Long QT Syndrome Who Experience a Cardiac Event During Infancy Journal of the American College of Cardiology Vol. 54, No. 9, 2009 2009 by the American College of Cardiology Foundation ISSN 0735-1097/09/$36.00 Published by Elsevier Inc. doi:10.1016/j.jacc.2009.05.029

More information

Risk for Life-Threatening Cardiac Events in Patients With Genotype-Confirmed Long-QT Syndrome and Normal-Range Corrected QT Intervals

Risk for Life-Threatening Cardiac Events in Patients With Genotype-Confirmed Long-QT Syndrome and Normal-Range Corrected QT Intervals Journal of the American College of Cardiology Vol. 57, No. 1, 2011 2011 by the American College of Cardiology Foundation ISSN 0735-1097/$36.00 Published by Elsevier Inc. doi:10.1016/j.jacc.2010.07.038

More information

CONGENITAL LONG QT SYNDROME(CLQTS) ASSOCIATED WITH COMPLETE ATRIOVENTRICULAR BLOCK. A CASE REPORT.

CONGENITAL LONG QT SYNDROME(CLQTS) ASSOCIATED WITH COMPLETE ATRIOVENTRICULAR BLOCK. A CASE REPORT. CONGENITAL LONG QT SYNDROME(CLQTS) ASSOCIATED WITH COMPLETE ATRIOVENTRICULAR BLOCK. A CASE REPORT. SAHA Annual Congress 2017. Samkelo Jiyana, Adele Greyling, Andile Nxele, ZM,Makrexeni,L.Pepeta. BACKGROUND

More information

The Role of Defibrillator Therapy in Genetic Arrhythmia Syndromes

The Role of Defibrillator Therapy in Genetic Arrhythmia Syndromes The Role of Defibrillator Therapy in Genetic Arrhythmia Syndromes RHEA C. PIMENTEL, MD, FACC, FHRS UNIVERSITY OF KANSAS HOSPITAL MID AMERICA CARDIOLOGY AUGUST 19, 2012 Monogenic Arrhythmia Syndromes Mendelian

More information

Genotype and Mutation Site Specific QT Adaptation during Exercise, Recovery and. Postural Changes in Children with LQTS

Genotype and Mutation Site Specific QT Adaptation during Exercise, Recovery and. Postural Changes in Children with LQTS Genotype and Mutation Site Specific QT Adaptation during Exercise, Recovery and Postural Changes in Children with LQTS Running title: Aziz et al.; Exercise Stress Testing in Pediatric LQTS Patients Peter

More information

Long-QT Syndrome After Age 40

Long-QT Syndrome After Age 40 Long-QT Syndrome After Age 40 Ilan Goldenberg, MD; Arthur J. Moss, MD; James Bradley, MS; Slava Polonsky, MS; Derick R. Peterson, PhD; Scott McNitt, MS; Wojciech Zareba, MD, PhD; Mark L. Andrews, BBA;

More information

Genotype- and Mutation Site Specific QT Adaptation During Exercise, Recovery, and Postural Changes in Children With Long-QT Syndrome

Genotype- and Mutation Site Specific QT Adaptation During Exercise, Recovery, and Postural Changes in Children With Long-QT Syndrome Genotype- and Mutation Site Specific QT Adaptation During Exercise, Recovery, and Postural Changes in Children With Long-QT Syndrome Peter F. Aziz, MD; Tammy S. Wieand, MS; Jamie Ganley, RN; Jacqueline

More information

WINDLAND SMITH RICE SUDDEN DEATH GENOMICS LABORATORY

WINDLAND SMITH RICE SUDDEN DEATH GENOMICS LABORATORY Learning Objectives to Disclose: To CRITIQUE the ICD and its role in the treatment of BrS, CPVT, and LQTS WINDLAND SMITH RICE SUDDEN DEATH GENOMICS LABORATORY Conflicts of Interest to Disclose: Consultant

More information

Is There a Genomic Basis to Acquired Channelopathic disease

Is There a Genomic Basis to Acquired Channelopathic disease Is There a Genomic Basis to Acquired Channelopathic disease Yaniv Bar-Cohen, M.D. Associate Professor of Pediatrics Division of Cardiology / Electrophysiology Children s Hospital Los Angeles Keck School

More information

Original Articles. Utility of Treadmill Testing in Identification and Genotype Prediction in Long-QT Syndrome

Original Articles. Utility of Treadmill Testing in Identification and Genotype Prediction in Long-QT Syndrome Original Articles Utility of Treadmill Testing in Identification and Genotype Prediction in Long-QT Syndrome Jorge A. Wong, MD; Lorne J. Gula, MD; George J. Klein, MD; Raymond Yee, MD; Allan C. Skanes,

More information

Genetic Testing for Congenital Long QT Syndrome

Genetic Testing for Congenital Long QT Syndrome Genetic Testing for Congenital Long QT Syndrome Policy Number: 2.04.43 Last Review: 11/2013 Origination: 6/2007 Next Review: 11/2014 Policy Blue Cross and Blue Shield of Kansas City (Blue KC) will provide

More information

Congenital long QT syndrome of particularly malignant course connected with so far unknown mutation in the sodium channel SCN5A gene

Congenital long QT syndrome of particularly malignant course connected with so far unknown mutation in the sodium channel SCN5A gene CASE REPORT Cardiology Journal 2013, Vol. 20, No. 1, pp. 78 82 10.5603/CJ.2013.0012 Copyright 2013 Via Medica ISSN 1897 5593 Congenital long QT syndrome of particularly malignant course connected with

More information

Risk for Life-Threatening Cardiac Events in Patients With Genotype-Confirmed LongQT Syndrome and Normal-Range Corrected QT Intervals

Risk for Life-Threatening Cardiac Events in Patients With Genotype-Confirmed LongQT Syndrome and Normal-Range Corrected QT Intervals Risk for Life-Threatening Cardiac Events in Patients With Genotype-Confirmed LongQT Syndrome and Normal-Range Corrected QT Intervals Goldenberg, Ilan; Horr, Samuel; Moss, Arthur J.; Lopes, Coeli M.; Barsheshet,

More information

Professor Eric Schulze-Bahr

Professor Eric Schulze-Bahr No CoI. Professor Eric Schulze-Bahr Institute for Genetics of Heart Diseases Department of Cardiology and Angiology University Hospital Münster / Germany ICD therapy in asymptomatic or borderline LQTS

More information

Active Cascade Screening in Primary Inherited Arrhythmia Syndromes

Active Cascade Screening in Primary Inherited Arrhythmia Syndromes Journal of the American College of Cardiology Vol. 55, No. 23, 2010 2010 by the American College of Cardiology Foundation ISSN 0735-1097/$36.00 Published by Elsevier Inc. doi:10.1016/j.jacc.2009.12.063

More information

Further insights into inheritable arrhythmia syndromes: Focus on electrocardiograms Postema, P.G.

Further insights into inheritable arrhythmia syndromes: Focus on electrocardiograms Postema, P.G. UvA-DARE (Digital Academic Repository) Further insights into inheritable arrhythmia syndromes: Focus on electrocardiograms Postema, P.G. Link to publication Citation for published version (APA): Postema,

More information

Pearls of the ESC/ERS Guidelines 2015 Channelopathies

Pearls of the ESC/ERS Guidelines 2015 Channelopathies Pearls of the ESC/ERS Guidelines 2015 Channelopathies Carina Blomstrom Lundqvist Dept Cardiology, Uppsala, Sweden Content 2015 ESC Guidelines for the Management of Patients with Ventricular Arrhythmias

More information

Congenital long QT syndrome (LQTS) affects 1 in 2500

Congenital long QT syndrome (LQTS) affects 1 in 2500 Original Article Left Cardiac Sympathetic Denervation in Long QT Syndrome Analysis of Therapeutic Nonresponders J. Martijn Bos, MD, PhD; Katy M. Bos, MS, RN, CNS; Jonathan N. Johnson, MD; Christopher Moir,

More information

Long-QT Syndrome. The Cl inic a l Problem

Long-QT Syndrome. The Cl inic a l Problem T h e n e w e ng l a nd j o u r na l o f m e dic i n e clinical practice Long-QT Syndrome Dan M. Roden, M.D. This Journal feature begins with a case vignette highlighting a common clinical problem. Evidence

More information

Are there low risk patients in Brugada syndrome?

Are there low risk patients in Brugada syndrome? Are there low risk patients in Brugada syndrome? Pedro Brugada MD, PhD Andrea Sarkozy MD Risk stratification in Brugada syndrome In the last years risk stratification in Brugada syndrome has become the

More information

ΤΙ ΠΡΕΠΕΙ ΝΑ ΓΝΩΡΙΖΕΙ ΟΓΕΝΙΚΟΣ ΚΑΡΔΙΟΛΟΓΟΣ ΓΙΑ ΤΙΣ ΔΙΑΥΛΟΠΑΘΕΙΕΣ

ΤΙ ΠΡΕΠΕΙ ΝΑ ΓΝΩΡΙΖΕΙ ΟΓΕΝΙΚΟΣ ΚΑΡΔΙΟΛΟΓΟΣ ΓΙΑ ΤΙΣ ΔΙΑΥΛΟΠΑΘΕΙΕΣ ΤΙ ΠΡΕΠΕΙ ΝΑ ΓΝΩΡΙΖΕΙ ΟΓΕΝΙΚΟΣ ΚΑΡΔΙΟΛΟΓΟΣ ΓΙΑ ΤΙΣ ΔΙΑΥΛΟΠΑΘΕΙΕΣ ΣΤΕΛΙΟΣ ΠΑΡΑΣΚΕΥΑÏΔΗΣ ΔΙΕΥΘΥΝΤΗΣ ΕΣΥ Α Καρδιολογική Κλινική ΑΠΘ, Νοσοκομείο ΑΧΕΠΑ, Θεσσαλονίκη NO CONFLICT OF INTEREST Sudden Cardiac Death

More information

Asymptomatic Long QT. Prof. Dr. Martin Borggrefe Mannheim

Asymptomatic Long QT. Prof. Dr. Martin Borggrefe Mannheim Asymptomatic Long QT Prof. Dr. Martin Borggrefe Mannheim QT interval Distribution of QTc intervals in large population-based studies Viskin S, Heart Rhythm 2009; 6: 711-715 QT interval Distribution of

More information

Basics of Structure/Function of Sodium and Potassium Channels Barry London, MD PhD

Basics of Structure/Function of Sodium and Potassium Channels Barry London, MD PhD Basics of Structure/Function of Sodium and Potassium Channels Barry London, MD PhD University of Pittsburgh Medical Center Pittsburgh, PA International Symposium of Inherited Arrhythmia Disorders and Hypertrophic

More information

Cost-Effectiveness of Genetic Testing in Family Members of Patients With Long-QT Syndrome

Cost-Effectiveness of Genetic Testing in Family Members of Patients With Long-QT Syndrome Cost-Effectiveness of Genetic Testing in Family Members of Patients With Long-QT Syndrome Marco V. Perez, MD; Narmadan A. Kumarasamy, MPH; Douglas K. Owens, MD, MS; Paul J. Wang, MD; Mark A. Hlatky, MD

More information

Long QT Syndrome in Children in the Era of Implantable Defibrillators

Long QT Syndrome in Children in the Era of Implantable Defibrillators Journal of the American College of Cardiology Vol. 50, No. 14, 2007 2007 by the American College of Cardiology Foundation ISSN 0735-1097/07/$32.00 Published by Elsevier Inc. doi:10.1016/j.jacc.2007.05.042

More information

QUESTION: In a patient with different QT intervals, which one will give the highest prognostic accuracy? REPLY:

QUESTION: In a patient with different QT intervals, which one will give the highest prognostic accuracy? REPLY: QUESTION: In a patient with different QT intervals, which one will give the highest prognostic accuracy? REPLY: First, there are two possibilities: I) It is not known, if the patient (subject) presented

More information

Epinephrine Unmasks Latent Mutation Carriers With LQT1 Form of Congenital Long-QT Syndrome

Epinephrine Unmasks Latent Mutation Carriers With LQT1 Form of Congenital Long-QT Syndrome Journal of the American College of Cardiology Vol. 41, No. 4, 2003 2003 by the American College of Cardiology Foundation ISSN 0735-1097/03/$30.00 Published by Elsevier Science Inc. doi:10.1016/s0735-1097(02)02850-4

More information

Strength and weakness of genetic testing in clinical routine.

Strength and weakness of genetic testing in clinical routine. Strength and weakness of genetic testing in clinical routine. Silvia G Priori MD PhD Molecular Cardiology, IRCCS Fondazione Maugeri Pavia, Italy AND Leon Charney Division of Cardiology, Cardiovascular

More information

Anton Jervell and Fred Lange-Nielsen. Evaluation and Management of Athletes With Long QT Syndrome: An Evolved Paradigm.

Anton Jervell and Fred Lange-Nielsen. Evaluation and Management of Athletes With Long QT Syndrome: An Evolved Paradigm. 660294SPHXXX10.1177/1941738116660294Gomez et al research-article2016 vol. 8 no. 6 [ Primary Care ] Evaluation and Management of Athletes With Long QT Syndrome: An Evolved Paradigm Andrew T. Gomez, MD,*

More information

QT Interval: The Proper Measurement Techniques.

QT Interval: The Proper Measurement Techniques. In the name of God Shiraz E-Medical Journal Vol. 11, No. 2, April 2010 http://semj.sums.ac.ir/vol11/apr2010/88044.htm QT Interval: The Proper Measurement Techniques. Basamad Z*. * Assistant Professor,

More information

Arrhythmia/Electrophysiology. Risk Factors for Aborted Cardiac Arrest and Sudden Cardiac Death in Children With the Congenital Long-QT Syndrome

Arrhythmia/Electrophysiology. Risk Factors for Aborted Cardiac Arrest and Sudden Cardiac Death in Children With the Congenital Long-QT Syndrome Arrhythmia/Electrophysiology Risk Factors for Aborted Cardiac Arrest and Sudden Cardiac Death in Children With the Congenital Long-QT Syndrome Ilan Goldenberg, MD; Arthur J. Moss, MD; Derick R. Peterson,

More information

Probability of diagnosing long QT syndrome in children and adolescents according to the criteria of the HRS/EHRA/APHRS expert consensus statement

Probability of diagnosing long QT syndrome in children and adolescents according to the criteria of the HRS/EHRA/APHRS expert consensus statement European Heart Journal (2016) 37, 2490 2497 doi:10.1093/eurheartj/ehw072 CLINICAL RESEARCH Arrhythmia/electrophysiology Probability of diagnosing long QT syndrome in children and adolescents according

More information

Genetic Testing for Cardiac Ion Channelopathies

Genetic Testing for Cardiac Ion Channelopathies Genetic Testing for Cardiac Ion Channelopathies Policy Number: 2.04.43 Last Review: 11/2018 Origination: 6/2007 Next Review: 11/2019 Policy Blue Cross and Blue Shield of Kansas City (Blue KC) will provide

More information

The congenital long-qt syndrome (LQTS) is a life-threatening

The congenital long-qt syndrome (LQTS) is a life-threatening August 2012 Arrhythmogenic Disorders of Genetic Origin The congenital long-qt syndrome (LQTS) is a life-threatening cardiac arrhythmia syndrome that represents a leading cause of sudden death in the young.

More information

JERVELL AND LANGE-NIELSEN SYNDROME IN DEAF SCHOOL CHILDREN POPULATION

JERVELL AND LANGE-NIELSEN SYNDROME IN DEAF SCHOOL CHILDREN POPULATION ORIGINAL ARTICLE JERVELL AND LANGE-NIELSEN SYNDROME IN DEAF SCHOOL CHILDREN POPULATION Huma Farrukh 1, Arshad Khushdil 2, Farrukh Saleem 3, Azra Ehsan 4 ABSTRACT Objective: To identify the patients of

More information

When VF is the endpoint, wait and see is not always the best option.

When VF is the endpoint, wait and see is not always the best option. Being free of symptoms does not necessarily mean free of arrhythmias. This Holter is from a asymptomatic 48 years old female with LQT2 When VF is the endpoint, wait and see is not always the best option.

More information

Large Deletion in KCNQ1 Identified in a Family with Jervell and Lange-Nielsen Syndrome

Large Deletion in KCNQ1 Identified in a Family with Jervell and Lange-Nielsen Syndrome Case Report Diagnostic Genetics Ann Lab Med 2014;34:395-399 http://dx.doi.org/10.3343/alm.2014.34.5.395 ISSN 2234-3806 eissn 2234-3814 Large Deletion in KCNQ1 Identified in a Family with Jervell and Lange-Nielsen

More information

Genetics of Sudden Cardiac Death. Geoffrey Pitt Ion Channel Research Unit Duke University. Disclosures: Grant funding from Medtronic.

Genetics of Sudden Cardiac Death. Geoffrey Pitt Ion Channel Research Unit Duke University. Disclosures: Grant funding from Medtronic. Genetics of Sudden Cardiac Death Geoffrey Pitt Ion Channel Research Unit Duke University Disclosures: Grant funding from Medtronic Duke U N I V E R S I T Y Sudden Cardiac Death High incidence 50-100 per

More information

CME Article Brugada pattern masking anterior myocardial infarction

CME Article Brugada pattern masking anterior myocardial infarction Electrocardiography Series Singapore Med J 2011; 52(9) : 647 CME Article Brugada pattern masking anterior myocardial infarction Seow S C, Omar A R, Hong E C T Cardiology Department, National University

More information

Clinical and molecular genetic risk determinants in adult long QT syndrome type 1 and 2 patients

Clinical and molecular genetic risk determinants in adult long QT syndrome type 1 and 2 patients Koponen et al. BMC Medical Genetics (2018) 19:56 https://doi.org/10.1186/s12881-018-0574-0 RESEARCH ARTICLE Open Access Clinical and molecular genetic risk determinants in adult long QT syndrome type 1

More information

Risk of Aborted Cardiac Arrest or Sudden Cardiac Death During Adolescence in the Long-QT Syndrome JAMA. 2006;296:

Risk of Aborted Cardiac Arrest or Sudden Cardiac Death During Adolescence in the Long-QT Syndrome JAMA. 2006;296: ORIGINAL CONTRIBUTION Risk of Aborted Cardiac Arrest or Sudden Cardiac Death During Adolescence in the Long-QT Syndrome Jenny B. Hobbs, MD Derick R. Peterson, PhD Arthur J. Moss, MD Scott McNitt, MS Wojciech

More information

Original Article. Follow-Up of 316 Molecularly Defined Pediatric Long-QT Syndrome Patients Clinical Course, Treatments, and Side Effects

Original Article. Follow-Up of 316 Molecularly Defined Pediatric Long-QT Syndrome Patients Clinical Course, Treatments, and Side Effects Original Article Follow-Up of 316 Molecularly Defined Pediatric Long-QT Syndrome Patients Clinical Course, Treatments, and Side Effects Mikael Koponen, MD; Annukka Marjamaa, MD, PhD; Anita Hiippala, MD;

More information

Case Demonstrations in Congenital and Acquired Long QT Syndrome

Case Demonstrations in Congenital and Acquired Long QT Syndrome Case Demonstrations in Congenital and Acquired Long QT Syndrome Can You Make A Correct ECG Interpretation? Li Zhang, MD; 1-2 G. Michael Vincent, MD 1 1. LQTS Studies, Department t of Medicine i LDS Hospital,

More information

Arrhythmia/Electrophysiology

Arrhythmia/Electrophysiology Arrhythmia/Electrophysiology The Common Long-QT Syndrome Mutation KCNQ1/A341V Causes Unusually Severe Clinical Manifestations in Patients With Different Ethnic Backgrounds Toward a Mutation-Specific Risk

More information

Effect of beta-blockers on QT dynamics in the long QT syndrome: measuring the benefit

Effect of beta-blockers on QT dynamics in the long QT syndrome: measuring the benefit Europace (2014) 16, 1847 1851 doi:10.1093/europace/euu086 CLINICAL RESEARCH Channelopathies Effect of beta-blockers on QT dynamics in the long QT syndrome: measuring the benefit Matthew T. Bennett 1 *,

More information

Clinical Policy Title: Genetic testing for long QT syndrome (LQTS)

Clinical Policy Title: Genetic testing for long QT syndrome (LQTS) Clinical Policy Title: Genetic testing for long QT syndrome (LQTS) Clinical Policy Number: 04.01.02 Effective Date: Dec. 1, 2013 Initial Review Date: June 19, 2013 Most Recent Review Date: July 20, 2016

More information

The congenital long-qt syndrome (LQTS) is an inherited

The congenital long-qt syndrome (LQTS) is an inherited Clinical Implications for Affected arents and Siblings of robands With Long-QT Syndrome John Kimbrough, MD, hd; Arthur J. Moss, MD; Wojciech Zareba, MD, hd; Jennifer L. Robinson, MS; W. Jackson Hall, hd;

More information

Exercise guidelines in athletes with isolated repolarisation abnormalities and structurally normal heart.

Exercise guidelines in athletes with isolated repolarisation abnormalities and structurally normal heart. Exercise guidelines in athletes with isolated repolarisation abnormalities and structurally normal heart. Hanne Rasmusen Consultant cardiologist, PhD Dept. of Cardiology Bispebjerg University Hospital

More information

Abnormal repolarization dynamics revealed in exercise test in long QT syndrome mutation carriers with normal resting QT interval

Abnormal repolarization dynamics revealed in exercise test in long QT syndrome mutation carriers with normal resting QT interval Europace (2010) 12, 1296 1301 doi:10.1093/europace/euq184 CLINICAL RESEARCH Channelopathies Abnormal repolarization dynamics revealed in exercise test in long QT syndrome mutation carriers with normal

More information

P. Brugada 1, R. Brugada 2 and J. Brugada 3. Introduction. U.S.A.; 3 Unitat d Arritmias, Hospital Clinic, Barcelona, Spain

P. Brugada 1, R. Brugada 2 and J. Brugada 3. Introduction. U.S.A.; 3 Unitat d Arritmias, Hospital Clinic, Barcelona, Spain European Heart Journal (2000) 21, 321 326 Article No. euhj.1999.1751, available online at http://www.idealibrary.com on Sudden death in patients and relatives with the syndrome of right bundle branch block,

More information

CHANNELOPATHIES IS GENETIC TESTING ESSENTIAL IN PTS MANAGEMENT

CHANNELOPATHIES IS GENETIC TESTING ESSENTIAL IN PTS MANAGEMENT CHANNELOPATHIES IS GENETIC TESTING ESSENTIAL IN PTS MANAGEMENT Inherited and Rare Cardiac Diseases Unit Heart Center for the Young and Athletes ONASSIS CARDIAC SURGERY CENTRE DIAGNOSIS ION CHANNEL DISEASE

More information

Patient Resources: Cardiac Channelopathies

Patient Resources: Cardiac Channelopathies Patient Resources: Cardiac Channelopathies Overview of Cardiac Channelopathies: CPVT, Long QT Syndrome and Brugada Syndrome Heart muscle cells contract because of movement of certain molecules (called

More information

ICD in a young patient with syncope

ICD in a young patient with syncope ICD in a young patient with syncope Konstantinos P. Letsas, MD, FESC Second Department of Cardiology Evangelismos General Hospital of Athens Athens, Greece Case presentation A 17-year-old apparently healthy

More information

Journal of the American College of Cardiology Vol. 47, No. 1, by the American College of Cardiology Foundation ISSN /06/$32.

Journal of the American College of Cardiology Vol. 47, No. 1, by the American College of Cardiology Foundation ISSN /06/$32. Journal of the American College of Cardiology Vol. 47, No. 1, 2006 2006 by the American College of Cardiology Foundation ISSN 0735-1097/06/$32.00 Published by Elsevier Inc. doi:10.1016/j.jacc.2005.07.068

More information

Medical Policy An Independent Licensee of the Blue Cross and Blue Shield Association

Medical Policy An Independent Licensee of the Blue Cross and Blue Shield Association Genetic Testing for Page 1 of 23 Medical Policy An Independent Licensee of the Blue Cross and Blue Shield Association Title: Genetic Testing for Professional Institutional Original Effective Date: August

More information

Woo-Sik Yu, M.D. 1, Tae-Hoon Kim, M.D. 2, Jee won Suh, M.D. 1, Seunghwan Song, M.D. 1, Chang Young Lee, M.D. 1, Boyoung Joung, M.D., Ph.D.

Woo-Sik Yu, M.D. 1, Tae-Hoon Kim, M.D. 2, Jee won Suh, M.D. 1, Seunghwan Song, M.D. 1, Chang Young Lee, M.D. 1, Boyoung Joung, M.D., Ph.D. Korean J Thorac Cardiovasc Surg 2015;48:220-224 ISSN: 2233-601X (Print) ISSN: 2093-6516 (Online) Case Report http://dx.doi.org/10.5090/kjtcs.2015.48.3.220 Thoracoscopic Left Cardiac Sympathetic Denervation

More information

Genetic and Clinical Advances in Congenital Long QT Syndrome

Genetic and Clinical Advances in Congenital Long QT Syndrome Circulation Journal Official Journal of the Japanese Circulation Society http://www.j-circ.or.jp REVIEW Genetic and Clinical Advances in Congenital Long QT Syndrome Yuka Mizusawa, MD; Minoru Horie, MD,

More information

FANS Paediatric Pathway for Inherited Arrhythmias*

FANS Paediatric Pathway for Inherited Arrhythmias* FANS Paediatric Pathway for Inherited Arrhythmias* The pathway is based on the HRS/EHRA/APHRS Expert Consensus Statement on the Diagnosis and Management of Patients with Inherited Primary Arrhythmia Syndromes

More information

Genetic Testing for Cardiac Ion Channelopathies

Genetic Testing for Cardiac Ion Channelopathies Applies to all products administered or underwritten by Blue Cross and Blue Shield of Louisiana and its subsidiary, HMO Louisiana, Inc.(collectively referred to as the Company ), unless otherwise provided

More information

Protocol. Genetic Testing for Cardiac Ion Channelopathies

Protocol. Genetic Testing for Cardiac Ion Channelopathies Protocol Genetic Testing for Cardiac Ion Channelopathies (20443) Medical Benefit Effective Date: 04/0/8 Next Review Date: /8 Preauthorization Yes Review Dates: 05/09, 05/0, 03/, 03/2, 03/3, 03/4, 03/5,

More information

Name of Presenter: Marwan Refaat, MD

Name of Presenter: Marwan Refaat, MD NAAMA s 24 th International Medical Convention Medicine in the Next Decade: Challenges and Opportunities Beirut, Lebanon June 26 July 2, 2010 I have no actual or potential conflict of interest in relation

More information

Description. Page: 1 of 31. Genetic Testing for Cardiac Ion Channelopathies. Last Review Status/Date: December 2015

Description. Page: 1 of 31. Genetic Testing for Cardiac Ion Channelopathies. Last Review Status/Date: December 2015 Genetic Testing for Cardiac Ion Last Review Status/Date: December 2015 Genetic Testing for Cardiac Ion Description Page: 1 of 31 Genetic testing is available for patients suspected of having cardiac ion

More information

Medical Policy An independent licensee of the Blue Cross Blue Shield Association

Medical Policy An independent licensee of the Blue Cross Blue Shield Association Genetic Testing for Page 1 of 29 Medical Policy An independent licensee of the Blue Cross Blue Shield Association Title: Genetic Testing for Professional Institutional Original Effective Date: August 12,

More information

T he autosomal dominant form of the congenital long QT

T he autosomal dominant form of the congenital long QT 141 LETTER TO JMG The use of genotype-phenotype correlations in mutation analysis for the long QT syndrome I M Van Langen, E Birnie, M Alders, R J Jongbloed, H Le Marec, AAMWilde... T he autosomal dominant

More information

Medical Policy. Description/Scope. Rationale

Medical Policy. Description/Scope. Rationale Subject: Document #: Current Effective Date: 03/29/2017 Status: Reviewed Last Review Date: 02/02/2017 Description/Scope This document addresses genetic testing of cardiac ion channel mutations in persons

More information

Drugs Controlling Myocyte Excitability and Conduction at the AV node Singh and Vaughan-Williams Classification

Drugs Controlling Myocyte Excitability and Conduction at the AV node Singh and Vaughan-Williams Classification Drugs Controlling Myocyte Excitability and Conduction at the AV node Singh and Vaughan-Williams Classification Class I Na Channel Blockers Flecainide Propafenone Class III K channel Blockers Dofetilide,

More information

A quantitative assessment of T-wave morphology in LQT1, LQT2, and healthy individuals based on Holter recording technology

A quantitative assessment of T-wave morphology in LQT1, LQT2, and healthy individuals based on Holter recording technology A quantitative assessment of T-wave morphology in LQT1, LQT2, and healthy individuals based on Holter recording technology Martino Vaglio, MS, Jean-Philippe Couderc, PhD, MBA, Scott McNitt, MS, Xiaojuan

More information

Long QT syndrome diagnosed in the postpartum period (RCD code: VII-V-1A.2)

Long QT syndrome diagnosed in the postpartum period (RCD code: VII-V-1A.2) Journal of Rare Cardiovascular Diseases 2014; 1 (6): 15 20 www.jrcd.eu CASE REPORTS Cardiovascular diseases in pregnancy Long QT syndrome diagnosed in the postpartum period (RCD code: VII-V-1A.2) Piotr

More information

Ripolarizzazione precoce. Torino, 24th October Non così innocente come si pensava

Ripolarizzazione precoce. Torino, 24th October Non così innocente come si pensava Asymptomatic inherited arrhythmia syndromes: Drug induced Brugada Syndrome: when a prophylactic ICD is indicated? how high (or low) is QT the risk? Asymptomatic short Ripolarizzazione precoce. Torino,

More information

Section: Effective Date: Subsection: Original Policy Date: Subject: Page: Last Review Status/Date: Background

Section: Effective Date: Subsection: Original Policy Date: Subject: Page: Last Review Status/Date: Background Genetic Testing for Cardiac Ion Last Review Status/Date: March 2014 Genetic Testing for Cardiac Ion Description Page: 1 of 22 Genetic testing is available for patients suspected of having cardiac ion channelopathies

More information

How to manage a patient with short QT syndrome?

How to manage a patient with short QT syndrome? How to manage a patient with short QT syndrome? Torino, 27 ottobre2012 Carla Giustetto Division of Cardiology University of Torino QT 280 ms QTc 260 ms Narrow, tall and peaked T waves High incidence of

More information

Accepted Manuscript. Eiichiro Nakagawa, M.D., Ph.D., Takahiko Naruko, M.D., Ph.D., Tosinori Makita, M.D., Ph.D

Accepted Manuscript. Eiichiro Nakagawa, M.D., Ph.D., Takahiko Naruko, M.D., Ph.D., Tosinori Makita, M.D., Ph.D Accepted Manuscript Reproducibility and diagnostic usefulness of repeated sodium channel blocker test at higher precordial ECG recording in a patient with Brugada syndrome Eiichiro Nakagawa, M.D., Ph.D.,

More information

What is New in CPVT? Diagnosis Genetics Arrhythmia Mechanism Treatment. Andreas Pflaumer

What is New in CPVT? Diagnosis Genetics Arrhythmia Mechanism Treatment. Andreas Pflaumer What is New in CPVT? Diagnosis Genetics Arrhythmia Mechanism Treatment Andreas Pflaumer Diagnosis of CPVT Induction of different types of VES or VT by exercise or catecholamines AND exclusion of of other

More information

Clinical and Electrocardiographic Characteristics of Patients with Brugada Syndrome: Report of Five Cases of Documented Ventricular Fibrillation

Clinical and Electrocardiographic Characteristics of Patients with Brugada Syndrome: Report of Five Cases of Documented Ventricular Fibrillation J Arrhythmia Vol 25 No 1 2009 Original Article Clinical and Electrocardiographic Characteristics of Patients with Brugada Syndrome: Report of Five Cases of Documented Ventricular Fibrillation Seiji Takashio

More information

Management of Arrhythmia Syndromes in the Newborn and Very Young Child: Unique Risks & Barriers in this Age Population

Management of Arrhythmia Syndromes in the Newborn and Very Young Child: Unique Risks & Barriers in this Age Population Management of Arrhythmia Syndromes in the Newborn and Very Young Child: Unique Risks & Barriers in this Age Population Mitchell Cohen, MD FACC FHRS Co-Director Heart Center Chief of Pediatric Cardiology

More information

Congenital long-qt syndrome (LQTS) is a genetic disorder

Congenital long-qt syndrome (LQTS) is a genetic disorder Original Article Genetic Characteristics of Children and Adolescents With Long-QT Syndrome Diagnosed by School-Based Electrocardiographic Screening Programs Masao Yoshinaga, MD, PhD; Yu Kucho, MD; Jav

More information

Update of Diagnosis and Management of Inherited Cardiac Arrhythmias

Update of Diagnosis and Management of Inherited Cardiac Arrhythmias Circulation Journal Official Journal of the Japanese Circulation Society http://www.j-circ.or.jp REVIEW Update of Diagnosis and Management of Inherited Cardiac Arrhythmias Wataru Shimizu, MD, PhD Over

More information

Clinical Policy Title: Genetic testing for long QT syndrome (LQTS)

Clinical Policy Title: Genetic testing for long QT syndrome (LQTS) Clinical Policy Title: Genetic testing for long QT syndrome (LQTS) Clinical Policy Number: 04.01.02 Effective Date: Dec. 1, 2013 Initial Review Date: June 19, 2013 Most Recent Review Date: July 19, 2017

More information

Corporate Medical Policy

Corporate Medical Policy Corporate Medical Policy Genetic Testing for Cardiac Ion Channelopathies File Name: Origination: Last CAP Review: Next CAP Review: Last Review: genetic_testing_for_cardiac_ion_channelopathies 10/2008 4/2018

More information

Phase 2 Early Afterdepolarization as a Trigger of Polymorphic Ventricular Tachycardia in Acquired Long-QT Syndrome

Phase 2 Early Afterdepolarization as a Trigger of Polymorphic Ventricular Tachycardia in Acquired Long-QT Syndrome Phase 2 Early Afterdepolarization as a Trigger of Polymorphic Ventricular Tachycardia in Acquired Long-QT Syndrome Direct Evidence From Intracellular Recordings in the Intact Left Ventricular Wall Gan-Xin

More information

Genetic testing in Cardiomyopathies

Genetic testing in Cardiomyopathies Genetic testing in Cardiomyopathies Silvia Giuliana Priori Cardiovascular Genetics, Langone Medical Center, New York University School of Medicine, New York, USA and Molecular Cardiology, IRCCS Fondazione

More information

Pronounced Shortening of QT Interval With Mexiletine Infusion Test in Patients With Type 3 Congenital Long QT Syndrome

Pronounced Shortening of QT Interval With Mexiletine Infusion Test in Patients With Type 3 Congenital Long QT Syndrome 340 FUNASAKO M et al. Circulation Journal ORIGINAL ARTICLE Official Journal of the Japanese Circulation Society http://www.j-circ.or.jp Arrhythmia/Electrophysiology Pronounced Shortening of Interval With

More information

Pediatric Cohort With Long QT Syndrome

Pediatric Cohort With Long QT Syndrome 696 OZAWA J et al. Circulation Journal ORIGINAL ARTICLE Official Journal of the Japanese Circulation Society http://www.j-circ.or.jp Pediatric Cardiology and Adult Congenital Heart Disease Pediatric Cohort

More information

The congenital long-qt syndrome (LQTS) is a familial

The congenital long-qt syndrome (LQTS) is a familial Arrhythmia/Electrophysiology Genotype-Specific Onset of Arrhythmias in Congenital Long-QT Syndrome Possible Therapy Implications Hanno L. Tan, MD, PhD; Abdennasser Bardai, MSc; Wataru Shimizu, MD, PhD;

More information

Genetic Testing for Cardiac Ion Channelopathies. Description

Genetic Testing for Cardiac Ion Channelopathies. Description Genetic Testing for Cardiac Ion Page: 1 of 30 Last Review Status/Date: March 2017 Genetic Testing for Cardiac Ion Description Genetic testing is available for patients suspected of having cardiac ion channelopathies

More information

Effectiveness and Limitations of -Blocker Therapy in Congenital Long-QT Syndrome

Effectiveness and Limitations of -Blocker Therapy in Congenital Long-QT Syndrome Effectiveness and Limitations of -Blocker Therapy in Congenital Long-QT Syndrome Arthur J. Moss, MD; Wojciech Zareba, MD, PhD; W. Jackson Hall, PhD; Peter J. Schwartz, MD; Richard S. Crampton, MD; Jesaia

More information

Case-Based Practical ECG Interpretation for the Generalist

Case-Based Practical ECG Interpretation for the Generalist Case-Based Practical ECG Interpretation for the Generalist Paul D. Varosy, MD, FACC, FAHA, FHRS Director of Cardiac Electrophysiology VA Eastern Colorado Health Care System Associate Professor of Medicine

More information

UvA-DARE (Digital Academic Repository) The T wave: physiology and pathophysiology Meijborg, V.M.F. Link to publication

UvA-DARE (Digital Academic Repository) The T wave: physiology and pathophysiology Meijborg, V.M.F. Link to publication UvA-DARE (Digital Academic Repository) The T wave: physiology and pathophysiology Meijborg, V.M.F. Link to publication Citation for published version (APA): Meijborg, V. M. F. (2015). The T wave: physiology

More information

Sudden cardiac death: Primary and secondary prevention

Sudden cardiac death: Primary and secondary prevention Sudden cardiac death: Primary and secondary prevention By Kai Chi Chan Penultimate Year Medical Student St George s University of London at UNic Sheba Medical Centre Definition Sudden cardiac arrest (SCA)

More information