Human Genetics (Learning Objectives)

Size: px
Start display at page:

Download "Human Genetics (Learning Objectives)"

Transcription

1 Human Genetics (Learning Objectives) Recognize Mendel s contribution to the field of genetics. Review what you know about a karyotype: autosomes and sex chromosomes. Understand and define the terms: characteristic, trait, true-breeder, genotype, phenotype, allele, autosomal dominant and recessive traits, and a monohybrid cross. What is a test cross and when is used? Learn how to use the Punnett square to determine: genotypes and phenotypes and probability of offspring for autosomal dominant or recessive traits. the probability of passing of an X-linked gene and the phenotype to girls or boys based on the genotypes of the parents. Define X-linked genes and explain how the location of a gene on the X chromosome affect its gender-related transmission and pattern of inheritance. Review the factors affecting the phenotypes of Mendelian characters and provide examples for each: incomplete dominance, co-dominance & multiple allele, pleiotropy, polygenic inheritance, environmental effect, and epigenetics. Explain how gender is determined in mammals. Explain X-inactivation and why is it present only in cells of females only and genetic imprinting. Explain the pattern of inheritance of genes present on the mitochondrial DNA.

2 Genetics (Plan) Field of Heredity and Patterns of inheritance Karyotype and terminology Mendel, his contributions, and system he used Mendelian pattern of inheritance of a single character and applications (Student work sheets Q1 & Q2) Mendelian Pattern of inheritance of 2 characters at the same time The laws of probability Sex determination and pattern of inheritance of sex-linked genes (Student work sheets Q1 & Q2) X-inactivation Factors influencing the phenotype of Mendelian characters

3 Patterns of Inheritance Gregor Mendel - Studied variation in plants, patterns of inheritance in garden peas - Used math to explain biological phenomena

4 The chromosome pairs 1 trough 22 are autosome These are sex chromosomes

5 Terminology Character or characteristic: a heritable feature e.g. flower color Trait: variant of the character e.g. purple or white Mendel focused on characters with two variant phenotypes either-or traits

6 Mendel had control over which plants he crossed Colored Cotton Campbell video

7 dnaftb/1/concept/

8 Mendel started with True-breeding plants F 1 generation F 2 generation F 2 ratio Purple flower- dominant trait White flower- recessive trait

9 Mendel worked with pea plant characteristics with two traits each

10

11 Mendel was looking for a model that can account for the 3:1 ratio that he observed in the F 2 generation

12 Mendel s Model 1. An organism inherits two alleles (one from each parent). 2. One allele is dominant and the other is recessive 3. The two alleles segregate (separate) during gamete formation (Mendel s law of segregation)

13

14 A Punnett square predicts the results of a genetic cross between individuals of known genotype.

15 Vocabulary used in Genetics An organism with two identical alleles is homozygous for that character. Organisms with two different alleles for a character is heterozygous for that character. A description of an organism s traits is its phenotype. A description of its genetic makeup is its genotype.

16

17

18 Used to determine the genotype of a dominant trait Test Cross

19

20 Pedigree Analysis

21 Mendelian characters of humans

22 A pedigree can help us understand the past and to predict the future. We can use the normal Mendelian rules, to predict the probability of specific phenotypes.

23 1. Pedigree analysis reveals Mendelian patterns in human inheritance 2. Many human disorders follow Mendelian patterns of inheritance Examples of Genetic Disorders Tay-Sachs Sickle Cell Disease Cystic Fibrosis Huntington Disease

24 Segregation of characters Monohybrid cross- inheritance of one character Dihybrid cross- inheritance of 2 characters Crossing true-breeding plant that have yellow, round seeds (YYRR) with truebreeding plants that have green, wrinkled seeds (yyrr).

25 If the two pairs of alleles segregate independently of each other Gametes: P generation YR and yr F1 generation YR, Yr, yr, and yr These combinations produce four distinct phenotypes in a 9:3:3:1 ratio.

26 Probability Rules Applied to Monohybrid The multiplication rule: Crosses The probability that two or more independent events will occur together is the product of their individual probabilities The rule of addition: The probability that any one of two or more exclusive events will occur is calculated by adding together their individual probabilities

27 Mendelian inheritance reflects rule of probability

28 What is the probability of obtaining a homozygote dominant? The probability of each independent allele is. The probability of two independent alleles occurring together Homozygote dominant X = Homozygote recessive X =

29 What is the probability of obtaining a heterozygote? Under the rule of addition, the probability of an event that can occur two or more different ways is the sum of the separate probabilities of those ways. Heterozygote + =

30 X and Y Chromosomes X chromosome - Contains > 1,500 genes - Larger than the Y chromosome - Acts as a homolog to Y in males Y chromosome - Contains 231 genes - Many repeated DNA segments Figure 6.2

31 Anatomy of the Y Chromosome Pseudoautosomal regions (PAR1 and PAR2) - 5% of the chromosome - Contains genes shared with X chromosome Male specific region (MSY) - 95% of the chromosome - Contains majority of genes including SRY and AZF (needed for sperm production) Figure 6.3

32 SRY Gene Encodes a transcription factor protein Controls the expression of other genes Stimulates male development Developing testes secrete anti-mullerian hormone and destroy female structures Testosterone and dihydrotesterone (DHT) hormones are secreted and stimulate male structures

33 Sex determination in Mammals: the X-Y system Karyotype designation: 46, XY (male) 46, XX (female)

34 Germ cells in testes (XY) produce sperms with X: 50% Y: 50% Germ cells in ovaries (XX) produce only X eggs The sex chromosomes have genes for many characters unrelated to sex Each conception has about a fifty-fifty chance of producing a particular sex

35 Y and X chromosomes are only partially homologous, they pair together during meiosis but rarely undergo crossing over Synapsis of the X and Y chromosomes during prophase of meiosis I page_ani.html

36 Femaleness in mammals is the "default" program. SRY gene (for sexdetermining region Y) - located on the short (p) arm - the master switch that triggers the events that converts the embryo into a male ges/s/sexchromosomes.html

37 Evidence Humans born with XXY, XXXY, and even XXXXY abnormality, despite their extra X chromosomes, are males. XX humans have a translocation placing SRY on the X chromosome (male phenotype with testicular tissue) XY humans with a defective SRY are female Transgenic female mice (XX) with an SRY gene are phenotypically males with testis

38 The inheritance of genes of X chromosome follows special rules, because: males have only a single X chromosome almost all the genes on the X have no counterpart on the Y any gene on the X, even if recessive in females, will be expressed in males. Genes are described as sex-linked or X- linked.

39

40 X-linked Diseases Hemophilia A, a blood clotting disorder caused by a mutant gene encoding the clotting factor VIII Duchenne muscular dystrophy Color blindness (X-linkage) m_sets/color_blindness/color_blindness.html

41 Human Chromosomes Homologous autosomes: 22 pairs = 44 chromosomes Sex chromosomes one pair XX or XY (X and Y share partial homology) Dose of expressed genes?

42 X-inactivation In females, only one of the X chromosomes is active. The second is inactivated The inactive X chromosome appears as a condensed chromosome during interphase (Barr body) s/s/sexchromosomes.html

43 Hemophilia A X Y X XX XY X h X h X X h Y In X h X heterozygote female, which X is active? X-inactivation is random: 50% of cells X h 50% of cells X

44

45 X Inactivation A female that expresses the phenotype corresponding to an X-linked gene is a manifesting heterozygote (calico cats) Figure 6.12

46 The orange and black pattern on tortoiseshell cats is due to patches of cells expressing an orange allele while others expressing the nonorange allele.

47 Y-linked genes The Y chromosome in males has 70 to 200 gene genes whose protein products are involved in: a. control of changing sex of the fetus from female to male b. development of male testes c. male fertility

48 During fertilization sperm brings only the nuclear DNA, all mitochondrial DNA is maternal from the egg. No Mendelian patterns of inheritance Can be used to determine maternal lineage

49 Chromosomal abnormalities caused by non-disjunction of Homologous chromosomes during Meiosis I Sister chromatids during Meiosis II

50 Factors Affecting Phenotypic Expression of Mendelian inherited characteristics 1. Incomplete dominance 2. Multiple alleles- co-dominance 3. Pleiotropy 4. Polygenic inheritance 5. Epistasis 6. Environmental effect 7. Epigenetic factors

51 Genotypic ratio same as phenotypic ratio 1. Incomplete dominance

52 Incomplete dominance affects severity of disease Genotypes: HH Homozygous for ability to make LDL receptors Hh Heterozygous hh Homozygous for inability to make LDL receptors LDL LDL receptor Cell Phenotypes: Normal Mild disease Severe disease

53 2. Multiple alleles, the human ABO blood system

54 ABO Blood grouping test

55 Multiple alleles of the ABO blood system - Three alleles, I A, I B, and I. Both the I A and I B alleles are dominant to the i allele The I A and I B alleles are co-dominant to each other. - Because each individual carries two alleles, there are six possible genotypes and four possible blood types.

56 3. Pleiotropy - A single gene may affect many phenotypic characteristics involving multiple systems - Sickle cell Disease Individual homozygous for sickle-cell allele Sickle-cell (abnormal) hemoglobin Abnormal hemoglobin crystallizes, causing red blood cells to become sickle-shaped Sickle cells Breakdown of red blood cells Clumping of cells and clogging of small blood vessels Accumulation of sickled cells in spleen Physical weakness Anemia Heart failure Pain and fever Brain damage Damage to other organs Spleen damage Impaired mental function Paralysis Pneumonia and other infections Rheumatism Kidney failure

57 4. Polygenic inheritance Quantitative characters show additive effect of multiple genes, e.g skin color and height in humans

58 5. Epistasis Phenotype is determined by two separate genes, e.g coat color in mice B coat color gene C modifier gene

59 6. Environmental effects Phenotype of Hydrangea flower color Blue flowers in highly acid soil Pink flowers in neutral or slightly acid soil

60 7. Epigenetic factors Gene expression is impacted by chemical modification of chromatin DNA methylation histone deacetylation

61 Prenatal Testing and Genetic Counseling Technological tools Sampling of fetal cells a. Amniocentesis b. Chorionic Villus Sampling Biochemical tests DNA testing- karyotyping and others

62 Chorionic Villus Sampling (CVS)

63 Genetic Testing & Personalized Medicine (Learning Objectives) 1. Recognize the presence of common mutation within members of the human population (polymorphisms) 2. Recognize that information about such polymorphisms can be used for several purposes, such as: Mutational analysis of disease causing genes Genome wide scanning for disease predisposition genes Personalized Medicine

64 Single Nucleotide Polymorphism (SNP)

65 Variations in the DNA sequences of humans affect : - Disease development - Response to: toxins, drugs, vaccines, and chemotherapy.

66 Genome-wide screening Genetic variation in human population Correlation of certain base variability with proximity to a disease causing gene SNPs- single nucleotide polymorphisms ndex.html Pros & Cons Genetic Information Nondiscrimination Act GINA Bill

UNIT 6 GENETICS 12/30/16

UNIT 6 GENETICS 12/30/16 12/30/16 UNIT 6 GENETICS III. Mendel and Heredity (6.3) A. Mendel laid the groundwork for genetics 1. Traits are distinguishing characteristics that are inherited. 2. Genetics is the study of biological

More information

Patterns of Inheritance

Patterns of Inheritance 1 Patterns of Inheritance Bio 103 Lecture Dr. Largen 2 Topics Mendel s Principles Variations on Mendel s Principles Chromosomal Basis of Inheritance Sex Chromosomes and Sex-Linked Genes 3 Experimental

More information

Genetics, Mendel and Units of Heredity

Genetics, Mendel and Units of Heredity Genetics, Mendel and Units of Heredity ¾ Austrian monk and naturalist. ¾ Conducted research in Brno, Czech Republic from 1856-1863 ¾ Curious about how traits were passed from parents to offspring. Gregor

More information

Genetics & The Work of Mendel. AP Biology

Genetics & The Work of Mendel. AP Biology Genetics & The Work of Mendel Gregor Mendel Modern genetics began in the mid-1800s in an abbey garden, where a monk named Gregor Mendel documented inheritance in peas u used experimental method u used

More information

Copyright The McGraw-Hill Companies, Inc. Permission required for reproduction or display. Chapter 6 Patterns of Inheritance

Copyright The McGraw-Hill Companies, Inc. Permission required for reproduction or display. Chapter 6 Patterns of Inheritance Chapter 6 Patterns of Inheritance Genetics Explains and Predicts Inheritance Patterns Genetics can explain how these poodles look different. Section 10.1 Genetics Explains and Predicts Inheritance Patterns

More information

General Biology 1004 Chapter 9 Lecture Handout, Summer 2005 Dr. Frisby

General Biology 1004 Chapter 9 Lecture Handout, Summer 2005 Dr. Frisby Slide 1 CHAPTER 9 Patterns of Inheritance PowerPoint Lecture Slides for Essential Biology, Second Edition & Essential Biology with Physiology Presentation prepared by Chris C. Romero Neil Campbell, Jane

More information

Genes and Inheritance (11-12)

Genes and Inheritance (11-12) Genes and Inheritance (11-12) You are a unique combination of your two parents We all have two copies of each gene (one maternal and one paternal) Gametes produced via meiosis contain only one copy of

More information

Patterns of Inheritance. Game Plan. Gregor Mendel ( ) Overview of patterns of inheritance Determine how some genetic disorders are inherited

Patterns of Inheritance. Game Plan. Gregor Mendel ( ) Overview of patterns of inheritance Determine how some genetic disorders are inherited Patterns of Inheritance Game Plan Overview of patterns of inheritance Determine how some genetic disorders are inherited Gregor Mendel (8-88) Austrian monk responsible for developing the modern idea of

More information

Genetics. The study of heredity. Father of Genetics: Gregor Mendel (mid 1800 s) Developed set of laws that explain how heredity works

Genetics. The study of heredity. Father of Genetics: Gregor Mendel (mid 1800 s) Developed set of laws that explain how heredity works Genetics The study of heredity Father of Genetics: Gregor Mendel (mid 1800 s) Developed set of laws that explain how heredity works Father of Genetics: Gregor Mendel original pea plant (input) offspring

More information

Pre-AP Biology Unit 7 Genetics Review Outline

Pre-AP Biology Unit 7 Genetics Review Outline Unit 7 Genetics Review Outline Pre-AP Biology 2017-2018 LT 1 - I can explain the relationships among alleles, genes, chromosomes, genotypes, and phenotypes. This target covers application of the vocabulary

More information

By Mir Mohammed Abbas II PCMB 'A' CHAPTER CONCEPT NOTES

By Mir Mohammed Abbas II PCMB 'A' CHAPTER CONCEPT NOTES Chapter Notes- Genetics By Mir Mohammed Abbas II PCMB 'A' 1 CHAPTER CONCEPT NOTES Relationship between genes and chromosome of diploid organism and the terms used to describe them Know the terms Terms

More information

Genetics: CH9 Patterns of Inheritance

Genetics: CH9 Patterns of Inheritance Genetics: CH9 Patterns of Inheritance o o Lecture note Directions Highlight Key information (10-30% of most slides) My Thoughts: Questions, comments, additional information, connections to prior knowledge,

More information

Patterns in Inheritance. Chapter 10

Patterns in Inheritance. Chapter 10 Patterns in Inheritance Chapter 10 What you absolutely need to know Punnett Square with monohybrid and dihybrid cross Heterozygous, homozygous, alleles, locus, gene Test cross, P, F1, F2 Mendel and his

More information

Extra Review Practice Biology Test Genetics

Extra Review Practice Biology Test Genetics Mendel fill in the blanks: Extra Review Practice Biology Test Genetics Mendel was an Austrian monk who studied genetics primarily using plants. He started with plants that produced offspring with only

More information

GENETIC VARIATION AND PATTERNS OF INHERITANCE. SOURCES OF GENETIC VARIATION How siblings / families can be so different

GENETIC VARIATION AND PATTERNS OF INHERITANCE. SOURCES OF GENETIC VARIATION How siblings / families can be so different 9/22/205 GENETIC VARIATION AND PATTERNS OF INHERITANCE SOURCES OF GENETIC VARIATION How siblings / families can be so different Independent orientation of chromosomes (metaphase I of meiosis) Random fertilization

More information

Lecture 13: May 24, 2004

Lecture 13: May 24, 2004 Lecture 13: May 24, 2004 CH14: Mendel and the gene idea *particulate inheritance parents pass on discrete heritable units *gene- unit of inheritance which occupies a specific chromosomal location (locus)

More information

Genetics & The Work of Mendel

Genetics & The Work of Mendel Genetics & The Work of Mendel 2006-2007 Gregor Mendel Modern genetics began in the mid-1800s in an abbey garden, where a monk named Gregor Mendel documented inheritance in peas used experimental method

More information

TECHNIQUE. Parental generation (P) Stamens Carpel 3. RESULTS First filial. offspring (F 1 )

TECHNIQUE. Parental generation (P) Stamens Carpel 3. RESULTS First filial. offspring (F 1 ) TECHNIQUE 2 Parental generation (P) Stamens Carpel 3 4 RESULTS First filial generation offspring (F ) 5 2 EXPERIMENT P Generation (true-breeding parents) Purple flowers White flowers F Generation (hybrids)

More information

Chapter 9. Patterns of Inheritance. Lectures by Chris C. Romero, updated by Edward J. Zalisko

Chapter 9. Patterns of Inheritance. Lectures by Chris C. Romero, updated by Edward J. Zalisko Chapter 9 Patterns of Inheritance Lectures by Chris C. Romero, updated by Edward J. Zalisko 2010 Pearson Education, Inc. PowerPoint Lectures for Campbell Essential Biology, Fourth Edition Eric Simon, Jane

More information

Genetics and Heredity

Genetics and Heredity Genetics and Heredity History Genetics is the study of genes. Inheritance is how traits, or characteristics, are passed on from generation to generation. Chromosomes are made up of genes, which are made

More information

Genetics & The Work of Mendel

Genetics & The Work of Mendel Genetics & The Work of Mendel 2006-2007 Gregor Mendel Modern genetics began in the mid-1800s in an abbey garden, where a monk named Gregor Mendel documented inheritance in peas used experimental method

More information

THE CHROMOSOMAL BASIS OF INHERITANCE CHAPTER 15

THE CHROMOSOMAL BASIS OF INHERITANCE CHAPTER 15 THE CHROMOSOMAL BASIS OF INHERITANCE CHAPTER 15 What you must know: Inheritance in sex-linked genes. Inheritance of linked genes and chromosomal mapping. How alteration of chromosome number or structurally

More information

Patterns of Heredity - Genetics - Sections: 10.2, 11.1, 11.2, & 11.3

Patterns of Heredity - Genetics - Sections: 10.2, 11.1, 11.2, & 11.3 Patterns of Heredity - Genetics - Sections: 10.2, 11.1, 11.2, & 11.3 Genetics = the study of heredity by which traits are passed from parents to offspring Page. 227 Heredity = The passing of genes/traits

More information

Ch 10 Genetics Mendelian and Post-Medelian Teacher Version.notebook. October 20, * Trait- a character/gene. self-pollination or crosspollination

Ch 10 Genetics Mendelian and Post-Medelian Teacher Version.notebook. October 20, * Trait- a character/gene. self-pollination or crosspollination * Trait- a character/gene shape, * Monk in Austria at age 21 * At 30, went to University of Vienna to study science and math * After graduating he returned to the monastery and became a high school teacher

More information

Meiotic Mistakes and Abnormalities Learning Outcomes

Meiotic Mistakes and Abnormalities Learning Outcomes Meiotic Mistakes and Abnormalities Learning Outcomes 5.6 Explain how nondisjunction can result in whole chromosomal abnormalities. (Module 5.10) 5.7 Describe the inheritance patterns for strict dominant

More information

Chapter 17 Genetics Crosses:

Chapter 17 Genetics Crosses: Chapter 17 Genetics Crosses: 2.5 Genetics Objectives 2.5.6 Genetic Inheritance 2.5.10.H Origin of the Science of genetics 2.5.11 H Law of segregation 2.5.12 H Law of independent assortment 2.5.13.H Dihybrid

More information

Genetics and Heredity Notes

Genetics and Heredity Notes Genetics and Heredity Notes I. Introduction A. It was known for 1000s of years that traits were inherited but scientists were unsure about the laws that governed this inheritance. B. Gregor Mendel (1822-1884)

More information

Mendelian Genetics. KEY CONCEPT Mendel s research showed that traits are inherited as discrete units.

Mendelian Genetics. KEY CONCEPT Mendel s research showed that traits are inherited as discrete units. KEY CONCEPT Mendel s research showed that traits are inherited as discrete units. Mendel laid the groundwork for genetics. Traits are distinguishing characteristics that are inherited. Genetics is the

More information

Unit 7 Section 2 and 3

Unit 7 Section 2 and 3 Unit 7 Section 2 and 3 Evidence 12: Do you think food preferences are passed down from Parents to children, or does the environment play a role? Explain your answer. One of the most important outcomes

More information

Name Class Date. Review Guide. Genetics. The fundamental principles of genetics were first discovered by. What type of plant did he breed?.

Name Class Date. Review Guide. Genetics. The fundamental principles of genetics were first discovered by. What type of plant did he breed?. Name Class Date Review Guide Genetics The fundamental principles of genetics were first discovered by. What type of plant did he breed?. True-breeding parental plants are called the generation. Their hybrid

More information

Labrador Coat Color Similar to coat color in mice: Black lab is BxEx Yellow lab is xxee Chocolate lab is bbex Probable pathway:

Labrador Coat Color Similar to coat color in mice: Black lab is BxEx Yellow lab is xxee Chocolate lab is bbex Probable pathway: Honors Genetics 1. Gregor Mendel (1822-1884) German monk at the Augustine Abbey of St. Thomas in Brno (today in the Czech Republic). He was a gardener, teacher and priest. Mendel conducted experiments

More information

Semester 2- Unit 2: Inheritance

Semester 2- Unit 2: Inheritance Semester 2- Unit 2: Inheritance heredity -characteristics passed from parent to offspring genetics -the scientific study of heredity trait - a specific characteristic of an individual genes -factors passed

More information

11.1 The Work of Mendel

11.1 The Work of Mendel 11.1 The Work of Mendel Originally prepared by Kim B. Foglia Revised and adapted by Nhan A. Pham Objectives Describe Mendel s classic garden pea experiment. Summarize Mendel s conclusion about inheritance.

More information

Unit 5: Genetics Guided Notes

Unit 5: Genetics Guided Notes 1 Unit 5: Genetics Guided Notes Basic Mendelian Genetics Before Gregor Mendel 1) When Mendel started his work, most people believed in the blending theory of inheritance. (Inheritance, Heredity, and Genetics

More information

Essential Questions. Basic Patterns of Human Inheritance. Copyright McGraw-Hill Education

Essential Questions. Basic Patterns of Human Inheritance. Copyright McGraw-Hill Education Essential Questions How can genetic patterns be analyzed to determine dominant or recessive inheritance patterns? What are examples of dominant and recessive disorders? How can human pedigrees be constructed

More information

Patterns of Inheritance

Patterns of Inheritance Patterns of Inheritance Mendel the monk studied inheritance keys to his success: he picked pea plants he focused on easily categorized traits he used true-breeding populations parents always produced offspring

More information

Mendel. The pea plant was ideal to work with and Mendel s results were so accurate because: 1) Many. Purple versus flowers, yellow versus seeds, etc.

Mendel. The pea plant was ideal to work with and Mendel s results were so accurate because: 1) Many. Purple versus flowers, yellow versus seeds, etc. Mendel A. Mendel: Before Mendel, people believed in the hypothesis. This is analogous to how blue and yellow paints blend to make. Mendel introduced the hypothesis. This deals with discrete units called

More information

The Chromosomal Basis of Inheritance

The Chromosomal Basis of Inheritance The Chromosomal Basis of Inheritance Factors and Genes Mendel s model of inheritance was based on the idea of factors that were independently assorted and segregated into gametes We now know that these

More information

GENETICS NOTES. Chapters 12, 13, 14, 15 16

GENETICS NOTES. Chapters 12, 13, 14, 15 16 GENETICS NOTES Chapters 12, 13, 14, 15 16 DNA contains the genetic code for the production of PROTEINS. A gene is a segment of DNA, which consists of enough bases to code for many different proteins. The

More information

UNIT IV. Chapter 14 The Human Genome

UNIT IV. Chapter 14 The Human Genome UNIT IV Chapter 14 The Human Genome UNIT 2: GENETICS Chapter 7: Extending Medelian Genetics I. Chromosomes and Phenotype (7.1) A. Two copies of each autosomal gene affect phenotype 1. Most human traits

More information

Genetics- The field of biology that studies how characteristics are passed from one generation to another.

Genetics- The field of biology that studies how characteristics are passed from one generation to another. Genetics- The field of biology that studies how characteristics are passed from one generation to another. Heredity- The passage of traits from one generation to the next. Characteristics- a quality of

More information

Patterns of Heredity Genetics

Patterns of Heredity Genetics Patterns of Heredity Genetics DO NOW Hand in outlines (my desk) Pick up tests from back table and review them. We will be going over the zipgrade and the short answer together. Save your questions for

More information

Biology: Life on Earth

Biology: Life on Earth Teresa Audesirk Gerald Audesirk Bruce E. Byers Biology: Life on Earth Eighth Edition Lecture for Chapter 12 Patterns of Inheritance Copyright 2008 Pearson Prentice Hall, Inc. Chapter 12 Outline 12.1 What

More information

Genetics PPT Part 1 Biology-Mrs. Flannery

Genetics PPT Part 1 Biology-Mrs. Flannery Genetics PPT Part Biology-Mrs. Flannery In an Abbey Garden Mendel studied garden peas because they were easy to grow, came in many readily distinguishable varieties, had easily visible traits are easily

More information

The Chromosomal Basis of Inheritance

The Chromosomal Basis of Inheritance LECTURE PRESENTATIONS For CAMPBELL BIOLOGY, NINTH EDITION Jane B. Reece, Lisa A. Urry, Michael L. Cain, Steven A. Wasserman, Peter V. Minorsky, Robert B. Jackson Chapter 15 The Chromosomal Basis of Inheritance

More information

Chapter 9. Patterns of Inheritance. Lectures by Gregory Ahearn. University of North Florida. Copyright 2009 Pearson Education, Inc.

Chapter 9. Patterns of Inheritance. Lectures by Gregory Ahearn. University of North Florida. Copyright 2009 Pearson Education, Inc. Chapter 9 Patterns of Inheritance Lectures by Gregory Ahearn University of North Florida Copyright 2009 Pearson Education, Inc. 9.1 What Is The Physical Basis Of Inheritance? Inheritance occurs when genes

More information

Downloaded from Chapter 5 Principles of Inheritance and Variation

Downloaded from  Chapter 5 Principles of Inheritance and Variation Chapter 5 Principles of Inheritance and Variation Genetics: Genetics is a branch of biology which deals with principles of inheritance and its practices. Heredity: It is transmission of traits from one

More information

Mendelian Genetics. Gregor Mendel. Father of modern genetics

Mendelian Genetics. Gregor Mendel. Father of modern genetics Mendelian Genetics Gregor Mendel Father of modern genetics Objectives I can compare and contrast mitosis & meiosis. I can properly use the genetic vocabulary presented. I can differentiate and gather data

More information

Genetics: Mendel and Beyond

Genetics: Mendel and Beyond Genetics: Mendel and Beyond 10 Genetics: Mendel and Beyond Put the following words in their correct location in the sentences below. crossing over fertilization meiosis zygote 4 haploid prophase I diploid

More information

Chapter 10 Notes Patterns of Inheritance, Part 1

Chapter 10 Notes Patterns of Inheritance, Part 1 Chapter 10 Notes Patterns of Inheritance, Part 1 I. Gregor Mendel (1822-1884) a. Austrian monk with a scientific background b. Conducted numerous hybridization experiments with the garden pea, Pisum sativum,

More information

Introduction to Genetics and Heredity

Introduction to Genetics and Heredity Introduction to Genetics and Heredity Although these dogs have similar characteristics they are each unique! I. Early Ideas About Heredity A. The Theory of Blending Inheritance Each parent contributes

More information

Gregor Mendel father of heredity

Gregor Mendel father of heredity MENDEL AND MEIOSIS Gregor Mendel father of heredity MENDEL S LAWS OF HEREDITY Heredity branch of genetics dealing with the passing on of traits from parents to offspring Pea Plants Easy maintenance & large

More information

MENDELIAN GENETICS. Law of Dominance: Law of Segregation: GAMETE FORMATION Parents and Possible Gametes: Gregory Mendel:

MENDELIAN GENETICS. Law of Dominance: Law of Segregation: GAMETE FORMATION Parents and Possible Gametes: Gregory Mendel: MENDELIAN GENETICS Gregory Mendel: Heredity: Cross: X P1 Generation: F1 Generation: F2 Generation: Gametes: Dominant: Recessive: Genotype: Phenotype: Law of Dominance: Genes: Alleles: Law of Segregation:

More information

Lab Activity 36. Principles of Heredity. Portland Community College BI 233

Lab Activity 36. Principles of Heredity. Portland Community College BI 233 Lab Activity 36 Principles of Heredity Portland Community College BI 233 Terminology of Chromosomes Homologous chromosomes: A pair, of which you get one from mom, and one from dad. Example: the pair of

More information

Question 2: Which one of the following is the phenotypic monohybrid ratio in F2 generation? (a) 3:1 (b) 1:2:1 (c) 2:2 (d) 1:3 Solution 2: (a) 3 : 1

Question 2: Which one of the following is the phenotypic monohybrid ratio in F2 generation? (a) 3:1 (b) 1:2:1 (c) 2:2 (d) 1:3 Solution 2: (a) 3 : 1 Class X Genetics Biology A. MULTIPLE CHOICE TYPE: (Select the most appropriate option) Which one of the following has the smallest number of chromosomes? (a) Onion (b) Mouse (c) Monkey (d) Ascaris (d)

More information

8.1 Human Chromosomes and Genes

8.1 Human Chromosomes and Genes 8.1. Human Chromosomes and Genes www.ck12.org 8.1 Human Chromosomes and Genes Lesson Objective Define the human genome. Describe human chromosomes and genes. Explain linkage and linkage maps. Vocabulary

More information

Name Period. Keystone Vocabulary: genetics fertilization trait hybrid gene allele Principle of dominance segregation gamete probability

Name Period. Keystone Vocabulary: genetics fertilization trait hybrid gene allele Principle of dominance segregation gamete probability Name Period BIO B2 GENETICS (Chapter 11) You should be able to: 1. Describe and/or predict observed patterns of inheritance (dominant, recessive, co- dominant, incomplete dominance, sex- linked, polygenic

More information

Bell Work 3/8/18. Mitosis: What occurs during mitosis? What are the products of mitosis? What is the purpose of mitosis?

Bell Work 3/8/18. Mitosis: What occurs during mitosis? What are the products of mitosis? What is the purpose of mitosis? Bell Work 3/8/18 Mitosis: What occurs during mitosis? What are the products of mitosis? What is the purpose of mitosis? Bell Work: 3/9/18 Complete the pre-assessment on your Anchor Activity Unit 6 sheet.

More information

Mendelian Genetics. Biology 3201 Unit 3

Mendelian Genetics. Biology 3201 Unit 3 Mendelian Genetics Biology 3201 Unit 3 Recall: Terms Genetics is a branch of biology dealing with the principles of variation and inheritance in animals and plants. Heredity the passing of traits from

More information

Review for Meiosis and Genetics Unit Test: Theory

Review for Meiosis and Genetics Unit Test: Theory Review for Meiosis and Genetics Unit Test: Theory 1. What is a karyotype? What stage of mitosis is the best for preparing karyotypes? a karyotype is a picture of all of the chromosomes in a cell, organized

More information

The passing of traits from parents to offspring. The scientific study of the inheritance

The passing of traits from parents to offspring. The scientific study of the inheritance Inheritance The passing of traits from parents to offspring Genetics The scientific study of the inheritance Gregor Mendel -Father of modern genetics -Used peas to successfully identify the laws of heredity

More information

Sexual Reproduction & Inheritance

Sexual Reproduction & Inheritance Sexual Reproduction & Sexual Reproduction & Overview Asexual vs Sexual Reproduction Meiosis Genetic Diversity Mendel & The Laws of Sexual Reproduction Sexual Reproduction Asexual Reproduction Prokaryotes

More information

Semester 2- Unit 2: Inheritance

Semester 2- Unit 2: Inheritance Semester 2- Unit 2: Inheritance heredity -characteristics passed from parent to offspring genetics -the scientific study of heredity trait - a specific characteristic of an individual genes -factors passed

More information

Genetics & Heredity 11/16/2017

Genetics & Heredity 11/16/2017 Genetics & Heredity Biology I Turner College & Career High School 2017 Fertilization is the fusion of an egg and a sperm. Purebred (True breeding plants) are plants that were allowed to selfpollinate and

More information

8.1 Genes Are Particulate and Are Inherited According to Mendel s Laws 8.2 Alleles and Genes Interact to Produce Phenotypes 8.3 Genes Are Carried on

8.1 Genes Are Particulate and Are Inherited According to Mendel s Laws 8.2 Alleles and Genes Interact to Produce Phenotypes 8.3 Genes Are Carried on Chapter 8 8.1 Genes Are Particulate and Are Inherited According to Mendel s Laws 8.2 Alleles and Genes Interact to Produce Phenotypes 8.3 Genes Are Carried on Chromosomes 8.4 Prokaryotes Can Exchange Genetic

More information

LECTURE 12 B: GENETIC AND INHERITANCE

LECTURE 12 B: GENETIC AND INHERITANCE LECTURE 12 B: GENETIC AND INHERITANCE Mendel s Legacy Genetics is everywhere these days and it will continue as a dominant force in biology and society for decades to come. Wouldn t it be nice if people

More information

Honors Biology Review Sheet to Chapter 9 Test

Honors Biology Review Sheet to Chapter 9 Test Honors Biology Review Sheet to Chapter 9 Test Name Per 1. Label the following flower: sepal, petal, anther, filament, style, ovary, stigma Draw in ovules and label. Color the female structure red and the

More information

Chapter 14 Mendel and the Gene Idea

Chapter 14 Mendel and the Gene Idea Chapter 4 Mendel and the Gene Idea AP Biology Overview: Drawing from the Deck of Genes The blending hypothesis was the most widely favored explanation of heredity in the 800s Idea that genetic material

More information

BIO113 Exam 2 Ch 4, 10, 13

BIO113 Exam 2 Ch 4, 10, 13 BIO113 Exam 2 Ch 4, 10, 13 See course outline for specific reading assignments Study notes and focus on terms and concepts The images in the textbook are useful CELLS (pg. 37) The basic unit of life living

More information

Genetics Honors NOtes 2017 SHORT p2.notebook. May 26, 2017

Genetics Honors NOtes 2017 SHORT p2.notebook. May 26, 2017 Do Now A man and woman want to predict the chances of their offspring having dimples. The woman is heterozygous for dimples and the man does not have dimples. What is the chance of having a child with

More information

Chapter 11 Introduction to Genetics

Chapter 11 Introduction to Genetics Chapter 11 Introduction to Genetics 11.1 Gregor Mendel Genetics is the scientific study of heredity How traits are passed from one generation to the next Mendel Austrian monk (1822) Used Pea Plants (crossed

More information

Gregor Mendel. What is Genetics? the study of heredity

Gregor Mendel. What is Genetics? the study of heredity Gregor Mendel What is Genetics? the study of heredity Gregor Mendel s Peas Pollen: plant s sperm Egg Cells: plants reproductive cells Fertilization: joining of pollen + egg cells develops into embryo in

More information

Unit 5: Genetics Notes

Unit 5: Genetics Notes Unit 5: Genetics Notes https://goo.gl/fgtzef Name: Period: Test Date: Table of Contents Title of Page Page Number Date Warm-ups 3-4 Mendelian Genetics Notes 5-6 Mendelian Genetics Lets Practice 7 Monohybrid

More information

Class XII Chapter 5 Principles of Inheritance and Variation Biology

Class XII Chapter 5 Principles of Inheritance and Variation Biology Question 1: Mention the advantages of selecting pea plant for experiment by Mendel. Mendel selected pea plants to carry out his study on the inheritance of characters from parents to offspring. He selected

More information

12.1 X-linked Inheritance in Humans. Units of Heredity: Chromosomes and Inheritance Ch. 12. X-linked Inheritance. X-linked Inheritance

12.1 X-linked Inheritance in Humans. Units of Heredity: Chromosomes and Inheritance Ch. 12. X-linked Inheritance. X-linked Inheritance Units of Heredity: Chromosomes and Inheritance Ch. 12 12.1 in Humans X-chromosomes also have non genderspecific genes Called X-linked genes Vision Blood-clotting X-linked conditions Conditions caused by

More information

BIOLOGY. Mendel and the Gene Idea CAMPBELL. Reece Urry Cain Wasserman Minorsky Jackson

BIOLOGY. Mendel and the Gene Idea CAMPBELL. Reece Urry Cain Wasserman Minorsky Jackson CAMPBELL BIOLOGY TENTH EDITION Reece Urry Cain Wasserman Minorsky Jackson 14 Mendel and the Gene Idea Lecture Presentation by Nicole Tunbridge and Kathleen Fitzpatrick Drawing from the Deck of Genes What

More information

Sexual Reproduction and Genetics. Section 1. Meiosis

Sexual Reproduction and Genetics. Section 1. Meiosis Chromosomes and Chromosome Number! Human body cells have 46 chromosomes! Each parent contributes 23 chromosomes! Homologous chromosomes one of two paired chromosomes, one from each parent Chromosomes and

More information

Introduction Chapter Experimental genetics began in an abbey garden. 9.2 Experimental genetics began in an abbey garden

Introduction Chapter Experimental genetics began in an abbey garden. 9.2 Experimental genetics began in an abbey garden Introduction Chapter 9 Dogs are one of man s longest genetic experiments. Over thousands of years, humans have chosen and mated dogs with specific traits. Resulting in a diverse array of dogs with distinct

More information

Keywords. Punnett Square forked line. gene allele dominant recessive character trait phenotype genotype

Keywords. Punnett Square forked line. gene allele dominant recessive character trait phenotype genotype Genetics Core Concepts Mendel s Law of Segregation states that there are two alleles for every gene determining a specific characteristic, and these alleles are segregated into separate gametes during

More information

Section Objectives: Pedigrees illustrate inheritance. Pedigrees illustrate inheritance

Section Objectives: Pedigrees illustrate inheritance. Pedigrees illustrate inheritance What You ll Learn You will compare the inheritance of recessive and dominant traits in humans. You will analyze the inheritance patterns of traits with incomplete dominance and codominance. You will determine

More information

Laws of Inheritance. Bởi: OpenStaxCollege

Laws of Inheritance. Bởi: OpenStaxCollege Bởi: OpenStaxCollege The seven characteristics that Mendel evaluated in his pea plants were each expressed as one of two versions, or traits. Mendel deduced from his results that each individual had two

More information

Biology Unit 7 Genetics 7:1 Genetics

Biology Unit 7 Genetics 7:1 Genetics Biology Unit 7 Genetics 7:1 Genetics Gregor Mendel: Austrian monk Studied the inheritance of traits in pea plants His work was not recognized until the 20 th century Between 1856 and 1863, Mendel cultivated

More information

Heredity and Genetics (8%)

Heredity and Genetics (8%) I. Basic Vocabulary a. G Phase Heredity and Genetics (8%) M G2 i. Chromosomes: Threadlike linear strands of DNA and associated proteins in the nucleus of eukaryotic cells that carry the genes and functions

More information

Mendelian Genetics & Inheritance Patterns. Practice Questions. Slide 1 / 116. Slide 2 / 116. Slide 3 / 116

Mendelian Genetics & Inheritance Patterns. Practice Questions. Slide 1 / 116. Slide 2 / 116. Slide 3 / 116 New Jersey Center for Teaching and Learning Slide 1 / 116 Progressive Science Initiative This material is made freely available at www.njctl.org and is intended for the non-commercial use of students and

More information

Progressive Science Initiative. Click to go to website:

Progressive Science Initiative. Click to go to website: Slide 1 / 116 New Jersey Center for Teaching and Learning Progressive Science Initiative This material is made freely available at www.njctl.org and is intended for the non-commercial use of students and

More information

Review Packet for Genetics and Meiosis

Review Packet for Genetics and Meiosis Name: Date: Block: 1 Review Packet for Genetics and Meiosis Directions: Answer the questions and where indicated, draw a Punnett square and show all work! 1. Who was Gregor Mendel? Where did he live and

More information

P = parents F = filial

P = parents F = filial Genetics Mendel s work Bred pea plants Cross-pollinated true breeding parents (P) then raised the seed & observed traits (F 1 ) Allowed offspring to cross-pollinate & observed next generation (F 2 ) P

More information

Chapter 13: Patterns of Inheritance

Chapter 13: Patterns of Inheritance Chapter 13: Patterns of Inheritance 1 Gregor Mendel (1822-1884) Between 1856 and 1863 28,000 pea plants Called the Father of Genetics" 2 Site of Gregor Mendel s experimental garden in the Czech Republic

More information

Biology 12. Mendelian Genetics

Biology 12. Mendelian Genetics Mendelian Genetics Genetics: the science (study) of heredity that involves the structure and function of genes and the way genes are passed from one generation to the next. Heredity: the passing on of

More information

Ch 9 Assignment. 2. According to the blending theory of inheritance, a white rabbit crossed with a red rabbit would produce what kind of offspring?

Ch 9 Assignment. 2. According to the blending theory of inheritance, a white rabbit crossed with a red rabbit would produce what kind of offspring? Big idea: Mendel s Laws Answer the following questions as you read modules 9.1 9.10: 1. The study of genetics can be traced back to the Greek physician 2. According to the blending theory of inheritance,

More information

Human Genetics Notes:

Human Genetics Notes: Human Genetics Notes: Human Chromosomes Cell biologists analyze chromosomes by looking at. Cells are during mitosis. Scientists then cut out the chromosomes from the and group them together in pairs. A

More information

UNIT 1-History of life on earth! Big picture biodiversity-major lineages, Prokaryotes, Eukaryotes-Evolution of Meiosis

UNIT 1-History of life on earth! Big picture biodiversity-major lineages, Prokaryotes, Eukaryotes-Evolution of Meiosis Where are we in this course??? UNIT 1-History of life on earth! Big picture biodiversity-major lineages, Prokaryotes, Eukaryotes-Evolution of Meiosis Today we will start with UNIT 2 A. Mendel and the Gene

More information

GENETICS - CLUTCH CH.2 MENDEL'S LAWS OF INHERITANCE.

GENETICS - CLUTCH CH.2 MENDEL'S LAWS OF INHERITANCE. !! www.clutchprep.com CONCEPT: MENDELS EXPERIMENTS AND LAWS Mendel s Experiments Gregor Mendel was an Austrian monk who studied Genetics using pea plants Mendel used pure lines meaning that all offspring

More information

Mendel and the Gene Idea

Mendel and the Gene Idea LECTURE PRESENTATIONS For CAMPBELL BIOLOGY, NINTH EDITION Jane B. Reece, Lisa A. Urry, Michael L. Cain, Steven A. Wasserman, Peter V. Minorsky, Robert B. Jackson Chapter 4 Mendel and the Gene Idea Lectures

More information

Genes and Inheritance

Genes and Inheritance Genes and Inheritance Variation Causes of Variation Variation No two people are exactly the same The differences between people is called VARIATION. This variation comes from two sources: Genetic cause

More information

Downloaded from

Downloaded from Chapter-5 Principles of Inheritance and Variations Chapter No. Chapter Name Concepts Degree of imp. Ref. NCERT text book.: page nos Common errors 5 Principles of inheritance and variations 1. Mendel s

More information

Mendelian Genetics. Vocabulary. M o l e c u l a r a n d M e n d e l i a n G e n e t i c s

Mendelian Genetics. Vocabulary. M o l e c u l a r a n d M e n d e l i a n G e n e t i c s Mendelian Genetics Vocabulary Genotype: o Capital letter = allele o Lowercase letter = allele o Ex AA, Aa, aa Phenotype: o Ex green, yellow Homozygous: o Homozygous dominant: o Homozygous recessive: Heterozygous:

More information

Genetic diagrams show the genotype and phenotype of the offspring of two organisms. The different generation are abbreviated like so:

Genetic diagrams show the genotype and phenotype of the offspring of two organisms. The different generation are abbreviated like so: Genetics 2 Genetic Diagrams and Mendelian Genetics: Genetic diagrams show the genotype and phenotype of the offspring of two organisms. The different generation are abbreviated like so: P parent generation

More information

The Chromosomal Basis of Inheritance

The Chromosomal Basis of Inheritance Chapter 15 The Chromosomal Basis of Inheritance PowerPoint Lecture Presentations for Biology Eighth Edition Neil Campbell and Jane Reece Lectures by Chris Romero, updated by Erin Barley with contributions

More information

The Chromosomal Basis of Inheritance

The Chromosomal Basis of Inheritance Chapter 15 The Chromosomal Basis of Inheritance PowerPoint Lecture Presentations for Biology Eighth Edition Neil Campbell and Jane Reece Lectures by Chris Romero, updated by Erin Barley with contributions

More information