Disappearance of small vesicles from adrenergic nerve endings in the rat vas deferens caused by red back spider venom

Size: px
Start display at page:

Download "Disappearance of small vesicles from adrenergic nerve endings in the rat vas deferens caused by red back spider venom"

Transcription

1 Journal of Neurocytology z, (I973) Disappearance of small vesicles from adrenergic nerve endings in the rat vas deferens caused by red back spider venom R. C. HAMILTON 1 and P. M. ROBINSON~ 1Commonwealth Serum Laboratories, Parkville, Victoria, Australia 2Anatomy Department, University of Melbourne, Parkville, Victoria, Australia Received 22 June I973; revised and accepted 2 October I973 Summary As well as causing the release of acetylcholine and the disappearance of synaptic vesicles from somatic nerve endings Latrodectus venom also causes the release of noradrenaline and the disappearance of small vesicles from adrenergic nerve endings. The large granular vesicles of the adrenergic endings are less sensitive to the action of the venom. Introduction The venoms of the black widow spider (Latrodectus mactans tredecimguttatus), and the Australian red back spider (Latrodectus mactans hasseltii), two closely related spiders, cause the disappearance of synaptic vesicles from somatic motor nerve endings in amphibia, (Clark et al., I97o; Clark et al., I972), and mammals, (Okamoto et al., I972; Hamilton, I972). The fluorescent histochemical studies of Frontali (I972), showed that the venom of the black widow spider depleted catecholamines from adrenergic nerve endings in the rat iris. In the present experiments, red back spider venom was applied to the isolated rat vas deferens to determine the effects, if any, of Latrodectus venom on the small vesicles and large granular vesicles of adrenergic nerve endings. Methods The two vasa deferentia were dissected from each of eight rats. The vasa were placed in Kreb's solution in separate organ baths. One vas of each pair was treated with venom and the other left untreated as a control. In some experiments, the vasa were stimulated transmurally with pulses of supramaximal voltage, o.i ms in duration, at a frequency of iohz for 5 s every 2 min. Contractions were recorded on a kymograph. Venom in the form of freshly ground venom glands was added to one 9 I973 Chapman and Hall Ltd. Printed in Great Britain

2 466 HAMILTON and ROBINSON organ bath to make a final concentration of o.i gland per ml. Upon addition of the venom, the vas shortened and after several minutes developed spontaneous activity. Its response to stimulation diminished, and after about 3o min, disappeared altogether. When the venom-treated vas no longer responded to stimulation, the tissues were removed from the organ baths and cut into transverse slices I mm in thickness. Some slices from each vas were frozen in liquid propane, freeze-dried and exposed to formaldehyde vapour for the demonstration of catecholamines by fluorescence microscopy. Other transverse slices were fixed in 2.5% glutaraldehyde buffered to ph 7.2 with o.i M cacodylate buffer. The pre-fixed slices were cut into small blocks, post-fixed with 1% osmium tetroxide in cacodylate buffer, dehydrated in an acetone series and embedded in Durcupan so that thin sections could be examined with the electron microscope. In other experiments, vasa deferentia were not stimulated but incubated with the venom for 3 ~ min and then processed for electron microscopy and fluorescence microscopy as above. Observations Although electron microscopy and fluorescence histochemistry were not both performed on all pairs of vasa, all the figures presented here are from the one pair of stimulated vasa which were examined by both methods. Stimulated and unstimulated vasa were of similar appearance. When transverse sections of the control vas were examined with the fluorescence microscope, spots of specific noradrenaline fluorescence were observed throughout the musclelayers (Fig. i). In the venom-treated vas, specific fluorescence had disappeared from the outermost and innermost muscle layers, i.e. the area immediately under the serosa and the area surrounding the mucosa (Fig. 2). Thus red back spider venom has a similar action to black widow spider venom, namely, when tissues are incubated in vitro in the presence of the venom they are unable to maintain their normal store of catecholamines (Frontali, 1972). During the electron microscopic examination of the control vas, adrenergic nerve endings of normal appearance were observed. The endings contained small vesicles, some of which were granular, some large granular vesicles, and a few small mkochondria (Fig. 3). When sections from the middle layers of the venom-treated vas (areas in which specific fluorescence was still present in the fluorescence specimens) were examined in the electron microscope, nerve endings of normal appearance were found. On the other hand, in the outermost and innermost muscle layers, (i.e. areas where catecholamine depletion had Fig. I. Cross-section of control rat vas deferens processed for catecholamine fluorescence, a, adventitia; ram, Mucosa-muscle junction (bar = IOO am). Fig. 2. Cross-section of venom-treated rat vas deferens. Note loss of fluorescence from outer muscle layer (o) and inner muscle layer (i). Fluorescence remains in middle muscle layer (m). Because this section of vas is larger than the control, the mucosa lies outside this field, a, adventitia (bar = IOO ~.m). Fig. 3. Axons from control rat vas deferens. These axons contain small vesicles (s), large granular vesicles (l), and mitochondria (m) (bar = I ~zm). Fig. 4. Axon from innermost muscle layer of venom-treated rat vas deferens. This axon contains very few small vesicles (bar = I am). Fig. 5. Axons from innermost muscle layer of venom-treated rat vas deferens. One axon contains only large granular vesicles (bar = I ~m). Fig. 6. 'Empty' axon from innermost muscle layer of venom-treated rat vas deferens (bar = I am).

3

4 468 HAMILTON and ROBINSON occurred), most nerve endings were devoid of all types of vesicles (Fig. 6). Other nerve endings were similar in appearance but contained one or two large granular vesicles (Fig. 5), whilst a few partially affected nerve endings with a reduced number of small vesicles were also observed (Fig. 4). It was not possible in this series of experiments to determine precisely the order of disappearance of axonal organelles, because most axon profiles were either normal (in the unaffected areas), or totally depleted. However, examination of the full range of axon profiles which were present led us to the view that large granular vesicles were either not depleted by the venom or were the last structures to disappear from the axon profiles. Discussion Depletion of noradrenaline by displacement with ~-methyl-m-tyrosine or inhibition of vesicle uptake by reserpine results in loss of granules from the small granular vesicles, but no discernible change in the number of vesicles present (Van Orden et al., 1966). Consideration of this and other evidence has led to support for the view that a form of exocytosis (in which an empty vesicle remains) occurs in drug-induced noradrenaline depletion (Geffen and Livett, I97I). The disappearance of vesicles after Latrodectus venom treatment, on the other hand, indicates that a mechanism similar to reverse pincoytosis, in which the vesicle membrane is destroyed or becomes incorporated in the plasma membrane, may be taking place in this case. Although the release of noradrenaline and the destruction of granular vesicles can be caused by 6-hydroxydopamine there is a temporal separation of these two effects. Transmitter release precedes vesicle destruction by a few hours (Malmfors and Sachs, I968; Tranzer and Thoenen, 1968). Latrodectus venom causes transmitter release and vesicle destruction to occur simultaneously. No significant changes in vesicle numbers have been detected in adrenergic axons after noradrenaline release under physiological conditions (see Geffen and Livett, 1971). The observation that the large granular vesicles are relatively unaffected by the Latrodectus venom may indicate that these vesicles are not immediately involved in the release of noradrenaline. The present studies have been carried out with unfractionated venom preparations. It is possible, therefore, that the release of transmitter and disappearance of vesicles are caused by different components in the venom. However, ~-bungarotoxin, a pure toxin from the venom of the krait (Bungarus multicinctus), causes both the release of acetylcholine and the disappearance of synaptic vesicles from somatic motor nerve endings, (Chen and Lee, I97O), and it is possible that a similar single molecular species is the active component of Latrodectus venom. Further experiments with purified venom will be necessary to establish which component or components of the crude venom is (are) responsible for the changes described in this study. Acknowledgements We thank Roslyn Perry for help with the fluorescence histochemistry and Rudolfus Sikkes for his ultramicrotomy.

5 Disappearance of small vesicles from adrenergic nerve endings 469 References CHEN, I. L. and LEE, C. Y. (197o) Ultrastructural changes in motor nerve terminals caused by ~3- bungarotoxin. Virchows Archly Abteilung B. Zell Pathologie 6, CLARK, A. W., HURLBUT, W. P. and MAURO, A. (I972) Changes in the fine structure of the neuromuscular junction of the frog caused by black widow spider venom.ffournal of CellBiology 52, x-14. CLARK~ A. W., MAURO~ A., LONGENECKER, H. E. JR. and HURLBUT, W. P. (I97o) Effects of black widow spider venom on the frog neuromuscular junction. Effects on the fine structure of the frog neuromuscular junction. Nature (London) FRONTALI, N. (I972) Catecholamine-depleting effect of black widow spider venom on iris nerve fibres. Brain Research 373 I46-8. G E v r E N, e. S. and e I V E T T, B. G. (1971 ) Synaptic vesicles in sympathetic neurons. Physiological Reviews 51, 98-I57. HAMILTON, R. C. (I972) Ultrastructural studies of the action of Australian spider venoms. In 3orh Annual Proceedings of the Electron-Microscopy Society of America (edited by ARCENEAUX, C. J.) pp. 4o-1. Baton Rouge: Claitor's Publishing Division. MALMFORS, T. and SACHS, C. (1968) Degeneration of adrenergic nerves produced by 6-hydroxy- dopamine. European Journal of Pharmacology 3, OKAMOTO~ N., LONGENECKER, H. E. JR., RIKER, W. F. and SONG, S. K. (1971) Destruction of mammalian motor nerve terminals by black widow spider venom. Science 172, TRANZER, J. P. and THOENEN, H. (1968) An electron microscopic study of selective, acute degeneration of sympathetic nerve terminals after administration of 6-hydroxydopamine. Experientia 24, I55-6. VAN ORDEN~ L. S. III., BLOOM, F. E., BARgNETT, g. J" and GIARMAN, N. j. (~966) Histochemical and functional relationships of catecholamines in adrenergic nerve endings. I. Participation of granular vesicles. Journal of Pharmacology and Experimental Therapeutics 154, I85-99-

ENHANCEMENT OF THE GRANULATION OF ADRFNERGIC STORAGE VESICLES IN DRUG-FREE SOLUTION

ENHANCEMENT OF THE GRANULATION OF ADRFNERGIC STORAGE VESICLES IN DRUG-FREE SOLUTION ENHANCEMENT OF THE GRANULATION OF ADRFNERGIC STORAGE VESICLES IN DRUG-FREE SOLUTION TAKASHI IWAYAMA and J. B. FURNESS. From the Department of Zoology, University of Melbourne, Victoria, Australia. Dr.

More information

Sympathetic Nerve Cell Destruction in Newborn Mammals by 6-Hydroxydopamine P. U. Angeletti and R. Levi-Montalcini

Sympathetic Nerve Cell Destruction in Newborn Mammals by 6-Hydroxydopamine P. U. Angeletti and R. Levi-Montalcini Proceedings of the National Academy of Sciences Vol. 65, No. 1, pp. 114-121, January 1970 Sympathetic Nerve Cell Destruction in Newborn Mammals by 6-Hydroxydopamine P. U. Angeletti and R. Levi-Montalcini

More information

Uhrastructural Changes in the Motor Nerve Terminals Caused by 13-Bungarotoxin*

Uhrastructural Changes in the Motor Nerve Terminals Caused by 13-Bungarotoxin* Virchows Arch. Abt. B Zellpath. 6, 318--325 (1970) 9 by Springer-Verlag 1970 Uhrastructural Changes in the Motor Nerve Terminals Caused by 13-Bungarotoxin* I-LI CHEN and C. Y. LEE Department of Anatomy

More information

THE QUESTION OF RELATIONSHIP BETWEEN GOLGI VESICLES AND SYNAPTIC VESICLES IN OCTOPUS NEURONS

THE QUESTION OF RELATIONSHIP BETWEEN GOLGI VESICLES AND SYNAPTIC VESICLES IN OCTOPUS NEURONS J. Cell Set. 7, 89- (97) Printed in Great Britain THE QUESTION OF RELATIONSHIP BETWEEN GOLGI VESICLES AND SYNAPTIC VESICLES IN OCTOPUS NEURONS E. G. GRAY Department of Anatomy, University College London,

More information

A comparison of the sensitivities of innervated and denervated rat vasa deferentia to agonist drugs

A comparison of the sensitivities of innervated and denervated rat vasa deferentia to agonist drugs Br. J. Pharmac. (1970), 39, 748-754. A comparison of the sensitivities of innervated and denervated rat vasa deferentia to agonist drugs A. T. BIRMINGHAM*, G. PATRSON AND J. W6JCICKIt Department of Pharmacology,

More information

Adrenergic fibres in the human intestine

Adrenergic fibres in the human intestine Gut, 1968, 9, 678-682 Adrenergic fibres in the human intestine L. CAPURSO,1 C. A. FRIEDMANN, AND A. G. PARKS From the Research Department, St Mark's Hospital, London, and the London Hospital, Whitechapel,

More information

Autonomic Nervous System. Introduction

Autonomic Nervous System. Introduction Autonomic Nervous System Introduction 1 The nervous system is divided into: 1- the central nervous system (CNS; the brain and spinal cord) 2- the peripheral nervous system (PNS; neuronal tissues outside

More information

Dual Adrenergic and Cholinergic Innervation of the Cerebral Arteries off the Rat

Dual Adrenergic and Cholinergic Innervation of the Cerebral Arteries off the Rat Dual Adrenergic and Cholinergic Innervation of the Cerebral Arteries off the Rat AN ULTRASTRUCTURAL STUDY By T. Iwayama, J. B. Fumes*, and G. Burnstock ABSTRACT The innervation of the anterior cerebral

More information

(Axelsson & Thesleff, 1959; Miledi, 1960). Recently, it has become

(Axelsson & Thesleff, 1959; Miledi, 1960). Recently, it has become J. Physiol. (1973), 230, pp. 613-618 613 With 1 text-figure Printed in Great Britain INFLUENCE OF CHRONIC NEOSTIGMINE TREATMENT ON THE NUMBER OF ACETYLCHOLINE RECEPTORS AND THE RELEASE OF ACETYLCHOLINE

More information

Synaptic transmission

Synaptic transmission Outline Synaptic transmission Sompol Tapechum M.D., Ph.D. Department of Physiology Faculty of Medicine Siriraj Hospital, Bangkok, Thailand. sisth@mahidol.ac.th 2 Structure of synapse Modes of synaptic

More information

CHANGES IN THE FINE STRUCTURE OF THE NEUROMUSCULAR JUNCTION OF THE FROG CAUSED BY BLACK WIDOW SPIDER VENOM

CHANGES IN THE FINE STRUCTURE OF THE NEUROMUSCULAR JUNCTION OF THE FROG CAUSED BY BLACK WIDOW SPIDER VENOM CHANGES IN THE FINE STRUCTURE OF THE NEUROMUSCULAR JUNCTION OF THE FROG CAUSED BY BLACK WIDOW SPIDER VENOM ALLEN W. CLARK, WILLIAM P. HURLBUT, and ALEXANDER MAURO From the Department of Anatomy, University

More information

THE ACTION OF PHYSOSTIGMINE AND THE DISTRIBUTION OF CHOLINESTERASES IN THE CHICKEN OESOPHAGUS

THE ACTION OF PHYSOSTIGMINE AND THE DISTRIBUTION OF CHOLINESTERASES IN THE CHICKEN OESOPHAGUS Br. J. Phannac. Chemother. (1968), 33, 531-536. THE ACTION OF PHYSOSTIGMINE AND THE DISTRIBUTION OF CHOLINESTERASES IN THE CHICKEN OESOPHAGUS BY A. L. BARTLET AND T. HASSAN From the Department of Veterinary

More information

بسم ال الرحمن الرحيم. Autonomic Neurotransmission. Prepared by: Shaikh Abusufyan (M. Pharm, Pharmacology)

بسم ال الرحمن الرحيم. Autonomic Neurotransmission. Prepared by: Shaikh Abusufyan (M. Pharm, Pharmacology) بسم ال الرحمن الرحيم Autonomic Neurotransmission Prepared by: Shaikh Abusufyan (M. Pharm, Pharmacology) The autonomic nervous system consist of: Sympathetic (Adrenergic)- 1 Parasympathetic (Cholinergic)-2

More information

NERVOUS COORDINATION

NERVOUS COORDINATION QUESTIONSHEET 1 The diagram below is of a mammalian nerve cell. A F B D E C (a) (i) What functional type of neurone is shown in the diagram? G striated muscle fibre [1] (ii) Name the parts labelled A to

More information

I. OVERVIEW DIRECT. Drugs affecting the autonomic nervous system (ANS) are divided into two groups according to the type of

I. OVERVIEW DIRECT. Drugs affecting the autonomic nervous system (ANS) are divided into two groups according to the type of THE CHOLINERGIC NEURON 1 I. OVERVIEW DIRECT Drugs affecting the autonomic nervous system (ANS) are divided into two groups according to the type of ACTING neuron involved in their mechanism of action.

More information

Autonomic Nervous System

Autonomic Nervous System ANS..??? Autonomic Nervous System Nervous system CNS PNS Autonomic Somatic Symp Parasymp Enteric SOMATIC AUTONOMIC Organ supplied Skeletal muscle Other organs Distal most synapse Nerve fibre Peripheral

More information

The identification of adrenergic and cholinergic nerve endings in the trabecular meshwork. Tsunetami Nomura and George K. Smelser

The identification of adrenergic and cholinergic nerve endings in the trabecular meshwork. Tsunetami Nomura and George K. Smelser The identification of adrenergic and cholinergic nerve endings in the trabecular meshwork Tsunetami Nomura and George K. Smelser There are nerves and nerve endings in the trabecular meshwork, but their

More information

Cellular Bioelectricity

Cellular Bioelectricity ELEC ENG 3BB3: Cellular Bioelectricity Notes for Lecture 22 Friday, February 28, 2014 10. THE NEUROMUSCULAR JUNCTION We will look at: Structure of the neuromuscular junction Evidence for the quantal nature

More information

******************************************************************************************************* MUSCLE CYTOLOGY AND HISTOLOGY

******************************************************************************************************* MUSCLE CYTOLOGY AND HISTOLOGY BIOLOGY 211: HUMAN ANATOMY & PHYSIOLOGY ******************************************************************************************************* MUSCLE CYTOLOGY AND HISTOLOGY *******************************************************************************************************

More information

The Nervous System and Metabolism

The Nervous System and Metabolism = P1: JZP 8 The Nervous System and Metabolism Dendrites Cell body Axon (may be sheathed in myelin) Nucleus Axonal terminals (synapses) Figure 8.1 Basic structure of a nerve cell (neuron). CH 3_ CH 3 CH

More information

PSK4U THE NEUROMUSCULAR SYSTEM

PSK4U THE NEUROMUSCULAR SYSTEM PSK4U THE NEUROMUSCULAR SYSTEM REVIEW Review of muscle so we can see how the neuromuscular system works This is not on today's note Skeletal Muscle Cell: Cellular System A) Excitation System Electrical

More information

1,1-Dimethyl-4-phenylpiperazinium iodide (DMPP) is known to have a depolarizing

1,1-Dimethyl-4-phenylpiperazinium iodide (DMPP) is known to have a depolarizing Brit. J. Pharmacol. (1965) 24, 375-386. AN ANALYSIS OF THE BLOCKING ACTION OF DIMETHYLPHENYLPIPERAZINIUM IODIDE ON THE INHIBITION OF ISOLATED SMALL INTESTINE PRODUCED BY STIMULATION OF THE SYMPATHETIC

More information

Chapter 10: Muscles. Vocabulary: aponeurosis, fatigue

Chapter 10: Muscles. Vocabulary: aponeurosis, fatigue Chapter 10: Muscles 37. Describe the structural components of skeletal muscle tissue from the molecular to the organ level. 38. Describe the structure, function, and importance of sarcomeres. 39. Identify

More information

(a) Gene for NMDA receptor subunit knocked out selectively in hippocampus No LTP in hippocampal region CA1, no water-maze learning by mouse.

(a) Gene for NMDA receptor subunit knocked out selectively in hippocampus No LTP in hippocampal region CA1, no water-maze learning by mouse. 7.29 J 9.09 Cellular Neurobiology Answers to 2009 Midterm Test Question 1. (a) Gene for NMDA receptor subunit knocked out selectively in hippocampus No LTP in hippocampal region CA1, no water-maze learning

More information

Ultrastructural Contributions to Desensitization at the Cerebellar Mossy Fiber to Granule Cell Synapse

Ultrastructural Contributions to Desensitization at the Cerebellar Mossy Fiber to Granule Cell Synapse Ultrastructural Contributions to Desensitization at the Cerebellar Mossy Fiber to Granule Cell Synapse Matthew A.Xu-Friedman and Wade G. Regehr Department of Neurobiology, Harvard Medical School, Boston,

More information

LOCALIZATION OF SUBSTANCE P-IMMUNOREACTIVITY IN THE DEVELOPING HUMAN URINARY BLADDER

LOCALIZATION OF SUBSTANCE P-IMMUNOREACTIVITY IN THE DEVELOPING HUMAN URINARY BLADDER ACTA HISTOCHEM. CYTOCHEM. Vol. 21, No. 2, 1988 LOCALIZATION OF SUBSTANCE P-IMMUNOREACTIVITY IN THE DEVELOPING HUMAN URINARY BLADDER SHASHI WADHWA AND VEENA BIJLANI Department of Anatomy, All-India Institute

More information

Biology 218 Human Anatomy

Biology 218 Human Anatomy Chapter 17 Adapted form Tortora 10 th ed. LECTURE OUTLINE A. Overview of the Nervous System (p. 537) 1. The nervous system and the endocrine system are the body s major control and integrating centers.

More information

The influence of light and dark on the catecholamine content of the retina and choroid. Charles W. Nichols, David Jacobowitz, and Marianne Hottenstein

The influence of light and dark on the catecholamine content of the retina and choroid. Charles W. Nichols, David Jacobowitz, and Marianne Hottenstein The influence of light and dark on the catecholamine content of the retina and choroid Charles W. Nichols, David Jacobowitz, and Marianne Hottenstein Recent histochemical studies with the use of a fluorescence

More information

Effect of Black Widow Spider Venom on the Lobster Neuromuscular Junctions

Effect of Black Widow Spider Venom on the Lobster Neuromuscular Junctions Effect of Black Widow Spider Venom on the Lobster Neuromuscular Junctions NOBUFUMI KAWAI, ALEXANDER MAURO, and HARRY GRUNDFEST From the Laboratory of Neurophysiology, Department of Neurology, College of

More information

Muscle Tissue- 3 Types

Muscle Tissue- 3 Types AN INTRODUCTION TO MUSCLE TISSUE Muscle Tissue- 3 Types Skeletal muscle (focus on these) Cardiac muscle Smooth muscle FUNCTIONS OF SKELETAL MUSCLES Produce movement of the skeleton Maintain posture and

More information

~v\'l.t 3 - "Be~CtVl.OUY, populatl.ov\,s tl1e 6I1\,VLYO~~ell\,t

~v\'l.t 3 - Be~CtVl.OUY, populatl.ov\,s tl1e 6I1\,VLYO~~ell\,t " "!, ' II, I THE NERVOUSSVSTEM po'rtpharalnervous ~m, I " ~v\'l.t 3 - "Be~CtVl.OUY, populatl.ov\,s tle 6I\,VLYO~~ell\,t Na~ crass _ . The diagram shows how the nervous system is organised. A B o (a) Complete

More information

A COMPARISON OF TRANSMITTER AND SYNEPHRINE ON LUMINESCENCE INDUCTION IN THE FIREFLY LARVA

A COMPARISON OF TRANSMITTER AND SYNEPHRINE ON LUMINESCENCE INDUCTION IN THE FIREFLY LARVA J. Exp. Biol. (197a), 57. 737-743 737 ^Vith 5 text-figures WPrinted in Great Britain A COMPARISON OF TRANSMITTER AND SYNEPHRINE ON LUMINESCENCE INDUCTION IN THE FIREFLY LARVA BY ALBERT D. CARLSON Department

More information

Adrenergic agonists Sympathomimetic drugs. ANS Pharmacology Lecture 4 Dr. Hiwa K. Saaed College of Pharmacy/University of Sulaimani

Adrenergic agonists Sympathomimetic drugs. ANS Pharmacology Lecture 4 Dr. Hiwa K. Saaed College of Pharmacy/University of Sulaimani Adrenergic agonists Sympathomimetic drugs ANS Pharmacology Lecture 4 Dr. Hiwa K. Saaed College of Pharmacy/University of Sulaimani 2017-2018 Adrenergic agonists The adrenergic drugs affect receptors that

More information

The Channel-Forming Component of the Theridiidae Spider Venom Neurotoxins

The Channel-Forming Component of the Theridiidae Spider Venom Neurotoxins Gen. Physiol. Biophys. (1985), 4, 185 193 185 The Channel-Forming Component of the Theridiidae Spider Venom Neurotoxins P. B. USMANOV, I. KAZAKOV, D. KAUKULOV, B. U. ATAKUZIEV, L. Ya. YUKELSON and B. A.

More information

Neurons Chapter 7 2/19/2016. Learning Objectives. Cells of the Nervous System. Cells of the Nervous System. Cells of the Nervous System

Neurons Chapter 7 2/19/2016. Learning Objectives. Cells of the Nervous System. Cells of the Nervous System. Cells of the Nervous System Learning Objectives Neurons Chapter 7 Identify and describe the functions of the two main divisions of the nervous system. Differentiate between a neuron and neuroglial cells in terms of structure and

More information

RESPONSES OF THE ISOLATED SYMPATHETIC NERVE-

RESPONSES OF THE ISOLATED SYMPATHETIC NERVE- Brit. J. Pharmacol. (1961), 16, 188-194. RESPONSES OF THE ISOLATED SYMPATHETIC NERVE- DUCTUS DEFERENS PREPARATION OF THE GUINEA-PIG BY S. HUKOVIC From the Department of Pharmacology, Medical Faculty, University

More information

Anatomy Review. Graphics are used with permission of: Pearson Education Inc., publishing as Benjamin Cummings (

Anatomy Review. Graphics are used with permission of: Pearson Education Inc., publishing as Benjamin Cummings ( Anatomy Review Graphics are used with permission of: Pearson Education Inc., publishing as Benjamin Cummings (http://www.aw-bc.com) Page 1. Introduction Neurons communicate with other cells at junctions

More information

Types of Muscle. Skeletal striated & voluntary Smooth involuntary Cardiac - heart

Types of Muscle. Skeletal striated & voluntary Smooth involuntary Cardiac - heart Muscular System Types of Muscle Skeletal striated & voluntary Smooth involuntary Cardiac - heart The word striated means striped. Skeletal muscle appears striped under a microscope. Muscles and Muscle

More information

Lesson 33. Objectives: References: Chapter 16: Reading for Next Lesson: Chapter 16:

Lesson 33. Objectives: References: Chapter 16: Reading for Next Lesson: Chapter 16: Lesson 33 Lesson Outline: Nervous System Structure and Function Neuronal Tissue Supporting Cells Neurons Nerves Functional Classification of Neuronal Tissue Organization of the Nervous System Peripheral

More information

Synaptic Transmission

Synaptic Transmission Synaptic Transmission Graphics are used with permission of: Pearson Education Inc., publishing as Benjamin Cummings (http://www.aw-bc.com) Page 1. Introduction Synaptic transmission involves the release

More information

Chapter 45: Synapses Transmission of Nerve Impulses Between Neurons. Chad Smurthwaite & Jordan Shellmire

Chapter 45: Synapses Transmission of Nerve Impulses Between Neurons. Chad Smurthwaite & Jordan Shellmire Chapter 45: Synapses Transmission of Nerve Impulses Between Neurons Chad Smurthwaite & Jordan Shellmire The Chemical Synapse The most common type of synapse used for signal transmission in the central

More information

The Nobel Prize in Physiology or Medicine 2000

The Nobel Prize in Physiology or Medicine 2000 The Nobel Prize in Physiology or Medicine 2000 Press Release NOBELFÖRSAMLINGEN KAROLINSKA INSTITUTET THE NOBEL ASSEMBLY AT THE KAROLINSKA INSTITUTE 9 October 2000 The Nobel Assembly at Karolinska Institutet

More information

Intercellular Matrix in Colonies of Candida

Intercellular Matrix in Colonies of Candida JouRNAL OF BAcTEROLOGY, Sept. 1975, p. 1139-1143 Vol. 123, No. 3 Copyright 0 1975 American Society for Microbiology Printed in U.S.A. ntercellular Matrix in Colonies of Candida K. R. JOSH, J. B. GAVN,*

More information

Bio Factsheet

Bio Factsheet Number 155 Answering exam questions on neurones and synapses You must know the structure (histology) of a neurone, the functions of its component parts and be able to distinguish between different types

More information

BIOLOGY 12 NERVOUS SYSTEM PRACTICE

BIOLOGY 12 NERVOUS SYSTEM PRACTICE 1 Name: BIOLOGY 12 NERVOUS SYSTEM PRACTICE Date: 1) Identify structures X, Y and Z and give one function of each. 2) Which processes are involved in the movement of molecule Y from point X to point Z?

More information

Nerve Cell (aka neuron)

Nerve Cell (aka neuron) Nerve Cell (aka neuron) Neuromuscular Junction Nerve cell Muscle fiber (cell) The Nerve Stimulus and Action Potential The Nerve Stimulus and Action Potential Skeletal muscles must be stimulated by a motor

More information

Nervous System Review

Nervous System Review Nervous System Review Name: Block: 1. Which processes are involved in the movement of molecule Y from point X to point Z? A. exocytosis and diffusion B. endocytosis and diffusion C. exocytosis and facilitated

More information

BIPN100 F15 Human Physiology 1 Lecture 3. Synaptic Transmission p. 1

BIPN100 F15 Human Physiology 1 Lecture 3. Synaptic Transmission p. 1 BIPN100 F15 Human Physiology 1 Lecture 3. Synaptic Transmission p. 1 Terms you should know: synapse, neuromuscular junction (NMJ), pre-synaptic, post-synaptic, synaptic cleft, acetylcholine (ACh), acetylcholine

More information

SOME PHARMACOLOGICAL ACTIONS OF DIETHYLDITHIOCARBAMATE ON RABBIT AND RAT ILEUM

SOME PHARMACOLOGICAL ACTIONS OF DIETHYLDITHIOCARBAMATE ON RABBIT AND RAT ILEUM Br. J. Pharmac. Chemother. (1968), 32, 42-49. SOME PHARMACOLOGICAL ACTIONS OF DIETHYLDITHIOCARBAMATE ON RABBIT AND RAT ILEUM BY G. G. S. COLLINS* AND G. B. WESTt From the Department of Pharmacology, School

More information

BIOLOGY 2805/05 Mammalian Physiology and Behaviour

BIOLOGY 2805/05 Mammalian Physiology and Behaviour THIS IS A LEGACY SPECIFICATION ADVANCED GCE BIOLOGY 2805/05 Mammalian Physiology and Behaviour *CUP/T57295* Candidates answer on the question paper OCR Supplied Materials: None Other Materials Required:

More information

EVIDENCE FOR CATECHOLAMINE-DEPLETING ACTION OF FLUOXETlNE

EVIDENCE FOR CATECHOLAMINE-DEPLETING ACTION OF FLUOXETlNE indian J Physiol Pharmacol 1994; 38(3) : 169-173 EVIDENCE FOR CATECHOLAMINE-DEPLETING ACTION OF FLUOXETlNE MILIND R. PATIL, MILAN C. SATIA, ANITA A. MEHTA AND RAMESH K. GOYAL * Department of Pharmacology,

More information

Dopamine-s-Hydroxylase in the Rat Superior Cervical Ganglia

Dopamine-s-Hydroxylase in the Rat Superior Cervical Ganglia Proc. Nat. Acad. Sci. USA Vol. 68, No. 7, pp. 1598-1602, July 1971 Selective Induction by Nerve Growth Factor of Tyrosine Hydroxylase and Dopamine-s-Hydroxylase in the Rat Superior Cervical Ganglia (dopa

More information

Section: Chapter 5: Multiple Choice. 1. The structure of synapses is best viewed with a(n):

Section: Chapter 5: Multiple Choice. 1. The structure of synapses is best viewed with a(n): Section: Chapter 5: Multiple Choice 1. The structure of synapses is best viewed with a(n): p.155 electron microscope. light microscope. confocal microscope. nissle-stained microscopic procedure. 2. Electron

More information

Neuropharmacology NOTES

Neuropharmacology NOTES Neuropharmacology NOTES Contents Topic Page # Lecture 1- Intro to Neurochemical Transmission & Neuromodulation 2 Lecture 2- Serotonin & Noradrenaline 7 Lecture 3- Acetylcholine & Dopamine 14 Lecture 4-

More information

Chapter 9 - Muscle and Muscle Tissue

Chapter 9 - Muscle and Muscle Tissue Chapter 9 - Muscle and Muscle Tissue I. Overview of muscle tissue A. Three muscle types in the body: B. Special characteristics 1. Excitability: able to receive and respond to a stimulus 2. Contractility:

More information

Thanks for your help with the blood chemistry lab!...

Thanks for your help with the blood chemistry lab!... Thanks for your help with the blood chemistry lab!... BI 121 Lecture 12 I. Announcements Optional notebook check + Lab 6 tomorrow. Pulmonary Function Testing. Final exam > your Q on Wed. Q? II. Autonomic

More information

THE EFFECT OF ESERINE ON THE RESPONSE OF THE VAS DEFERENS TO HYPOGASTRIC NERVE STIMULATION

THE EFFECT OF ESERINE ON THE RESPONSE OF THE VAS DEFERENS TO HYPOGASTRIC NERVE STIMULATION Brit. J. Pharmacol. (1963), 20, 74-82. THE EFFECT OF ESERINE ON THE RESPONSE OF THE VAS DEFERENS TO HYPOGASTRIC NERVE STIMULATION BY J. H. BURN AND D. F. WEETMAN From the Biological Research Laboratories,

More information

BASICS OF NEUROBIOLOGY NERVE ENDINGS ZSOLT LIPOSITS

BASICS OF NEUROBIOLOGY NERVE ENDINGS ZSOLT LIPOSITS BASICS OF NEUROBIOLOGY NERVE ENDINGS ZSOLT LIPOSITS 1 11. előadás. Prof. Liposits Zsolt NERVE ENDINGS I. Effectors and receptors 2 NERVE ENDINGS NEURONS COMMUNICATE WITH NON-NEURONAL ELEMENTS VIA SPECIALIZED

More information

About This Chapter. Skeletal muscle Mechanics of body movement Smooth muscle Cardiac muscle Pearson Education, Inc.

About This Chapter. Skeletal muscle Mechanics of body movement Smooth muscle Cardiac muscle Pearson Education, Inc. About This Chapter Skeletal muscle Mechanics of body movement Smooth muscle Cardiac muscle Skeletal Muscle Usually attached to bones by tendons Origin: closest to the trunk or to more stationary bone Insertion:

More information

BIOL Week 6. Nervous System. Transmission at Synapses

BIOL Week 6. Nervous System. Transmission at Synapses Collin County Community College BIOL 2401 Week 6 Nervous System 1 Transmission at Synapses Synapses are the site of communication between 2 or more neurons. It mediates the transfer of information and

More information

EFFECT OF THE BLACK SNAKE TOXIN ON THE GASTROCNEMIUS-SCIATIC PREPARATION

EFFECT OF THE BLACK SNAKE TOXIN ON THE GASTROCNEMIUS-SCIATIC PREPARATION [20] EFFECT OF THE BLACK SNAKE TOXIN ON THE GASTROCNEMIUS-SCIATIC PREPARATION BY A. H. MOHAMED AND O. ZAKI Physiology Department, Faculty of Medicine, Abbassia, Cairo (Received 3 June 1957) When the toxin

More information

Human Anatomy. Muscle Tissue and Organization. DR.SADIQ ALI (K.E Medalist) 10-1

Human Anatomy. Muscle Tissue and Organization. DR.SADIQ ALI (K.E Medalist) 10-1 Human Anatomy Muscle Tissue and Organization DR.SADIQ ALI (K.E Medalist) 10-1 Tissue and Organization Over 700 skeletal muscles have been named. Form the muscular system. Muscle tissue is distributed almost

More information

The Nervous and Muscular Systems and the role of ATP

The Nervous and Muscular Systems and the role of ATP The Nervous and Muscular Systems and the role of ATP Overview of the Nervous System General parts: The brain The spinal cord The nerves and sense organs General functions: controls and coordinates body

More information

Acetylcholine Turnover in an Autoactive Molluscan Neuron

Acetylcholine Turnover in an Autoactive Molluscan Neuron Cellular and Molecular Neurobiology, Vol. 4, No. 1, 1984 Acetylcholine Turnover in an Autoactive Molluscan Neuron Susan R. Barry 1'2 and Alan Gelperin ~'3 Received July 18, 1983; revised October 24, 1983;

More information

POLLEN-WALL PROTEINS: ELECTRON- MICROSCOPIC LOCALIZATION OF ACID PHOSPHATASE IN THE INTINE OF CROCUS VERNUS

POLLEN-WALL PROTEINS: ELECTRON- MICROSCOPIC LOCALIZATION OF ACID PHOSPHATASE IN THE INTINE OF CROCUS VERNUS J. Cell Sci. 8, 727-733 (197O 727 Printed in Great Britain POLLEN-WALL PROTEINS: ELECTRON- MICROSCOPIC LOCALIZATION OF ACID PHOSPHATASE IN THE INTINE OF CROCUS VERNUS R.B. KNOX* AND J. HESLOP-HARRISONf

More information

The Brain & Homeostasis. The Brain & Technology. CAT, PET, and MRI Scans

The Brain & Homeostasis. The Brain & Technology. CAT, PET, and MRI Scans The Brain & Homeostasis Today, scientists have a lot of information about what happens in the different parts of the brain; however they are still trying to understand how the brain functions. We know

More information

NEURONS COMMUNICATE WITH OTHER CELLS AT SYNAPSES 34.3

NEURONS COMMUNICATE WITH OTHER CELLS AT SYNAPSES 34.3 NEURONS COMMUNICATE WITH OTHER CELLS AT SYNAPSES 34.3 NEURONS COMMUNICATE WITH OTHER CELLS AT SYNAPSES Neurons communicate with other neurons or target cells at synapses. Chemical synapse: a very narrow

More information

THE NERVOUS SYSTEM. Neurons & Impulses

THE NERVOUS SYSTEM. Neurons & Impulses THE NERVOUS SYSTEM Neurons & Impulses Organization of the Nervous System: Two Major Portions: The central nervous system (CNS) and the peripheral nervous system (PNS). CNS = Brain/Spinal Cord PNS = Nerves-provide

More information

A NEW STRATEGY TO ESCAPE FROM EXPRESSION LINES V.0

A NEW STRATEGY TO ESCAPE FROM EXPRESSION LINES V.0 A NEW STRATEGY TO ESCAPE FROM EXPRESSION LINES V.0 WRINKLES: THE HALLMARK OF AGING The face is the most visible part of our body and increased wrinkling is one of the most striking signs of aging Repeated

More information

Introduction to Autonomic

Introduction to Autonomic Part 2 Autonomic Pharmacology 3 Introduction to Autonomic Pharmacology FUNCTIONS OF THE AUTONOMIC NERVOUS SYSTEM The autonomic nervous system (Figure 3 1) is composed of the sympathetic and parasympathetic

More information

Ultrastructural Localization of Tyrosine Hydroxylase in Noradrenergic Neurons of Brain (immunohistochemistry/peroxidase-antiperoxidase/catecholamine)

Ultrastructural Localization of Tyrosine Hydroxylase in Noradrenergic Neurons of Brain (immunohistochemistry/peroxidase-antiperoxidase/catecholamine) Proc. Nat. Acad. Sci. USA Vol. 72, No. 2, pp. 659-663, February 1975 Ultrastructural Localization of Tyrosine Hydroxylase in Noradrenergic Neurons of Brain (immunohistochemistry/peroxidase-antiperoxidase/catecholamine)

More information

SYNAPTIC COMMUNICATION

SYNAPTIC COMMUNICATION BASICS OF NEUROBIOLOGY SYNAPTIC COMMUNICATION ZSOLT LIPOSITS 1 NERVE ENDINGS II. Interneuronal communication 2 INTERNEURONAL COMMUNICATION I. ELECTRONIC SYNAPSE GAP JUNCTION II. CHEMICAL SYNAPSE SYNAPSES

More information

PENTOBARBITONE AND COLCHICINE ON DEGENERATION

PENTOBARBITONE AND COLCHICINE ON DEGENERATION Br. J. Pharmac. (1978), 62, 55-561 TIME COURSE OF DEGENERATION OF SHORT AND LONG POSTGANGLIONIC SYMPATHETIC NERVE FIBRES AND EFFECT OF PENTOBARBITONE AND COLCHICINE ON DEGENERATION ARUN R. WAKADE Department

More information

Ultrastructure of Connective Tissue Cells of Giant African Snails Achatina fulica (Bowdich)

Ultrastructure of Connective Tissue Cells of Giant African Snails Achatina fulica (Bowdich) Kasetsart J. (Nat. Sci.) 36 : 285-290 (2002) Ultrastructure of Connective Tissue Cells of Giant African Snails Achatina fulica (Bowdich) Viyada Seehabutr ABSTRACT The connective tissue sheath of cerebral

More information

Autonomic Targets. Review (again) Efferent Peripheral NS: The Autonomic & Somatic Motor Divisions

Autonomic Targets. Review (again) Efferent Peripheral NS: The Autonomic & Somatic Motor Divisions Review (again) Efferent Peripheral NS: The Autonomic & Somatic Motor Divisions Running Problem: Smoking Homeostasis and the Autonomic Division BP, HR, Resp., H 2 O balance, Temp... Mostly dual reciprocal

More information

Adrenergic Innervation of the Canine Kidney

Adrenergic Innervation of the Canine Kidney Adrenergic Innervation of the Canine Kidney By Olivia C. McKenna, Ph.D., and Evangelos T. Angelakos, M.D., Ph.D. ABSTRACT The adrenergic innervation of the canine kidney was studied with the fluorescence

More information

The Nervous System & Nervous tissue. Dr. Ali Ebneshahidi

The Nervous System & Nervous tissue. Dr. Ali Ebneshahidi The Nervous System & Nervous tissue Dr. Ali Ebneshahidi Functions of the Nervous System 1. Nervous system and endocrine system are the chief control centers in maintaining body homeostasis. 2. Nervous

More information

Activity Dependent Changes At the Developing Neuromuscular Junction

Activity Dependent Changes At the Developing Neuromuscular Junction Activity Dependent Changes At the Developing Neuromuscular Junction (slides 16, 17 and 18 have been slightly modified for clarity) MCP Lecture 2-3 9.013/7.68 04 Neuromuscular Junction Development 1. Muscle

More information

Synaptic communication

Synaptic communication Synaptic communication Objectives: after these lectures you should be able to: - explain the differences between an electrical and chemical synapse - describe the steps involved in synaptic communication

More information

Answer ALL questions. For each question, there is ONE correct answer. Use the answer grid provided for ALL your answers.

Answer ALL questions. For each question, there is ONE correct answer. Use the answer grid provided for ALL your answers. UNIVERSITY OF EAST ANGLIA School of Pharmacy Main Series UG Examination 2017-18 NEUROPHARMACOLOGY PHAP4008Y Time allowed: 2 hours Part ONE Answer ALL questions. For each question, there is ONE correct

More information

MODULE 6 MUSCLE PHYSIOLOGY

MODULE 6 MUSCLE PHYSIOLOGY MODULE 6 MUSCLE PHYSIOLOGY III SEMESTER BOTANY Syllabi: Striated, Non striated and Cardiac muscle, Ultra structure of striated muscle fibre, Mechanism of muscle contraction, Threshold and spike potential,

More information

Chapter 7. The Nervous System: Structure and Control of Movement

Chapter 7. The Nervous System: Structure and Control of Movement Chapter 7 The Nervous System: Structure and Control of Movement Objectives Discuss the general organization of the nervous system Describe the structure & function of a nerve Draw and label the pathways

More information

Chapter 7. Objectives

Chapter 7. Objectives Chapter 7 The Nervous System: Structure and Control of Movement Objectives Discuss the general organization of the nervous system Describe the structure & function of a nerve Draw and label the pathways

More information

Yara Saddam. Amr Alkhatib. Ihsan

Yara Saddam. Amr Alkhatib. Ihsan 1 Yara Saddam Amr Alkhatib Ihsan NOTE: Yellow highlighting=correction/addition to the previous version of the sheet. Histology (micro anatomy) :- the study of tissues and how they are arranged into organs.

More information

Neurobiology. Cells of the nervous system

Neurobiology. Cells of the nervous system Neurobiology Cells of the nervous system Anthony Heape 2010 1 The nervous system Central nervous system (CNS) Peripheral nervous system (PNS) 2 Enteric nervous system (digestive tract, gall bladder and

More information

How many skeletal muscles are present in our body? Muscles are excitable & contractile, extensible and elastic to some extent.

How many skeletal muscles are present in our body? Muscles are excitable & contractile, extensible and elastic to some extent. Muscles How many skeletal muscles are present in our body? -646 muscles The functions of the muscles are: Movement Maintenance of posture Generation of heat Stabilization of joints : amount of muscle surrounding

More information

Skeletal Muscle Tissue

Skeletal Muscle Tissue Functions of Skeletal Muscle Skeletal Muscle Tissue Keri Muma Bio 6 Movement muscles attach directly or indirectly to bone, pull on bone or tissue when they contract Maintain posture / body position muscles

More information

Major Function of the Cardiovascular System. Transportation. Structures of the Cardiovascular System. Heart - muscular pump

Major Function of the Cardiovascular System. Transportation. Structures of the Cardiovascular System. Heart - muscular pump Structures of the Cardiovascular System Heart - muscular pump Blood vessels - network of tubes Blood - liquid transport vehicle brachiocephalic trunk superior vena cava right pulmonary arteries right pulmonary

More information

EM: myelin sheath shows a series of concentrically arranged lamellae

EM: myelin sheath shows a series of concentrically arranged lamellae EM: myelin sheath shows a series of concentrically arranged lamellae ---- how to form myelin sheath? Schwann cell invagination and envelop the axon form mesaxon mesaxon become longer and longer winding

More information

Baraa Ayed. Mohammad khatatbeh. 1 P a g e

Baraa Ayed. Mohammad khatatbeh. 1 P a g e 4 Baraa Ayed أسامة الخض Mohammad khatatbeh 1 P a g e Today we want to talk about these concepts: Excitation-Contraction coupling Smooth muscles (Generally speaking) Excitation-Contraction coupling Excitation-Contraction

More information

TRANSMISSION IN THE MOUSE VAS DEFERENS

TRANSMISSION IN THE MOUSE VAS DEFERENS Br. J. Pharmac. (1980), 69, 185-191 AN ELECTROPHYSIOLOGICAL ANALYSIS OF THE EFFECTS OF MOR- PHINE ON THE CALCIUM DEPENDENCE OF NEUROMUSCULAR TRANSMISSION IN THE MOUSE VAS DEFERENS M.R. BENNETT & N.A. LAVIDIS

More information

photometry on the extruded cytoplasm.

photometry on the extruded cytoplasm. Answers To Midterm 2011 Question 1. a) Isoproterenol. Used to dissect presynaptic and postsynaptic components of sympathetic modulation of neuromuscular junction (Orbelli effect). Specifically activates

More information

Fig Copyright McGraw-Hill Education. Permission required for reproduction or display. Nucleus. Muscle fiber. Endomysium. Striations.

Fig Copyright McGraw-Hill Education. Permission required for reproduction or display. Nucleus. Muscle fiber. Endomysium. Striations. Fig. 11.1 Nucleus Muscle fiber Endomysium Striations Ed Reschke 1 Fig. 11.2 Muscle fiber Nucleus I band A band Z disc Mitochondria Openings into transverse tubules Sarcoplasmic reticulum Triad: Terminal

More information

NEUROPHYSIOLOGY, SYNAPTIC PHARMACOLOGY AND ENDOCRINOLOGY

NEUROPHYSIOLOGY, SYNAPTIC PHARMACOLOGY AND ENDOCRINOLOGY UNIVERSITY OF EAST ANGLIA School of Pharmacy Main series UG Examination 2017-18 NEUROPHYSIOLOGY, SYNAPTIC PHARMACOLOGY AND ENDOCRINOLOGY PHA-5004Y Time allowed: 2 hours Part ONE Answer ALL questions. For

More information

Autonomic Nervous System. Lanny Shulman, O.D., Ph.D. University of Houston College of Optometry

Autonomic Nervous System. Lanny Shulman, O.D., Ph.D. University of Houston College of Optometry Autonomic Nervous System Lanny Shulman, O.D., Ph.D. University of Houston College of Optometry Peripheral Nervous System A. Sensory Somatic Nervous System B. Autonomic Nervous System 1. Sympathetic Nervous

More information

Pulmonary noradrenergic innervation of rat and monkey: a comparative study

Pulmonary noradrenergic innervation of rat and monkey: a comparative study Tkorax, 1978, 33, 167-174 Pulmonary noradrenergic innervation of rat and monkey: a comparative study AL-WALID I. EL-BERMANI From the Department of Anatomy, Tufts University School of Medicine, 136 Harrison

More information

UNIT 3 - THE NERVOUS SYSTEM. - DIVISIONs - THE NEURON

UNIT 3 - THE NERVOUS SYSTEM. - DIVISIONs - THE NEURON UNIT 3 - THE NERVOUS SYSTEM - DIVISIONs - THE NEURON CHARACTERISTICS COMPLEXITY: nerve cells connecting allow you to do EVERYTHING you will ever do INTEGRATION: brain pulls all information you get together

More information

Autonomic Nervous System

Autonomic Nervous System Autonomic Nervous System Autonomic nervous system organization Sympathetic Nervous System division of the autonomic nervous system that arouses the body, mobilizing its energy in stressful situations

More information

THE UPTAKE AND LOCALIZATION OF CATECHOLAMINES IN CHICK EMBRYO SYMPATHETIC NEURONS IN TISSUE CULTURE

THE UPTAKE AND LOCALIZATION OF CATECHOLAMINES IN CHICK EMBRYO SYMPATHETIC NEURONS IN TISSUE CULTURE J. Cell Sci. 4, 677-691 (1969) 677 Printed in Great Britain THE UPTAKE AND LOCALIZATION OF CATECHOLAMINES IN CHICK EMBRYO SYMPATHETIC NEURONS IN TISSUE CULTURE J. M. ENGLAND AND M. N. GOLDSTEIN Department

More information

Physiological and Morphological Studies on Developing Sympathetic Neurons in Dissociated Cell Culture

Physiological and Morphological Studies on Developing Sympathetic Neurons in Dissociated Cell Culture Physiological and Morphological Studies on Developing Sympathetic Neurons in Dissociated Cell Culture P. H. O'LAGuE, P. i%. MAcLEIsH, C. A. NURSE, P. CLAUDE, E. J. FURSHPAN AI~D I). ]). POTTER Department

More information