INVESTIGATION : Determining Osmolarity of Plant Tissue

Size: px
Start display at page:

Download "INVESTIGATION : Determining Osmolarity of Plant Tissue"

Transcription

1 INVESTIGATION : Determining Osmolarity of Plant Tissue AP Biology This lab investigation has two main components. In the first component, you will learn about the osmolarity of plant tissues and the property of plant tissues known as water potential, a critical property that explains why water is able to move from soil into roots (and subsequently, leaves). In the second component, you will observe what occurs when a plant cell is exposed to the three types of osmotic solutions: hypotonic, hypertonic, and isotonic. BACKGROUND INFORMATION Part One: Osmolarity of Plant Tissues and Water Potential In this part of the lab, you will use a plant tissue of your choice placed in sucrose solutions of varying molar concentration to determine the water potential of plant cells. But what does water potential even mean? When you hear the word potential, think potential energy : the energy in a system that is available to do work. The work that water does in biological systems is that of dissolving solutes such as salts, proteins, and sugars--all of which are polar molecules. When a polar solute is present in an aqueous solution, the water molecules in the solution will form hydrogen bonds with the polar (or charged) portions of the solute. If an ionic solute (such as salt, NaCl) is present in the solution, the solute particles will dissociate into their constituent ions, and the water molecules will surround the individual ions, as shown in the diagram at right. You can see that the positive portions of the water molecules are attracted to the negative chloride ions, and the negative portions of the water molecule are attracted to the positive sodium ions. In biological molecules, the same thing happens--water is attracted to the polar components of those molecules and will thus dissolve them. The diagrams below show that water is attracted to the polar components of glucose (a carbohydrate) and a schematic drawing of a protein.

2 Notice that if water molecules are attracted to and are binding to polar portions of biological molecules, they are unable to perform the work of dissolution since they are already occupied since they have formed hydrogen bonds with the solute. Therefore, their potential to do work as they across the membrane is reduced. By adding solutes to an aqueous solution, the water potential of that solution is reduced. Water potential is affected by two physical factors. One factor is the addition of solute to water. The reason that adding solute to water reduces water potential is thi s: as water molecules form hydration shells around ions or solute molecules, their movement is restricted due to the formation of hydrogen bonds with these ions or solute molecules. The energy that would otherwise be available to do work is tied up in the hydrogen bonds formed between solute and water. This restricted movement means that the potential for them to do the work of dissolution is reduced and thus the water potential is lowered. The relationship between water potential and solute concentration is an inverse one. By convention, the water potential of pure water at atmospheric pressure (1 atm) is defined as being zero. The reason for this is that pure water has no solutes in it, so water molecules will not form hydration shells and thus are free to do the work of dissolution--their free energy is high. The potential energy of water molecules is at its highest in pure water.

3 The other factor is pressure potential (mechanical pressure). An increase in pressure raises the water potential of the solution. The pressure potential can also be thought of as the turgor pressure exerted by the cell membrane on the cell walls of plant cells. If a great deal of water is present in the plant cell s central vacuole, it will exert pressure on the cell wall, causing turgor pressure to increase. Conversely, if the central vacuole of a plant cell experiences a decrease in its volume, turgor pressure drops and the plant cell becomes flaccid. The relationship between pressure potential and water potential is a direct one. Movement of water into and out of a cell is influenced by the solute potential (relative concentration of solute) on either side of the cell membrane. If water moves out of the cell, the cell will shrink. If water moves into an animal cell, it will swell and may even burst. In plant cells, the presence of a cell wall prevents cells from bursting as water enters the cells, but pressure eventually builds up inside the cell and affects the net movement of water. As water enters a dialysis bag or a cell with a cell wall, pressure will develop inside the bag or cell as water pushes against the bag or cell wall. The pressure would cause, for example, the water to rise in an osmometer tube or increase the pressure on a cell wall. Water will always move from an area of higher water potential to an area of lower water potential. Water potential, then, measures the tendency of water to leave one place in favor of another place. You can picture the water diffusing down a water potential gradient, as shown at left. Movement of water into and out of a cell is also influenced by the pressure potential (physical pressure) on either side of the cell membrane. Water movement is directly proportional to the pressure on a system. For example, pressing on the plunger of a water-filled syringe causes the water to exit via any opening. In plant cells this physical pressure can be exerted by the cell pressing against the partially elastic cell wall. Pressure potential is usually positive in living cells: in dead xylem elements it is often negative.

4 How is Water Potential Actually Used? Botanists use the term water potential when predicting the movement of water into or out of plant cells. Water potential is abbreviated by the Greek letter psi ( Ψ ) and it has two components; a physical pressure component, pressure potential Ψ p, and the effects of solutes, solute potential Ψ s. Ψ = Ψ p + Ψ s Water potential = Pressure potential + Solute potential Mathematically, this is represented as: Ψ = -icrt where i = ionization constant (for organic molecules like sugar that do not ionize in solution, this is always 1, for other ionic compounds, it is equal to the number of ions the compound dissociates into) C = concentration of solution (in mol) R = L-bars/mol-K T = temperature in degrees K (so temperature in C + 273K) It is important for you to be clear about the numerical relationships between water potential and its components, pressure potential and solute potential. The water potential value can be positive, zero, or negative. Remember that water will move across a membrane in the direction of lower water potential. An increase in pressure potential results in a more positive value and a decrease in pressure potential (tension or pulling) results in a more negative value. In contrast to pressure potential, solute potential is always negative ; since pure water has a water potential of zero, any solutes will make the solution have a lower (more negative) water potential. Generally, an increase in solute potential makes the water potential value more negative and an increase in pressure potential makes the water potential more positive. To illustrate the concepts discussed above, we will look at a sample system using the figures at right. When a solution, such as that inside a potato cell, is separated from pure water by a selectively permeable cell membrane, water will move (by osmosis) from the surrounding water where water potential is higher, into the cell where water potential is lower (more negative) due to the solute potential (ψs). In the picture at the right (picture a) the pure water potential is 0 (ψ=0) and the solute potential is 3 (ψs = -3.) We will assume, for purposes of explanation, that the solute is not diffusing out of the cell. By the end of the observation, the movement of water into the cell causes the cell to swell and the cell contents push against the cell wall to produce an increase in pressure potential (turgor) (ψ=3). Eventually, enough turgor pressure builds up to balance the negative solute potential of the cell. When the water potential of the cell equals the water potential of the pure water outside the cell (ψ of cell = ψ of pure water = 0), a dynamic equilibrium is reached and there will be no NET movement of water (picture b). If you were to add solute to the water outside the potato cells, the water potential of the solution surrounding the cells would decrease. It is possible to add just enough solute to the water so that the water potential outside the cell is the same as the water potential inside the cell. In this case, there will be no net movement of water. This does not mean, however, that the solute concentrations inside and outside the cell are equal, because water potential inside the cell results from the combination of both pressure potential and solute potential. If enough solute is added to the water outside the cells, water will leave the cells, moving from an area of higher

5 water potential to an area of lower water potential. The loss of water from the cells will cause the cells to lose turgor. A continued loss of water will eventually cause the cell membrane to shrink away from the cell wall, known as plasmolysis. Now, you will investigate the concept of water potential by placing plant tissues of uniform size in sucrose solutions of varying concentration. You will have the opportunity to select one of several different types of plant tissues provided to you. Regardless of which plant tissue your group selects, the procedure for carrying out the investigation will be the same. SAFETY CONSIDERATIONS: Take caution when cutting with either the scalpel or the cork borer as both are sharp instruments. Do not eat any part of the lab. MATERIALS various plant tissues (e.g. potato, sweet potato, carrot, beet, radish, turnip, apple, squash) Unknown sucrose solutions, ranging from 0M to 1M cork borer electronic balance scalpel 2 ounce souffle cups with lids marker DIRECTIONS 1. Get six souffle cups and their lids. Label the outside of each cup with the color of unknown sucrose solution that will go inside it. You also need to label the cups with your lab group s initials and class period. 2. As a group, decide which plant tissue you would like to work with. Obtain it from the supply table. 3. Depending on which tissue you choose, you may need to cut a 3 cm thick slice of the tissue before cutting out the cylinders of tissue for your experiment. 4. You will need to cut 4 cylinders that measure each 2 cm in length for each of the souffle cups. You will need a total of 24 cylinders of plant tissue. Do not include any of the skin of the plant in your cylinder. 5. Using an electronic balance, mass each of the cups containing plant tissue cylinders, writing the initial mass on the outside of the souffle cup. Make sure you record the initial mass of the plant tissue cylinder in the data table provided. Be sure you account for the mass of the cup (zero out the mass of the cup on the balance). Make qualitative observations about your plant tissues, including descriptions and photos of your specimens. 6. Cover each cup with a lid until you pour the appropriate sucrose solution over each one. This will help prevent the tissues from drying out. 7. Fill each cup with the appropriate unknown sucrose solution. Fill the cups about halfway (about 30 ml) so that the plant cylinders are covered with liquid. 8. Once you have covered each cup of plant tissues with sucrose solution, replace the lid and stack the cups on top of one another where they will not be disturbed. Your plant tissues must sit overnight. 9. The next day, you will collect the data. When collecting data, do the following: a. Pour off the sucrose solution in the cup. b. Carefully blot the cylinders of plant tissue as dry as you can.

6 c. Using the same electronic balance as you did when you set up the lab, weigh the cylinders IN THE CUP and record the mass in the data table provided. Be sure you account for the mass of the cup. d. Again, make qualitative observations about your plant tissues, including descriptions and photos of your specimens. e. When you are done collecting data, throw away the plant tissues and cup/lid. PROCESSING YOUR DATA 1. Calculate the percent change in mass. To do this: 2. Plot your data on a graph. Think: a. What was your independent variable? b. What was your dependent variable? c. Determine the molar concentration of the unknown color sucrose solutions. 3. Now, determine the molar concentration of the sucrose in the plant tissue your group selected. This would be the sucrose molarity in which the mass of the tissue does not change. To do this: a. To find this, draw a line of best fit. In Excel, this is your trendline, which you can add after plotting your data. The point at which this line crosses the x-axis represents the molar concentration of sucrose with a water potential that is equal to the plant tissue water potential. At this concentration there is no net gain or loss of water from the tissue. This is also known as the isotonic point. Determine what the isotonic point is for your group s plant tissue and record it under the data table provided. WHAT YOU WILL TURN IN: THE DELIVERABLE Your final product for this lab will be turned in as individuals--this is not a group assignment. You will turn in a CER for this lab that includes the following: Your research question. The hypothesis you tested. Your claim about the plant tissue you investigated. Evidence, to include: Processed data (properly constructed graphs with explanation of data, statistical analysis) Your statistical analysis should be done by comparing your data to that of another group who used the same plant tissue as your group did, even if they are in another class period. Reasoning that supports your claim which includes showing the relationship between the outcome of your investigation and the biological concepts explored. You will submit your work as a Google Doc in Google Classroom. Be sure you have shared it appropriately so your teacher can view your work.

7 GROUP DATA Paste this into your BILL along with a printed copy of your graph. Plant Tissue Selected: Unknown Color Solution Sucrose Solution (M) Initial Mass of Plant Tissue (g) Final Mass of Plant Tissue (g) Mass Difference % change in mass Clear Yellow Green Blue Red Orange Isotonic Point: CLASS DATA Sucrose Solution (M) % change in mass M.2M.4M.6M.8M 1M

AP Biology Lab 1c Water Potential

AP Biology Lab 1c Water Potential Page 1 of 9 AP Biology Lab 1c Water Potential In this part of the exercise you will use potato cores placed in different molar concentrations of sucrose in order to determine the water potential of potato

More information

LAB 04 Diffusion and Osmosis

LAB 04 Diffusion and Osmosis LAB 04 Diffusion and Osmosis Objectives: Describe the physical mechanisms of diffusion and osmosis. Understand the relationship between surface area and rate of diffusion. Describe how molar concentration

More information

Name: Bio A.P. Lab Diffusion & Osmosis

Name: Bio A.P. Lab Diffusion & Osmosis Name: Bio A.P. Lab Diffusion & Osmosis BACKGROUND: Many aspects of the life of a cell depend on the fact that atoms and molecules are constantly in motion (kinetic energy). This kinetic energy results

More information

Big. Cellular Processes: Idea. Energy and Communication DIFFUSION AND OSMOSIS. What causes my plants to wilt if I forget to water them?

Big. Cellular Processes: Idea. Energy and Communication DIFFUSION AND OSMOSIS. What causes my plants to wilt if I forget to water them? Big Cellular Processes: Idea 2 Energy and Communication INVESTIGATION 4 DIFFUSION AND OSMOSIS What causes my plants to wilt if I forget to water them? BACKGROUND Cells must move materials through membranes

More information

DIFFUSON AND OSMOSIS INTRODUCTION diffusion concentration gradient. net osmosis water potential active transport

DIFFUSON AND OSMOSIS INTRODUCTION diffusion concentration gradient. net osmosis water potential active transport DIFFUSON AND OSMOSIS NAME DATE INTRODUCTION The life of a cell is dependent on efficiently moving material into and out of the cell across the cell membrane. Raw materials such as oxygen and sugars needed

More information

Investigation 4: Diffusion and Osmosis Notes From the teacher

Investigation 4: Diffusion and Osmosis Notes From the teacher Day 1: Investigation 4: Diffusion and Osmosis Notes From the teacher Before class: Read Learning Objectives through Procedure 1 and complete Day 1 Pre Lab. Pre-Lab: 1. What is diffusion? 2. What is kinetic

More information

Measuring Osmotic Potential

Measuring Osmotic Potential Measuring Osmotic Potential INTRODUCTION All cells require essential materials to ensure their survival. Chemical, physical, and biological processes are used to move these materials inside of cells. Similar

More information

Principles & Practice of Diffusion & Osmosis. Storage: Store entire experiment at room temperature. EXPERIMENT OBJECTIVE

Principles & Practice of Diffusion & Osmosis. Storage: Store entire experiment at room temperature. EXPERIMENT OBJECTIVE The Biotechnology Education Company Storage: Store entire experiment at room temperature. 281 EDVO-Kit # Principles & Practice of Diffusion & Osmosis EXPERIMENT OBJECTIVE The objective of this experiment

More information

Passive Transport. Does not expend cellular energy for the movement to take place. Ex-rolling down a hill

Passive Transport. Does not expend cellular energy for the movement to take place. Ex-rolling down a hill Passive Transport Fluid Mosaic Model Passive Transport Does not expend cellular energy for the movement to take place Ex-rolling down a hill Parts of a Solution Solute: what gets dissolved Solvent: What

More information

Introduction diffusion osmosis. imbibe Diffusion The Cell Membrane and Osmosis selectively permeable membrane Osmosis 1. Isotonic 2.

Introduction diffusion osmosis. imbibe Diffusion The Cell Membrane and Osmosis selectively permeable membrane Osmosis 1. Isotonic 2. Topic 6. Diffusion Introduction: This exercise explores the physical phenomenon of diffusion and osmosis. Osmosis is simply the diffusion of water through a selectively permeable membrane. We will also

More information

BIOL 305L Spring 2019 Laboratory Six

BIOL 305L Spring 2019 Laboratory Six Please print Full name clearly: BIOL 305L Spring 2019 Laboratory Six Osmosis in potato and carrot samples Introduction Osmosis is the movement of water molecules through a selectively permeable membrane

More information

1. How many fatty acid molecules combine with a glycerol to form a phospholipid molecule? A. 1 B. 2 C. 3 D. 4

1. How many fatty acid molecules combine with a glycerol to form a phospholipid molecule? A. 1 B. 2 C. 3 D. 4 Topic 3: Movement of substances across cell membrane 1. How many fatty acid molecules combine with a glycerol to form a phospholipid molecule? A. 1 B. 2 C. 3 D. 4 Directions: Questions 2 and 3 refer to

More information

Osmosis. Evaluation copy

Osmosis. Evaluation copy Osmosis Computer 1B In order to survive, all organisms need to move molecules in and out of their cells. Molecules such as gases (e.g., O 2, CO 2 ), water, food, and wastes pass across the cell membrane.

More information

To understand osmosis, we must focus on the behavior of the solvent, not the solute.

To understand osmosis, we must focus on the behavior of the solvent, not the solute. GCC CHM 130LL Osmosis and Dialysis Purpose: The purpose of this experiment is to observe the closely related phenomena of osmosis and diffusion as it relates to dialysis. It is hoped that you will be able

More information

Lab 4: Osmosis and Diffusion

Lab 4: Osmosis and Diffusion Page 4.1 Lab 4: Osmosis and Diffusion Cells need to obtain water and other particles from the fluids that surround them. Water and other particles also move out of cells. Osmosis (for water) and diffusion

More information

Research Experiences for Teachers (RET) 2012 LESSON PLAN TEMPLATE

Research Experiences for Teachers (RET) 2012 LESSON PLAN TEMPLATE LESSON PLAN TEMPLATE MODULE TOPIC: Inquiry based learning- Osmosis and Diffusion The acquisition of biochemical and life sustaining compounds is a major theme in life science. This lesson provides students

More information

LAB Potato Cores Honors Biology, Newton North High

LAB Potato Cores Honors Biology, Newton North High Name Date Block LAB Potato Cores Honors Biology, Newton North High BACKGROUND: Osmosis is a type of passive transport. No input of energy is needed in order for water to pass through a selectively permeable

More information

Cell Diffusion and Osmosis Lab: Directions

Cell Diffusion and Osmosis Lab: Directions Cell Diffusion and Osmosis Lab: Directions Adapted from AP bio lab 4 http://media.collegeboard.com/digitalservices/pdf/ap/bio-manual/bio_lab4-diffusionandosmosis.pdf Please return Background: Most cells

More information

BIOL 347L Laboratory Three

BIOL 347L Laboratory Three Introduction BIOL 347L Laboratory Three Osmosis in potato and carrot samples Osmosis is the movement of water molecules through a selectively permeable membrane into a region of higher solute concentration,

More information

Diffusion and Osmosis

Diffusion and Osmosis Diffusion and Osmosis Introduction: In this exercise you will measure diffusion of small molecules through dialysis tubing, an example of a semi permeable membrane. The movement of a solute through a semi

More information

Chapter MEMBRANE TRANSPORT

Chapter MEMBRANE TRANSPORT Chapter 3 I MEMBRANE TRANSPORT The cell membrane, or plasma membrane, is the outermost layer of the cell. It completely surrounds the protoplasm or living portion of the cell, separating the cell s interior

More information

Diffusion and Osmosis

Diffusion and Osmosis Diffusion and Osmosis During your first year of residency at Mountainside Hospital, you are treating a group of patients that exhibit signs of dehydration. You have to be sure to take note of all the solutes

More information

Investigating Osmosis By Amy Dewees,Jenkintown.High School and Dr. Ingrid Waldron, Department of Biology, University of Pennsylvania, 20091

Investigating Osmosis By Amy Dewees,Jenkintown.High School and Dr. Ingrid Waldron, Department of Biology, University of Pennsylvania, 20091 Investigating Osmosis By Amy Dewees,Jenkintown.High School and Dr. Ingrid Waldron, Department of Biology, University of Pennsylvania, 20091 What is diffusion? What does it mean to say that a membrane is

More information

BIOLOGY 1101 LAB 1: OSMOSIS & DIFFUSION. READING: Please read pages & in your text prior to lab.

BIOLOGY 1101 LAB 1: OSMOSIS & DIFFUSION. READING: Please read pages & in your text prior to lab. BIOLOGY 1101 LAB 1: OSMOSIS & DIFFUSION READING: Please read pages 27-31 & 83-86 in your text prior to lab. INTRODUCTION: All living things depend on water. A water molecule is made up of an oxygen atom

More information

INTERNATIONAL TURKISH HOPE SCHOOL ACADEMIC YEAR CHITTAGONG SENIOR SECTION BIOLOGY HANDOUT OSMOSIS, DIFFUSION AND ACTIVE TRANSPORT CLASS 9

INTERNATIONAL TURKISH HOPE SCHOOL ACADEMIC YEAR CHITTAGONG SENIOR SECTION BIOLOGY HANDOUT OSMOSIS, DIFFUSION AND ACTIVE TRANSPORT CLASS 9 INTERNATIONAL TURKISH HOPE SCHOOL 2014 2015 ACADEMIC YEAR CHITTAGONG SENIOR SECTION BIOLOGY HANDOUT OSMOSIS, DIFFUSION AND ACTIVE TRANSPORT CLASS 9 Name :... Date:... d) Movement of substances into and

More information

Plant Cells and Water Potential. Data Collecting and Processing

Plant Cells and Water Potential. Data Collecting and Processing Carlos Rodriguez October 8 th, 2011 Mrs. Hays Biology Lab Plant Cells and Water Potential Data Collecting and Processing In the following lab our group investigated water potential by immersing potato

More information

LAB #3 - DIFFUSION AND OSMOSIS

LAB #3 - DIFFUSION AND OSMOSIS DIFFUSION EXPERIMENT - pg. 4-6 LAB #3 - DIFFUSION AND OSMOSIS Definition of DIFFUSION - The natural tendency of particles to move from areas of high concentration to areas of lower concentration START

More information

Distilled Water Balance Ruler Plastic wrap

Distilled Water Balance Ruler Plastic wrap The following lab taken from: http://www.utsouthwestern.edu/edumedia/edufiles/education_training/programs/stars/osmosis-demo-lab.pdf Background Osmosis is the process whereby water moves across a cell

More information

Safety. What You Need. What to do... Neo/SCI Student s Guide Name... Teacher/Section... Date... Step 1. Step 2

Safety. What You Need. What to do... Neo/SCI Student s Guide Name... Teacher/Section... Date... Step 1. Step 2 Diffusion & Osmosis Activity 1a Diffusion Lab 1 Background Diffusion occurs whenever concentrations of substances are not even throughout an area. This unequal distribution of particles is called a concentration

More information

Cellular Transport Worksheet

Cellular Transport Worksheet Cellular Transport Worksheet Name Section A: Cell Membrane Structure 1. Label the cell membrane diagram. You ll need to draw lines to some of the structures. **Draw cholesterol molecules in the membrane.**

More information

Diffusion & Osmosis - Exercise 4

Diffusion & Osmosis - Exercise 4 Diffusion & Osmosis - Exercise 4 Objectives -Define: Solvent, Solute, and Solution -Define: Diffusion, Selectively permeable membrane, Osmosis, and Dialysis -Understand rule of thumb: Concentration will

More information

Movement of substances across the cell membrane

Movement of substances across the cell membrane Ch 4 Movement of substances across the cell membrane Think about (Ch 4, p.2) 1. The structure of the cell membrane can be explained by the fluid mosaic model. It describes that the cell membrane is mainly

More information

Cellular Transport Notes

Cellular Transport Notes Cellular Transport Notes About Cell Membranes 1.All cells have a cell membrane a.controls what enters and exits the cell to maintain an internal balance called homeostasis b.provides protection and support

More information

Unit 3: Cellular Processes. 1. SEPARTION & PROTECTION: the contents of the cell from the. 2. TRANSPORT: the transport of in and out of the cell

Unit 3: Cellular Processes. 1. SEPARTION & PROTECTION: the contents of the cell from the. 2. TRANSPORT: the transport of in and out of the cell Unit 3: Cellular Processes Name: Aim #14 Cell Membrane: How does the cell membrane function to maintain homeostasis? Date: _ I. The Cell Membrane: What is it? Also known as A thin structure that acts as

More information

Passive Transport: Practice Problems PAP BIOLOGY

Passive Transport: Practice Problems PAP BIOLOGY Passive Transport: Practice Problems PAP BIOLOGY #1 Draw a diagram where the cell has low concentration of salt molecules and the environment it is in has a high concentration of salt molecules in a water

More information

Name Date. In this lab investigation you will investigate the movement of water through a selectively permeable membrane.

Name Date. In this lab investigation you will investigate the movement of water through a selectively permeable membrane. This lab will be hand-written in your data book AP Osmosis Labs Part A (was done in previous a previous class: Dialysis tube + Starch + Glucose) Part B: Osmosis Unknowns In this lab investigation you will

More information

Biology Cell Unit Homework Packet #3

Biology Cell Unit Homework Packet #3 Biology Cell Unit Homework Packet #3 Name DUE: Hour HW #5 Egg Demo Drawings Analysis HW #6 Elodea Drawings lab Analysis HW #7 Cell Questions Membrane and Transport HW #8 Questions / 5 possible points Homework

More information

Osmosis. Computer OBJECTIVES

Osmosis. Computer OBJECTIVES Osmosis Computer 22 In order to survive, all organisms need to move molecules in and out of their cells. Molecules such as gases (e.g., O 2, CO 2 ), water, food, and wastes pass across the cell membrane.

More information

Cell Membranes: Diffusion and Osmosis

Cell Membranes: Diffusion and Osmosis STO-112 Cell Membranes: Diffusion and Osmosis Part 1: Diffusion Diffusion is a process by which molecules move into or out of cells. To diffuse into or out of a cell, molecules must pass through the cell

More information

[S] [S] Hypertonic [H O] [H 2 O] g. Osmosis is the diffusion of water through membranes! 15. Osmosis. Concentrated sugar solution

[S] [S] Hypertonic [H O] [H 2 O] g. Osmosis is the diffusion of water through membranes! 15. Osmosis. Concentrated sugar solution Concentrated sugar solution Sugar molecules (Water molecules not shown) 100ml 100ml Hypertonic [S] g [H2 Hypotonic [H O] 2 O] [H 2 O] g Semipermeable Dilute sugar solution (100ml) Time 125ml Osmosis 75ml

More information

The Plasma Membrane. 5.1 The Nature of the Plasma Membrane. Phospholipid Bilayer. The Plasma Membrane

The Plasma Membrane. 5.1 The Nature of the Plasma Membrane. Phospholipid Bilayer. The Plasma Membrane 5.1 The Nature of the Plasma Membrane The Plasma Membrane Four principal components in animals Phospholipid bilayer Molecules of cholesterol interspersed within the bilayer. Membrane proteins embedded

More information

Osmosis and Diffusion: How biological membranes are important This page is a lab preparation guide for instructors.

Osmosis and Diffusion: How biological membranes are important This page is a lab preparation guide for instructors. Osmosis and Diffusion: How biological membranes are important This page is a lab preparation guide for instructors. **All solutions and dialysis bags can easily be prepared prior to lab start to maximize

More information

LAB: DIFFUSION ACROSS A SELECTIVELY PERMEABLE MEMBRANE

LAB: DIFFUSION ACROSS A SELECTIVELY PERMEABLE MEMBRANE LAB: DIFFUSION ACROSS A SELECTIVELY PERMEABLE MEMBRANE NAME: PERIOD: DATE: Building Background Knowledge: 1) SELECTIVELY PERMEABLE MEMBRANE: Every cell is surrounded by a selectively permeable membrane

More information

Name: NYS DIFFUSION LAB REVIEW Date: PACKET 1: Difusion Through a Membrane

Name: NYS DIFFUSION LAB REVIEW Date: PACKET 1: Difusion Through a Membrane Name: NYS DIFFUSION LAB REVIEW Date: PACKET 1: Difusion Through a Membrane 1. The diagram below represents a laboratory setup used to demonstrate the movement of molecules across a selectively permeable

More information

Diffusion, Osmosis and Active Transport

Diffusion, Osmosis and Active Transport Diffusion, Osmosis and Active Transport Part A: Diffusion A living cell interacts constantly with the environmental medium that surrounds it. The plasma membrane surrounding a cell is a living, selectively

More information

LAB: DIFFUSION ACROSS A SELECTIVELY PERMEABLE MEMBRANE

LAB: DIFFUSION ACROSS A SELECTIVELY PERMEABLE MEMBRANE LAB: DIFFUSION ACROSS A SELECTIVELY PERMEABLE MEMBRANE NAME: PERIOD: DATE: Building Background Knowledge: 1) SELECTIVELY PERMEABLE MEMBRANE: Every cell is surrounded by a selectively permeable membrane

More information

Q1.Cells, tissues and organs are adapted to take in different substances and get rid of different substances.

Q1.Cells, tissues and organs are adapted to take in different substances and get rid of different substances. OSMOSIS. Thnton College NAME.. Q.Cells, tissues and gans are adapted to take in different substances and get rid of different substances. The table shows the concentration of four ions outside cells and

More information

Unit 7: Topic 7.4 Cellular Transport

Unit 7: Topic 7.4 Cellular Transport Unit 7: Topic 7.4 Cellular Transport Name: Class key Period: Page 1 of 39 Topic 7.4 assignments Pages/Sections Date Assigned Date Due Page 2 of 39 Topic: Membrane Channels Objective: Why do molecules move

More information

Ch3: Cellular Transport Review KEY

Ch3: Cellular Transport Review KEY Ch3: Cellular Transport Review KEY OSMOSIS Label the pictures below ( isotonic, hypertonic, or hypotonic environments) hypotonic hypertonic isotonic hypertonic means there is a GREATER concentration of

More information

Passive Cellular Transport. Unit 2 Lesson 4

Passive Cellular Transport. Unit 2 Lesson 4 Unit 2 Lesson 4 Students will be able to: Define passive transport Enumerate the three types of passive transport Described each type of passive transport: osmosis, diffusion, and facilitated diffusion

More information

Plasma Membrane Function

Plasma Membrane Function Plasma Membrane Function Cells have to maintain homeostasis, they do this by controlling what moves across their membranes Structure Double Layer of phospholipids Head (polar) hydrophiliclikes water -

More information

Cell Transport. Movement of molecules

Cell Transport. Movement of molecules Cell Transport Movement of molecules TEKS Students will investigate and explain cellular processes, including homeostasis and transport of molecules Homeostasis The maintaining of a stable body system

More information

Agar Lab. Sophie, Regan, Libby

Agar Lab. Sophie, Regan, Libby Agar Lab Sophie, Regan, Libby Agar Lab: Our Data Independent variable: Width of the agar Levels of IV Dependent variable: Time it takes for NaOH to diffuse (seconds) 2mm, 4mm, and 8mm # of trials 3 constants

More information

Section 4: Cellular Transport. Cellular transport moves substances within the cell and moves substances into and out of the cell.

Section 4: Cellular Transport. Cellular transport moves substances within the cell and moves substances into and out of the cell. Section 4: Cellular transport moves substances within the cell and moves substances into and out of the cell. Essential Questions What are the processes of diffusion, facilitated diffusion, and active

More information

Cellular Transport. 1. A potato core was placed in a beaker of water as shown in the figure below.

Cellular Transport. 1. A potato core was placed in a beaker of water as shown in the figure below. Name: Date: 1. potato core was placed in a beaker of water as shown in the figure below. Which diagram best represents the net movement of molecules?.. C. D. page 1 2. The following question(s) is/are

More information

The Phospholipids Between Us (Part 2) Transport through Cell Membranes

The Phospholipids Between Us (Part 2) Transport through Cell Membranes The Phospholipids Between Us (Part 2) Transport through Cell Membranes Lesson Plan developed by Kai Orton, PhD and Apurva Naik, PhD (Northwestern University) and based on the PhET Interactive Simulation:

More information

The Transport of Materials Across Cell Membranes

The Transport of Materials Across Cell Membranes The Transport of Materials Across Cell Membranes EK 2.B.1.b. LO 2.10 The Plasma Membrane 2 EK 2.B.1.b. LO 2.10 The Plasma Membrane The cell membrane is said to be semi permeable or selectively permeable

More information

What kind of things must pass into and out of cells?? Be careful not to go too fast.

What kind of things must pass into and out of cells?? Be careful not to go too fast. 1. A membrane s molecular organization results in selective permeability What kind of things must pass into and out of cells?? Be careful not to go too fast. Permeability of a molecule through a membrane

More information

Q1. (a) The diagrams show cells containing and surrounded by oxygen molecules. Oxygen can move into cells or out of cells.

Q1. (a) The diagrams show cells containing and surrounded by oxygen molecules. Oxygen can move into cells or out of cells. Q. (a) The diagrams show cells containing and surrounded by oxygen molecules. Oxygen can move into cells or out of cells. Into which cell, A, B, C or D, will oxygen move the fastest? Write your answer,

More information

Chapter 3: Exchanging Materials with the Environment. Cellular Transport Transport across the Membrane

Chapter 3: Exchanging Materials with the Environment. Cellular Transport Transport across the Membrane Chapter 3: Exchanging Materials with the Environment Cellular Transport Transport across the Membrane Transport? Cells need things water, oxygen, balance of ions, nutrients (amino acids, sugars..building

More information

Learning Outcomes. 2. Diffusion takes place through the cell membrane because it is selectively permeable.

Learning Outcomes. 2. Diffusion takes place through the cell membrane because it is selectively permeable. Diffusion Learning Outcomes 1. Diffusion is the movement of molecules from a high concentration to a low concentration down a concentration gradient until evenly spread. 2. Diffusion takes place through

More information

Lab #6: Cellular Transport Mechanisms Lab

Lab #6: Cellular Transport Mechanisms Lab Lab #6: Cellular Transport Mechanisms Lab OVERVIEW One of the major functions of the plasma membrane is to regulate the movement of substances into and out of the cell. This process is essential in maintaining

More information

What kind of things must pass into and out of cells?? Be careful not to go too fast.

What kind of things must pass into and out of cells?? Be careful not to go too fast. 1. A membrane s molecular organization results in selective permeability What kind of things must pass into and out of cells?? Be careful not to go too fast. Permeability of a molecule through a membrane

More information

Diffusion and Osmosis Lab AP LAB 4

Diffusion and Osmosis Lab AP LAB 4 Diffusion and Osmosis Lab AP LAB 4 Part 1: Surface Area and Cell Size Which do you think has a greater influence on the rate of diffusion in a cell surface area or volume? You will calculate surface are-to-volume

More information

STATION 4: TONICITY due to OSMOSIS / Turgor Pressure in Plants

STATION 4: TONICITY due to OSMOSIS / Turgor Pressure in Plants STATION 4: TONICITY due to OSMOSIS / Turgor Pressure in Plants Tonicity is the concentration of solutions that determines the direction water will move across a semi-permeable membrane. A solution is a

More information

I. Chemical Properties of Phospholipids. Figure 1: Phospholipid Molecule. Amphiphatic:

I. Chemical Properties of Phospholipids. Figure 1: Phospholipid Molecule. Amphiphatic: I. Chemical Properties of Phospholipids Figure 1: Phospholipid Molecule Amphiphatic: a) The amphiphatic nature & cylindrical shape of phospholipids contributes to their ability to assume bilayers in an

More information

Biology Movement across the Cell Membrane

Biology Movement across the Cell Membrane Biology 160 - Movement across the Cell Membrane Prelab Information Movement is one of the characteristics of life. The ability to control the movement of material across the cell membrane is an incredibly

More information

LAB 4: OSMOSIS AND DIFFUSION

LAB 4: OSMOSIS AND DIFFUSION Page 4.1 LAB 4: OSMOSIS AND DIFFUSION Cells need to obtain water and other particles from the fluids that surround them. Water and other particles also move out of cells. Osmosis (for water) and diffusion

More information

Biology Cell Unit Homework Packet #3

Biology Cell Unit Homework Packet #3 Biology Cell Unit Homework Packet #3 Name DUE: Hour HW #5 Egg Demo Drawings Analysis HW #6 Elodea Drawings lab Analysis HW #7 Cell Questions Membrane and Transport HW #8 Questions / 5 possible points Homework

More information

Biology Movement Across the Cell Membrane

Biology Movement Across the Cell Membrane Biology 160 - Movement Across the Cell Membrane Prelab Information Movement is one of the characteristics of life. The ability to control the movement of material across the cell membrane is an incredibly

More information

BIO 322/122L Laboratory Plant Water Relations

BIO 322/122L Laboratory Plant Water Relations BIO 322/122L Laboratory Plant Water Relations I. Water Potential. The cytoplasm of the plant cell, with its enclosed vacuole, is contained within a membrane that is more permeable to water than to most

More information

Maintained by plasma membrane controlling what enters & leaves the cell

Maintained by plasma membrane controlling what enters & leaves the cell CELL TRANSPORT AND HOMEOSTASIS Homeostasis Balanced internal condition of cells Also called equilibrium Maintained by plasma membrane controlling what enters & leaves the cell Functions of Plasma Membrane

More information

Biology Unit 5 Cancer, Lab Activity 5-2

Biology Unit 5 Cancer, Lab Activity 5-2 Biology Unit 5 Cancer, Lab Activity 5-2 The Plasma membrane serves as a barrier between the internal cell environment and the external world. The plasma membrane is a dynamic structure. It allows some

More information

GCSE Biology Coursework Osmosis : - The Potato Experiment

GCSE Biology Coursework Osmosis : - The Potato Experiment GCSE Biology Coursework Osmosis : - The Potato Experiment Background Information Osmosis can be defined as the movement of water across a semi-permeable membrane from a region of high water concentration

More information

II. Active Transport (move molecules against conc. gradient - cell must expend energy) (uses carrier proteins)

II. Active Transport (move molecules against conc. gradient - cell must expend energy) (uses carrier proteins) Chapter 5 - Homeostasis and Transport I. Passive Transport (no energy from cell required) A. Diffusion 1. movement of molecules from an area of higher concentration to an area of lower concentration a.

More information

Ch. 7 Diffusion, Osmosis, and Movement across a Membrane

Ch. 7 Diffusion, Osmosis, and Movement across a Membrane Ch. 7 Diffusion, Osmosis, and Movement across a Membrane Diffusion Spontaneous movement of particles from an area of high concentration to an area of low concentration Does not require energy (exergonic)

More information

Equilibrium is a condition of balance. Changes in temperature, pressure or concentration can cause a shift in the equilibrium.

Equilibrium is a condition of balance. Changes in temperature, pressure or concentration can cause a shift in the equilibrium. Copy into Note Packet and Return to Teacher Cells and Their Environment Section 1: Passive Transport Objectives Relate concentration gradients, diffusion, and equilibrium. Predict the direction of water

More information

Each cell has its own border, which separates the cell from its surroundings and also determines what comes in and what goes out.

Each cell has its own border, which separates the cell from its surroundings and also determines what comes in and what goes out. 7.3 Cell Transport Wednesday, December 26, 2012 10:02 AM Vocabulary: Diffusion: process in which cells become specialized in structure and function Facilitated diffusion: process of diffusion in which

More information

Concept 7.1: Cellular membranes are fluid mosaics of lipids and proteins

Concept 7.1: Cellular membranes are fluid mosaics of lipids and proteins Concept 7.1: Cellular membranes are fluid mosaics of lipids and proteins Lipids: Non-polar substances such as fat that contain C, H, O. Phospholipids: Lipid with phosphate group, very abundant in plasma

More information

AP Lab Four: Water Potential and Osmosis

AP Lab Four: Water Potential and Osmosis AP Biology AP Lab Four: Water Potential and Osmosis Name Atoms and molecules are constantly in motion, bumping off of membranes, barriers, each other, without end. The results of this among other phenomena

More information

CELL MEMBRANE & CELL TRANSPORT (PASSIVE and ACTIVE) Webquest

CELL MEMBRANE & CELL TRANSPORT (PASSIVE and ACTIVE) Webquest Name: Period: CELL MEMBRANE & CELL TRANSPORT (PASSIVE and ACTIVE) Webquest PART I: CELL MEMBRANES WEBSITE #1: http://www.wisc-online.com/objects/index_tj.asp?objid=ap1101 1. What is the BASIC UNIT of LIFE?

More information

BIOLOGY 12 - Cell Membrane and Cell Wall Function: Chapter Notes

BIOLOGY 12 - Cell Membrane and Cell Wall Function: Chapter Notes BIOLOGY 12 - Cell Membrane and Cell Wall Function: Chapter Notes The cell membrane is the gateway into the cell, and must allow needed things such as nutrients into the cell without letting them escape.

More information

Chapter 5 Homeostasis and Cell Transport

Chapter 5 Homeostasis and Cell Transport Chapter 5 Homeostasis and Cell Transport Palabra Palooza! Role #1: The Definer says: The word can be explained as Role #2: The Re-stater says: Then I understand (word) to mean Words: Passive transport

More information

Hyndland Secondary School Biology Department

Hyndland Secondary School Biology Department Hyndland Secondary School Biology Department Investigating Cells Homework and Question Booklet 1 Investigating Cells (a) Investigating Living Cells... 2 Investigating Cells (b) Investigating Diffusion...

More information

BIOLOGY 12 - Cell Membrane and Cell Wall Function: Chapter Notes

BIOLOGY 12 - Cell Membrane and Cell Wall Function: Chapter Notes BIOLOGY 12 - Cell Membrane and Cell Wall Function: Chapter Notes The cell membrane is the gateway into the cell, and must allow needed things such as nutrients into the cell without letting them escape.

More information

Cellular Transport. Biology Honors

Cellular Transport. Biology Honors Cellular Transport Biology Honors Review of Concepts and Introduction to the Current Concepts https://www.youtube.com/watch?v=ptmlvtei 8hw Passive Active No energy Requires / needs energy Passive Transport-

More information

1. Structure A is the a. Cell wall b. Cell membrane c. Vacuole d. Lysosome

1. Structure A is the a. Cell wall b. Cell membrane c. Vacuole d. Lysosome Figure 1 Use Figure 1 to answer the following questions: 1. Structure A is the a. Cell wall b. Cell membrane c. Vacuole d. Lysosome 2. Structure E controls cellular functions. It is the a. Nucleolus b.

More information

Biology, Friday, September 29

Biology, Friday, September 29 Biology, Friday, September 29 On page 62 of your INB, in the top box, write the following questions on the left and answer it on the right. What is the function of the cell membrane? Your Answer Here Micrographs

More information

BELLRINGER DAY In which types of cell is a cell membrane located? 2. What is the function of the cell membrane?

BELLRINGER DAY In which types of cell is a cell membrane located? 2. What is the function of the cell membrane? BELLRINGER DAY 01 1. In which types of cell is a cell membrane located? 2. What is the function of the cell membrane? THE CELL MEMBRANE S T R U C T U R E A N D F U N C T I O N CELL MEMBRANE FUNCTIONS Cell

More information

HOMEOSTASIS and CELL TRANSPORT. Chapter 5

HOMEOSTASIS and CELL TRANSPORT. Chapter 5 HOMEOSTASIS and CELL TRANSPORT Chapter 5 Cells get things in and out using two methods PASSIVE TRANSPORT does NOT use energy ACTIVE TRANSPORT does use energy (ATP) Passive Transport & Cell Membrane Cell

More information

PASSIVE TRANSPORT. Diffusion Facilitative Diffusion diffusion with the help of transport proteins Osmosis diffusion of water

PASSIVE TRANSPORT. Diffusion Facilitative Diffusion diffusion with the help of transport proteins Osmosis diffusion of water PASSIVE TRANSPORT cell uses no energy molecules move randomly Molecules spread out from an area of high concentration to an area of low concentration. (High Low) Three types: Diffusion Facilitative Diffusion

More information

CELL BOUNDARIES. Cells create boundaries through: Cell Membranes made of the phospholipid bilayer Cell Walls made of cellulose in plants

CELL BOUNDARIES. Cells create boundaries through: Cell Membranes made of the phospholipid bilayer Cell Walls made of cellulose in plants CELL BOUNDARIES CELL BOUNDARIES Cells create boundaries through: Cell Membranes made of the phospholipid bilayer Cell Walls made of cellulose in plants TYPES OF MEMBRANES Some substances = too large or

More information

Experimental Design and Investigating Diffusion and Osmosis

Experimental Design and Investigating Diffusion and Osmosis Bio 101 Name: Experimental Design and Investigating Diffusion and Osmosis OBJECTIVES: To practice applying hypothesis testing. To further your understanding of experimental design. To gain a better understanding

More information

Example - Paramecium contain contractile vacuoles that collect and remove excess water, thereby helping to achieve homeostasis

Example - Paramecium contain contractile vacuoles that collect and remove excess water, thereby helping to achieve homeostasis Homeostasis Process by which organisms maintain a relatively stable internal environment; All organisms have ranges that are tolerated (i.e. ph and temperature) Example - Paramecium contain contractile

More information

Cellular Transport Notes

Cellular Transport Notes Cellular Transport Notes About Cell Membranes All cells have a cell membrane Functions: a. Controls what enters and exits the cell to maintain an internal balance called homeostasis b. Provides protection

More information

Diffusion and Osmosis

Diffusion and Osmosis Diffusion and Osmosis The Cell Membrane The cell membrane is: Selectively permeable Permeable = Pass through (Latin) Cell membrane = Gate-Keeper that determines what can and can t enter the cell. The

More information

What do you remember about the cell membrane?

What do you remember about the cell membrane? Cell Membrane What do you remember about the cell membrane? Cell (Plasma) Membrane Separates the internal environment of the cell from the external environment All cells have a cell membrane Selectively

More information

Plasma Membrane Structure and Function

Plasma Membrane Structure and Function Plasma Membrane Structure and Function The plasma membrane separates the internal environment of the cell from its surroundings. The plasma membrane is a phospholipid bilayer with embedded proteins. The

More information

Slide 2 of 47. Copyright Pearson Prentice Hall. End Show

Slide 2 of 47. Copyright Pearson Prentice Hall. End Show 2 of 47 7-3 Cell Boundaries All cells are surrounded by a thin, flexible barrier known as the cell membrane. Many cells also produce a strong supporting layer around the membrane known as a cell wall.

More information