simultaneously excreted. They also brought forward some evidence to

Size: px
Start display at page:

Download "simultaneously excreted. They also brought forward some evidence to"

Transcription

1 THE EXCRETION OF CHLORIDES AND BICARBON- ATES BY THE HUMAN KIDNEY. BY H. W. DAVIES, M.B., B.S., J. B. S. HALDANE, M.A. AND G. L. PESKETT, B.A. (From the Laboratory, Cherwell, Oxford.) AM BARD and PAPI N (1) showed that in any individual, man or dog, there is a definite maximum to the possible concentration of urea in the urine; that this concentration can easily be reached; and that it is, to a considerable extent at least, independent of the concentration of chlorides simultaneously excreted. They also brought forward some evidence to show that the limiting concentration for chloride in man is between *3 N and *4 N, while in the dog, according to Bailey and Bremer(2) it is about *17 N. Davies, Haldane and Kennaway(3) have shown that the maximum attainable concentration of bicarbonate is of the same magnitude. The experiments here recorded were made to determine the relations between the various concentrations which are possible in the urine at the same time. All experiments but one were made on J. B. S. H. (weight 95 kilos.). Chlorides were estimated by Volhard's method, bicarbonates with J. S. Haldane's(4) blood-gas apparatus, phosphates with uranium acetate and cochineal, and urea by Krogh's5) or Marshall's(6) method. Concentrations are expressed in terms of normality, or for phosphates molarity. Volumes are given in c.c., weights in grams. When strong solutions of NaCl were drunk the urinary chloride concentration rose rapidly to a value varying between *29 N and *33 N, the value being independent of the volume excreted per hour, and only rising slightly when more salt was taken. Table I gives the results of a typical experiment. Here 18 grams of NaCl in 200 c.c. of water were drunk at 13 hours, and again at TABLE I. Time Volume per hour Chloride concentration *201 * *312 *331 *328 *324 The limit of 330 N was only passed during extreme thirst, the highest value recorded being *338 N. The maximum did not vary in J. B. S. H. PH. LVI. 18

2 270 H. W. DAVIES, J. B. S. HALDANE AND G. L. PESKETT. during 18 months, but higher values were found in two other healthy men, lower in one. Out of 70 bicarbonate concentrations determined on J. B. S. H. only one exceeded *330 N. In this case the value recorded, *358 N, is probably erroneous. Values higher than *320 N were, however, reached on several occasions. The maximum molecular concentrations of chloride and bicarbonate are therefore practically identical. When chloride and bicarbonate were taken together or successively both appeared in the urine in large amounts. Neither reached its maximum concentration, but the sum of the two reached a value which (expressed in normality) was equal to the maximum of either. Thus, in the experiment summarised in Table II, 26 grams of NaCl had been taken on the previous day, and 13 at Ten grams of NaHCO3 and three of NaCl were taken in 150 c.c. of water at 11.10, 12.10, 13.10, and 15.10, also a little extra water at and Hours Volume TABLE IT. ending per hr. Cl HCO8 Cl + HCO3 CON2H4 A * *321 * *246 *063 *309 * *185 *134 *319 * *150 *158 * *141 *177 *318 * *138 *171 * > 200 *143 *190 *333 *101 - Here the effect of the bicarbonate was to lower rapidly the chloride concentration, though more chloride was being ingested than excreted; but the sum of the concentrations remained steady within 8 p.c. It is noticeable that this value was quite independent of considerable variations in the concentration of urea or the depression of the freezing point. If bicarbonate be given without chloride the latter may almost disappear from the urine. In the experiment recorded in Table III, 25 grams of NaHCO3 were taken in 100 c.c. of water at 10.45, and TABLE III. Volume Gms. NaCi Time per hr. Cl HCO3 Cl + HCO3 CON2H4 per hr * *215 * *134 **135 *269 *420 * * *287 - * *043 *258 *301 *135 * *024 *269 *293 * *026 * *193 * *072 *242 *314 * *082 *220 *302 *178 * *090 *201 *291 B.5O *5 '085 '201 *286 *213 ' '088 *208 * '095 *146 *241 '202 *747

3 EXCRETION BY KIDNEY grams of NaCl with 5 of NaHCO3 in 400 c.c. between and A litre of water was drunk at and again at Here less salt was taken, so the maximum was lower. At first the chloride output was unaffected, but it fell sharply when the sum of chloride and bicarbonate reached *30 N. In presence of the bicarbonate even 20 grams of NaCl failed to raise the urinary chloride concentration to its normal value. Four other experiments gave results like those of Tables II and III. The maximum value of Cl + HCO3 reached was *334 N on two occasions. The antagonism between chloride and bicarbonate excretion also appears when the bicarbonate is being excreted as a result of forced breathing. In an experiment where H. W. D. over-breathed for 87 minutes, his mean alveolar C02 being 1-67 p.c., the urinary bicarbonate rose to -053 N, while the chloride fell from *120 N to *015 N, although the rate of water excretion was not doubled. This fall is the more remarkable since removal of C02 slightly increases the chloride content of the plasma. Not only is a simultaneous excretion of urea without effect on the kidney's capacity for concentrating chloride and bicarbonate, but urea ingestion, though it may lower the chloride concentration by promoting diuresis, considerably increases the output per hour. Thus, after taking 100 grams of urea the chloride output rose from *88 gram NaCl per hour to values which exceeded 1-2 grams per hour during five consecutive hours. On then taking 20 grams of NaCl, as in Table III, the chloride output at once rose to 2-4 grams per hour as compared to Further experiments were undertaken to determine whether the constancy of the maximum of Cl + HCO3 was due to the existence of a maximum possible concentration in the urine of Na or total cations. Attempts made to increase the chloride concentration by taking NH4C1 failed, owing to the vomiting caused by strong solutions. The question was, however, settled by simultaneous ingestion of chloride and acid phosphate. The following were ingested: gm. NaCl c.c. water gm. NaCl + porridge gm. NaH2PO,. H20+4 gm. NaCl +220 c.c. water gm. NaH2PO4. H10 +4 gm. NaCl +220 c.c. water c.c. water About 1 litre tea About 1 litre various fluids +dinner. The urines produced are shown in Table IV. Though some of the salts were lost through diarrhoea the chlorides were but little depressed by the phosphates, and the sum of the two rose 18-2

4 272 H. W. DAVIES, J. B. S. HALDANE AND G. L. PESKETT. TABLE IV. Hours Volume ending per hr. Cl H2P 4 CON2H4 Cl +H2P * * *338 *0038 * *160 * * * *310 *0718 * *312 * * * *369 to a far higher value than was ever obtained for chloride, bicarbonate, or both together. Moreover, it reached a maximum at a time when there was little thirst, which always accompanied very high Cl + HCO3 concentrations. Hence the property which causes chlorides and bicarbonates to share a common maximum is neither that they share a common cation, nor that both are ionised. DISCUSSION. The fact that the Cl + HCO3 of the urine has a definite maximum which is unaffected by the urea or phosphate content of the urine or its total molecular concentration suggests strongly that the former salts are concentrated by a different part of the kidney from that which concentrates the urea, phosphates, and presumably other no-threshold bodies. This view is borne out by the fact that the dog can concentrate urea to 1-6 N, but its maximum for chlorides is apparently only -17 N. The limit is more probably set by the difference in salt concentration between plasma and urine than by the absolute concentration in the latter. Since J. B. S. H.'s normal colloid-free plasma contains about -115 N chloride and -025 N bicarbonate, or -14 N in all, this difference is about -17 N. The fluctuations in the maximum may then be explained as due to changes in the salt content of the plasma. It is clearly indifferent to the concentrating cells whether the difference in concentration is due to Cl or HCO3. The factor which limits their performance is presumably the osmotic leakage of water from the plasma into the concentrated urine, possibly a leakage of cations. Our results are quite consistent with Heidenhain's(7) theory that the glomerulus alone is responsible for the secretion of " water and those salts which everywhere accompany water in the organism." On this view the maximum is a measure of the glomerular concentrating power. If, however, we consider that the urine is concentrated by the tubules, we observe that chloride and bicarbonate agree with one another and. water, and differ from all the anions so far studied, except bromide, in

5 EXCRETION BY KIDNEY. 273 all the following properties: (1) they are present in large amounts in the plasma; (2) they possess high thresholds for the kidney; (3) their excretion is more interfered with than that of other urinary constituents by partial obstruction of the ureter [Cushny(s)] or renal artery [Marshall and Crane (9)]; (4) their excretion is less interfered with than that of any other urinary constituent by a short asphyxia of the kidney [Marshall and Crane(9)]. The last two facts are most easily explained on the view that all or most of the water, chloride and bicarbonate leave the blood by filtration through the glomerulus, while most other substances are in part actively excreted by the tubules. If this is the case bicarbonate must be reabsorbed from the filtrate under normal conditions, water whenever the urinary chloride or bicarbonate is higher than that of the plasma, and chloride when the urinary chloride is lower than that of the plasma. It may be that all are absorbed at once in constant proportions, as on Cushny's (lo) theory. If then the glomerulus is a filter the chlorides and bicarbonates are concentrated by a process of reabsorption, and the observed maximum is a measure of the limit to which this concentration can be carried in face of the tendency to osmotic diffusion of water in the opposite direction. But if the no-threshold bodies are also concentrated by reabsorption we should expect them to hinder the concentration of chloride and bicarbonate, which is not the case. And this hindrance would also occur if the no-threshold bodies had all been excreted into the tubules before the concentration of the chloride and bicarbonate. For the urea in the tubules would tend to hold back water from the reabsorbing cells. Hence excretion must take place lower down the tubules than reabsorption. It is true that Am bard and Papin found that the urinary chloride did not affect the urea maximum of the dog. But as the chloride concentration of the urine never exceeded that of the plasma in those of their experiments where the urea maximum was reached, this result was to be expected. Our experiments, therefore, are in harmony with Metzner' s(11) view that both reabsorption and excretion occur in the tubules. SUMMARY. 1. There is a maximum possible molecular concentration of chlorides in the urine. For J. B. S. H. this is about *33 N. 2. The maximum for bicarbonates has the same value. 3. When chlorides and bicarbonates are being excreted together the maximum possible sum of their molecular concentrations has this same value.

6 274 H. W. DAVIES, J. B. S. HALDANE AND G. L. PESKETT. 4. This maximum is independent, within wide limits, of the total molecular concentration of the urine, or those of urea and phosphates. 5. Chlorides and bicarbonates must be concentrated by the same part of the kidneys, which is probably reabsorptive, urea and phosphates a different one, which is excretory. REFERENCES. (1) Ambard and Papin. Arch. Intern. de Physiol. 8. p (2) Bailey and Bremer. Arch. Int. Med. 28. p (3) Davies, Haldane and Kennaway. This Journ. 54. p (4) J. S. Haldane. Journ. Path. and Bact. 23. p (5) M. Krogh. Ztsch. f. physiol. Chem. 84. p (6) Marshall. Journ. Biol. Chem. 14. p (7) Heidenhain. Hermann's Hdb. d. Physiol. 5. p (8) Cushny. This Journ. 31. p (9) Marshall and Crane. Amer. Journ. Physiol. 55. p (10) Cushny. The Secretion of Urine, p (11) Metzner. Nagel's Hdb. d. Physiol. 2. p. 291.

blue, buffer excretion by titrating back to ph 3*7 with.1 N hydrochloric

blue, buffer excretion by titrating back to ph 3*7 with.1 N hydrochloric CALCIUM CHLORIDE ACIDOSIS. BY J. B. S. HALDANE, R. HILL, AND J. M. LUCK. (From the Biochemical Laboratory, Cambridge.) GYORGY(1) has shown that calcium chloride, when administered to babies, causes an

More information

College of Medicine, Newcastle-upon-Tyne.)

College of Medicine, Newcastle-upon-Tyne.) GLUCOSE ABSORPTION IN THE RENAL TUBULES OF THE FROG. BY G. A. CLARK. (From the Physiological Laboratory of the University of Durham College of Medicine, Newcastle-upon-Tyne.) OPINION is divided on the

More information

excreted, in spite of its constant presence in the blood. Similarly, a salt-free diet will rapidly cause the practical disappearance of chlorides

excreted, in spite of its constant presence in the blood. Similarly, a salt-free diet will rapidly cause the practical disappearance of chlorides THE REGULATION OF EXCRETION OF WATER BY THE KIDNEYS. I. By J. S. HALDANE, M.D., F.R.S. AND J. G. PRIESTLEY, B.M., Captain R.A.M.C., Beit Memorial Research Fellow. NUMEROUS observations tend to show that

More information

GLUCOSE is the most important diffusible substance in the blood which

GLUCOSE is the most important diffusible substance in the blood which ON THE ACTION OF PHLORHIZIN ON THE KIDNEY. By E. B. MAYRS. (From the Department of Pharmacology, Edinburgh.) GLUCOSE is the most important diffusible substance in the blood which is completely held back

More information

Acid Base Balance. Professor Dr. Raid M. H. Al-Salih. Clinical Chemistry Professor Dr. Raid M. H. Al-Salih

Acid Base Balance. Professor Dr. Raid M. H. Al-Salih. Clinical Chemistry Professor Dr. Raid M. H. Al-Salih Acid Base Balance 1 HYDROGEN ION CONCENTRATION and CONCEPT OF ph Blood hydrogen ion concentration (abbreviated [H + ]) is maintained within tight limits in health, with the normal concentration being between

More information

1. a)label the parts indicated above and give one function for structures Y and Z

1. a)label the parts indicated above and give one function for structures Y and Z Excretory System 1 1. Excretory System a)label the parts indicated above and give one function for structures Y and Z W- renal cortex - X- renal medulla Y- renal pelvis collecting center of urine and then

More information

McCANCE, From The Department of Medicine, Cambridge

McCANCE, From The Department of Medicine, Cambridge 196 J. Physiol. (I945) I04, I96-209 6I2.4632.2 THE EXCRETION OF UREA, SALTS AND WATER DURING PERIODS OF HYDROPAENIA IN MAN BY R. A. McCANCE, From The Department of Medicine, Cambridge (Received 20 February

More information

Water, Electrolytes, and Acid-Base Balance

Water, Electrolytes, and Acid-Base Balance Chapter 27 Water, Electrolytes, and Acid-Base Balance 1 Body Fluids Intracellular fluid compartment All fluids inside cells of body About 40% of total body weight Extracellular fluid compartment All fluids

More information

entirely by glomerular filtration and was neither reabsorbed nor secreted

entirely by glomerular filtration and was neither reabsorbed nor secreted 6I2.46I.63 INORGANIC SULPHATE EXCRETION BY THE HUMAN KIDNEY. BY CUTHBERT L. COPE. (From the Biochemistry Department, Oxford, and the Radcliffe Infirmary, Oxford.) IN putting forward his modern theory of

More information

Excretory System 1. a)label the parts indicated above and give one function for structures Y and Z

Excretory System 1. a)label the parts indicated above and give one function for structures Y and Z Excretory System 1 1. Excretory System a)label the parts indicated above and give one function for structures Y and Z W- X- Y- Z- b) Which of the following is not a function of the organ shown? A. to produce

More information

EXCRETION QUESTIONS. Use the following information to answer the next two questions.

EXCRETION QUESTIONS. Use the following information to answer the next two questions. EXCRETION QUESTIONS Use the following information to answer the next two questions. 1. Filtration occurs at the area labeled A. V B. X C. Y D. Z 2. The antidiuretic hormone (vasopressin) acts on the area

More information

(ethanol) suggests that it is similar to the diuresis following ingestion of water.

(ethanol) suggests that it is similar to the diuresis following ingestion of water. 435 J. Physiol. (I946) I04, 435-442 6I2.464.I THE EFFECT OF ETHYL ALCOHOL AND SOME OTHER DIURETICS ON CHLORIDE EXCRETION IN MAN BY M. GRACE EGGLETON AND ISABEL G. SMITH, From the Physiology Department,

More information

014 Chapter 14 Created: 9:25:14 PM CST

014 Chapter 14 Created: 9:25:14 PM CST 014 Chapter 14 Created: 9:25:14 PM CST Student: 1. Functions of the kidneys include A. the regulation of body salt and water balance. B. hydrogen ion homeostasis. C. the regulation of blood glucose concentration.

More information

Physio 12 -Summer 02 - Renal Physiology - Page 1

Physio 12 -Summer 02 - Renal Physiology - Page 1 Physiology 12 Kidney and Fluid regulation Guyton Ch 20, 21,22,23 Roles of the Kidney Regulation of body fluid osmolarity and electrolytes Regulation of acid-base balance (ph) Excretion of natural wastes

More information

dynamic action of ingested amino acids effected

dynamic action of ingested amino acids effected THE.EFFECT OF GLYCINE ON THE PRODUCTION AND EXCRETION OF URIC ACID1 BY MEYER FRIEDMAN (Fromn the Harold Brunn Institute for Cardiovascular Research, San Francisco, California) Mt. Zion Hospital, (Received

More information

STUDIES IN BLOOD DIASTASE. FACTORS WHICH CAUSE. The effects of the following procedures on the blood diastase have

STUDIES IN BLOOD DIASTASE. FACTORS WHICH CAUSE. The effects of the following procedures on the blood diastase have STUDIES IN BLOOD DIASTASE. FACTORS WHICH CAUSE VARIATIONS IN THE AMOUNT OF DIASTASE IN THE BLOOD. By CHARLES REID and B. NARAYANA. From the Department of Physiology, Prince of Wales Medical College, Patna.

More information

BCH 450 Biochemistry of Specialized Tissues

BCH 450 Biochemistry of Specialized Tissues BCH 450 Biochemistry of Specialized Tissues VII. Renal Structure, Function & Regulation Kidney Function 1. Regulate Extracellular fluid (ECF) (plasma and interstitial fluid) through formation of urine.

More information

November 30, 2016 & URINE FORMATION

November 30, 2016 & URINE FORMATION & URINE FORMATION REVIEW! Urinary/Renal System 200 litres of blood are filtered daily by the kidneys Usable material: reabsorbed back into blood Waste: drained into the bladder away from the heart to the

More information

Chapter 21. Diuretic Agents. Mosby items and derived items 2008, 2002 by Mosby, Inc., an affiliate of Elsevier Inc.

Chapter 21. Diuretic Agents. Mosby items and derived items 2008, 2002 by Mosby, Inc., an affiliate of Elsevier Inc. Chapter 21 Diuretic Agents Renal Structure and Function Kidneys at level of umbilicus Each weighs 160 to 175 g and is 10 to 12 cm long Most blood flow per gram of weight in body 22% of cardiac output (CO)

More information

RENAL TUBULAR ACIDOSIS An Overview

RENAL TUBULAR ACIDOSIS An Overview RENAL TUBULAR ACIDOSIS An Overview UNIVERSITY OF PNG SCHOOL OF MEDICINE AND HEALTH SCIENCES DISCIPLINE OF BIOCHEMISTRY & MOLECULAR BIOLOGY CLINICAL BIOCHEMISTRY PBL MBBS IV VJ. Temple 1 What is Renal Tubular

More information

Use the following diagram to answer the next question. 1. In the diagram above, pressure filtration occurs in a. W b. X c. Y d. Z

Use the following diagram to answer the next question. 1. In the diagram above, pressure filtration occurs in a. W b. X c. Y d. Z Part A: Multiple Choice Questions Value: 32 Marks Suggested time: 40 minutes Instructions: For each question select the best answer and record your choice on the Scantron card provided. Using an HB pencil,

More information

UNIT 3 Conditions supporting life

UNIT 3 Conditions supporting life Biology Form 4 Page 32 Ms. R. Buttigieg UNIT 3 Conditions supporting life In this unit we shall be seeing how an important condition that supports life is the ability of the organism to maintain a constant

More information

WJEC. Kidney. Question

WJEC. Kidney. Question WJEC Kidney Question 7 Examiner Arholwr yn unig (d) Humans can be affected by a condition known as multiple sclerosis (MS). In this condition T cells of the immune system attack and destroy the

More information

necessity for an investigation into possible different types of urine acidity. In

necessity for an investigation into possible different types of urine acidity. In 456 J. Physiol. (I947) io6, 456-465 6I2.46i SOME FACTORS AFFECTING THE ACIDITY OF URINE IN MAN BY M. GRACE EGGLETON From the Department of Physiology, University College, London (Received 22 February 1947)

More information

Excretion Chapter 29. The Mammalian Excretory System consists of. The Kidney. The Nephron: the basic unit of the kidney.

Excretion Chapter 29. The Mammalian Excretory System consists of. The Kidney. The Nephron: the basic unit of the kidney. Excretion Chapter 29 The Mammalian Excretory System consists of The Kidney 1. Vertebrate kidneys perform A. Ion balance B. Osmotic balance C. Blood pressure D. ph balance E. Excretion F. Hormone production

More information

Cushny(4) has shown, however, that the amount of urea in the kidney. by some vital process, retain those diflusible substances which are of

Cushny(4) has shown, however, that the amount of urea in the kidney. by some vital process, retain those diflusible substances which are of THE FUNCTION OF THE TUBULES IN KIDNEY EXCRETION. BY E. B. MAYRS. (From the Department of Pharmacology, Edinburgh.) IT is becoming generally recognised that filtration through the glomeruli and some degree

More information

The Excretory System. Biology 20

The Excretory System. Biology 20 The Excretory System Biology 20 Introduction Follow along on page 376 What dangers exist if your body is unable to regulate the fluid balance of your tissues? What challenged would the body have to respond

More information

Sunday, July 17, 2011 URINARY SYSTEM

Sunday, July 17, 2011 URINARY SYSTEM URINARY SYSTEM URINARY SYSTEM Let s take a look at the anatomy first! KIDNEYS: are complex reprocessing centers where blood is filtered through and waste products are removed. Wastes and extra water become

More information

KD02 [Mar96] [Feb12] Which has the greatest renal clearance? A. PAH B. Glucose C. Urea D. Water E. Inulin

KD02 [Mar96] [Feb12] Which has the greatest renal clearance? A. PAH B. Glucose C. Urea D. Water E. Inulin Renal Physiology MCQ KD01 [Mar96] [Apr01] Renal blood flow is dependent on: A. Juxtaglomerular apparatus B. [Na+] at macula densa C. Afferent vasodilatation D. Arterial pressure (poorly worded/recalled

More information

AP Biology. Homeostasis. Chapter 44. Regulating the Internal Environment. Homeostasis

AP Biology. Homeostasis. Chapter 44. Regulating the Internal Environment. Homeostasis Chapter 44. Regulating the Internal Environment omeostasis Living in the world organisms had a choice: regulate their internal environment maintain relatively constant internal conditions conform to the

More information

Chapter 44. Regulating the Internal Environment. AP Biology

Chapter 44. Regulating the Internal Environment. AP Biology Chapter 44. Regulating the Internal Environment Homeostasis Living in the world organisms had a choice: regulate their internal environment maintain relatively constant internal conditions conform to the

More information

RENAL SYSTEM 2 TRANSPORT PROPERTIES OF NEPHRON SEGMENTS Emma Jakoi, Ph.D.

RENAL SYSTEM 2 TRANSPORT PROPERTIES OF NEPHRON SEGMENTS Emma Jakoi, Ph.D. RENAL SYSTEM 2 TRANSPORT PROPERTIES OF NEPHRON SEGMENTS Emma Jakoi, Ph.D. Learning Objectives 1. Identify the region of the renal tubule in which reabsorption and secretion occur. 2. Describe the cellular

More information

J. Physiol. (I944) I02; :6I2.0I4.46I.2

J. Physiol. (I944) I02; :6I2.0I4.46I.2 415 J. Physiol. (I944) I02; 45-428 612.463:6I2.0I4.46I.2 THE SECRETION OF URINE DURING DEHYDRATION AND REHYDRATION BY R. A. McCANCE AND W. F. YOUNG WITH THE ASSISTANCE OF D. A. K. BLACK From the Department

More information

PARTS OF THE URINARY SYSTEM

PARTS OF THE URINARY SYSTEM EXCRETORY SYSTEM Excretory System How does the excretory system maintain homeostasis? It regulates heat, water, salt, acid-base concentrations and metabolite concentrations 1 ORGANS OF EXCRETION Skin and

More information

Chapter 23. Composition and Properties of Urine

Chapter 23. Composition and Properties of Urine Chapter 23 Composition and Properties of Urine Composition and Properties of Urine (1 of 2) urinalysis the examination of the physical and chemical properties of urine appearance - clear, almost colorless

More information

AJl the experiments of the following series were done on rabbits. THE secretion of glucose is considered to depend on a " threshold " value

AJl the experiments of the following series were done on rabbits. THE secretion of glucose is considered to depend on a  threshold  value THE INFLUENCE OF DIURETICS ON THE EXCRETION OF SUGAR. BYE. J. CONWAY. (From the Physiological Department, University College, Dublin.) THE secretion of glucose is considered to depend on a " threshold

More information

Medicine, Cambridge, England, and Wuppertal, B.A.O.R.

Medicine, Cambridge, England, and Wuppertal, B.A.O.R. 182 J. Physiol. (I948) I07, i82-i86 6I2.46I.62 PHOSPHATE CLEARANCES IN INFANTS AND ADULTS BY R. F. A. DEAN AND R. A. McCANCE From the Medical Research Council, Department. of Experimental Medicine, Cambridge,

More information

Na + Transport 1 and 2 Linda Costanzo, Ph.D.

Na + Transport 1 and 2 Linda Costanzo, Ph.D. Na + Transport 1 and 2 Linda Costanzo, Ph.D. OBJECTIVES: After studying this lecture, the student should understand: 1. The terminology applied to single nephron function, including the meaning of TF/P

More information

Osmotic Regulation and the Urinary System. Chapter 50

Osmotic Regulation and the Urinary System. Chapter 50 Osmotic Regulation and the Urinary System Chapter 50 Challenge Questions Indicate the areas of the nephron that the following hormones target, and describe when and how the hormones elicit their actions.

More information

Regulating the Internal Environment. AP Biology

Regulating the Internal Environment. AP Biology Regulating the Internal Environment 2006-2007 Conformers vs. Regulators Two evolutionary paths for organisms regulate internal environment maintain relatively constant internal conditions conform to external

More information

WHY DO WE NEED AN EXCRETORY SYSTEM? Function: To eliminate waste To maintain water and salt balance To maintain blood pressure

WHY DO WE NEED AN EXCRETORY SYSTEM? Function: To eliminate waste To maintain water and salt balance To maintain blood pressure EXCRETORY SYSTEM WHY DO WE NEED AN EXCRETORY SYSTEM? Function: To eliminate waste To maintain water and salt balance To maintain blood pressure These wastes include: Carbon dioxide Mostly through breathing

More information

Ch. 44 Regulating the Internal Environment

Ch. 44 Regulating the Internal Environment Ch. 44 Regulating the Internal Environment 2006-2007 Conformers vs. Regulators Two evolutionary paths for organisms regulate internal environment maintain relatively constant internal conditions conform

More information

Objectives Body Fluids Electrolytes The Kidney and formation of urine

Objectives Body Fluids Electrolytes The Kidney and formation of urine Objectives Body Fluids Outline the functions of water in the body. State how water content varies with age and sex. Differentiate between intracellular and extra-cellular fluid. Explain how water moves

More information

Nephron Function and Urine Formation. Ms. Kula December 1, 2014 Biology 30S

Nephron Function and Urine Formation. Ms. Kula December 1, 2014 Biology 30S Nephron Function and Urine Formation Ms. Kula December 1, 2014 Biology 30S The Role of the Nephron In order for the body to properly function and maintain homeostasis, the amount of dissolved substances

More information

12/7/10. Excretory System. The basic function of the excretory system is to regulate the volume and composition of body fluids by:

12/7/10. Excretory System. The basic function of the excretory system is to regulate the volume and composition of body fluids by: Excretory System The basic function of the excretory system is to regulate the volume and composition of body fluids by: o o removing wastes returning needed substances to the body for reuse Body systems

More information

Nephron Structure inside Kidney:

Nephron Structure inside Kidney: In-Depth on Kidney Nephron Structure inside Kidney: - Each nephron has two capillary regions in close proximity to the nephron tubule, the first capillary bed for fluid exchange is called the glomerulus,

More information

Biology Slide 1 of 36

Biology Slide 1 of 36 Biology 1 of 36 38 3 The Excretory System 2 of 36 Functions of the Excretory System 1.Function: process which eliminates metabolic wastes 3 of 36 Functions of the Excretory System (The skin excretes excess

More information

Renal Reabsorption & Secretion

Renal Reabsorption & Secretion Renal Reabsorption & Secretion Topics for today: Nephron processing of filtrate Control of glomerular filtration Reabsorption and secretion Examples of solute clearance rates Hormones affecting kidney

More information

Acid-Base Balance 11/18/2011. Regulation of Potassium Balance. Regulation of Potassium Balance. Regulatory Site: Cortical Collecting Ducts.

Acid-Base Balance 11/18/2011. Regulation of Potassium Balance. Regulation of Potassium Balance. Regulatory Site: Cortical Collecting Ducts. Influence of Other Hormones on Sodium Balance Acid-Base Balance Estrogens: Enhance NaCl reabsorption by renal tubules May cause water retention during menstrual cycles Are responsible for edema during

More information

ance of the sugar, until at plasma levels of 140 mgm. per cent the creatinine/sugar clearance ratio

ance of the sugar, until at plasma levels of 140 mgm. per cent the creatinine/sugar clearance ratio THE RENAL EXCRETION OF CREATININE IN MAN BY JAMES A. SHANNON 1 (From The Department of Physiology, New York University College of Medicine, New York City) In a previous paper the evidence on the excretion

More information

EXCRETORY SYSTEM E. F. G. H.

EXCRETORY SYSTEM E. F. G. H. XRTORY SYSTM 1. Label the following parts of the nephron in the diagram below:..... F. G. H. I. J. K. L. 2. Identify the following as either True or False: There is a greater osmotic concentration in the

More information

Introduction to the kidney: regulation of sodium & glucose. Dr Nick Ashton Senior Lecturer in Renal Physiology Faculty of Biology, Medicine & Health

Introduction to the kidney: regulation of sodium & glucose. Dr Nick Ashton Senior Lecturer in Renal Physiology Faculty of Biology, Medicine & Health Introduction to the kidney: regulation of sodium & glucose Dr Nick Ashton Senior Lecturer in Renal Physiology Faculty of Biology, Medicine & Health Objectives Overview of kidney structure & function Glomerular

More information

(Received 27 September 1937)

(Received 27 September 1937) 222 J. Physiol. (I937) 9I, 222-23I 6I2.46I:6I2.392.6 THE SECRETION OF URINE IN MAN DURING EXPERIMENTAL SALT DEFICIENCY BY R. A. McCANCE AND E. M. WIDDOWSON From the Biochemical Laboratory, King's College

More information

Chapter 12. Excretion and the Interaction of Systems

Chapter 12. Excretion and the Interaction of Systems Chapter 12 Excretion and the Interaction of Systems 1 2 Goals for This Chapter 1. Identify the main structures and functions of the human excretory system 2. Explain the function of the nephron 3. Describe

More information

Excretion of Drugs. Prof. Hanan Hagar Pharmacology Unit Medical College

Excretion of Drugs. Prof. Hanan Hagar Pharmacology Unit Medical College Excretion of Drugs Prof. Hanan Hagar Pharmacology Unit Medical College Excretion of Drugs By the end of this lecture, students should be able to! Identify main and minor routes of excretion including renal

More information

Principles of Anatomy and Physiology

Principles of Anatomy and Physiology Principles of Anatomy and Physiology 14 th Edition CHAPTER 27 Fluid, Electrolyte, and Acid Base Fluid Compartments and Fluid In adults, body fluids make up between 55% and 65% of total body mass. Body

More information

Acid-base balance is one of the most important of the body s homeostatic mechanisms Acid-base balance refers to regulation of hydrogen ion (H + )

Acid-base balance is one of the most important of the body s homeostatic mechanisms Acid-base balance refers to regulation of hydrogen ion (H + ) Acid-base balance is one of the most important of the body s homeostatic mechanisms Acid-base balance refers to regulation of hydrogen ion (H + ) concentration in body fluids Precise regulation of ph at

More information

Structures of the Excretory System include: ü Skin ü Lung ü Liver ü Kidneys ü Ureter ü Urinary Bladder ü Urethra

Structures of the Excretory System include: ü Skin ü Lung ü Liver ü Kidneys ü Ureter ü Urinary Bladder ü Urethra Excretory System Structures of the Excretory System include: ü Skin ü Lung ü Liver ü Kidneys ü Ureter ü Urinary Bladder ü Urethra Function of the Excretory System The function of the excretory system is

More information

The Excretory System

The Excretory System The Excretory System The excretory system The excretory system includes the skin, lungs and kidneys which all release metabolic wastes from the body. The kidneys, skin and the lungs are the principle organs

More information

The principal functions of the kidneys

The principal functions of the kidneys Renal physiology The principal functions of the kidneys Formation and excretion of urine Excretion of waste products, drugs, and toxins Regulation of body water and mineral content of the body Maintenance

More information

Renal Quiz - June 22, 21001

Renal Quiz - June 22, 21001 Renal Quiz - June 22, 21001 1. The molecular weight of calcium is 40 and chloride is 36. How many milligrams of CaCl 2 is required to give 2 meq of calcium? a) 40 b) 72 c) 112 d) 224 2. The extracellular

More information

M6ller, McIntosh and Van Slyke (5) has been employed. The cases. changes in functional activity. Indications suggesting that such changes

M6ller, McIntosh and Van Slyke (5) has been employed. The cases. changes in functional activity. Indications suggesting that such changes STUDIES OF UREA EXCRETION. VIII. THE EFFECTS ON THE UREA CLEARANCE OF CHANGES IN PROTEIN AND SALT CONTENTS OF THE DIET BY CUTHBERT L. COPE I (From the Hospital of the Rockefeller Institute for Medical

More information

Renal System and Excretion

Renal System and Excretion Renal System and Excretion Biology 105 Lecture 19 Chapter 16 Outline Renal System I. Functions II. Organs of the renal system III. Kidneys 1. Structure 2. Function IV. Nephron 1. Structure 2. Function

More information

hypothesis has recently been analysed from a mathematical standpoint applied to mixtures of colloid and crystalloid substances contained in a

hypothesis has recently been analysed from a mathematical standpoint applied to mixtures of colloid and crystalloid substances contained in a THE CARBON DIOXIDE CARRYING POWER OF THE CONSTITUENTS OF PLASMA. THE ALKALI RE- SERVE OF BLOOD. BY J. MELLANBY and C. J. THOMAS. (From the Physiological Laboratory, St Thomas's Hospital, S.E.) CONTENTS.

More information

Body Water Content Infants have low body fat, low bone mass, and are 73% or more water Total water content declines throughout life Healthy males are

Body Water Content Infants have low body fat, low bone mass, and are 73% or more water Total water content declines throughout life Healthy males are Fluid, Electrolyte, and Acid-Base Balance Body Water Content Infants have low body fat, low bone mass, and are 73% or more water Total water content declines throughout life Healthy males are about 60%

More information

BIPN100 F15 Human Physiology (Kristan) Problem Set #8 Solutions p. 1

BIPN100 F15 Human Physiology (Kristan) Problem Set #8 Solutions p. 1 BIPN100 F15 Human Physiology (Kristan) Problem Set #8 Solutions p. 1 1. a. Proximal tubule. b. Proximal tubule. c. Glomerular endothelial fenestrae, filtration slits between podocytes of Bowman's capsule.

More information

Acid-Base Balance Dr. Gary Mumaugh

Acid-Base Balance Dr. Gary Mumaugh Acid-Base Balance Dr. Gary Mumaugh Introduction Acid-base balance is one of the most important of the body s homeostatic mechanisms Acid-base balance refers to regulation of hydrogen ion (H + ) concentration

More information

HUMAN SUBJECT 1. Syracuse, N. Y.) the urine of increasing quantities of these buffers, it has been found in man as in the dog that (1)

HUMAN SUBJECT 1. Syracuse, N. Y.) the urine of increasing quantities of these buffers, it has been found in man as in the dog that (1) THE RENAL REGULATION OF ACID-BASE BALANCE IN MAN. II. FACTORS AFFECTING THE EXCRETION OF TITRATABLE ACID BY THE NORMAL HUMAN SUBJECT 1 By W. A. SCHIESS, J. L. AYER, W. D. LOTSPEICH AND R. F. PITTS WITH

More information

Functions of Proximal Convoluted Tubules

Functions of Proximal Convoluted Tubules 1. Proximal tubule Solute reabsorption in the proximal tubule is isosmotic (water follows solute osmotically and tubular fluid osmolality remains similar to that of plasma) 60-70% of water and solute reabsorption

More information

1.&Glomerular/Pressure&Filtration&

1.&Glomerular/Pressure&Filtration& Urine&Formation& Overall&Process&! Urine gets rid of wastes (NH 3, urea, uric acid, creatinine) and other substances (vitamins, penicillin, histamines) found in excess in the blood!! blood is filtered

More information

2) This is a Point and Click question. You must click on the required structure.

2) This is a Point and Click question. You must click on the required structure. Class: A&P2-1 Description: Test: Excretory Test Points: 144 Test Number: 28379 Printed: 31-March-10 12:03 1) This is a Point and Click question. You must click on the required structure. Click on the Bowman's

More information

organs of the urinary system

organs of the urinary system organs of the urinary system Kidneys (2) bean-shaped, fist-sized organ where urine is formed. Lie on either sides of the vertebral column, in a depression beneath peritoneum and protected by lower ribs

More information

Excretory System Workbook

Excretory System Workbook Excretory System Workbook MCHS Biology 20 Mr. Korotash Name: Date: 1 Study the diagram above. Name the structures and indicate their functions by completing the following table: Structure 1. Function 2.

More information

Anatomy/Physiology Study Guide: Unit 9 Excretory System

Anatomy/Physiology Study Guide: Unit 9 Excretory System Anatomy/Physiology Study Guide: Unit 9 Excretory System 1) In the space below, list the primary structures (organs) and their corresponding functions. Structures: Functions: KIDNEY 1) URETER BLADDER URETHRA

More information

Osmoregulation and the Excretory System

Osmoregulation and the Excretory System Honors Biology Study Guide Chapter 25.4 25.10 Name Osmoregulation and the Excretory System FUNCTIONS OF THE EXCRETORY SYSTEM OSMOREGULATION Freshwater: Marine: Land Animals: Sources of Nitrogenous Wastes?

More information

Urinary System BIO 250. Waste Products of Metabolism Urea Carbon dioxide Inorganic salts Water Heat. Routes of Waste Elimination

Urinary System BIO 250. Waste Products of Metabolism Urea Carbon dioxide Inorganic salts Water Heat. Routes of Waste Elimination Urinary System BIO 250 Waste Products of Metabolism Urea Carbon dioxide Inorganic salts Water Heat Routes of Waste Elimination Skin: Variable amounts of heat, salts, and water; small amounts of urea and

More information

accompanying meals. In previous papers the variations in alveolar C02(1)

accompanying meals. In previous papers the variations in alveolar C02(1) VARIATIONS IN THE BLOOD CHLORIDES IN RELATION TO MEALS. Part I. BY E. 0. DODDS1 AND K. SHIRLEY SMITH. (From the Biochemical Department, Bland-Sutton Institute of Pathology, Middlesex Hospital.) THIS paper

More information

Outline Urinary System. Urinary System and Excretion. Urine. Urinary System. I. Function II. Organs of the urinary system

Outline Urinary System. Urinary System and Excretion. Urine. Urinary System. I. Function II. Organs of the urinary system Outline Urinary System Urinary System and Excretion Bio105 Chapter 16 Renal will be on the Final only. I. Function II. Organs of the urinary system A. Kidneys 1. Function 2. Structure III. Disorders of

More information

Chapter 10: Urinary System & Excretion

Chapter 10: Urinary System & Excretion Chapter 10: Urinary System & Excretion Organs of Urinary System Kidneys (2) form urine Ureters (2) Carry urine from kidneys to bladder Bladder Stores urine Urethra Carries urine from bladder to outside

More information

Urinary System and Excretion. Bio105 Lecture 20 Chapter 16

Urinary System and Excretion. Bio105 Lecture 20 Chapter 16 Urinary System and Excretion Bio105 Lecture 20 Chapter 16 1 Outline Urinary System I. Function II. Organs of the urinary system A. Kidneys 1. Function 2. Structure III. Disorders of the urinary system

More information

Osmoregulation and Excretion

Osmoregulation and Excretion Animal Life and Excretion Harder for multicellular organisms Internal circulation Coordination, information transfer Structural maintenance Movement Maintenance of homeostatic internal environment 15 July

More information

Chapter 16. Urinary System and Thermoregulation THERMOREGULATION. Homeostasis

Chapter 16. Urinary System and Thermoregulation THERMOREGULATION. Homeostasis Homeostasis Chapter 16 Urinary System and Thermoregulation! Homeostasis Maintenance of steady internal conditions despite fluctuations in the external environment! Examples of homeostasis Thermoregulation

More information

CONTROLLING THE INTERNAL ENVIRONMENT

CONTROLLING THE INTERNAL ENVIRONMENT AP BIOLOGY ANIMAL FORM & FUNCTION ACTIVITY #5 NAME DATE HOUR CONTROLLING THE INTERNAL ENVIRONMENT KIDNEY AND NEPHRON NEPHRON FUNCTIONS Animal Form & Function Activity #5 page 1 NEPHRON STRUCTURE NEPHRON

More information

Chapter 32 Excretion

Chapter 32 Excretion Chapter 32 Excretion 3.4 Learning Objectives 3.4.6 The Excretory System in Humans 1. Role of the excretory system in homeostasis. 2. Importance of temperature regulation within the body. 3. Outline the

More information

April 08, biology 2201 ch 11.3 excretion.notebook. Biology The Excretory System. Apr 13 9:14 PM EXCRETORY SYSTEM.

April 08, biology 2201 ch 11.3 excretion.notebook. Biology The Excretory System. Apr 13 9:14 PM EXCRETORY SYSTEM. Biology 2201 11.3 The Excretory System EXCRETORY SYSTEM 1 Excretory System How does the excretory system maintain homeostasis? It regulates heat, water, salt, acid base concentrations and metabolite concentrations

More information

DIURETICS-2. Dr. Shariq Syed. Shariq AIKC/TYB/2014

DIURETICS-2. Dr. Shariq Syed. Shariq AIKC/TYB/2014 DIURETICS-2 Dr. Syed Structure of Kidney Blood filtered by functional unit: Nephron Except for cells, proteins, other large molecules, rest gets filtered Structure of Kidney 3 major regions of nephron

More information

Ch 17 Physiology of the Kidneys

Ch 17 Physiology of the Kidneys Ch 17 Physiology of the Kidneys Review Anatomy on your own SLOs List and describe the 4 major functions of the kidneys. List and explain the 4 processes of the urinary system. Diagram the filtration barriers

More information

Outline Urinary System

Outline Urinary System Urinary System and Excretion Bio105 Lecture Packet 20 Chapter 16 Outline Urinary System I. Function II. Organs of the urinary system A. Kidneys 1. Function 2. Structure B. Urine formation 1. Hormonal regulation

More information

A. Correct! Flushing acids from the system will assist in re-establishing the acid-base equilibrium in the blood.

A. Correct! Flushing acids from the system will assist in re-establishing the acid-base equilibrium in the blood. OAT Biology - Problem Drill 16: The Urinary System Question No. 1 of 10 1. Which of the following would solve a drop in blood ph? Question #01 (A) Decreased retention of acids. (B) Increased excretion

More information

BLOOD ALCOHOL AND INTOXICATION: ITS VALUE IN BORDER LINE CASES

BLOOD ALCOHOL AND INTOXICATION: ITS VALUE IN BORDER LINE CASES BLOOD ALCOHOL AND INTOXICATION: ITS VALUE IN BORDER LINE CASES ALEXANDER O. GETTLER, PH.D., A. WALTER FREIREICH, M.D. AND HARRY SCHWARTZ, B.S. From the Toxicological Laboratories of the Chief Medical Examiners'

More information

Cutler, Power & Wilder, 1938; Hall & Langley, 1940), in the dog (Winkler &

Cutler, Power & Wilder, 1938; Hall & Langley, 1940), in the dog (Winkler & 8 J. Physiol. (I948) I07, 8-I3 6I2.46I.6 RENAL EXCRETION OF SODIUM AND POTASSIUM IN RATS BY S. E. DICKER (Beit Memorial Fellow) From the Department of Pharmacology, University of Bristol (Received 30 December

More information

RENAL FUNCTION An Overview

RENAL FUNCTION An Overview RENAL FUNCTION An Overview UNIVERSITY OF PNG SCHOOL OF MEDICINE AND HEALTH SCIENCES DIVISION OF BASIC MEDICAL SCIENCES DISCIPLINE OF BIOCHEMISTRY & MOLECULAR BIOLOGY PBL MBBS II SEMINAR VJ. Temple 1 Kidneys

More information

Kidney Physiology. Mechanisms of Urine Formation TUBULAR SECRETION Eunise A. Foster Shalonda Reed

Kidney Physiology. Mechanisms of Urine Formation TUBULAR SECRETION Eunise A. Foster Shalonda Reed Kidney Physiology Mechanisms of Urine Formation TUBULAR SECRETION Eunise A. Foster Shalonda Reed The purpose of tubular secrection To dispose of certain substances that are bound to plasma proteins. To

More information

Collin College. BIOL Anatomy & Physiology. Urinary System. Summary of Glomerular Filtrate

Collin College. BIOL Anatomy & Physiology. Urinary System. Summary of Glomerular Filtrate Collin College BIOL. 2402 Anatomy & Physiology Urinary System 1 Summary of Glomerular Filtrate Glomerular filtration produces fluid similar to plasma without proteins GFR ~ 125 ml per min If nothing else

More information

clamped. At 30- or 60-minute intervals urine specimens were collected and the bladder washed out with saline

clamped. At 30- or 60-minute intervals urine specimens were collected and the bladder washed out with saline Downloaded from http://www.jci.org on January 11, 218. https://doi.org/1.1172/jci11171 THE MECHANISM OF THE EXCRETION OF VITAMIN C BY THE HUMAN KIDNEY AT LOW AND NORMAL PLASMA LEVELS OF ASCORBIC ACID 1

More information

PHYSICAL PROPERTIES AND DETECTION OF NORMAL CONSTITUENTS OF URINE

PHYSICAL PROPERTIES AND DETECTION OF NORMAL CONSTITUENTS OF URINE PHYSICAL PROPERTIES AND DETECTION OF NORMAL CONSTITUENTS OF URINE - OBJECTIVES: 1- The simple examination of urine. 2- To detect some of the normal organic constituents of urine. 3- To detect some of the

More information

Nephron Anatomy Nephron Anatomy

Nephron Anatomy Nephron Anatomy Kidney Functions: (Eckert 14-17) Mammalian Kidney -Paired -1% body mass -20% blood flow (Eckert 14-17) -Osmoregulation -Blood volume regulation -Maintain proper ion concentrations -Dispose of metabolic

More information

BIOL 2402 Fluid/Electrolyte Regulation

BIOL 2402 Fluid/Electrolyte Regulation Dr. Chris Doumen Collin County Community College BIOL 2402 Fluid/Electrolyte Regulation 1 Body Water Content On average, we are 50-60 % water For a 70 kg male = 40 liters water This water is divided into

More information

Introduction. Acids, Bases and ph; a review

Introduction. Acids, Bases and ph; a review 0 P a g e Introduction In this sheet, we discuss acidbase balance in our body and the role of kidneys in its establishment. Arrangement of topics is different from that of the lecture, to assure consistency

More information

capillaries, and a consequent increased transudation, without necessarily altering to any marked extent the total circulation of blood

capillaries, and a consequent increased transudation, without necessarily altering to any marked extent the total circulation of blood 612.463.4 THE CONTROL OF THE GLOMERULAR PRESSURE BY VASCULAR CHANGES WITHIN THE ISOLATED MAMMALIAN KIDNEY, DEMONSTRATED BY THE ACTIONS OF ADRENALINE. BY F. R. WINT0N (Beit Memorial Research Fellow). (Depaortment

More information