Chapter 9 Cellular Respiration. Copyright Pearson Prentice Hall

Save this PDF as:
 WORD  PNG  TXT  JPG

Size: px
Start display at page:

Download "Chapter 9 Cellular Respiration. Copyright Pearson Prentice Hall"

Transcription

1 Chapter 9 Cellular Respiration Copyright Pearson Prentice Hall

2 9-1 Chemical Pathways Both plant and animal cells carry out the final stages of cellular respiration in the mitochondria. Animal Cells Animal Mitochondrion Plant Plant Cells

3 Chemical Energy and Food One gram of glucose (C6H12O6), when burned in the presence of oxygen, releases 3811 calories of heat energy. A calorie is the amount of energy needed to raise the temperature of 1 gram of water 1 degree Celsius.

4 Overview of Cellular Respiration Cellular respiration is the process that releases energy by breaking down glucose and other food molecules in the presence of oxygen. Matrix Intermembrane Space

5 Overview of Cellular Respiration* The equation for cellular respiration is: 6O 2 + C 6 H 12 O 6 6CO 2 + 6H 2 O + Energy oxygen + glucose carbon dioxide + water + Energy

6 Overview of Cellular Respiration* Glycolysis takes place in the cytoplasm. The Krebs cycle and electron transport take place in the mitochondria. Glycolysis Cytoplasm Mitochondrion

7

8

9

10 Glycolysis* ATP Production At the beginning of glycolysis, the cell uses up 2 molecules of ATP to start the reaction. 2 ATP 2 ADP 4 ADP 4 ATP Glucose 2 Pyruvic acid

11

12

13 Glycolysis* When glycolysis is complete, 4 ATP molecules have been produced. This gives the cell a net gain of 2 ATP molecules. 2 ATP 2 ADP 4 ADP 4 ATP Glucose 2 Pyruvic acid

14 Glycolysis Remember from Photosynthesis? High energy electron carrier NADP+ Cellular respiration uses different carriers to transport high energy electrons. NAD+ FAD

15 Glycolysis NADH Production One molecule of glucose (6 carbons) is split into two molecules of pyruvic acid (3 carbons). Requires energy in the form of ATP. Yields 2 ATP Yields 2 NADH 2 ATP 2 ADP 4 ADP 4 ATP Glucose 2NAD + 2

16 Glycolysis* The Advantages of Glycolysis The process of glycolysis is so fast that cells can produce thousands of ATP molecules in a few milliseconds. Glycolysis does not require oxygen.

17 Fermentation* When oxygen is not present, glycolysis follows a different pathway, called fermentation. producing ATP in the absence of oxygen.

18 Fermentation Fermentation does not require oxygen it is an anaerobic process. Two main types of fermentation.

19 Fermentation* Alcoholic Fermentation Yeasts and a few other microorganisms use alcoholic fermentation, forming ethyl alcohol and carbon dioxide as wastes. pyruvic acid + NADH alcohol + CO2 + NAD+

20 Fermentation* Lactic Acid Fermentation Pyruvic acid that accumulates as a result of glycolysis can be converted to lactic acid. pyruvic acid + NADH lactic acid + NAD+

21

22 9.1 Concept Assessment 1. Describe the process of cellular respiration. 2. Key Concept What are the products of glycolysis? 3. Key Concept Name the two main types of fermentation. 4. What is a calorie? A Calorie? 5. How is the function of NAD + similar to that of NADP +? 6. Critical Thinking Comparing and Contrasting How are lactic acid fermentation and alcoholic fermentation similar? How are they different?

23 9.1 QUIZ

24 9.1 Vocab calorie glycolysis cellular respiration NAD+ (nicotinamide adenine dinucleotide) fermentation anaerobic

25 1- The raw materials required for cellular respiration are Quiz 9.1 A. carbon dioxide and oxygen. B. glucose and water. C. glucose and oxygen. D. carbon dioxide and water.

26 Quiz Glycolysis occurs in the A. mitochondria. B. cytoplasm. C. nucleus. D. chloroplasts

27 3- The net gain of ATP molecules after glycolysis is Quiz 9.1 A. 3 ATP molecules. B. 2 ATP molecules. C. 3 pyruvic acid molecules. D. 4 pyruvic acid molecules

28 Quiz Fermentation releases energy from food molecules in the absence of A. oxygen. B. glucose. C. NADH. D. alcohol.

29 5- The two main types of fermentation are called Quiz 9.1 A. alcoholic and lactic acid. B. lactic acid and anaerobic. C. aerobic and anaerobic. D. alcoholic and aerobic.

30 Quiz Which of the following acts as an electron carrier in cellular respiration? A. NAD+ B. pyruvic acid C. ATP D. ADP

31 7- Which of the following is NOT a product of glycolysis? Quiz 9.1 A. NADH B. pyruvic acid C. ATP D. glucose

32 Quiz One cause of muscle soreness is A. alcoholic fermentation. B. the Krebs cycle. C. glycolysis D. lactic acid fermentation

33 Quiz The starting molecule for glycolysis is A. pyruvic acid. B. glucose. C. ADP D. citric acid

34 10- Which of these is a product of cellular respiration? Quiz 9.1 A. glucose. B. oxygen. C. water D. all of the above

35 9-2 The Krebs Cycle In the presence of oxygen, Krebs cycle begins when pyruvic acid produced by glycolysis enters the mitochondrion.

36 The Krebs Cycle

37 The Krebs Cycle Pyruvic acid from glycolysis is converted into a usable form, Acetyl CoA.

38 The Krebs Cycle One carbon molecule is removed, forming CO2, and electrons are removed, changing NAD+ to NADH.

39 The Krebs Cycle Acetyl-CoA then adds the 2-carbon acetyl group to a 4-carbon compound, forming citric acid.

40 The Krebs Cycle Citric acid is broken down into a 5-carbon compound, then into a 4-carbon compound.

41 The Krebs Cycle Two more molecules of CO2 are released and electrons join NAD+ and FAD, forming NADH and FADH2

42 The Krebs Cycle In addition, one molecule of ATP is generated.

43 The Krebs Cycle

44 The Krebs Cycle The energy tally from 1 molecule of pyruvic acid is 4 NADH 1 FADH 2 1 ATP 3 CO 2

45 The Krebs Cycle Happens if oxygen is present. Pyruvates break down further so that the carbon and oxygen atoms end up in CO2.

46 The Krebs Cycle Hydrogens and electrons are stripped and loaded onto NAD+ and FAD to produce NADH and FADH2 2 more ATP produced, but loads several electron carriers that will be used in the 3rd stage.

47 Electron Transport The electron transport chain uses the highenergy electrons from the Krebs cycle to convert ADP into ATP.

48 Electron Transport High-energy electrons from NADH and FADH 2 are passed along the electron transport chain from one carrier protein to the next.

49

50 Electron Transport At the end of the chain, an enzyme combines these electrons with hydrogen ions and oxygen to form water.

51 Electron Transport As the final electron acceptor of the electron transport chain, oxygen gets rid of the lowenergy electrons and hydrogen ions.

52 Electron Transport When 2 high-energy electrons move down the electron transport chain, their energy is used to move hydrogen ions (H+) across the membrane.

53 Electron Transport During electron transport, H+ ions build up in the intermembrane space, so it is positively charged.

54 Electron Transport The other side of the membrane, from which those H+ ions are taken, is now negatively charged.

55 Electron Transport

56 Electron Transport As H+ ions escape through channels, the ATP synthase spins. Channel ATP synthase

57 Electron Transport As it rotates, the enzyme grabs a lowenergy ADP, attaching a phosphate, forming high-energy ATP. Channel ATP synthase ATP

58 The Totals The breakdown of glucose through cellular respiration, including glycolysis, results in the production of 36 molecules of ATP.

59 The Totals

60 The Totals Cells contain small No of ATP produced during glycolysis and cellular respiration. In a quick exercise muscles contain only enough of this ATP for a few seconds. That store of ATP is quickly gone. At this point, muscle cells are producing most of their ATP by lactic acid fermentation. That will last about 90 seconds. The only way to get rid of lactic acid is in a chemical pathway that requires extra oxygen. To repay, you have to do plenty of heavy breathing to get the O2. For anything longer cellular respiration is the only way to generate a continuing supply of ATP. Cellular respiration releases energy slower than fermentation, which is why even well-conditioned athletes have to pace themselves during a

61 9.2 Concept Assessment 1. What happens to pyruvic acid during the Krebs cycle? 2. How does the electron transport chain use the high-energy electrons from the Krebs cycle? 3. Why is cellular respiration considered to be much more efficient than glycolysis alone? 4. How many molecules of ATP are produced in the entire breakdown of glucose? 5. Compare the energy flow in photosynthesis to the energy flow in cellular respiration. 6. How is the chemical energy in glucose similar to money in a savings account?

62 9.2 Quiz

63 9.2 Quiz 1. The Krebs cycle breaks pyruvic acid down into A. oxygen. B. NADH. C. carbon dioxide. D. alcohol.

64 9.2 Quiz 2. What role does the Krebs cycle play in the cell? A. It breaks down glucose and releases its stored energy. B. It releases energy from molecules formed during glycolysis. C. It combines carbon dioxide and water into highenergy molecules. D. It breaks down ATP and NADH, releasing stored energy.

65 9.2 Quiz 3. In eukaryotes, the electron transport chain is located in the A. cell membrane. B. inner mitochondrial membrane. C. cytoplasm. D. outer mitochondrial membrane.

66 9.2 Quiz 4. To generate energy over long periods, the body must use A.stored ATP. B.lactic acid fermentation. C. cellular respiration. D.glycolysis

67 9.2 Quiz 5. Which statement correctly describes photosynthesis and cellular respiration? A. Photosynthesis releases energy, while cellular respiration stores energy. B. Photosynthesis and cellular respiration use the same raw materials. C. Cellular respiration releases energy, while photosynthesis stores energy. D. Cellular respiration and photosynthesis produce the same products.

68 9.2 Quiz 6. The Krebs cycle starts with A. glucose and yields 32 ATPs. B. pyruvic acid and yields carbon dioxide. C. pyruvic acid and yields lactic acid or alcohol. D. lactic acid and yields carbon dioxide.

69 9.2 Quiz 7. The starting molecule for the Krebs cycle is A. NADH B. coenzyme C. pyruvic acid. D. glucose.

70 9.2 Quiz 8. The Krebs cycle produces A. glucose B. lactic acid C. electron carriers D. oxygen

71 9.2 Quiz 9. Photosynthesis is to chloroplasts as cellular respiration is to A. chloroplasts B. nuclei C. bytoplasm D. mitochondria

72 9.2 Quiz 10. The Krebs cycle does not occur if A. glycolysis occurs B. carbon dioxide is present C. oxygen is present D. fermentation occurs

73 9.2 Quiz 11. Which of the following is the correct sequence of events in cellular respiration? A. Krebs cycle - glycolysis - electron transport B. glycolysis - fermentation - Krebs cycle C. Krebs cycle - electron transport - glycolysis D. glycolysis - Krebs cycle - electron transport

74 9.2 Quiz 12. Cellular respiration is called an aerobic process because it requires A. exercise B. light C. glucose D. oxygen

75 Chapter 9 Test

Section 9 2 The Krebs Cycle and Electron Transport (pages )

Section 9 2 The Krebs Cycle and Electron Transport (pages ) Section 9 2 The Krebs Cycle and Electron Transport (pages 226 232) This section describes what happens during the second stage of cellular respiration, called the Krebs cycle. It also explains how high-energy

More information

Lesson Overview. Cellular Respiration: An Overview. 9.2 process of cell respiration

Lesson Overview. Cellular Respiration: An Overview. 9.2 process of cell respiration 9.2 process of cell respiration Glycolysis During glycolysis, glucose is broken down into 2 molecules of the 3-carbon molecule pyruvic acid. Pyruvic acid is a reactant in the Krebs cycle. ATP and NADH

More information

9.2 The Process of Cellular Respiration

9.2 The Process of Cellular Respiration 9.2 The Process of Cellular Respiration Oxygen Carbon 2 2 Dioxide 34 Water Glycolysis Glycolysis is the first stage of cellular respiration. During glycolysis, glucose is broken down into 2 molecules of

More information

Cellular Respiration. April 9, 2013 Mr. Alvarez

Cellular Respiration. April 9, 2013 Mr. Alvarez Cellular Respiration April 9, 2013 Mr. Alvarez Do Now: Answer on a sheet of Loose-leaf 1) What is the equation for Photosynthesis 2) Explain how plants (leaves) regulate water loss use term negative feedback

More information

Cell Respiration Ch 7. Both autotrophs and heterotrophs use cellular respiration to make CO2 and water from

Cell Respiration Ch 7. Both autotrophs and heterotrophs use cellular respiration to make CO2 and water from Cell Respiration Ch 7 Objectives: Identify the 2 major steps of cellular respiration Describe the major events in glycolysis Compare lactic acid fermentation with alcoholic fermentation Calculate the efficiency

More information

CHAPTER 6 CELLULAR RESPIRATION

CHAPTER 6 CELLULAR RESPIRATION CHAPTER 6 CELLULAR RESPIRATION Chemical Energy In Food Purpose of food: Source of raw materials used to make new molecules Source of energy calorie the amount of energy needed to raise the temperature

More information

Releasing Food Energy

Releasing Food Energy Releasing Food Energy All food is broken down by the body into small molecules through digestion. By the time food reaches your, bloodstream it has been broken down into nutrient rich molecules that can

More information

Cellular Metabolism. Biol 105 Lecture 6 Read Chapter 3 (pages 63 69)

Cellular Metabolism. Biol 105 Lecture 6 Read Chapter 3 (pages 63 69) Cellular Metabolism Biol 105 Lecture 6 Read Chapter 3 (pages 63 69) Metabolism Consists of all of the chemical reactions that take place in a cell Metabolism Animation Breaking Down Glucose For Energy

More information

Chapter 9 Cellular Respiration

Chapter 9 Cellular Respiration Chapter 9 Cellular Respiration Biology and Society: Marathoners versus Sprinters Sprinters do not usually compete at short and long distances. Natural differences in the muscles of these athletes favor

More information

3/28/17. Cellular Respiration. Chapter 9: Cellular Respiration & Fermentation. Chapter 9: Cellular Respiration & Fermentation

3/28/17. Cellular Respiration. Chapter 9: Cellular Respiration & Fermentation. Chapter 9: Cellular Respiration & Fermentation Chapter 9: Cellular Respiration & Fermentation SE C TION 1: C E LLULAR RE SP IRATION: AN OVERVIEW As we learned last chapter, energy from the sun is transformed into different forms. In this chapter you

More information

Biology Ch 9 Cellular Respiration & Fermentation ( )

Biology Ch 9 Cellular Respiration & Fermentation ( ) Name Class Date Biology Ch 9 Cellular Respiration & Fermentation (9.1-9.2) For Questions 1 10, complete each statement by writing the correct word or words. 1. A calorie is a unit of. 2. The Calorie used

More information

Copyrighted by Amy Brown Science Stuff. Cellular Respiration Let s get energized!

Copyrighted by Amy Brown Science Stuff. Cellular Respiration Let s get energized! Copyrighted by Amy Brown Science Stuff Cellular Respiration Let s get energized! A. Food provides living things with the: chemical building blocks they need to grow and reproduce. C. Food serves as a source

More information

3.7.1 Define cell respiration [Cell respiration is the controlled release of energy from organic compounds in cells to form ATP]

3.7.1 Define cell respiration [Cell respiration is the controlled release of energy from organic compounds in cells to form ATP] 3.7 Cell respiration ( Chapter 9 in Campbell's book) 3.7.1 Define cell respiration [Cell respiration is the controlled release of energy from organic compounds in cells to form ATP] Organic compounds store

More information

2. What are the products of cellular respiration? Include all forms of energy that are products.

2. What are the products of cellular respiration? Include all forms of energy that are products. Name Per Cellular Respiration An Overview Why Respire Anyhoo? Because bucko all cells need usable chemical energy to do work. The methods cells use to convert glucose into ATP vary depending on the availability

More information

How Cells Release Chemical Energy Cellular Respiration

How Cells Release Chemical Energy Cellular Respiration How Cells Release Chemical Energy Cellular Respiration Overview of Cellular Respiration HO double membrane outer membrane inner membrane CO matrix Produces molecules Requires oxygen Releases carbon dioxide

More information

Releasing Chemical Energy

Releasing Chemical Energy Releasing Chemical Energy Ø Energy From Carbohydrates Ø Aerobic Respiration/ Stages Ø Fermentation Ø Food as a Source of Energy How Do Cells Access the Chemical Energy in Carbohydrayes? Aerobic Respiration

More information

Complete breakdown of Glucose: + Light + 6 H 2 O = C 6 H 12 O 6 6 CO O 2. + Energy = 6 CO 2 C 6 H 12 O 6. What is Glucose Metabolism?

Complete breakdown of Glucose: + Light + 6 H 2 O = C 6 H 12 O 6 6 CO O 2. + Energy = 6 CO 2 C 6 H 12 O 6. What is Glucose Metabolism? Chapter 8: Harvesting Energy: Glycolysis and Cellular Respiration What is Metabolism? Answer: The breakdown of glucose to release energy from its chemical bonds Photosynthesis: 6 CO 2 Carbon Dioxide +

More information

Cellular Respiration Harvesting Chemical Energy ATP

Cellular Respiration Harvesting Chemical Energy ATP Cellular Respiration Harvesting Chemical Energy ATP 2006-2007 What s the point? The point is to make ATP! ATP 2006-2007 Harvesting stored energy Energy is stored in organic molecules carbohydrates, fats,

More information

Cellular Respiration

Cellular Respiration Cellular Respiration The breakdown of glucose for cellular energy. happens in all living cells. is exothermic H atoms and e are removed from glucose (oxidization) and added to oxygen (reduction) excess

More information

What s the point? The point is to make ATP! ATP

What s the point? The point is to make ATP! ATP ATP Chapter 8 What s the point? The point is to make ATP! ATP Flows into an ecosystem as sunlight and leaves as heat Energy is stored in organic compounds Carbohydrates, lipids, proteins Heterotrophs eat

More information

How Cells Harvest Chemical Energy. Chapter 9

How Cells Harvest Chemical Energy. Chapter 9 How Cells Harvest Chemical Energy Chapter 9 Cellular Respiration Releasing energy (ATP) from glucose (chemical energy) in the presence of O 2 Energy flows Matter cycles True or False Plants only perform

More information

4. Which step shows a split of one molecule into two smaller molecules? a. 2. d. 5

4. Which step shows a split of one molecule into two smaller molecules? a. 2. d. 5 1. Which of the following statements about NAD + is false? a. NAD + is reduced to NADH during both glycolysis and the citric acid cycle. b. NAD + has more chemical energy than NADH. c. NAD + is reduced

More information

Chapter 6 Cellular Respiration: Obtaining Energy from Food Biology and Society: Marathoners versus Sprinters

Chapter 6 Cellular Respiration: Obtaining Energy from Food Biology and Society: Marathoners versus Sprinters Chapter 6 Cellular Respiration: Obtaining Energy from Food Biology and Society: Marathoners versus Sprinters Sprinters do not usually compete at short and long distances. Natural differences in the muscles

More information

Cell Respiration. Anaerobic & Aerobic Respiration

Cell Respiration. Anaerobic & Aerobic Respiration Cell Respiration Anaerobic & Aerobic Respiration Understandings/Objectives 2.8.U1: Cell respiration is the controlled release of energy from organic compounds to produce ATP. Define cell respiration State

More information

CELLULAR RESPIRATION GETTING ENERGY TO MAKE ATP

CELLULAR RESPIRATION GETTING ENERGY TO MAKE ATP ELLULAR RESPIRATION GETTING ENERGY TO MAKE ATP ELLULAR RESPIRATION ellular process by which mitochondria releases energy by breaking down food molecules (glucose or other organic molecules) to produce

More information

Section B: The Process of Cellular Respiration

Section B: The Process of Cellular Respiration CHAPTER 9 CELLULAR RESPIRATION: HARVESTING CHEMICAL ENERGY Section B: The Process of Cellular Respiration 1. Respiration involves glycolysis, the Krebs cycle, and electron transport: an overview 2. Glycolysis

More information

How Cells Release Chemical Energy. Chapter 8

How Cells Release Chemical Energy. Chapter 8 How Cells Release Chemical Energy Chapter 8 Impacts, Issues: When Mitochondria Spin Their Wheels More than forty disorders related to defective mitochondria are known (such as Friedreich s ataxia); many

More information

Ch. 9 Cellular Respiration Stage 2 & 3: Oxidation of Pyruvate Krebs Cycle

Ch. 9 Cellular Respiration Stage 2 & 3: Oxidation of Pyruvate Krebs Cycle Ch. 9 Cellular Respiration Stage 2 & 3: Oxidation of Pyruvate Krebs Cycle 2006-2007 Glycolysis is only the start Glycolysis glucose pyruvate 6C Pyruvate has more energy to yield 3 more C to strip off (to

More information

Cellular Respiration: Harvesting Chemical Energy Chapter 9

Cellular Respiration: Harvesting Chemical Energy Chapter 9 Cellular Respiration: Harvesting Chemical Energy Chapter 9 Assemble polymers, pump substances across membranes, move and reproduce The giant panda Obtains energy for its cells by eating plants which get

More information

Cellular Respiration and Fermentation

Cellular Respiration and Fermentation LECTURE PRESENTATIONS For CAMPBELL BIOLOGY, NINTH EDITION Jane B. Reece, Lisa A. Urry, Michael L. Cain, Steven A. Wasserman, Peter V. Minorsky, Robert B. Jackson Chapter 9 Cellular Respiration and Fermentation

More information

Energy Production In A Cell (Chapter 25 Metabolism)

Energy Production In A Cell (Chapter 25 Metabolism) Energy Production In A Cell (Chapter 25 Metabolism) Large food molecules contain a lot of potential energy in the form of chemical bonds but it requires a lot of work to liberate the energy. Cells need

More information

Cellular Respiration: Harvesting Chemical Energy

Cellular Respiration: Harvesting Chemical Energy Chapter 9 Cellular Respiration: Harvesting Chemical Energy PowerPoint Lecture Presentations for Biology Eighth Edition Neil Campbell and Jane Reece Lectures by Chris Romero, updated by Erin Barley with

More information

Cellular Respiration: Harvesting Chemical Energy

Cellular Respiration: Harvesting Chemical Energy Chapter 9 Cellular Respiration: Harvesting Chemical Energy PowerPoint Lecture Presentations for Biology Eighth Edition Neil Campbell and Jane Reece Lectures by Chris Romero, updated by Erin Barley with

More information

Cellular Respiration

Cellular Respiration Cellular Respiration 1. To perform cell work, cells require energy. a. A cell does three main kinds of work: i. Mechanical work, such as the beating of cilia, contraction of muscle cells, and movement

More information

Chapter 9: Cellular Respiration: Harvesting Chemical Energy

Chapter 9: Cellular Respiration: Harvesting Chemical Energy AP Biology Reading Guide Name: Date: Period Chapter 9: Cellular Respiration: Harvesting Chemical Energy Overview: Before getting involved with the details of cellular respiration and photosynthesis, take

More information

Energy is stored in the form of ATP!! ADP after ATP is broken down

Energy is stored in the form of ATP!! ADP after ATP is broken down Cellular Respiration Cellular respiration is the process in which plants and animals convert FOOD into ENERGY (ATP!) in their cells. This occurs in the Mitochondria! Energy is stored in the form of ATP!!

More information

Unit 2: Metabolic Processes

Unit 2: Metabolic Processes How is energy obtained biologically? Recall: Red Ox Reactions Unit 2: Metabolic Processes Oxidation Is the chief mechanism by which chemical potential energy is released This energy comes from reduced

More information

Cellular Respiration: Harvesting Chemical Energy

Cellular Respiration: Harvesting Chemical Energy Chapter 9 Cellular Respiration: Harvesting Chemical Energy You should be able to: 1. Explain how redox reactions are involved in energy exchanges. Name and describe the three stages of cellular respiration;

More information

Energy Flow. Chapter 7. Cellular Respiration: Overview. Cellular Respiration. Cellular Respiration. Cellular Respiration occurs in three stages

Energy Flow. Chapter 7. Cellular Respiration: Overview. Cellular Respiration. Cellular Respiration. Cellular Respiration occurs in three stages Energy Flow Chapter 7 Cellular Respiration hotosynthesis uses solar energy to produce glucose and O from CO and H O Cellular respiration makes and consumes O during the oxidation of glucose to CO and H

More information

CELLULAR RESPIRATION. Xe - + Y X + Ye - CH 4 + 2O 2 CO 2 + H 2 O + energy. C 6 H 12 O 6 + 6O 2 6CO 2 + 6H 2 O + energy SUMMARY EQUATION

CELLULAR RESPIRATION. Xe - + Y X + Ye - CH 4 + 2O 2 CO 2 + H 2 O + energy. C 6 H 12 O 6 + 6O 2 6CO 2 + 6H 2 O + energy SUMMARY EQUATION AP BIOLOGY CELLULAR ENERGETICS ACTIVITY #2 NAME DATE HOUR CELLULAR RESPIRATION SUMMARY EQUATION STEPWISE REDOX REACTION Oxidation: Reduction: Xe - + Y X + Ye - CH 4 + 2O 2 CO 2 + H 2 O + energy C 6 H 12

More information

Concept 9.1: Catabolic pathways yield energy by oxidizing organic fuels Several processes are central to cellular respiration and related pathways

Concept 9.1: Catabolic pathways yield energy by oxidizing organic fuels Several processes are central to cellular respiration and related pathways Overview: Life Is Work Living cells require energy from outside sources Some animals, such as the chimpanzee, obtain energy by eating plants, and some animals feed on other organisms that eat plants Energy

More information

Cellular Respiration Harvesting Chemical Energy ATP

Cellular Respiration Harvesting Chemical Energy ATP Cellular Respiration Harvesting Chemical Energy ATP 2006-2007 What s the point? The point is to make ATP! ATP 2006-2007 Harvesting stored energy Energy is stored in organic molecules carbohydrates, fats,

More information

Enzymes and Metabolism

Enzymes and Metabolism PowerPoint Lecture Slides prepared by Vince Austin, University of Kentucky Enzymes and Metabolism Human Anatomy & Physiology, Sixth Edition Elaine N. Marieb 1 Protein Macromolecules composed of combinations

More information

3.2 Aerobic Respiration

3.2 Aerobic Respiration 3.2 Aerobic Respiration Aerobic Cellular Respiration Catabolic pathways Breaks down energy-rich compounds to make ATP Requires oxygen Occurs in different parts of the cell C 6 H 12 O 6 (s) + 6O 2 (g) 6CO

More information

4.5. Cellular Respiration in Detail. Teacher Notes and Answers. section. Instant Replay 1. 4ATP, 2NADH, and 2pyruvate should be circled.

4.5. Cellular Respiration in Detail. Teacher Notes and Answers. section. Instant Replay 1. 4ATP, 2NADH, and 2pyruvate should be circled. section 4.5 ellular Respiration in Detail Teacher Notes and Answers SETION 5 Instant Replay. 4ATP,, and pyruvate should be circled.. They are energy-carrying molecules that transfer energy to the electron

More information

ATP ATP. Cellular Respiration Harvesting Chemical Energy. The point is to make ATP!

ATP ATP. Cellular Respiration Harvesting Chemical Energy. The point is to make ATP! ellular Respiration Harvesting hemical Energy 1 The point is to make! 2 Harvesting stored energy Energy is stored in organic molecules carbohydrates, fats, proteins Heterotrophs eat these organic molecules

More information

Respiration 30/04/2013. Dr.M.R.Vaezi K., Hakim Sabzevari University

Respiration 30/04/2013. Dr.M.R.Vaezi K., Hakim Sabzevari University Respiration Metabolism - the sum of all the chemical reactions that occur in the body. It is comprised of: anabolism synthesis of molecules, requires input of energy catabolism break down of molecules,

More information

1. Cyanide is introduced into a culture of cells and is observed binding to a mitochondrion, as shown in the diagram below.

1. Cyanide is introduced into a culture of cells and is observed binding to a mitochondrion, as shown in the diagram below. 1. Cyanide is introduced into a culture of cells and is observed binding to a mitochondrion, as shown in the diagram below. The following observations are made: Cyanide binds to and inhibits an enzyme

More information

Enzymes what are they?

Enzymes what are they? Topic 11 (ch8) Microbial Metabolism Topics Metabolism Energy Pathways Biosynthesis 1 Catabolism Anabolism Enzymes Metabolism 2 Metabolic balancing act Catabolism Enzymes involved in breakdown of complex

More information

Active Learning Exercise 5. Cellular Respiration

Active Learning Exercise 5. Cellular Respiration Name Biol 211 - Group Number Active Learning Exercise 5. Cellular Respiration Reference: Chapter 9 (Biology by Campbell/Reece, 8 th ed.) 1. Give the overall balanced chemical equation for aerobic cellular

More information

Energy Transformations. VCE Biology Unit 3

Energy Transformations. VCE Biology Unit 3 Energy Transformations VCE Biology Unit 3 Contents Energy Cellular Respiration Photosynthesis Storing Energy Energy Energy exists in many forms: light, heat, sound, mechanical, electrical, chemical and

More information

CHAPTER 5 MICROBIAL METABOLISM

CHAPTER 5 MICROBIAL METABOLISM CHAPTER 5 MICROBIAL METABOLISM I. Catabolic and Anabolic Reactions A. Metabolism - The sum of all chemical reactions within a living cell either releasing or requiring energy. (Overhead) Fig 5.1 1. Catabolism

More information

1- Which of the following statements is TRUE in regards to eukaryotic and prokaryotic cells?

1- Which of the following statements is TRUE in regards to eukaryotic and prokaryotic cells? Name: NetID: Exam 3 - Version 1 October 23, 2017 Dr. A. Pimentel Each question has a value of 4 points and there are a total of 160 points in the exam. However, the maximum score of this exam will be capped

More information

True or False: 1. Reactions are called endergonic if they occur spontaneously and release free energy.

True or False: 1. Reactions are called endergonic if they occur spontaneously and release free energy. True or False: 1. Reactions are called endergonic if they occur spontaneously and release free energy. 2. Enzymes catalyze chemical reactions by lowering the activation energy 3. Biochemical pathways are

More information

CHAPTER 7 10/16/2012. How cells release Chemical Energy

CHAPTER 7 10/16/2012. How cells release Chemical Energy CHAPTER 7 10/16/2012 How cells release Chemical Energy 1 7.1 OVERVIEW OF CARBOHYDRATE BREAKDOWN PATHWAYS Organisms stay alive by taking in energy. Plants and all other photosynthetic autotrophs get energy

More information

MITOCHONDRIA LECTURES OVERVIEW

MITOCHONDRIA LECTURES OVERVIEW 1 MITOCHONDRIA LECTURES OVERVIEW A. MITOCHONDRIA LECTURES OVERVIEW Mitochondrial Structure The arrangement of membranes: distinct inner and outer membranes, The location of ATPase, DNA and ribosomes The

More information

Cellular Respiration

Cellular Respiration ellular Respiration 1 ellular Respiration A catabolic, exergonic, oxygen (O 2 ) requiring process that uses energy extracted from macromolecules (glucose) to produce energy (ATP) and water (H 2 O). 6 H

More information

Photosynthesis and Cellular Respiration: Cellular Respiration

Photosynthesis and Cellular Respiration: Cellular Respiration Photosynthesis and Cellular Respiration: Cellular Respiration Unit Objective I can compare the processes of photosynthesis and cellular respiration in terms of energy flow, reactants, and products. During

More information

Chapter 6. Respiration

Chapter 6. Respiration Chapter 6 Respiration All living cells, and therefore all living organisms, need energy in order to survive. Energy is required for many different purposes. Every living cell, for example, must be able

More information

CELLULAR RESPIRATION: HARVESTING CHEMICAL ENERGY. The Principles of Energy Harvest

CELLULAR RESPIRATION: HARVESTING CHEMICAL ENERGY. The Principles of Energy Harvest CELLULAR RESPIRATION: HARVESTING CHEMICAL ENERGY The Principles of Energy Harvest 1. Cellular respiration and fermentation are catabolic, energy-yielding pathways 2. Cells recycle the ATP they use for

More information

Photosynthesis in chloroplasts. Cellular respiration in mitochondria ATP. ATP powers most cellular work

Photosynthesis in chloroplasts. Cellular respiration in mitochondria ATP. ATP powers most cellular work Light energy ECOSYSTEM CO + H O Photosynthesis in chloroplasts Cellular respiration in mitochondria Organic molecules + O powers most cellular work Heat energy 1 becomes oxidized (loses electron) becomes

More information

Cellular Respiration and Fermentation

Cellular Respiration and Fermentation LECTURE PRESENTATIONS For CAMPBELL BIOLOGY, NINTH EDITION Jane B. Reece, Lisa A. Urry, Michael L. Cain, Steven A. Wasserman, Peter V. Minorsky, Robert B. Jackson Chapter 9 Cellular Respiration and Fermentation

More information

Cellular Respiration and Fermentation

Cellular Respiration and Fermentation Chapter 9 LECTURE PRESENTATIONS For CAMPBELL BIOLOGY, NINTH EDITION Jane B. Reece, Lisa A. Urry, Michael L. Cain, Steven A. Wasserman, Peter V. Minorsky, Robert B. Jackson Cellular Respiration and Fermentation

More information

2: Describe glycolysis in general terms, including the molecules that exist at its start and end and some intermediates

2: Describe glycolysis in general terms, including the molecules that exist at its start and end and some intermediates 1 Life 20 - Glycolysis Raven & Johnson Chapter 9 (parts) Objectives 1: Know the location of glycolysis in a eukaryotic cell 2: Describe glycolysis in general terms, including the molecules that exist at

More information

Cellular Respiration. By C. Kohn Agricultural Sciences

Cellular Respiration. By C. Kohn Agricultural Sciences Cellular Respiration By C. Kohn Agricultural Sciences In a nutshell O Cellular Respiration is a series of chemical reactions in which hydrogen atoms on a glucose molecule are removed so that they can be

More information

Photosynthesis in chloroplasts CO2 + H2O. Cellular respiration in mitochondria ATP. powers most cellular work. Heat energy

Photosynthesis in chloroplasts CO2 + H2O. Cellular respiration in mitochondria ATP. powers most cellular work. Heat energy Figure 9-01 LE 9-2 Light energy ECOSYSTEM Photosynthesis in chloroplasts CO2 + H2O Cellular respiration in mitochondria Organic + O molecules 2 powers most cellular work Heat energy LE 9-UN161a becomes

More information

1 Respiration is a vital process in living organisms. All organisms carry out glycolysis. The Krebs cycle also occurs in some organisms.

1 Respiration is a vital process in living organisms. All organisms carry out glycolysis. The Krebs cycle also occurs in some organisms. 1 Respiration is a vital process in living organisms. All organisms carry out glycolysis. The Krebs cycle also occurs in some organisms. (a) The diagram below shows some of the stages in glycolysis, using

More information

1 CH:14 RESPIRATION IN PLANTS https://biologyaipmt.com/

1 CH:14 RESPIRATION IN PLANTS https://biologyaipmt.com/ 1 CH:14 RESPIRATION IN PLANTS https://biologyaipmt.com/ CHAPTER 14 RESPIRATION IN PLANTS All the energy required for 'life' processes is obtained by oxidation of some macromolecules that we call 'food'.

More information

Cellular Respiration: Harvesting Chemical Energy

Cellular Respiration: Harvesting Chemical Energy Chapter 9 Cellular Respiration: Harvesting Chemical Energy Edited by Shawn Lester PowerPoint Lecture Presentations for Biology Eighth Edition Neil Campbell and Jane Reece Lectures by Chris Romero, updated

More information

Reading Assignment: Start reading Chapter 14: Energy Generation in Mitochondria and Cholorplasts See animation 14.

Reading Assignment: Start reading Chapter 14: Energy Generation in Mitochondria and Cholorplasts See animation 14. 5.19.06 Electron Transport and Oxidative Phosphorylation Reading Assignment: Start reading Chapter 14: Energy Generation in Mitochondria and Cholorplasts See animation 14.3 on your text CD ATPsynthase

More information

HOW CELLS RELEASE CHEMICAL ENERGY

HOW CELLS RELEASE CHEMICAL ENERGY 8 HOW CELLS RELEASE CHEMICAL ENERGY INTRODUCTION Chapter 8 looks at the various ways that cells can extract energy from food. Both aerobic and anaerobic mechanisms are covered, but a major emphasis of

More information

LAB 6 Fermentation & Cellular Respiration

LAB 6 Fermentation & Cellular Respiration LAB 6 Fermentation & Cellular Respiration INTRODUCTION The cells of all living organisms require energy to keep themselves alive and fulfilling their roles. Where does this energy come from? The answer

More information

Glycolysis and Cellular Respiration

Glycolysis and Cellular Respiration Glycolysis and Cellular Respiration An Introduction to Essential Cellular Metabolic athways GLY e- Cytolplasm TS e- KC Matrix of Mitochondria Cytolplasm By Noel Ways Basic Metabolic athways: Glycolosis,

More information

Chapter 8 Mitochondria and Cellular Respiration

Chapter 8 Mitochondria and Cellular Respiration Chapter 8 Mitochondria and Cellular Respiration Cellular respiration is the process of oxidizing food molecules, like glucose, to carbon dioxide and water. The energy released is trapped in the form of

More information

RESPIRATION: SYNTHESIS OF ATP. Clickers!

RESPIRATION: SYNTHESIS OF ATP. Clickers! RESPIRATION: SYNTHESIS OF ATP Clickers! Respiration is a series of coupled reactions Carbon (in glucose) is oxidized ATP is formed from ADP plus phosphate O 2 ADP + Pi CO 2 + H 2 O ATP Synthesis of ATP

More information

Photosynthesis and Respiration. The BIG Idea All cells need energy and materials for life processes.

Photosynthesis and Respiration. The BIG Idea All cells need energy and materials for life processes. Photosynthesis and Respiration Objectives Explain why cells need energy. Summarize how energy is captured and stored. Describe how plants and animals get energy. The BIG Idea All cells need energy and

More information

Metabolism. Metabolic pathways. BIO 5099: Molecular Biology for Computer Scientists (et al) Lecture 11: Metabolic Pathways

Metabolism. Metabolic pathways. BIO 5099: Molecular Biology for Computer Scientists (et al) Lecture 11: Metabolic Pathways BIO 5099: Molecular Biology for Computer Scientists (et al) Lecture 11: Metabolic Pathways http://compbio.uchsc.edu/hunter/bio5099 Larry.Hunter@uchsc.edu Metabolism Metabolism is the chemical change of

More information

Cellular Respiration Part V: Oxidative Phosphorylation

Cellular Respiration Part V: Oxidative Phosphorylation Cellular Respiration Part V: Oxidative Phosphorylation Figure 9.16 Electron shuttles span membrane 2 NADH or 2 FADH 2 MITOCHONDRION 2 NADH 2 NADH 6 NADH 2 FADH 2 Glucose Glycolysis 2 Pyruvate Pyruvate

More information

Microbial Metabolism. PowerPoint Lecture Presentations prepared by Bradley W. Christian, McLennan Community College C H A P T E R

Microbial Metabolism. PowerPoint Lecture Presentations prepared by Bradley W. Christian, McLennan Community College C H A P T E R PowerPoint Lecture Presentations prepared by Bradley W. Christian, McLennan Community College C H A P T E R 5 Microbial Metabolism Big Picture: Metabolism Metabolism is the buildup and breakdown of nutrients

More information

Bioenergetics. Chapter 3. Objectives. Objectives. Introduction. Photosynthesis. Energy Forms

Bioenergetics. Chapter 3. Objectives. Objectives. Introduction. Photosynthesis. Energy Forms Objectives Chapter 3 Bioenergetics Discuss the function of cell membrane, nucleus, & mitochondria Define: endergonic, exergonic, coupled reactions & bioenergetics Describe how enzymes work Discuss nutrients

More information

P ROGRESSIONS: P EER-LED TEAM LEARNING

P ROGRESSIONS: P EER-LED TEAM LEARNING The Workshop Project Newsletter P ROGRESSIONS: P EER-LED TEAM LEARNING Volume 7, Issue 3 Spring 2006 Module 4: Metabolism and Cellular Respiration Nichole McDaniel, Ph.D. I. Introduction One of the characteristics

More information

1. Draw and annotate a molecule of ATP to show how it stores and releases energy. 2. List six cellular process that use ATP as a source of energy.

1. Draw and annotate a molecule of ATP to show how it stores and releases energy. 2. List six cellular process that use ATP as a source of energy. ATP 1. Draw and annotate a molecule of ATP to show how it stores and releases energy. 2. List six cellular process that use ATP as a source of energy. 3.7 Cell Respiration 3. Define cell respiration. The

More information

MULTIPLE CHOICE. Choose the one alternative that best completes the statement or answers the question.

MULTIPLE CHOICE. Choose the one alternative that best completes the statement or answers the question. Exam 3 BIOL 1406, Fall 2012 HCC Name MULTIPLE CHOICE. Choose the one alternative that best completes the statement or answers the question. 1) When biologists wish to study the internal ultrastructure

More information

Page 2 of 51 WJEC/CBAC 2016 pdfcrowd.com

Page 2 of 51 WJEC/CBAC 2016 pdfcrowd.com 1. Page 2 of 51 WJEC/CBAC 2016 Page 3 of 51 WJEC/CBAC 2016 2. Page 4 of 51 WJEC/CBAC 2016 Page 5 of 51 WJEC/CBAC 2016 3. Page 6 of 51 WJEC/CBAC 2016 Page 7 of 51 WJEC/CBAC 2016 4. Page 8 of 51 WJEC/CBAC

More information

Cellular Respiration: Harvesting Chemical Energy

Cellular Respiration: Harvesting Chemical Energy Chapter 9 Cellular Respiration: Harvesting Chemical Energy Overview: Life Is Work Living cells require energy from outside sources Some animals, such as the giant panda, obtain energy by eating plants,

More information

Fig In the space below, indicate how these sub-units are joined in a molecule of ATP.

Fig In the space below, indicate how these sub-units are joined in a molecule of ATP. 1 (a) Adenosine tri-phosphate (ATP) is an important product of respiration. The ATP molecule is made up of five sub-units, as shown in Fig. 5.1. adenine phosphates O ribose Fig. 5.1 (i) In the space below,

More information

Electron Transport and oxidative phosphorylation (ATP Synthesis) Dr. Howaida Nounou Biochemistry department Sciences college

Electron Transport and oxidative phosphorylation (ATP Synthesis) Dr. Howaida Nounou Biochemistry department Sciences college Electron Transport and oxidative phosphorylation (ATP Synthesis) Dr. Howaida Nounou Biochemistry department Sciences college The Metabolic Pathway of Cellular Respiration All of the reactions involved

More information

Cellular Respiration Stage 1: Glycolysis (Ch. 6)

Cellular Respiration Stage 1: Glycolysis (Ch. 6) Cellular Respiration Stage 1: Glycolysis (Ch. 6) What s the point? The point is to make! 2007-2008 Harvesting stored energy Energy is stored in organic molecules carbohydrates, fats, proteins Heterotrophs

More information

sciencemusicvideos AP Bio Module 10: Cellular Respiration

sciencemusicvideos AP Bio Module 10: Cellular Respiration Name: Period: Date: sciencemusicvideos P io Module 0: Cellular Respiration. Work in pairs (share a computer).. If your instructor is tracking your performance on qwizcards.com, make sure that you log in

More information

Bioenergetics and metabolic pathways

Bioenergetics and metabolic pathways Bioenergetics and metabolic pathways BIOB111 CHEMISTRY & BIOCHEMISTRY Session 17 Session Plan Introduction to Bioenergetics Metabolism Metabolic Pathways Metabolism & Cell Structure Mitochondria Compounds

More information

Portal module: m Glycolysis. First Last. 1 First Half of Glycolysis (Energy-Requiring Steps)

Portal module: m Glycolysis. First Last. 1 First Half of Glycolysis (Energy-Requiring Steps) Portal module: m10399 1 Glycolysis First Last This work is produced by Portal and licensed under the Creative Commons Attribution License 4.0 Abstract By the end of this section, you will be able to do

More information

CELLULAR RESPIRATION CHAPTER. SECTION 1 Glycolysis and Fermentation. SECTION 2 Aerobic Respiration. Unit 3 Cellular Respiration Topics 1 6

CELLULAR RESPIRATION CHAPTER. SECTION 1 Glycolysis and Fermentation. SECTION 2 Aerobic Respiration. Unit 3 Cellular Respiration Topics 1 6 CHAPTER 7 CELLULAR RESPIRATION Like other heterotrophs, the giant panda, Ailuropoda melanoleuca, obtains organic compounds by consuming other organisms. Biochemical pathways within the panda s cells transfer

More information

A) Choose the correct answer: 1) Reduction of a substance can mostly occur in the living cells by:

A) Choose the correct answer: 1) Reduction of a substance can mostly occur in the living cells by: Code: 1 1) Reduction of a substance can mostly occur in the living cells by: (a) Addition of oxygen (b) Removal of electrons (c) Addition of electrons (d) Addition of hydrogen 2) Starting with succinate

More information

Oxidative phosphorylation & Photophosphorylation

Oxidative phosphorylation & Photophosphorylation Oxidative phosphorylation & Photophosphorylation Oxidative phosphorylation is the last step in the formation of energy-yielding metabolism in aerobic organisms. All oxidative steps in the degradation of

More information

Guangyi Wang. Chemosynthesis (Chemolithotrophy)

Guangyi Wang. Chemosynthesis (Chemolithotrophy) OCN621: Biological Oceanography- Bioenergetics-II Guangyi Wang POST 103B guangyi@hawaii.edu http://www.soest.hawaii.edu/oceanography/zij/education/ocn621/ Chemosynthesis (Chemolithotrophy) Use of small

More information

Chapter 14 - Electron Transport and Oxidative Phosphorylation

Chapter 14 - Electron Transport and Oxidative Phosphorylation Chapter 14 - Electron Transport and Oxidative Phosphorylation The cheetah, whose capacity for aerobic metabolism makes it one of the fastest animals Prentice Hall c2002 Chapter 14 1 14.4 Oxidative Phosphorylation

More information

Chemistry 1506: Allied Health Chemistry 2. Section 11: Bioenergetics. Energy Generation in the Cell. Outline

Chemistry 1506: Allied Health Chemistry 2. Section 11: Bioenergetics. Energy Generation in the Cell. Outline Chemistry 1506 Dr. unter s Class Section 11 Notes - Page 1/17 Chemistry 1506: Allied ealth Chemistry 2 Section 11: Bioenergetics Energy Generation in the Cell utline SECTIN 11.1 INTRDUCTIN & MITCNDRIA...2

More information

TCA CYCLE (Citric Acid Cycle)

TCA CYCLE (Citric Acid Cycle) TCA CYCLE (Citric Acid Cycle) TCA CYCLE The Citric Acid Cycle is also known as: Kreb s cycle Sir Hans Krebs Nobel prize, 1953 TCA (tricarboxylic acid) cycle The citric acid cycle requires aerobic conditions!!!!

More information

number Done by Corrected by Doctor Nafeth Abu Tarboush

number Done by Corrected by Doctor Nafeth Abu Tarboush number 7 Done by حسام أبو عوض Corrected by Shahd Alqudah Doctor Nafeth Abu Tarboush 1 P a g e As we have studied before, in the fourth reaction of the Krebs cycle, α- ketoglutarate is converted into Succinyl-CoA

More information

Chapter 9 Overview. Aerobic Metabolism I: The Citric Acid Cycle. Live processes - series of oxidation-reduction reactions. Aerobic metabolism I

Chapter 9 Overview. Aerobic Metabolism I: The Citric Acid Cycle. Live processes - series of oxidation-reduction reactions. Aerobic metabolism I n n Chapter 9 Overview Aerobic Metabolism I: The Citric Acid Cycle Live processes - series of oxidation-reduction reactions Ingestion of proteins, carbohydrates, lipids Provide basic building blocks for

More information