Krebs Cycle. Dr. Leena S Barhate

Size: px
Start display at page:

Download "Krebs Cycle. Dr. Leena S Barhate"

Transcription

1 Krebs Cycle Dr. Leena S Barhate

2 Acknowledgement www2.fiu.edu/~bch3033/handouts/lh6ch16t CA.ppt ppt cronus.uwindsor.ca/units/biochem/web/bioch emi.nsf/.../citric%20acid%20cycle.ppt

3

4 Discovered CAC in Pigeon Flight Muscle

5 The Citric acid cycle It is called the Krebs cycle or the tricarboxylic and is the hub of the metabolic system. It accounts for the majority of carbohydrate, fatty acid and amino acid oxidation. It also accounts for a majority of the generation of these compounds and others as well. Amphibolic - acts both catabolically and anabolically 3NAD+ + FAD + GDP + Pi + acetyl-coa 3NADH + FADH + GTP + CoA + 2C 2

6 1937: Krebs: Enzymatic conversion of Pyruvate + xaloacetate to citrate and C 2 Discovered the cycle of these reactions and found it to be a major pathway for pyruvate oxidation in muscle.

7 In Cytosol In Mitochondria

8 Reaction of pyruvate dehydrogenase complex (PDC) Thiamine pyrophosphate Flavin adenine dinucleotide Pyruvate dehydrogenase Dihydrolipoyl transacetylase Dihydrolipoyl dehydrogenase

9 Acetyl-lipoamide

10

11 Pyruvate dehydrogenase Complex (PDC) It is a multi-enzyme complex containing three enzymes associated together noncovalently: E-1 : Pyruvate dehydrogenase, uses Thiamine pyrophosphate as cofactor bound to E1 E-2 : Dihydrolipoyl transacetylase, Lipoic acid bound, CoA as substrate E-3 : Dihydrolipoyl Dehydrogenase FAD bound, NAD + as substrate Advantages of multienzyme complex: 1. Higher rate of reaction: Because product of one enzyme acts as a substrate of other, and is available for the active site of next enzyme without much diffusion. 2. Minimum side reaction. 3. Coordinated control.

12 The Krebs Cycle ccurs in the matrix of the mitochondrion Aerobic phase (requires oxygen) 2-carbon acetyl CoA joins with a 4-carbon compound to form a 6- carbon compound called Citric acid

13 Citric acid (6C) is gradually converted back to the 4- carbon compound -ready to start the cycle once more The carbons removed are released as C 2 -enzymes controlling this process called decarboxylases The hydrogens, which are removed, join with NAD to form NADH2 -enzymes controlling the release of hydrogen are called dehydrogenases

14

15

16

17

18 Citric Acid Cycle

19

20 Summary of Krebs Cycle How many energy-producing molecules do we have per 1 glucose molecule? Intermediate step: Pyruvate oxidation 1 NADH x2= 2 NADH Krebs Cycle: 3 NADHx2= 6 NADH 1 ATPx2= 2 ATP 1 FADH2x2= 2 FADH2 + 2 ATP, 2 NADH from glycolysis Total: 4 ATP, 10 NADH, 2 FADH2 --> forms 38 ATP in the electron transport chain

21 ATP

22 ATP

23 ATP

24 ATP

25 Gluconeogenesis;

26 glucose glycolysis gluconeogenesis pyruvate Lactate Amino acid glycerol gluco neo genesis sugar (re)new make/ create

27 The source of pyruvate and oxaloacetate for gluconeogenesis during fasting or carbohydrate starvation is mainly amino acid catabolism. Some amino acids are catabolized to pyruvate, oxaloacetate, or precursors of these. Muscle proteins may break down to supply amino acids. These are transported to liver where they are deaminated and converted to gluconeogenesis inputs. Glycerol, derived from hydrolysis of triacylglycerols in fat cells, is also a significant input to gluconeogenesis. 27

28 Noncarbohydrate precursors of glucose Fatty acids Triglycerols glycerol Dietary & muscle proteins Amino acids 28

29 Main sites of gluconeogenesis: Major site: Liver. Minor site: Kidney. Very little: Brain. Muscle (skeletal and heart). In liver and kidney it helps to maintain the glucose level in the blood so that brain and muscle can extract sufficient glucose from it to meet their metabolic demands. 29

30 Gluconeogenesis Versus Glycolysis: 7 steps are shared between glycolysis and gluconeogenesis. 3 essentially irreversible steps shift the equilibrium far on the side of glycolysis. Most of the decrease in free energy (consuming energy) in glycolysis takes place during these 3 steps. These steps must be bypassed in Gluconeogenesis. Two of the bypass reactions involve simple hydrolysis reactions. 30

31 31

32 6 C H 2 P 3 2 G lu c o s e -6 -p h o s p h a ta s e C H 2 H H 4 5 H H H H 1 H 2 H H H H H + P i H 3 2 H H H H H g lu c o s e -6 -p h o s p h a te H g lu c o s e H Hexokinase or Glucokinase (Glycolysis) catalyzes: glucose + ATP glucose-6-phosphate + ADP Glucose-6-Phosphatase (Gluconeogenesis) catalyzes: glucose-6-phosphate + H 2 glucose + P i

33 6 C H 2 P 3 2 G lu c o s e -6 -p h o s p h a ta s e C H 2 H H 4 5 H H H H 1 H 2 H H H H H + P i H 3 2 H H H H H g lu c o s e -6 -p h o s p h a te H g lu c o s e H Glucose-6-phosphatase enzyme is embedded in the endoplasmic reticulum (ER) membrane in liver cells. The catalytic site is found to be exposed to the ER lumen. Another subunit may function as a translocase, providing access of substrate to the active site.

34 P h o s p h o fru c to k in a s e 6 2 C H 2 P 3 1C H 2 H 6 2 C H 2 P 3 A T P A D P 2 1 C H 2 P 3 5 H H 2 5 H H 2 H 4 3 H H H P i H 4 3 H H 2 H H fru c to se -6 -p h o s p h a te fru c to se -1,6 -b is p h o s p h a te F ru c to s e -1,6 -b io s p h o s p h a ta s e Phosphofructokinase (Glycolysis) catalyzes: fructose-6-p + ATP fructose-1,6-bisp + ADP Fructose-1,6-bisphosphatase (Gluconeogenesis) catalyzes: fructose-1,6-bisp + H 2 fructose-6-p + P i

35 Bypass of Pyruvate Kinase: Pyruvate Kinase (last step of Glycolysis) catalyzes: phosphoenolpyruvate + ADP pyruvate + ATP For bypass of the Pyruvate Kinase reaction, cleavage of 2 ~P bonds is required. DG for cleavage of one ~P bond of ATP is insufficient to drive synthesis of phosphoenolpyruvate (PEP). PEP has a higher negative DG of phosphate hydrolysis than ATP.

36 P y ru v a te C a rb o x y la s e P E P C a rb o x y k in a s e C C A T P A D P + P i C G T P G D P C C HC CH 3 3 CH 2 C 2 C P 3 C 2 CH 2 p y ru v a te o x a lo a c e ta te P E P Bypass of Pyruvate Kinase (2 enzymes): Pyruvate Carboxylase (Gluconeogenesis) catalyzes: pyruvate + HC 3 + ATP oxaloacetate + ADP + P i PEP Carboxykinase (Gluconeogenesis) catalyzes: oxaloacetate + GTP PEP + GDP + C 2

37 P y ru v a te C a rb o x y la s e P E P C a rb o x y k in a s e C C A T P A D P + P i C G T P G D P C C CH 2 C P 3 2 CH 3 HC 3 C C 2 CH 2 p y ru v a te o x a lo a c e ta te P E P Contributing to spontaneity of the 2-step process: Free energy of one ~P bond of ATP is conserved in the carboxylation reaction. Spontaneous decarboxylation contributes to spontaneity of the 2nd reaction. Cleavage of a second ~P bond of GTP also contributes to driving synthesis of PEP.

38 Pyruvate Carboxylase uses biotin as prosthetic group. lysine H 3 N + C C H C H 2 C H 2 C H 2 C H 2 N H 3 N s u b je c t to c a rb o x y la tio n H N H 2 C C H C S b io tin C H N H C H (C H 2 ) 4 C N H (C H 2 ) 4 C H Biotin has a 5-C side chain whose terminal carboxyl is in amide linkage to the e-amino group of an enzyme lysine. The biotin & lysine side chains form a long swinging arm that allows the biotin ring to swing back & forth between 2 active sites. ly s in e re s id u e C N H

39 P C H carboxyphosphate - C C N N H C H C H H 2 C C H C S (C H 2 ) 4 C N H (C H 2 ) 4 C H c a rb o x yb io tin ly s in e re s id u e N H Biotin carboxylation is catalyzed at one active site of Pyruvate Carboxylase. ATP reacts with HC 3 to yield carboxyphosphate. The carboxyl is transferred from this ~P intermediate to N of a ureido group of the biotin ring. verall: biotin + ATP + HC 3 carboxybiotin + ADP + P i

40 At the other active site of Pyruvate Carboxylase the activated C 2 is transferred from biotin to pyruvate: C C C H 3 p y ru v a te - C C N N H c a rb o x y b io tin C H C H H 2 C C H S ( C H 2 ) 4 C N H R carboxybiotin + pyruvate biotin + oxaloacetate C C C H 2 C C H N N H C H C H H 2 C C H b io tin View an animation. o x a lo a c e ta te S ( C H 2 ) 4 C N H R

41 Pyruvate Carboxylase (pyruvate oxaloactate) is allosterically activated by acetyl CoA. [xaloacetate] tends to be limiting for Krebs cycle. G lu c o n e o g e n e s is o x a lo a c e ta te G lucose-6 -p h o s p h a ta s e glucose-6 -P pyruvate a c e ty l C o A K rebs C ycle G lycolysis citrate g lu c o s e fatty acids ketone bodies When gluconeogenesis is active in liver, oxaloacetate is diverted to form glucose. xaloacetate depletion hinders acetyl CoA entry into Krebs Cycle. The increase in [acetyl CoA] activates Pyruvate Carboxylase to make oxaloacetate.

42 P E P C a rb o x y k in a s e R e a c tio n C C C G T P G D P C C H 2 C C P 3 2 C C 2 C H 2 C H 2 o x a lo a c e ta te P E P PEP Carboxykinase catalyzes GTP-dependent oxaloacetate PEP. It is thought to proceed in 2 steps: xaloacetate is first decarboxylated to yield a pyruvate enolate anion intermediate. Phosphate transfer from GTP then yields phosphoenolpyruvate (PEP).

43 In the bacterial enzyme, ATP is P i donor instead of GTP. In this crystal structure of an E. Coli PEP Carboxykinase, pyruvate is at the active site as an analog of PEP/ oxaloacetate. ATP Mg++ PEP Carboxykinase active site ligands Mn ++ pyruvate PDB 1AQ2 A metal ion such as Mn ++ is required for the PEP Carboxykinase reaction, in addition to a Mg ++ ion that binds with the nucleotide substrate at the active site. Mn ++ is thought to promote P i transfer by interacting simultaneously with the enolate oxygen atom and an oxygen atom of the terminal phosphate of GTP or ATP.

44 g ly c e ra ld e h y d e -3 -p h o s p h a te NAD + + P i NADH + H + G ly c e ra ld e h y d e -3 -p h o s p h a te D e h y d ro g e n a s e 1,3 -b is p h o s p h o g ly c e ra te Summary of Gluconeogenesis Pathway: Gluconeogenesis enzyme names in red. Glycolysis enzyme names in blue. ADP P h o s p h o g ly c e ra te K in a s e A T P 3 -p h o s p h o g ly c e ra te P h o s p h o g ly c e ra te M u ta s e 2 -p h o s p h o g ly c e ra te H 2 E n o la s e p h o s p h o e n o lp y ru v a te C 2 + G D P P E P C a rb o x y k in a s e G T P o x a lo a c e ta te P i + A D P H C 3 + A T P p y ru v a te P y ru v a te C a rb o x y la s e G lu c o n e o g e n e s is

45 glucose G lu c o n e o g e n e s is P i H 2 G lu c o s e -6 -p h o s p h a ta s e g lu c o s e -6 -p h o s p h a te P h o s p h o g lu c o s e Is o m e ra s e fru c to s e -6 -p h o s p h a te P i H 2 fru c to s e -1,6 -b is p h o s p h a te A ld o la s e F ru c to s e -1,6 -b is p h o s p h a ta s e g ly c e ra ld e h y d e -3 -p h o s p h a te + d ih y d ro x y a c e to n e -p h o s p h a te (continued) T rio s e p h o s p h a te Isom erase

46 Glycolysis & Gluconeogenesis are both spontaneous. If both pathways were simultaneously active in a cell, it would constitute a "futile cycle" that would waste energy. Glycolysis: glucose + 2 NAD ADP + 2 P i 2 pyruvate + 2 NADH + 2 ATP Gluconeogenesis: 2 pyruvate + 2 NADH + 4 ATP + 2 GTP glucose + 2 NAD ADP + 2 GDP + 6 P i Questions: 1. Glycolysis yields how many ~P? 2 2. Gluconeogenesis expends how many ~P? 6 3. A futile cycle of both pathways would waste how many ~P per cycle? 4

47 P h o s p h o fru c to k in a s e 6 2 C H 2 P 3 1C H 2 H 6 2 C H 2 P 3 A T P A D P 2 1 C H 2 P 3 5 H H 2 5 H H 2 H 4 3 H H H fru c to se -6 -p h o s p h a te P i H 2 fru c to se -1,6 -b is p h o s p h a te To prevent the waste of a futile cycle, Glycolysis & Gluconeogenesis are reciprocally regulated. Local Control includes reciprocal allosteric regulation by adenine nucleotides. Phosphofructokinase (Glycolysis) is inhibited by ATP and stimulated by AMP. Fructose-1,6-bisphosphatase (Gluconeogenesis) is inhibited by AMP. H 4 3 H F ru c to s e -1,6 -b io s p h o s p h a ta s e H H

48 The opposite effects of adenine nucleotides on Phosphofructokinase (Glycolysis) Fructose-1,6-bisphosphatase (Gluconeogenesis) insures that when cellular ATP is high (AMP would then be low), glucose is not degraded to make ATP. When ATP is high it is more useful to the cell to store glucose as glycogen. When ATP is low (AMP would then be high), the cell does not expend energy in synthesizing glucose.

49 Global Control in liver cells includes reciprocal effects of a cyclic AMP cascade, triggered by the hormone glucagon when blood glucose is low. Phosphorylation of enzymes & regulatory proteins in liver by Protein Kinase A (camp Dependent Protein Kinase) results in inhibition of glycolysis stimulation of gluconeogenesis, making glucose available for release to the blood.

50 Enzymes relevant to these pathways that are phosphorylated by Protein Kinase A include: Pyruvate Kinase, a glycolysis enzyme that is inhibited when phosphorylated. CREB (camp response element binding protein) which activates, through other factors, transcription of the gene for PEP Carboxykinase, leading to increased gluconeogenesis. A bi-functional enzyme that makes and degrades an allosteric regulator, fructose-2,6-bisphosphate.

51 P F K A c ti v i ty Recall that Phosphofructokinase, the rate-limiting step of Glycolysis, is allosterically inhibited by ATP. At high concentration, ATP binds at a low-affinity regulatory site, promoting the tense conformation. 60 Sigmoidal dependence of reaction rate on [fructose-6- phosphate] is observed at high [ATP] lo w [A T P ] h ig h [A T P ] [F r u c to s e -6 -p h o s p h a te ] m M

52 P F K A c ti v i ty 60 PFK activity in the presence of the globally controlled allosteric regulator fructose-2,6- bisphosphate is similar to that at low ATP lo w [A T P ] h ig h [A T P ] [F r u c to s e -6 -p h o s p h a te ] m M Fructose-2,6-bisphosphate promotes the relaxed state, activating Phosphofructokinase even at high [ATP]. Thus activation by fructose-2,6-bisphosphate, whose concentration fluctuates in response to external hormonal signals, supersedes local control by [ATP].

53 P F K 2 /F B P a s e 2 h o m o d im e r P D B 2 B IF The allosteric regulator fructose-2,6-bisphosphate is synthesized & degraded by a bi-functional enzyme that includes 2 catalytic domains: PFK-2 d o m a in F B P a s e -2 d o m a in w ith b o u n d fru c to s e -6 -P Phosphofructokinase-2 (PFK2) domain catalyzes: Fructose-6-phosphate + ATP fructose-2,6-bisphosphate + ADP Fructose-Biophosphatase-2 (FBPase2) domain catalyzes: Fructose-2,6-bisphosphate + H 2 fructose-6-phosphate + P i Bifunctional PFK2/FBPase2 assembles into a homodimer.

54 P F K 2 /F B P a s e 2 h o m o d im e r P D B 2 B IF PFK-2 d o m a in F B P a s e -2 d o m a in w ith b o u n d fru c to s e -6 -P Adjacent to the PFK-2 domain in each copy of the liver enzyme is a regulatory domain subject to phosphorylation by camp-dependent Protein Kinase. Which catalytic domains of the enzyme are active depends on whether the regulatory domains are phosphorylated.

55 (a c tiv e a s P h o s p h o fru c to k in a s e -2) E n z - H A T P A D P fru c to s e -6 -P fru c to s e -2,6 -b is P P i E n z - -P 3 2 (a c tiv e a s F ru c to s e -B is p h o s p h a ta s e -2) View an animation. camp-dependent phosphorylation of the bi-functional enzyme activates FBPase2 and inhibits PFK2. [Fructose-2,6-bisphosphate] thus decreases in liver cells in response to a camp signal cascade, activated by glucagon when blood glucose is low.

56 (a c tiv e a s P h o s p h o fru c to k in a s e -2) E n z - H A T P A D P Downstrea m effects of the camp cascade: fru c to s e -6 -P fru c to s e -2,6 -b is P P i 2 E n z - -P 3 (a c tiv e a s F ru c to s e -B is p h o s p h a ta s e -2) Glycolysis slows because fructose-2,6-bisphosphate is not available to activate Phosphofructokinase. Gluconeogenesis increases because of the decreased concentration of fructose-2,6-bisphosphate, which would otherwise inhibit the gluconeogenesis enzyme Fructose- 1,6-bisphosphatase.

57 G ly c o g e n P y ru v a te X G lu c o n e o g e n e s is G lu c o s e -1 -P G lu c o s e -6 -P G lu c o s e + P i X G lu c o s e -6 -P a s e G ly c o ly s is P a th w a y Summary of effects of glucagon-camp cascade in liver: Gluconeogenesis is stimulated. Glycolysis is inhibited. Glycogen breakdown is stimulated. Glycogen synthesis is inhibited. Free glucose is formed for release to the blood.

58 Energetics of Gluconeogenesis figure 13-1 Pyruvate Carboxylase 2 ATPs PEP Carboxykinase 2 GTPs 3-P-glycerate kinase 2 ATPs Glyceraldehyde-3-P dehydrogenase 2NADH

59

60 Page 851

61 Glyoxylate cycle Hans Kornberg and Neil Madsen The glyoxylate cycle results in the net conversion of two acetyl-coa to succinate instead of 4 C 2 in citric acid cycle. Succinate is transferred to mitochondrion where it can be converted to AA (TCA) Can go to cytosol where it is converted to oxaloacetate for gluconeogenesis. Net reaction 2Ac-CoA + 2NAD + + FAD AA + 2CoA + 2NADH +FADH 2 + 2H + Plants are able to convert fatty acids to glucose through this pathway

62

63

64

65

66 Glyoxylate cycle The glyoxylate cycle results in the net conversion of two acetyl-coa to succinate instead of 4 C 2 in citric acid cycle. Succinate is transferred to mitochondrion where it can be converted to AA (TCA) Can go to cytosol where it is converted to oxaloacetate for gluconeogenesis. Net reaction 2Ac-CoA + 2NAD + + FAD AA + 2CoA + 2NADH +FADH 2 + 2H + Plants are able to convert fatty acids to glucose through this pathway

67 Reference cronus.uwindsor.ca/units/biochem/web/.../citric%20acid% 20cycle.ppt dcycle.ppt 0Cycle.ppt www2.fiu.edu/~bch3033/handouts/lh6ch16tca.ppt

Gluconeogenesis. Gluconeogenesis / TCA 11/12/2009. Free energy changes in glycolysis 11/13/2009

Gluconeogenesis. Gluconeogenesis / TCA 11/12/2009. Free energy changes in glycolysis 11/13/2009 Gluconeogenesis Gluconeogenesis / TCA 11/12/2009 Gluconeogenesis is the process whereby precursors such as lactate, pyruvate, glycerol, and amino acids are converted to glucose. Fasting requires all the

More information

CITRIC ACID CYCLE ERT106 BIOCHEMISTRY SEM /19 BY: MOHAMAD FAHRURRAZI TOMPANG

CITRIC ACID CYCLE ERT106 BIOCHEMISTRY SEM /19 BY: MOHAMAD FAHRURRAZI TOMPANG CITRIC ACID CYCLE ERT106 BIOCHEMISTRY SEM 1 2018/19 BY: MOHAMAD FAHRURRAZI TOMPANG Chapter Outline (19-1) The central role of the citric acid cycle in metabolism (19-2) The overall pathway of the citric

More information

CHE 242 Exam 3 Practice Questions

CHE 242 Exam 3 Practice Questions CHE 242 Exam 3 Practice Questions Glucose metabolism 1. Below is depicted glucose catabolism. Indicate on the pathways the following: A) which reaction(s) of glycolysis are irreversible B) where energy

More information

(de novo synthesis of glucose)

(de novo synthesis of glucose) Gluconeogenesis (de novo synthesis of glucose) Gluconeogenesis Gluconeogenesis is the biosynthesis of new glucose. The main purpose of gluconeogenesis is to maintain the constant blood Glc concentration.

More information

Glycolysis Part 2. BCH 340 lecture 4

Glycolysis Part 2. BCH 340 lecture 4 Glycolysis Part 2 BCH 340 lecture 4 Regulation of Glycolysis There are three steps in glycolysis that have enzymes which regulate the flux of glycolysis These enzymes catalyzes irreversible reactions of

More information

Comparison of catabolic and anabolic pathways

Comparison of catabolic and anabolic pathways Comparison of catabolic and anabolic pathways Three stages of catabolism Glucose Synthesis of compounds e.g. lactose glycolipids Glucose-6-P Pentosephosphate Pathway Glycolysis Glycogenesis Acetyl-CoA

More information

Dr. Mohnen s notes on GLUCONEOGENESIS

Dr. Mohnen s notes on GLUCONEOGENESIS Dr. Mohnen s notes on GLUCONEOGENESIS Note: Even though we did not get through all of these slides during lecture, I advise you to look them all through because they will be helpful to you as you learn

More information

BY: RASAQ NURUDEEN OLAJIDE

BY: RASAQ NURUDEEN OLAJIDE BY: RASAQ NURUDEEN OLAJIDE LECTURE CONTENT INTRODUCTION CITRIC ACID CYCLE (T.C.A) PRODUCTION OF ACETYL CoA REACTIONS OF THE CITIRC ACID CYCLE THE AMPHIBOLIC NATURE OF THE T.C.A CYCLE THE GLYOXYLATE CYCLE

More information

Metabolism Gluconeogenesis/Citric Acid Cycle

Metabolism Gluconeogenesis/Citric Acid Cycle Metabolism Gluconeogenesis/Citric Acid Cycle BIOB111 CHEMISTRY & BIOCHEMISTRY Session 21 Session Plan Gluconeogenesis Cori Cycle Common Metabolic Pathway The Citric Acid Cycle Stoker 2014, p859 Gluconeogenesis

More information

In glycolysis, glucose is converted to pyruvate. If the pyruvate is reduced to lactate, the pathway does not require O 2 and is called anaerobic

In glycolysis, glucose is converted to pyruvate. If the pyruvate is reduced to lactate, the pathway does not require O 2 and is called anaerobic Glycolysis 1 In glycolysis, glucose is converted to pyruvate. If the pyruvate is reduced to lactate, the pathway does not require O 2 and is called anaerobic glycolysis. If this pyruvate is converted instead

More information

Aerobic Fate of Pyruvate. Chapter 16 Homework Assignment. Chapter 16 The Citric Acid Cycle

Aerobic Fate of Pyruvate. Chapter 16 Homework Assignment. Chapter 16 The Citric Acid Cycle Chapter 16 Homework Assignment The following problems will be due once we finish the chapter: 1, 3, 7, 10, 16, 19, 20 Additional Problem: Write out the eight reaction steps of the Citric Acid Cycle, using

More information

Moh Tarek. Razi Kittaneh. Jaqen H ghar

Moh Tarek. Razi Kittaneh. Jaqen H ghar 14 Moh Tarek Razi Kittaneh Jaqen H ghar Naif Karadsheh Gluconeogenesis is making glucose from non-carbohydrates precursors. Although Gluconeogenesis looks like Glycolysis in many steps, it is not the simple

More information

Glycolysis. BCH 340 lecture 3 Chapter 8 in Lippincott 5 th edition

Glycolysis. BCH 340 lecture 3 Chapter 8 in Lippincott 5 th edition Glycolysis B 40 lecture hapter 8 in Lippincott 5 th edition All carbohydrates to be catabolized must enter the glycolytic pathway Glycolysis is degradation of glucose to generate energy (ATP) and to provide

More information

number Done by Corrected by Doctor Nayef Karadsheh

number Done by Corrected by Doctor Nayef Karadsheh number 13 Done by Asma Karameh Corrected by Saad hayek Doctor Nayef Karadsheh Gluconeogenesis This lecture covers gluconeogenesis with aspects of: 1) Introduction to glucose distribution through tissues.

More information

Major Pathways in Carbohydrate Metabolism

Major Pathways in Carbohydrate Metabolism Major Pathways in Carbohydrate Metabolism 70 Stage 1: Digestion of Carbohydrates In Stage 1, the digestion of carbohydrates Begins in the mouth where salivary amylase breaks down polysaccharides to smaller

More information

Citric Acid Cycle: Central Role in Catabolism. Entry of Pyruvate into the TCA cycle

Citric Acid Cycle: Central Role in Catabolism. Entry of Pyruvate into the TCA cycle Citric Acid Cycle: Central Role in Catabolism Stage II of catabolism involves the conversion of carbohydrates, fats and aminoacids into acetylcoa In aerobic organisms, citric acid cycle makes up the final

More information

Vocabulary. Chapter 19: The Citric Acid Cycle

Vocabulary. Chapter 19: The Citric Acid Cycle Vocabulary Amphibolic: able to be a part of both anabolism and catabolism Anaplerotic: referring to a reaction that ensures an adequate supply of an important metabolite Citrate Synthase: the enzyme that

More information

Module No. # 01 Lecture No. # 19 TCA Cycle

Module No. # 01 Lecture No. # 19 TCA Cycle Biochemical Engineering Prof. Dr. Rintu Banerjee Department of Agricultural and Food Engineering Asst. Prof. Dr. Saikat Chakraborty Department of Chemical Engineering Indian Institute of Technology, Kharagpur

More information

Review of Carbohydrate Digestion

Review of Carbohydrate Digestion Review of Carbohydrate Digestion Glycolysis Glycolysis is a nine step biochemical pathway that oxidizes glucose into two molecules of pyruvic acid. During this process, energy is released and some of it

More information

METABOLISM Biosynthetic Pathways

METABOLISM Biosynthetic Pathways METABOLISM Biosynthetic Pathways Metabolism Metabolism involves : Catabolic reactions that break down large, complex molecules to provide energy and smaller molecules. Anabolic reactions that use ATP energy

More information

CARBOHYDRATE METABOLISM 1

CARBOHYDRATE METABOLISM 1 CARBOHYDRATE METABOLISM 1 web 2017 József Mandl Strategy of metabolism 1 Strategy of metabolism to extract energy ( hydrogen ) from the environment to store the energy excess to store hydrogen CH 3 O 2

More information

The Citric acid cycle. The Citric Acid Cycle II 11/17/2009. Overview. Pyruvate dehydrogenase

The Citric acid cycle. The Citric Acid Cycle II 11/17/2009. Overview. Pyruvate dehydrogenase The itric acid cycle The itric Acid ycle II 11/17/2009 It is called the Krebs cycle or the tricarboxylic and is the hub of the metabolic system. It accounts for the majority of carbohydrate, fatty acid

More information

NAME KEY ID # EXAM 3a BIOC 460. Wednesday April 10, Please include your name and ID# on each page. Limit your answers to the space provided!

NAME KEY ID # EXAM 3a BIOC 460. Wednesday April 10, Please include your name and ID# on each page. Limit your answers to the space provided! EXAM 3a BIOC 460 Wednesday April 10, 2002 Please include your name and ID# on each page. Limit your answers to the space provided! 1 1. (5 pts.) Define the term energy charge: Energy charge refers to the

More information

TCA CYCLE (Citric Acid Cycle)

TCA CYCLE (Citric Acid Cycle) TCA CYCLE (Citric Acid Cycle) TCA CYCLE The Citric Acid Cycle is also known as: Kreb s cycle Sir Hans Krebs Nobel prize, 1953 TCA (tricarboxylic acid) cycle The citric acid cycle requires aerobic conditions!!!!

More information

CHY2026: General Biochemistry UNIT 7& 8: CARBOHYDRATE METABOLISM

CHY2026: General Biochemistry UNIT 7& 8: CARBOHYDRATE METABOLISM CHY2026: General Biochemistry UNIT 7& 8: CARBOHYDRATE METABOLISM Metabolism Bioenergetics is the transfer and utilization of energy in biological systems The direction and extent to which a chemical reaction

More information

0.40. Biochemistry of Carbohydrates

0.40. Biochemistry of Carbohydrates 0.40 Biochemistry of Carbohydrates Biochemistry of Carbohydrates ATP ADP Glycolysis The Breakdown of Glucose Primary Energy Source of Cells Central Metabolic Pathway All Reactions Occur in Cytoplasm Two

More information

CHAPTER 16. Glycolysis

CHAPTER 16. Glycolysis CHAPTER 16 Glycolysis Net reaction of Glycolysis Converts: 1 Glucose Hexose stage 2 pyruvate - Two molecules of ATP are produced - Two molecules of NAD + are reduced to NADH Triose stage Glucose + 2 ADP

More information

Syllabus for BASIC METABOLIC PRINCIPLES

Syllabus for BASIC METABOLIC PRINCIPLES Syllabus for BASIC METABOLIC PRINCIPLES The video lecture covers basic principles you will need to know for the lectures covering enzymes and metabolism in Principles of Metabolism and elsewhere in the

More information

Both pathways start with Glucose as a substrate but they differ in the product.

Both pathways start with Glucose as a substrate but they differ in the product. Glycosis:may occur either with the presence or absence of -Glucose-.So with oxygen we have Aerobic glycolysis-, without the participation of oxygen Anaerobic glycolysis-(it occur in certain places) where

More information

Marah Bitar. Faisal Nimri ... Nafeth Abu Tarboosh

Marah Bitar. Faisal Nimri ... Nafeth Abu Tarboosh 8 Marah Bitar Faisal Nimri... Nafeth Abu Tarboosh Summary of the 8 steps of citric acid cycle Step 1. Acetyl CoA joins with a four-carbon molecule, oxaloacetate, releasing the CoA group and forming a six-carbon

More information

Glucose is the only source of energy in red blood cells. Under starvation conditions ketone bodies become a source of energy for the brain

Glucose is the only source of energy in red blood cells. Under starvation conditions ketone bodies become a source of energy for the brain Glycolysis 4 / The Text :- Some Points About Glucose Glucose is very soluble source of quick and ready energy. It is a relatively stable and easily transported. In mammals, the brain uses only glucose

More information

III. Metabolism - Gluconeogenesis

III. Metabolism - Gluconeogenesis Department of Chemistry and Biochemistry University of Lethbridge III. Metabolism - Gluconeogenesis Carl & Gertrude Cori Slide 1 Carbohydrate Synthesis Lactate, pyruvate and glycerol are the important

More information

CELLULAR METABOLISM. Metabolic pathways can be linear, branched, cyclic or spiral

CELLULAR METABOLISM. Metabolic pathways can be linear, branched, cyclic or spiral CHM333 LECTURE 24 & 25: 3/27 29/13 SPRING 2013 Professor Christine Hrycyna CELLULAR METABOLISM What is metabolism? - How cells acquire, transform, store and use energy - Study reactions in a cell and how

More information

Ch. 9 Cell Respiration. Title: Oct 15 3:24 PM (1 of 53)

Ch. 9 Cell Respiration. Title: Oct 15 3:24 PM (1 of 53) Ch. 9 Cell Respiration Title: Oct 15 3:24 PM (1 of 53) Essential question: How do cells use stored chemical energy in organic molecules and to generate ATP? Title: Oct 15 3:28 PM (2 of 53) Title: Oct 19

More information

Link download full of Test Bank for Fundamentals of Biochemistry 4th Edition by Voet

Link download full of Test Bank for Fundamentals of Biochemistry 4th Edition by Voet Link download full of Test Bank for Fundamentals of Biochemistry 4th Edition by Voet http://testbankair.com/download/test-bank-for-fundamentals-ofbiochemistry-4th-edition-by-voet/ Chapter 16: Glycogen

More information

Chapter 9 Overview. Aerobic Metabolism I: The Citric Acid Cycle. Live processes - series of oxidation-reduction reactions. Aerobic metabolism I

Chapter 9 Overview. Aerobic Metabolism I: The Citric Acid Cycle. Live processes - series of oxidation-reduction reactions. Aerobic metabolism I n n Chapter 9 Overview Aerobic Metabolism I: The Citric Acid Cycle Live processes - series of oxidation-reduction reactions Ingestion of proteins, carbohydrates, lipids Provide basic building blocks for

More information

BCH 4054 Chapter 19 Lecture Notes

BCH 4054 Chapter 19 Lecture Notes BCH 4054 Chapter 19 Lecture Notes 1 Chapter 19 Glycolysis 2 aka = also known as verview of Glycolysis aka The Embden-Meyerhoff Pathway First pathway discovered Common to almost all living cells ccurs in

More information

Chapter 13 Carbohydrate Metabolism

Chapter 13 Carbohydrate Metabolism Chapter 13 Carbohydrate Metabolism Metabolism of Foods Food is broken down into carbohydrates, lipids, and proteins and sent through catabolic pathways to produce energy. Glycolysis glucose 2 P i 2 ADP

More information

Aerobic Respiration. The four stages in the breakdown of glucose

Aerobic Respiration. The four stages in the breakdown of glucose Aerobic Respiration The four stages in the breakdown of glucose 1 I. Aerobic Respiration Why can t we break down Glucose in one step? (Flaming Gummy Bear) Enzymes gently lower the potential energy until

More information

3.7 CELLULAR RESPIRATION. How are these two images related?

3.7 CELLULAR RESPIRATION. How are these two images related? 3.7 CELLULAR RESPIRATION How are these two images related? CELLULAR RESPIRATION Cellular respiration is the process whereby the body converts the energy that we get from food (glucose) into an energy form

More information

4. Which step shows a split of one molecule into two smaller molecules? a. 2. d. 5

4. Which step shows a split of one molecule into two smaller molecules? a. 2. d. 5 1. Which of the following statements about NAD + is false? a. NAD + is reduced to NADH during both glycolysis and the citric acid cycle. b. NAD + has more chemical energy than NADH. c. NAD + is reduced

More information

Metabolism. Metabolic pathways. BIO 5099: Molecular Biology for Computer Scientists (et al) Lecture 11: Metabolic Pathways

Metabolism. Metabolic pathways. BIO 5099: Molecular Biology for Computer Scientists (et al) Lecture 11: Metabolic Pathways BIO 5099: Molecular Biology for Computer Scientists (et al) Lecture 11: Metabolic Pathways http://compbio.uchsc.edu/hunter/bio5099 Larry.Hunter@uchsc.edu Metabolism Metabolism is the chemical change of

More information

CARBOHYDRATE METABOLISM

CARBOHYDRATE METABOLISM Note (Study Glycolysis, fermentation and their regulation, Gluconeogenesis and glycogenolysis, Metabolism of galactose, TCA cycle and Amphibolic role of the cycle, and Glyoxalic acid cycle, HMP shunt in

More information

Biochemistry Prof. S. Dasgupta Department of Chemistry Indian Institute of Technology Kharagpur. Lecture - 27 Metabolism III

Biochemistry Prof. S. Dasgupta Department of Chemistry Indian Institute of Technology Kharagpur. Lecture - 27 Metabolism III Biochemistry Prof. S. Dasgupta Department of Chemistry Indian Institute of Technology Kharagpur Lecture - 27 Metabolism III In the last step of our metabolism of carbohydrates we are going to consider

More information

Biochemistry 7/11/ Bio-Energetics & ATP. 5.1) ADP, ATP and Cellular Respiration OVERVIEW OF ENERGY AND METABOLISM

Biochemistry 7/11/ Bio-Energetics & ATP. 5.1) ADP, ATP and Cellular Respiration OVERVIEW OF ENERGY AND METABOLISM Biochemistry 5. Bio-Energetics & ATP 5.1) ADP, ATP and Cellular Respiration Prof. Dr. Klaus Heese OVERVIEW OF ENERGY AND METABOLISM 1. The food we eat, (carbohydrates/ glucose /sugar, lipids/fat, proteins),

More information

Integration of Metabolism

Integration of Metabolism Integration of Metabolism Metabolism is a continuous process. Thousands of reactions occur simultaneously in order to maintain homeostasis. It ensures a supply of fuel, to tissues at all times, in fed

More information

Dr. Abir Alghanouchi Biochemistry department Sciences college

Dr. Abir Alghanouchi Biochemistry department Sciences college Dr. Abir Alghanouchi Biochemistry department Sciences college Under aerobic conditions, pyruvate(the product of glycolysis) passes by special pyruvatetransporter into mitochondria which proceeds as follows:

More information

Chemical Energy. Valencia College

Chemical Energy. Valencia College 9 Pathways that Harvest Chemical Energy Valencia College 9 Pathways that Harvest Chemical Energy Chapter objectives: How Does Glucose Oxidation Release Chemical Energy? What Are the Aerobic Pathways of

More information

III. 6. Test. Respiració cel lular

III. 6. Test. Respiració cel lular III. 6. Test. Respiració cel lular Chapter Questions 1) What is the term for metabolic pathways that release stored energy by breaking down complex molecules? A) anabolic pathways B) catabolic pathways

More information

Higher Biology. Unit 2: Metabolism and Survival Topic 2: Respiration. Page 1 of 25

Higher Biology. Unit 2: Metabolism and Survival Topic 2: Respiration. Page 1 of 25 Higher Biology Unit 2: Metabolism and Survival Topic 2: Respiration Page 1 of 25 Sub Topic: Respiration I can state that: All living cells carry out respiration. ATP is the energy currency of the cell

More information

Carbohydrate Metabolism I

Carbohydrate Metabolism I Carbohydrate Metabolism I Outline Glycolysis Stages of glycolysis Regulation of Glycolysis Carbohydrate Metabolism Overview Enzyme Classification Dehydrogenase - oxidizes substrate using cofactors as

More information

Chapter 24 Lecture Outline

Chapter 24 Lecture Outline Chapter 24 Lecture Outline Carbohydrate Lipid and Protein! Metabolism! In the catabolism of carbohydrates, glycolysis converts glucose into pyruvate, which is then metabolized into acetyl CoA. Prepared

More information

Respiration. Organisms can be classified based on how they obtain energy: Autotrophs

Respiration. Organisms can be classified based on how they obtain energy: Autotrophs Respiration rganisms can be classified based on how they obtain energy: Autotrophs Able to produce their own organic molecules through photosynthesis Heterotrophs Live on organic compounds produced by

More information

Yield of energy from glucose

Yield of energy from glucose Paper : Module : 05 Yield of Energy from Glucose Principal Investigator, Paper Coordinator and Content Writer Prof. Ramesh Kothari, Professor Dept. of Biosciences, Saurashtra University, Rajkot - 360005

More information

Metabolism Energy Pathways Biosynthesis. Catabolism Anabolism Enzymes

Metabolism Energy Pathways Biosynthesis. Catabolism Anabolism Enzymes Topics Microbial Metabolism Metabolism Energy Pathways Biosynthesis 2 Metabolism Catabolism Catabolism Anabolism Enzymes Breakdown of complex organic molecules in order to extract energy and dform simpler

More information

Krebs cycle Energy Petr Tůma Eva Samcová

Krebs cycle Energy Petr Tůma Eva Samcová Krebs cycle Energy - 215 Petr Tůma Eva Samcová Overview of Citric Acid Cycle Key Concepts The citric acid cycle (Krebs cycle) is a multistep catalytic process that converts acetyl groups derived from carbohydrates,

More information

OVERVIEW OF ENERGY AND METABOLISM

OVERVIEW OF ENERGY AND METABOLISM Biochemistry 5. Bio-Energetics & ATP 5.1) ADP, ATP and Cellular Respiration OVERVIEW OF ENERGY AND METABOLISM 1. The food we eat, (carbohydrates/ glucose /sugar, lipids/fat, proteins), are our only source

More information

GLYCOLYSIS Generation of ATP from Metabolic Fuels

GLYCOLYSIS Generation of ATP from Metabolic Fuels GLYCOLYSIS Generation of ATP from Metabolic Fuels - Catabolic process degradative pathway - Energy stored in sugars (carbohydrates) released to perform biological work - Transforms GLUCOSE to PYRUVATE

More information

Tricarboxylic Acid Cycle. TCA Cycle; Krebs Cycle; Citric Acid Cycle

Tricarboxylic Acid Cycle. TCA Cycle; Krebs Cycle; Citric Acid Cycle Tricarboxylic Acid ycle TA ycle; Krebs ycle; itric Acid ycle The Bridging Step: Pyruvate D hase O H 3 - - pyruvate O O - NAD + oash O 2 NADH O H 3 - - S - oa acetyl oa Pyruvate D hase omplex Multienzyme

More information

Biochemistry - I SPRING Mondays and Wednesdays 9:30-10:45 AM (MR-1307) Lecture 16. Based on Profs. Kevin Gardner & Reza Khayat

Biochemistry - I SPRING Mondays and Wednesdays 9:30-10:45 AM (MR-1307) Lecture 16. Based on Profs. Kevin Gardner & Reza Khayat Biochemistry - I Mondays and Wednesdays 9:30-10:45 AM (MR-1307) SPRING 2017 Lecture 16 Based on Profs. Kevin Gardner & Reza Khayat 1 Catabolism of Di- and Polysaccharides Catabolism (digestion) begins

More information

Unit 2: Metabolic Processes

Unit 2: Metabolic Processes How is energy obtained biologically? Recall: Red Ox Reactions Unit 2: Metabolic Processes Oxidation Is the chief mechanism by which chemical potential energy is released This energy comes from reduced

More information

Biol 219 Lec 7 Fall 2016

Biol 219 Lec 7 Fall 2016 Cellular Respiration: Harvesting Energy to form ATP Cellular Respiration and Metabolism Glucose ATP Pyruvate Lactate Acetyl CoA NAD + Introducing The Players primary substrate for cellular respiration

More information

MULTIPLE CHOICE QUESTIONS

MULTIPLE CHOICE QUESTIONS MULTIPLE CHOICE QUESTIONS 1. Which of the following statements concerning anabolic reactions is FALSE? A. They are generally endergonic. B. They usually require ATP. C. They are part of metabolism. D.

More information

Integration Of Metabolism

Integration Of Metabolism Integration Of Metabolism Metabolism Consist of Highly Interconnected Pathways The basic strategy of catabolic metabolism is to form ATP, NADPH, and building blocks for biosyntheses. 1. ATP is the universal

More information

Carbohydrate Metabolism

Carbohydrate Metabolism Chapter 34 Carbohydrate Metabolism Carbohydrate metabolism is important for both plants and animals. Introduction to General, Organic, and Biochemistry, 10e John Wiley & Sons, Inc Morris Hein, Scott Pattison,

More information

Chapter 13 Carbohydrate Metabolism

Chapter 13 Carbohydrate Metabolism Chapter 13 Carbohydrate Metabolism Chapter bjectives: Learn about Blood glucose. Learn about the glycolysis reaction pathways and the regulation of glycolysis. Learn about the fates of pyruvate under various

More information

Sheet #13. #Citric acid cycle made by zaid al-ghnaneem corrected by amer Al-salamat date 11/8/2016. Here we go.. Record #18

Sheet #13. #Citric acid cycle made by zaid al-ghnaneem corrected by amer Al-salamat date 11/8/2016. Here we go.. Record #18 1 Sheet #13 #Citric acid cycle made by zaid al-ghnaneem corrected by amer Al-salamat date 11/8/2016 Here we go.. Record #18 2 Three processes play central role in aerobic metabolism: 1) The citric acid

More information

Energy Transformation: Cellular Respiration Outline 1. Sources of cellular ATP 2. Turning chemical energy of covalent bonds between C-C into energy

Energy Transformation: Cellular Respiration Outline 1. Sources of cellular ATP 2. Turning chemical energy of covalent bonds between C-C into energy Energy Transformation: Cellular Respiration Outline 1. Sources of cellular ATP 2. Turning chemical energy of covalent bonds between C-C into energy for cellular work (ATP) 3. Importance of electrons and

More information

Under aerobic conditions, pyruvate enters the mitochondria where it is converted into acetyl CoA.

Under aerobic conditions, pyruvate enters the mitochondria where it is converted into acetyl CoA. Under aerobic conditions, pyruvate enters the mitochondria where it is converted into acetyl CoA. Acetyl CoA is the fuel for the citric acid cycle, which processes the two carbon acetyl unit to two molecules

More information

2/4/17. Cellular Metabolism. Metabolism. Cellular Metabolism. Consists of all of the chemical reactions that take place in a cell.

2/4/17. Cellular Metabolism. Metabolism. Cellular Metabolism. Consists of all of the chemical reactions that take place in a cell. Metabolism Cellular Metabolism Consists of all of the chemical reactions that take place in a cell. Can be reactions that break things down. (Catabolism) Or reactions that build things up. (Anabolism)

More information

Chapter 9: Cellular Respiration Overview: Life Is Work. Living cells. Require transfusions of energy from outside sources to perform their many tasks

Chapter 9: Cellular Respiration Overview: Life Is Work. Living cells. Require transfusions of energy from outside sources to perform their many tasks Chapter 9: Cellular Respiration Overview: Life Is Work Living cells Require transfusions of energy from outside sources to perform their many tasks Biology, 7 th Edition Neil Campbell and Jane Reece The

More information

Carbohydrate. Metabolism

Carbohydrate. Metabolism Carbohydrate Metabolism Dietary carbohydrates (starch, glycogen, sucrose, lactose Mouth salivary amylase Summary of Carbohydrate Utilization Utilization for energy (glycolysis) ligosaccharides and disaccharides

More information

Multiple choice: Circle the best answer on this exam. There are 12 multiple choice questions, each question is worth 3 points.

Multiple choice: Circle the best answer on this exam. There are 12 multiple choice questions, each question is worth 3 points. CHEM 4420 Exam 4 Spring 2015 Dr. Stone Page 1 of 6 Name Use complete sentences when requested. There are 120 possible points on this exam. Therefore there are 20 bonus points. Multiple choice: Circle the

More information

Metabolic Pathways and Energy Metabolism

Metabolic Pathways and Energy Metabolism Metabolic Pathways and Energy Metabolism Last Week Energy Metabolism - The first thing a living organism has got to be able to do is harness energy from the environment - Plants do it by absorbing sunlight

More information

Chapter 17 - Citric Acid Cycle

Chapter 17 - Citric Acid Cycle hapter 17 - itric Acid ycle I. Introduction - The citric acid cycle (A) was elucidated in the 1930's by ans Krebs, who first noticed that oxygen consumption in suspensions of pigeon breast muscle was greatly

More information

number Done by Corrected by Doctor Nayef Karadsheh

number Done by Corrected by Doctor Nayef Karadsheh number 11 Done by حسام أبو عوض Corrected by Moayyad Al-Shafei Doctor Nayef Karadsheh 1 P a g e General Regulatory Aspects in Metabolism: We can divide all pathways in metabolism to catabolicand anabolic.

More information

A cell has enough ATP to last for about three seconds.

A cell has enough ATP to last for about three seconds. Energy Transformation: Cellular Respiration Outline 1. Energy and carbon sources in living cells 2. Sources of cellular ATP 3. Turning chemical energy of covalent bonds between C-C into energy for cellular

More information

Photosynthesis in chloroplasts. Cellular respiration in mitochondria ATP. ATP powers most cellular work

Photosynthesis in chloroplasts. Cellular respiration in mitochondria ATP. ATP powers most cellular work Light energy ECOSYSTEM CO + H O Photosynthesis in chloroplasts Cellular respiration in mitochondria Organic molecules + O powers most cellular work Heat energy 1 becomes oxidized (loses electron) becomes

More information

ANSC 619 PHYSIOLOGICAL CHEMISTRY OF LIVESTOCK SPECIES. Carbohydrate Metabolism

ANSC 619 PHYSIOLOGICAL CHEMISTRY OF LIVESTOCK SPECIES. Carbohydrate Metabolism ANSC 619 PHYSIOLOGICAL CHEMISTRY OF LIVESTOCK SPECIES I. Glycolysis A. Pathway Regulation of glycolysis Hexokinase: Activated by glucose. Inhibited by G6P. 6-Phosphofructokinase: Inhibited by ATP, especially

More information

Integration of Metabolism 1. made by: Noor M. ALnairat. Sheet No. 18

Integration of Metabolism 1. made by: Noor M. ALnairat. Sheet No. 18 Integration of Metabolism 1 made by: Noor M. ALnairat Sheet No. 18 Data :24/11/2016 SLIDE 2: Metabolism Consist of Highly Interconnected Pathways The basic strategy of catabolic metabolism is to form ATP,

More information

Metabolism. Metabolism. Energy. Metabolism. Energy. Energy 5/22/2016

Metabolism. Metabolism. Energy. Metabolism. Energy. Energy 5/22/2016 5//016 Metabolism Metabolism All the biochemical reactions occurring in the body Generating, storing and expending energy ATP Supports body activities Assists in constructing new tissue Metabolism Two

More information

How Cells Harvest Energy. Chapter 7. Respiration

How Cells Harvest Energy. Chapter 7. Respiration How Cells Harvest Energy Chapter 7 Respiration Organisms classified on how they obtain energy: autotrophs: produce their own organic molecules through photosynthesis heterotrophs: live on organic compounds

More information

CELLULAR GLYCOGEN Why Glycogen as an Energy Storage Molecule? Glycogenolysis NOT phosphorolysis

CELLULAR GLYCOGEN Why Glycogen as an Energy Storage Molecule? Glycogenolysis NOT phosphorolysis CHM333 LECTURE 29 & 30: 4/12 15/13 SPRING 2013 Professor Christine Hrycyna CELLULAR GLYCOGEN Why Glycogen as an Energy Storage Molecule? 1. Fat cannot be as rapidly mobilized in skeletal muscle. 2. Fat

More information

Name: Chem 351 Exam 3

Name: Chem 351 Exam 3 Multiple hoice: Pick the BEST answer and write it in the box at the end of the section. 1) The TA (Krebs) ycle depends on oxygen availability, though it does not directly use it. How can you best explain

More information

Cellular Respiration

Cellular Respiration Cellular I can describe cellular respiration Cellular respiration is a series of metabolic pathways releasing energy from a foodstuff e.g. glucose. This yields energy in the form of ATP adenosine P i P

More information

Glycolysis. Degradation of Glucose to yield pyruvate

Glycolysis. Degradation of Glucose to yield pyruvate Glycolysis Degradation of Glucose to yield pyruvate After this Lecture you will be able to answer: For each step of glycolysis: How does it occur? Why does it occur? Is it Regulated? How? What are the

More information

Cellular Pathways That Harvest Chemical Energy. Cellular Pathways That Harvest Chemical Energy. Cellular Pathways In General

Cellular Pathways That Harvest Chemical Energy. Cellular Pathways That Harvest Chemical Energy. Cellular Pathways In General Cellular Pathways That Harvest Chemical Energy A. Obtaining Energy and Electrons from Glucose Lecture Series 12 Cellular Pathways That Harvest Chemical Energy B. An Overview: Releasing Energy from Glucose

More information

Introduction to Metabolism Cell Structure and Function

Introduction to Metabolism Cell Structure and Function Introduction to Metabolism Cell Structure and Function Cells can be divided into two primary types prokaryotes - Almost all prokaryotes are bacteria eukaryotes - Eukaryotes include all cells of multicellular

More information

Cellular Respiration: Harvesting Chemical Energy

Cellular Respiration: Harvesting Chemical Energy Chapter 9 Cellular Respiration: Harvesting Chemical Energy You should be able to: 1. Explain how redox reactions are involved in energy exchanges. Name and describe the three stages of cellular respiration;

More information

Introduction to Carbohydrate metabolism

Introduction to Carbohydrate metabolism Introduction to Carbohydrate metabolism Some metabolic pathways of carbohydrates 1- Glycolysis 2- Krebs cycle 3- Glycogenesis 4- Glycogenolysis 5- Glyconeogenesis - Pentose Phosphate Pathway (PPP) - Curi

More information

Chapter 9. Cellular Respiration and Fermentation

Chapter 9. Cellular Respiration and Fermentation Chapter 9 Cellular Respiration and Fermentation Energy flows into an ecosystem as sunlight and leaves as heat Photosynthesis generates O 2 and organic molecules, which are used in cellular respiration

More information

Transport. Oxidation. Electron. which the en the ETC and. of NADH an. nd FADH 2 by ation. Both, Phosphorylation. Glycolysis Glucose.

Transport. Oxidation. Electron. which the en the ETC and. of NADH an. nd FADH 2 by ation. Both, Phosphorylation. Glycolysis Glucose. Electron Transport Chain and Oxidation Phosphorylation When one glucose molecule is oxidized to six CO 2 molecules by way of glycolysiss and TCA cycle, considerable amount of energy (ATP) is generated.

More information

Lecture 5: Cell Metabolism. Biology 219 Dr. Adam Ross

Lecture 5: Cell Metabolism. Biology 219 Dr. Adam Ross Lecture 5: Cell Metabolism Biology 219 Dr. Adam Ross Cellular Respiration Set of reactions that take place during the conversion of nutrients into ATP Intricate regulatory relationship between several

More information

Cellular Metabolism. Biol 105 Lecture 6 Read Chapter 3 (pages 63 69)

Cellular Metabolism. Biol 105 Lecture 6 Read Chapter 3 (pages 63 69) Cellular Metabolism Biol 105 Lecture 6 Read Chapter 3 (pages 63 69) Metabolism Consists of all of the chemical reactions that take place in a cell Metabolism Animation Breaking Down Glucose For Energy

More information

Biochemistry of carbohydrates

Biochemistry of carbohydrates Biochemistry of carbohydrates الفريق الطبي األكاديمي Done By: - Hanan Jamal لكية الطب البرشي البلقاء التطبيقية / املركز 6166 6102/ In the last lecture we talked about Pyruvate, pyruvate is a central intermediate;

More information

Chapter 5. Microbial Metabolism

Chapter 5. Microbial Metabolism Chapter 5 Microbial Metabolism Metabolism Collection of controlled biochemical reactions that take place within a microbe Ultimate function of metabolism is to reproduce the organism Metabolic Processes

More information

Ahmad Ulnar. Faisal Nimri ... Dr.Faisal

Ahmad Ulnar. Faisal Nimri ... Dr.Faisal 24 Ahmad Ulnar Faisal Nimri... Dr.Faisal Fatty Acid Synthesis - Occurs mainly in the Liver (to store excess carbohydrates as triacylglycerols(fat)) and in lactating mammary glands (for the production of

More information

Cellular Respiration

Cellular Respiration Cellular Respiration 1. To perform cell work, cells require energy. a. A cell does three main kinds of work: i. Mechanical work, such as the beating of cilia, contraction of muscle cells, and movement

More information

CLASS 11 th. Respiration in Plants

CLASS 11 th. Respiration in Plants CLASS 11 th 01. Introduction All living cells require continuous supply of energy to perform various vital activities. This energy is released in controlled manner for cellular use via the process of respiration.

More information