Chapter 9 Cellular Respiration

Save this PDF as:
 WORD  PNG  TXT  JPG

Size: px
Start display at page:

Download "Chapter 9 Cellular Respiration"

Transcription

1 Chapter 9 Cellular Respiration

2 Biology and Society: Marathoners versus Sprinters Sprinters do not usually compete at short and long distances. Natural differences in the muscles of these athletes favor sprinting or long-distance running.

3 Figure 6.0

4 Biology and Society: Marathoners versus Sprinters The muscles that move our legs contain two main types of muscle fibers: 1. slow-twitch and 2. fast-twitch.

5 Biology and Society: Marathoners versus Sprinters Slow-twitch fibers last longer, do not generate a lot of quick power, and generate ATP using oxygen (aerobically).

6 Biology and Society: Marathoners versus Sprinters Fast-twitch fibers contract more quickly and powerfully, fatigue more quickly, and can generate ATP without using oxygen (anaerobically). All human muscles contain both types of fibers but in different ratios Pearson Education, Inc.

7 ENERGY FLOW AND CHEMICAL CYCLING IN THE BIOSPHERE Animals depend on plants to convert the energy of sunlight to chemical energy of sugars and other organic molecules we consume as food. Photosynthesis uses light energy from the sun to power a chemical process and make organic molecules.

8 Producers and Consumers Plants and other autotrophs (self-feeders) make their own organic matter from inorganic nutrients. Heterotrophs (other-feeders) include humans and other animals that cannot make organic molecules from inorganic ones.

9 Producers and Consumers Autotrophs are producers because ecosystems depend upon them for food. Heterotrophs are consumers because they eat plants or other animals Pearson Education, Inc.

10 Figure 6.1

11 Chemical Cycling between Photosynthesis and Cellular Respiration The ingredients for photosynthesis are carbon dioxide (CO 2 ) and water (H 2 O). CO 2 is obtained from the air by a plant s leaves. H 2 O is obtained from the damp soil by a plant s roots.

12 Chemical Cycling between Photosynthesis and Cellular Respiration Chloroplasts in the cells of leaves use light energy to rearrange the atoms of CO 2 and H 2 O, which produces sugars (such as glucose), other organic molecules, and oxygen gas.

13 Chemical Cycling between Photosynthesis and Cellular Respiration Plant and animal cells perform cellular respiration, a chemical process that primarily occurs in mitochondria, harvests energy stored in organic molecules, uses oxygen, and generates ATP.

14 Chemical Cycling between Photosynthesis and Cellular Respiration The waste products of cellular respiration are CO 2 and H 2 O, used in photosynthesis.

15 Chemical Cycling between Photosynthesis and Cellular Respiration Animals perform only cellular respiration. Plants perform photosynthesis and cellular respiration.

16 Chemical Cycling between Photosynthesis and Cellular Respiration Plants usually make more organic molecules than they need for fuel. This surplus provides material that can be used for the plant to grow or stored as starch in potatoes.

17 Figure 6.2 Sunlight energy enters ecosystem Photosynthesis C 6 H 12 O 6 CO 2 O 2 H 2 O Cellular respiration ATP drives cellular work Heat energy exits ecosystem

18 CELLULAR RESPIRATION: AEROBIC HARVEST OF FOOD ENERGY Cellular respiration is the main way that chemical energy is harvested from food and converted to ATP and an aerobic process it requires oxygen.

19 CELLULAR RESPIRATION: AEROBIC HARVEST OF FOOD ENERGY Cellular respiration and breathing are closely related. Cellular respiration requires a cell to exchange gases with its surroundings. Cells take in oxygen gas. Cells release waste carbon dioxide gas. Breathing exchanges these same gases between the blood and outside air.

20 Figure 6.3 O 2 CO 2 Breathing Lungs O 2 CO 2 Cellular respiration Muscle cells

21 Figure 6.3a O 2 CO 2 Breathing Lungs O 2 CO 2 Cellular respiration Muscle cells

22 Figure 6.3b

23 The Simplified Equation for Cellular Respiration A common fuel molecule for cellular respiration is glucose. Cellular respiration can produce up to 32 ATP molecules for each glucose molecule consumed. The overall equation for what happens to glucose during cellular respiration is glucose & oxygen CO 2, H 2 O, & a release of energy.

24 Figure 6.UN01 C 6 H 12 O CO 2 6 H 2 O ATP O 2 Glucose Oxygen Carbon dioxide Water Energy

25 The Role of Oxygen in Cellular Respiration During cellular respiration, hydrogen and its bonding electrons change partners from sugar to oxygen, forming water as a product.

26 Redox Reactions Chemical reactions that transfer electrons from one substance to another are called oxidation-reduction reactions or redox reactions for short Pearson Education, Inc.

27 Redox Reactions The loss of electrons during a redox reaction is oxidation. The acceptance of electrons during a redox reaction is reduction. During cellular respiration glucose is oxidized and oxygen is reduced Pearson Education, Inc.

28 Figure 6.UN02 Oxidation Glucose loses electrons (and hydrogens) C 6 H 12 O 6 6 O 2 6 CO 2 6 Glucose Oxygen Carbon dioxide H 2 O Water Reduction Oxygen gains electrons (and hydrogens)

29 Redox Reactions Why does electron transfer to oxygen release energy? When electrons move from glucose to oxygen, it is as though the electrons were falling. This fall of electrons releases energy during cellular respiration.

30 Figure H 2 O 2 Release of heat energy H 2 O

31 Redox Reactions Cellular respiration is a controlled fall of electrons and a stepwise cascade much like going down a staircase.

32 NADH and Electron Transport Chains The path that electrons take on their way down from glucose to oxygen involves many steps. The first step is an electron acceptor called NAD +. NAD is made by cells from niacin, a B vitamin. The transfer of electrons from organic fuel to NAD + reduces it to NADH.

33 NADH and Electron Transport Chains The rest of the path consists of an electron transport chain, which involves a series of redox reactions and ultimately leads to the production of large amounts of ATP.

34 Figure 6.5 e e Electrons from food NAD + e e NADH Stepwise release of energy used to make 2 2 e ATP Electron transport chain 2 e O 2 Hydrogen, electrons, and oxygen combine to produce water H 2 O

35 Figure 6.5a 2 2 e ATP Stepwise release of energy used to make ATP Electron transport chain 2 e O 2 Hydrogen, electrons, and oxygen combine to produce water H 2 O

36 An Overview of Cellular Respiration Cellular respiration is an example of a metabolic pathway, which is a series of chemical reactions in cells. All of the reactions involved in cellular respiration can be grouped into three main stages: 1. glycolysis, 2. the citric acid cycle, and 3. electron transport.

37 2013 Pearson Education, Inc. BioFlix Animation: Cellular Respiration

38 Figure 6.6 Mitochondrion Cytoplasm Cytoplasm Animal cell Plant cell Cytoplasm Mitochondrion High-energy electrons via carrier molecules Glycolysis 2 Glucose Pyruvic acid Citric Acid Cycle Electron Transport ATP ATP ATP

39 Figure 6.6a Cytoplasm Mitochondrion Glycolysis 2 Glucose Pyruvic acid Citric Acid Cycle High-energy electrons via carrier molecules Electron Transport ATP ATP ATP

40 The Three Stages of Cellular Respiration With the big-picture view of cellular respiration in mind, let s examine the process in more detail.

41 Stage 1: Glycolysis 1. A six-carbon glucose molecule is split in half to form two molecules of pyruvic acid. 2. These two molecules then donate high energy electrons to NAD +, forming NADH.

42 Figure 6.7 INPUT NADH OUTPUT P NAD + P 2 ADP 2 ATP 2 ATP 2 ADP P 2 P 3 2 Pyruvic acid 1 P P 2 P 3 Glucose NAD + NADH P 2 ADP 2 ATP Energy investment phase Key Carbon atom P Phosphate group High-energy electron Energy harvest phase

43 Figure 6.7a INPUT OUTPUT 2 Pyruvic acid Glucose

44 Figure 6.7b-1 P 2 ATP 2 ADP 1 P Energy investment phase

45 Figure 6.7b-2 NADH P NAD + P 2 ATP 2 ADP P 2 P 1 P P 2 P NAD + NADH P Energy investment phase Energy harvest phase

46 Figure 6.7b-3 NADH P NAD + P 2 ADP 2 ATP 2 ATP 2 ADP P 2 P 3 1 P P 2 P 3 NAD + NADH P 2 ADP 2 ATP Energy investment phase Energy harvest phase

47 Stage 1: Glycolysis 3. Glycolysis uses two ATP molecules per glucose to split the six-carbon glucose and makes four additional ATP directly when enzymes transfer phosphate groups from fuel molecules to ADP. Thus, glycolysis produces a net of two molecules of ATP per glucose molecule.

48 Figure 6.8 Enzyme P ADP ATP P P

49 Stage 2: The Citric Acid Cycle In the citric acid cycle, pyruvic acid from glycolysis is first groomed. Each pyruvic acid loses a carbon as CO 2. The remaining fuel molecule, with only two carbons left, is acetic acid. Oxidation of the fuel generates NADH.

50 Stage 2: The Citric Acid Cycle Finally, each acetic acid is attached to a molecule called coenzyme A to form acetyl CoA. The CoA escorts the acetic acid into the first reaction of the citric acid cycle. The CoA is then stripped and recycled.

51 Figure 6.9 INPUT (from glycolysis) 2 NAD + Oxidation of the fuel generates NADH NADH OUTPUT (to citric acid cycle) CoA Pyruvic acid 1 Pyruvic acid loses a carbon as CO 2 CO 2 Acetic acid Coenzyme A 3 Acetic acid attaches to coenzyme A Acetyl CoA

52 Figure 6.9a INPUT (from glycolysis) OUTPUT (to citric acid cycle) CoA Pyruvic acid Acetyl CoA

53 Figure 6.9b 2 NAD + Oxidation of the fuel generates NADH NADH OUTPUT 1 Pyruvic acid loses a carbon as CO 2 CO 2 Acetic acid Coenzyme A 3 Acetic acid attaches to coenzyme A

54 Stage 2: The Citric Acid Cycle The citric acid cycle extracts the energy of sugar by breaking the acetic acid molecules all the way down to CO 2, uses some of this energy to make ATP, and forms NADH and FADH 2.

55 Blast Animation: Harvesting Energy: Krebs Cycle Select Play 2013 Pearson Education, Inc.

56 Figure 6.10 INPUT Citric acid OUTPUT 1 Acetic acid 2 CO 2 2 ADP + P 3 NAD + Citric Acid Cycle ATP 3 NADH 3 4 FAD FADH Acceptor molecule

57 Figure 6.10a INPUT OUTPUT 1 Acetic acid 2 CO 2 2 ADP + P ATP 3 3 NAD + FAD 3 NADH FADH 2 4 5

58 Figure 6.10b INPUT Citric acid OUTPUT Citric Acid Cycle Acceptor molecule

59 Stage 3: Electron Transport Electron transport releases the energy your cells need to make the most of their ATP. The molecules of the electron transport chain are built into the inner membranes of mitochondria. The chain functions as a chemical machine, which uses energy released by the fall of electrons to pump hydrogen ions across the inner mitochondrial membrane, and uses these ions to store potential energy Pearson Education, Inc.

60 Stage 3: Electron Transport When the hydrogen ions flow back through the membrane, they release energy. The hydrogen ions flow through ATP synthase. ATP synthase takes the energy from this flow and synthesizes ATP Pearson Education, Inc.

61 Figure 6.11 Space between membranes Electron carrier Protein complex 3 5 Inner mitochondrial membrane Electron flow FADH 2 NADH NAD + 1 FAD 2 Matrix Electron transport chain ATP synthase 1 2 O H 2 O ADP P 6 ATP

62 Figure 6.11a Space between membranes Electron carrier Protein complex 3 5 Inner mitochondrial membrane Electron flow FADH 2 NADH NAD + 1 H+ 2 FAD Matrix Electron transport chain ATP synthase 1 2 O H 2 O ADP P 6 ATP

63 Figure 6.11b Space between membranes H Electron carrier Protein complex 3 Inner mitochondrial membrane Electron flow FADH 2 2 FAD 1 2 O 2 2 NADH NAD H+ Matrix Electron transport chain

64 Figure 6.11c O 2 2 H 2 O 6 4 ADP P ATP ATP synthase

65 Stage 3: Electron Transport Cyanide is a deadly poison that binds to one of the protein complexes in the electron transport chain, prevents the passage of electrons to oxygen, and stops the production of ATP Pearson Education, Inc.

66 The Results of Cellular Respiration Cellular respiration can generate up to 32 molecules of ATP per molecule of glucose Pearson Education, Inc.

67 Figure 6.12 Cytoplasm Mitochondrion 2 NADH 2 NADH 6 NADH 2 FADH 2 Glycolysis 2 Glucose Pyruvic acid 2 Acetyl CoA Citric Acid Cycle Electron Transport Maximum per glucose: 2 ATP 2 ATP About 28 ATP About 32 ATP by direct synthesis by direct synthesis by ATP synthase

68 Figure 6.12a Glycolysis 2 Glucose Pyruvic acid 2 Acetyl CoA Citric Acid Cycle Electron Transport 2 ATP 2 ATP About 28 ATP by direct synthesis by direct synthesis by ATP synthase

69 The Results of Cellular Respiration In addition to glucose, cellular respiration can burn diverse types of carbohydrates, fats, and proteins Pearson Education, Inc.

70 Figure 6.13 Food Polysaccharides Fats Proteins Sugars Glycerol Fatty acids Amino acids Glycolysis Acetyl CoA Citric Acid Cycle Electron Transport ATP

71 FERMENTATION: ANAEROBIC HARVEST OF FOOD ENERGY Some of your cells can actually work for short periods without oxygen. Fermentation is the anaerobic (without oxygen) harvest of food energy Pearson Education, Inc.

72 Fermentation in Human Muscle Cells After functioning anaerobically for about 15 seconds, muscle cells begin to generate ATP by the process of fermentation. Fermentation relies on glycolysis to produce ATP. Glycolysis does not require oxygen and produces two ATP molecules for each glucose broken down to pyruvic acid Pearson Education, Inc.

73 Fermentation in Human Muscle Cells Pyruvic acid, produced by glycolysis, is reduced by NADH, producing NAD +, which keeps glycolysis going. In human muscle cells, lactic acid is a by-product Pearson Education, Inc.

74 Animation: Fermentation Overview Right click slide / select Play 2013 Pearson Education, Inc.

75 Figure 6.14 INPUT 2 ADP 2 P 2 ATP OUTPUT Glycolysis Glucose 2 NAD + 2 NADH 2 NADH 2 NAD + 2 Pyruvic acid 2 2 Lactic acid

76 Figure 6.14a INPUT 2 ADP 2 P 2 ATP OUTPUT Glycolysis 2 NAD + 2 NADH 2 NADH 2 NAD + Glucose 2 Pyruvic acid 2 2 Lactic acid

77 Figure 6.14b

78 The Process of Science: What Causes Muscle Burn? Observation: Muscles produce lactic acid under anaerobic conditions. Question: Does the buildup of lactic acid cause muscle fatigue? 2013 Pearson Education, Inc.

79 The Process of Science: What Causes Muscle Burn? Hypothesis: The buildup of lactic acid would cause muscle activity to stop. Experiment: Tested frog muscles under conditions when lactic acid could and could not diffuse away Pearson Education, Inc.

80 Figure 6.15 Battery + Force measured Battery + Force measured Frog muscle stimulated by electric current Solution prevents diffusion of lactic acid Solution allows diffusion of lactic acid; muscle can work for twice as long

81 The Process of Science: What Causes Muscle Burn? Results: When lactic acid could diffuse away, performance improved greatly. Conclusion: Lactic acid accumulation is the primary cause of failure in muscle tissue. However, recent evidence suggests that the role of lactic acid in muscle function remains unclear Pearson Education, Inc.

82 Fermentation in Microorganisms Fermentation alone is able to sustain many types of microorganisms. The lactic acid produced by microbes using fermentation is used to produce cheese, sour cream, and yogurt, soy sauce, pickles, and olives, and sausage meat products Pearson Education, Inc.

83 Fermentation in Microorganisms Yeast is a microscopic fungus that uses a different type of fermentation and produces CO 2 and ethyl alcohol instead of lactic acid. This type of fermentation, called alcoholic fermentation, is used to produce beer, wine, and breads Pearson Education, Inc.

84 Figure 6.16 INPUT 2 ADP + 2 P 2 ATP 2 CO 2 released OUTPUT Glycolysis Glucose 2 NAD + 2 NADH 2 NADH 2 NAD + 2 Pyruvic acid Ethyl alcohol

85 Figure 6.16a INPUT 2 ADP + 2 P 2 ATP 2 CO 2 released OUTPUT Glycolysis Glucose 2 NAD + 2 NADH 2 NADH 2 NAD + 2 Pyruvic acid +2 2 Ethyl alcohol

86 Figure 6.16b

87 Evolution Connection: Life before and after Oxygen Glycolysis could be used by ancient bacteria to make ATP when little oxygen was available, and before organelles evolved. Today, glycolysis occurs in almost all organisms and is a metabolic heirloom of the first stage in the breakdown of organic molecules Pearson Education, Inc.

88 Figure Billions of years ago O 2 present in Earth s atmosphere First eukaryotic organisms Atmospheric oxygen reaches 10% of modern levels Atmospheric oxygen first appears Oldest prokaryotic fossils 4.5 Origin of Earth

89 Figure 6.17a 0 Billions of years ago O 2 present in Earth s atmosphere First eukaryotic organisms Atmospheric oxygen reaches 10% of modern levels Atmospheric oxygen first appears Oldest prokaryotic fossils 4.5 Origin of Earth

90 Figure 6.17b

91 Figure 6.UN03 Glycolysis Citric Acid Cycle Electron Transport ATP ATP ATP

92 Figure 6.UN04 Glycolysis Citric Acid Cycle Electron Transport ATP ATP ATP

93 Figure 6.UN05 Glycolysis Citric Acid Cycle Electron Transport ATP ATP ATP

94 Figure 6.UN06 C 6 H 12 O 6 Heat Sunlight O 2 ATP Photosynthesis Cellular respiration CO 2 H 2 O

95 Figure 6.UN07 C 6 H 12 O CO H 2 O + Approx. 32 ATP O 2

96 Figure 6.UN08 Oxidation Glucose loses electrons (and hydrogens) C 6 H 12 O 6 CO 2 Electrons (and hydrogens) ATP O 2 Reduction Oxygen gains electrons (and hydrogens) H 2 O

97 Figure 6.UN09 Mitochondrion O 2 2 NADH 2 NADH 6 2 NADH FADH 2 Glycolysis 2 Glucose Pyruvic acid 2 Acetyl CoA Citric Acid Cycle Electron Transport 2 CO 2 4 CO 2 H 2 O 2 ATP by direct synthesis by direct synthesis 2 ATP About 28 ATP by ATP synthase About 32 ATP

Chapter 6 Cellular Respiration: Obtaining Energy from Food

Chapter 6 Cellular Respiration: Obtaining Energy from Food Chapter 6 Cellular Respiration: Obtaining Energy from Food PowerPoint Lectures for Campbell Essential Biology, Fifth Edition, and Campbell Essential Biology with Physiology, Fourth Edition Eric J. Simon,

More information

Chapter 6 Cellular Respiration: Obtaining Energy from Food

Chapter 6 Cellular Respiration: Obtaining Energy from Food Chapter 6 Cellular Respiration: Obtaining Energy from Food PowerPoint Lectures for Campbell Essential Biology, Fifth Edition, and Campbell Essential Biology with Physiology, Fourth Edition Eric J. Simon,

More information

Chapter 6 Cellular Respiration: Obtaining Energy from Food Biology and Society: Marathoners versus Sprinters

Chapter 6 Cellular Respiration: Obtaining Energy from Food Biology and Society: Marathoners versus Sprinters Chapter 6 Cellular Respiration: Obtaining Energy from Food Biology and Society: Marathoners versus Sprinters Sprinters do not usually compete at short and long distances. Natural differences in the muscles

More information

Cellular Respiration: Obtaining Energy from Food

Cellular Respiration: Obtaining Energy from Food Chapter 6 Cellular Respiration: Obtaining Energy from Food PowerPoint Lectures for Campbell Essential Biology, Fourth Edition Eric Simon, Jane Reece, and Jean Dickey Campbell Essential Biology with Physiology,

More information

Cellular Respiration: Obtaining Energy from Food

Cellular Respiration: Obtaining Energy from Food Chapter 6 Cellular Respiration: Obtaining Energy from Food Biology and Society: Marathoners versus Sprinters Sprinters do not usually compete at short and long distances. 5 Natural differences in the muscles

More information

Chapter 6 Cellular Respiration: Obtaining Energy from Food

Chapter 6 Cellular Respiration: Obtaining Energy from Food Chapter 6 Cellular Respiration: Obtaining Energy from Food PowerPoint Lectures for Campbell Essential Biology, Fifth Edition, and Campbell Essential Biology with Physiology, Fourth Edition Eric J. Simon,

More information

Cellular Respiration: Obtaining Energy from Food

Cellular Respiration: Obtaining Energy from Food Chapter 6 Cellular Respiration: Obtaining Energy from Food Lectures by Chris C. Romero, updated by Edward J. Zalisko PowerPoint Lectures for Campbell Essential Biology, Fourth Edition Eric Simon, Jane

More information

Cellular Respiration: Obtaining Energy from Food

Cellular Respiration: Obtaining Energy from Food Chapter 6 Cellular Respiration: Obtaining Energy from Food Lectures by Chris C. Romero, updated by Edward J. Zalisko PowerPoint Lectures for Campbell Essential Biology, Fourth Edition Eric Simon, Jane

More information

General Biology 1004 Chapter 6 Lecture Handout, Summer 2005 Dr. Frisby

General Biology 1004 Chapter 6 Lecture Handout, Summer 2005 Dr. Frisby Slide 1 CHAPTER 6 Cellular Respiration: Harvesting Chemical Energy PowerPoint Lecture Slides for Essential Biology, Second Edition & Essential Biology with Physiology Presentation prepared by Chris C.

More information

Biology and Society: Feeling the Burn

Biology and Society: Feeling the Burn Some Announcements Monday October 6 UW Evening Degree Program Information Table 4-6:00 pm, Hallway, 1st floor, College Center Tuesday, October 7 Eastern WA@ BCC Information Table 10am-1:00pm, Hallway,

More information

Chapter 6. Cellular Respiration: Obtaining Energy from Food. RPTSE Biology Fall 2015, Dr. Jong B. Lee 1

Chapter 6. Cellular Respiration: Obtaining Energy from Food. RPTSE Biology Fall 2015, Dr. Jong B. Lee 1 Chapter 6 Cellular Respiration: Obtaining Energy from Food Biology and Society: Marathoners versus Sprinters It is unusual to find a runner who complete equally well in both 100m and 1000m races. Natural

More information

How Cells Harvest Chemical Energy

How Cells Harvest Chemical Energy How Cells Harvest Chemical Energy Chapter 6 Introduction: How Is a Marathoner Different from a Sprinter? Individuals inherit various percentages of the two main types of muscle fibers, slow and fast The

More information

What s the point? The point is to make ATP! ATP

What s the point? The point is to make ATP! ATP ATP Chapter 8 What s the point? The point is to make ATP! ATP Flows into an ecosystem as sunlight and leaves as heat Energy is stored in organic compounds Carbohydrates, lipids, proteins Heterotrophs eat

More information

Releasing Food Energy

Releasing Food Energy Releasing Food Energy All food is broken down by the body into small molecules through digestion. By the time food reaches your, bloodstream it has been broken down into nutrient rich molecules that can

More information

I. ATP: Energy In A Molecule

I. ATP: Energy In A Molecule I. ATP: Energy In A Molecule All food is broken down by the body into small molecules through digestion By the time food reaches your bloodstream, it has been broken down into nutrient molecules that can

More information

How Cells Harvest Chemical Energy

How Cells Harvest Chemical Energy How Cells Harvest Chemical Energy Global Athlete Outreach Program US CytoThesis Systems Medicine Center www.cytothesis.us US OncoTherapy Systems BioMedicine Group CytoThesis Bioengineering Research Group

More information

Chapter 9 Notes. Cellular Respiration and Fermentation

Chapter 9 Notes. Cellular Respiration and Fermentation Chapter 9 Notes Cellular Respiration and Fermentation Objectives Distinguish between fermentation and anaerobic respiration. Name the three stages of cellular respiration and state the region of the cell

More information

9.1 Chemical Pathways ATP

9.1 Chemical Pathways ATP 9.1 Chemical Pathways ATP 2009-2010 Objectives Explain cellular respiration. Describe what happens during glycolysis. Describe what happens during fermentation. Where do we get energy? Energy is stored

More information

Chapter 9: Cellular Respiration

Chapter 9: Cellular Respiration Chapter 9: Cellular Respiration Breaking down glucose a little at a time.. It s like turning a five pound bag of sugar into several tiny sugar packets worth of energy in the form of ATP. Remember the carbon

More information

Cellular Respiration Let s get energized!

Cellular Respiration Let s get energized! Copyrighted by Amy Brown Science Stuff Cellular Respiration Let s get energized! Amy Brown Science Food provides living things with the: chemical building blocks they need to grow and reproduce. Food serves

More information

Structure of the Mitochondrion. Cell Respiration. Cellular Respiration. Catabolic Pathways. Photosynthesis vs. Cell Respiration ATP 10/14/2014

Structure of the Mitochondrion. Cell Respiration. Cellular Respiration. Catabolic Pathways. Photosynthesis vs. Cell Respiration ATP 10/14/2014 Structure of the Mitochondrion Cellular Respiration Chapter 9 Pgs. 163 183 Enclosed by a double membrane Outer membrane is smooth Inner, or cristae, membrane is folded - this divides the mitochondrion

More information

Cellular Respiration Harvesting Chemical Energy ATP

Cellular Respiration Harvesting Chemical Energy ATP Cellular Respiration Harvesting Chemical Energy ATP 2009-2010 Ch.8.3 Section Objectives: Compare and contrast cellular respiration and fermentation. Explain how cells obtain energy from cellular respiration.

More information

Cellular Respiration an overview Section 9.1

Cellular Respiration an overview Section 9.1 Cellular Respiration an overview Section 9.1 Where do organisms get their energy? Unit calories 1 calorie = amount of energy required to increase 1 gram of water by 1 degrees Celsius 1000 calories 1 Calorie

More information

Chapter Seven (Cellular Respiration)

Chapter Seven (Cellular Respiration) Chapter Seven (Cellular Respiration) 1 SECTION ONE: GLYCOLYSIS AND FERMENTATION HARVESTING CHEMICAL ENERGY Cellular respiration is the process in which cells make adenosine triphosphate (ATP) by breaking

More information

CELLULAR RESPIRATION REVIEW MULTIPLE CHOICE. Circle ALL that are TRUE. There may be MORE THAN one correct answer. 1. is the first step in cellular res

CELLULAR RESPIRATION REVIEW MULTIPLE CHOICE. Circle ALL that are TRUE. There may be MORE THAN one correct answer. 1. is the first step in cellular res CELLULAR RESPIRATION REVIEW MULTIPLE CHOICE. Circle ALL that are TRUE. There may be MORE THAN one correct answer. 1. is the first step in cellular respiration that begins releasing energy stored in glucose.

More information

How Did Energy-Releasing Pathways Evolve? (cont d.)

How Did Energy-Releasing Pathways Evolve? (cont d.) How Did Energy-Releasing Pathways Evolve? (cont d.) 7.1 How Do Cells Access the Chemical Energy in Sugars? In order to use the energy stored in sugars, cells must first transfer it to ATP The energy transfer

More information

How Cells Release Chemical Energy Cellular Respiration

How Cells Release Chemical Energy Cellular Respiration How Cells Release Chemical Energy Cellular Respiration Overview of Cellular Respiration HO double membrane outer membrane inner membrane CO matrix Produces molecules Requires oxygen Releases carbon dioxide

More information

Respiration. Respiration. How Cells Harvest Energy. Chapter 7

Respiration. Respiration. How Cells Harvest Energy. Chapter 7 How Cells Harvest Energy Chapter 7 Respiration Organisms can be classified based on how they obtain energy: autotrophs: are able to produce their own organic molecules through photosynthesis heterotrophs:

More information

KEY CONCEPT The overall process of cellular respiration converts sugar into ATP using oxygen.

KEY CONCEPT The overall process of cellular respiration converts sugar into ATP using oxygen. KEY CONCEPT The overall process of cellular respiration converts sugar into ATP using oxygen. ! Cellular respiration makes ATP by breaking down sugars. Cellular respiration is aerobic, or requires oxygen.

More information

Cellular Respiration

Cellular Respiration Cellular Respiration Producers Producers get their energy from the sun. Producers convert this light energy into stored chemical energy (glucose). This process is called photosynthesis. Consumers Consumers

More information

Chapter 7 How Cells Release Chemical Energy

Chapter 7 How Cells Release Chemical Energy Chapter 7 How Cells Release Chemical Energy 7.1 Mighty Mitochondria More than forty disorders related to defective mitochondria are known (such as Friedreich s ataxia); many of those afflicted die young

More information

Chapter 9 Cellular Respiration. Copyright Pearson Prentice Hall

Chapter 9 Cellular Respiration. Copyright Pearson Prentice Hall Chapter 9 Cellular Respiration Copyright Pearson Prentice Hall 9-1 Chemical Pathways Both plant and animal cells carry out the final stages of cellular respiration in the mitochondria. Animal Cells Animal

More information

AP BIOLOGY Chapter 7 Cellular Respiration =

AP BIOLOGY Chapter 7 Cellular Respiration = 1 AP BIOLOGY Chapter 7 Cellular Respiration = Day 1 p. I. Overview A. Cellular Respiration 1. Respiration breathing, exchange of O 2 for CO 2 2. Cellular respiration aerobic harvesting of energy from food

More information

Chapter 7 Cellular Respiration and Fermentation*

Chapter 7 Cellular Respiration and Fermentation* Chapter 7 Cellular Respiration and Fermentation* *Lecture notes are to be used as a study guide only and do not represent the comprehensive information you will need to know for the exams. Life Is Work

More information

Respiration. Respiration. Respiration. How Cells Harvest Energy. Chapter 7

Respiration. Respiration. Respiration. How Cells Harvest Energy. Chapter 7 How Cells Harvest Energy Chapter 7 Organisms can be classified based on how they obtain energy: autotrophs: are able to produce their own organic molecules through photosynthesis heterotrophs: live on

More information

Releasing Chemical Energy

Releasing Chemical Energy Releasing Chemical Energy Ø Energy From Carbohydrates Ø Aerobic Respiration/ Stages Ø Fermentation Ø Food as a Source of Energy How Do Cells Access the Chemical Energy in Carbohydrayes? Aerobic Respiration

More information

Cellular Respiration

Cellular Respiration Cellular Respiration I. The Importance of Food A. Food provides living things with the: B. Food serves as a source of: C. Food serves as a source of: II. Chemical Energy and ATP A. Inside living cells,

More information

CELLULAR RESPIRATION. Chapter 7

CELLULAR RESPIRATION. Chapter 7 CELLULAR RESPIRATION Chapter 7 7.1 GLYCOLYSIS AND FERMENTATION If I have a $10.00 bill and a $10.00 check, which is better? ATP is like cash in the cell Glucose, NADH, FADH2 are like checks in a cell.

More information

Concept 9.1: Catabolic pathways yield energy by oxidizing organic fuels Several processes are central to cellular respiration and related pathways

Concept 9.1: Catabolic pathways yield energy by oxidizing organic fuels Several processes are central to cellular respiration and related pathways Overview: Life Is Work Living cells require energy from outside sources Some animals, such as the chimpanzee, obtain energy by eating plants, and some animals feed on other organisms that eat plants Energy

More information

Cellular Respiration Harvesting Chemical Energy ATP

Cellular Respiration Harvesting Chemical Energy ATP Cellular Respiration Harvesting Chemical Energy ATP 2006-2007 What s the point? The point is to make ATP! ATP 2006-2007 Harvesting stored energy Energy is stored in organic molecules carbohydrates, fats,

More information

Cellular Respiration. Chapter 9

Cellular Respiration. Chapter 9 Cellular Respiration Chapter 9 1.A)Explain where organisms get the energy needed for life processes. Organisms get the energy they need from food. Energy stored in food is expressed as calories. Calorie

More information

7 Cellular Respiration and Fermentation

7 Cellular Respiration and Fermentation CAMPBELL BIOLOGY IN FOCUS URRY CAIN WASSERMAN MINORSKY REECE 7 Cellular Respiration and Fermentation Lecture Presentations by Kathleen Fitzpatrick and Nicole Tunbridge, Simon Fraser University SECOND EDITION

More information

What is Respiration? The process of respiration is where organisms convert chemical energy into cellular energy, which is known as ATP. Adenine Ribose P P P Cellular Respiration high energy sugar low energy

More information

Introduction. Living is work. To perform their many tasks, cells must bring in energy from outside sources.

Introduction. Living is work. To perform their many tasks, cells must bring in energy from outside sources. Introduction Living is work. To perform their many tasks, cells must bring in energy from outside sources. In most ecosystems, energy enters as sunlight. Light energy trapped in organic molecules is available

More information

Cellular Respiration. How our body makes ATP, ENERGY!!

Cellular Respiration. How our body makes ATP, ENERGY!! Cellular Respiration How our body makes ATP, ENERGY!! Useable Energy Adenosine Tri-Phosphate (ATP) Adenosine Ribose Sugar 3 Phosphates November 27, 2017 November 27, 2017 Where do our cells get energy?

More information

Lesson Overview. Cellular Respiration: An Overview. Lesson Overview. 9.1 Cellular Respiration: An Overview

Lesson Overview. Cellular Respiration: An Overview. Lesson Overview. 9.1 Cellular Respiration: An Overview 9.1 Cellular Respiration: An Overview Chemical Energy and Food Food provides living things with the chemical building blocks they need to grow and reproduce. Food molecules contain chemical energy that

More information

3/28/17. Cellular Respiration. Chapter 9: Cellular Respiration & Fermentation. Chapter 9: Cellular Respiration & Fermentation

3/28/17. Cellular Respiration. Chapter 9: Cellular Respiration & Fermentation. Chapter 9: Cellular Respiration & Fermentation Chapter 9: Cellular Respiration & Fermentation SE C TION 1: C E LLULAR RE SP IRATION: AN OVERVIEW As we learned last chapter, energy from the sun is transformed into different forms. In this chapter you

More information

CELLULAR RESPIRATION: AEROBIC HARVESTING OF CELLULAR ENERGY Pearson Education, Inc.

CELLULAR RESPIRATION: AEROBIC HARVESTING OF CELLULAR ENERGY Pearson Education, Inc. CELLULAR RESPIRATION: AEROBIC HARVESTING OF CELLULAR ENERGY 2012 Pearson Education, Inc. Introduction In chemo heterotrophs, eukaryotes perform cellular respiration That harvests energy from food which

More information

How Cells Release Chemical Energy. Chapter 7

How Cells Release Chemical Energy. Chapter 7 How Cells Release Chemical Energy Chapter 7 7.1 Overview of Carbohydrate Breakdown Pathways All organisms (including photoautotrophs) convert chemical energy of organic compounds to chemical energy of

More information

Cellular Pathways That Harvest Chemical Energy. Cellular Pathways That Harvest Chemical Energy. Cellular Pathways In General

Cellular Pathways That Harvest Chemical Energy. Cellular Pathways That Harvest Chemical Energy. Cellular Pathways In General Cellular Pathways That Harvest Chemical Energy A. Obtaining Energy and Electrons from Glucose Lecture Series 12 Cellular Pathways That Harvest Chemical Energy B. An Overview: Releasing Energy from Glucose

More information

Chapter 6. How Cells Harvest Chemical Energy. Lecture by Richard L. Myers

Chapter 6. How Cells Harvest Chemical Energy. Lecture by Richard L. Myers Chapter 6 How Cells Harvest Chemical Energy oweroint Lectures for Biology: Concepts & Connections, Sixth Edition Campbell, Reece, Taylor, Simon, and Dickey Copyright 2009 earson Education, Inc. Lecture

More information

Cellular Respiration: Harvesting Chemical Energy

Cellular Respiration: Harvesting Chemical Energy Chapter 9 Cellular Respiration: Harvesting Chemical Energy PowerPoint Lecture Presentations for Biology Eighth Edition Neil Campbell and Jane Reece Lectures by Chris Romero, updated by Erin Barley with

More information

Harvesting energy: photosynthesis & cellular respiration

Harvesting energy: photosynthesis & cellular respiration Harvesting energy: photosynthesis & cellular respiration Learning Objectives Know the relationship between photosynthesis & cellular respiration Know the formulae of the chemical reactions for photosynthesis

More information

Harvesting Energy: Glycolysis and Cellular Respiration

Harvesting Energy: Glycolysis and Cellular Respiration Lesson 5 Harvesting Energy: Glycolysis and Cellular Respiration Introduction to Life Processes - SCI 102 1 How Cells Obtain Energy Cells require a constant flow of energy Most cellular energy is stored

More information

Introduction. Living is work. To perform their many tasks, cells must bring in energy from outside sources.

Introduction. Living is work. To perform their many tasks, cells must bring in energy from outside sources. Introduction Living is work. To perform their many tasks, cells must bring in energy from outside sources. In most ecosystems, energy enters as sunlight. Light energy trapped in organic molecules is available

More information

Copyrighted by Amy Brown Science Stuff. Cellular Respiration Let s get energized!

Copyrighted by Amy Brown Science Stuff. Cellular Respiration Let s get energized! Copyrighted by Amy Brown Science Stuff Cellular Respiration Let s get energized! A. Food provides living things with the: chemical building blocks they need to grow and reproduce. C. Food serves as a source

More information

Cellular Respiration. Release of Energy From Food (glucose)!

Cellular Respiration. Release of Energy From Food (glucose)! Cellular Respiration Release of Energy From Food (glucose)! Energy needs of life Animals are energy consumers What do we need energy for? synthesis (building for growth) reproduction active transport movement

More information

Cellular Respiration

Cellular Respiration Cellular Respiration Cellular respiration is the process that releases energy by breaking down glucose and other food molecules in the presence of oxygen In biology and chemistry, energy is referred to

More information

Cellular Respiration

Cellular Respiration Cellular Respiration Chemical Equation 6 O 2 + C 6 H 12 O 6 6 H 2 O + 6 CO 2 + Page 107 Adenosine Triphosphate Adenosine Diphosphate Background Aerobic= requires oxygen Anaerobic= does not require oxygen

More information

Cell Respiration Ch 7. Both autotrophs and heterotrophs use cellular respiration to make CO2 and water from

Cell Respiration Ch 7. Both autotrophs and heterotrophs use cellular respiration to make CO2 and water from Cell Respiration Ch 7 Objectives: Identify the 2 major steps of cellular respiration Describe the major events in glycolysis Compare lactic acid fermentation with alcoholic fermentation Calculate the efficiency

More information

Essential Question. How do organisms obtain energy?

Essential Question. How do organisms obtain energy? Dr. Bertolotti Essential Question How do organisms obtain energy? What is cellular respiration? Burn fuels to make energy combustion making heat energy by burning fuels in one step O 2 Fuel (carbohydrates)

More information

Table of Contents. Section 1 Glycolysis and Fermentation. Section 2 Aerobic Respiration

Table of Contents. Section 1 Glycolysis and Fermentation. Section 2 Aerobic Respiration Table of Contents Section 1 Glycolysis and Fermentation Section 2 Aerobic Respiration Objectives Identify the two major steps of cellular respiration. Describe the major events in glycolysis. Compare lactic

More information

Cellular Respiration

Cellular Respiration Cellular Respiration Energy Review Energy Storing Molecules ATP, NADPH (NAD + ), FADH (FAD + ), FADH 2 ATP supplies most of the energy that drives metabolism in living things ATP releases energy when converted

More information

What is Glycolysis? Breaking down glucose: glyco lysis (splitting sugar)

What is Glycolysis? Breaking down glucose: glyco lysis (splitting sugar) What is Glycolysis? Breaking down glucose: glyco lysis (splitting sugar) Most ancient form of energy capture. Starting point for all cellular respiration. Inefficient: generates only 2 ATP for every 1

More information

ATP ATP. Cellular Respiration Harvesting Chemical Energy. The point is to make ATP!

ATP ATP. Cellular Respiration Harvesting Chemical Energy. The point is to make ATP! ellular Respiration Harvesting hemical Energy 1 The point is to make! 2 Harvesting stored energy Energy is stored in organic molecules carbohydrates, fats, proteins Heterotrophs eat these organic molecules

More information

Cellular Respiration: Harvesting Chemical Energy CHAPTER 9

Cellular Respiration: Harvesting Chemical Energy CHAPTER 9 Cellular Respiration: Harvesting Chemical Energy CHAPTER 9 9.1 Metabolic pathways that release energy are exergonic and considered catabolic pathways. Fermentation: partial degradation of sugars that occurs

More information

Cell Respiration - 1

Cell Respiration - 1 Cell Respiration - 1 All cells must do work to stay alive and maintain their cellular environment. The energy needed for cell work comes from the bonds of ATP. Cells obtain their ATP by oxidizing organic

More information

ATP. Principles of Energy Harvest. Chapter 9~ The point is to make ATP! Cellular Respiration: Harvesting Chemical Energy. What s the point?

ATP. Principles of Energy Harvest. Chapter 9~ The point is to make ATP! Cellular Respiration: Harvesting Chemical Energy. What s the point? Chapter 9~ Cellular Respiration: Harvesting Chemical Energy What s the point? The point is to make! 2006-2007 Principles of Energy Harvest Catabolic pathway Fermentation Cellular Respiration C6H126 + 62

More information

Cellular Respiration. The process by which cells harvest the energy stored in food

Cellular Respiration. The process by which cells harvest the energy stored in food Cellular Respiration The process by which cells harvest the energy stored in food 1 SAVING FOR A Rainy Day Suppose you earned extra money by having a part-time job. At first, you might be tempted to spend

More information

CHAPTER 6 CELLULAR RESPIRATION

CHAPTER 6 CELLULAR RESPIRATION CHAPTER 6 CELLULAR RESPIRATION Chemical Energy In Food Purpose of food: Source of raw materials used to make new molecules Source of energy calorie the amount of energy needed to raise the temperature

More information

Lesson Objective: By the end of the lesson (s), I can: Vocabulary: Lesson Question: Focus Question: Overarching questions:

Lesson Objective: By the end of the lesson (s), I can: Vocabulary: Lesson Question: Focus Question: Overarching questions: Lesson Objective: By the end of the lesson (s), I can: Vocabulary: 1. Describe the process of cell respiration, including reactants and products, glycolysis, the Krebs cycle, and the electron transport

More information

Chapter 6 How Cells Harvest Chemical Energy

Chapter 6 How Cells Harvest Chemical Energy Introduction Chapter 6 How Cells Harvest Chemical Energy oweroint Lectures for Campbell Biology: Concepts & Connections, Seventh Edition Reece, Taylor, Simon, and Dickey Lecture by Edward J. Zalisko In

More information

1st half of glycolysis (5 reactions) Glucose priming get glucose ready to split phosphorylate glucose rearrangement split destabilized glucose

1st half of glycolysis (5 reactions) Glucose priming get glucose ready to split phosphorylate glucose rearrangement split destabilized glucose Warm- Up Objective: Describe the role of in coupling the cell's anabolic and catabolic processes. Warm-up: What cellular processes produces the carbon dioxide that you exhale? 1st half of glycolysis (5

More information

How Cells Release Chemical Energy. Chapter 8

How Cells Release Chemical Energy. Chapter 8 How Cells Release Chemical Energy Chapter 8 Impacts, Issues: When Mitochondria Spin Their Wheels More than forty disorders related to defective mitochondria are known (such as Friedreich s ataxia); many

More information

Chapter 9 Cellular Respiration Overview: Life Is Work Living cells require energy from outside sources

Chapter 9 Cellular Respiration Overview: Life Is Work Living cells require energy from outside sources Chapter 9 Cellular Respiration Overview: Life Is Work Living cells require energy from outside sources Some animals, such as the giant panda, obtain energy by eating plants, and some animals feed on other

More information

Respiration 30/04/2013. Dr.M.R.Vaezi K., Hakim Sabzevari University

Respiration 30/04/2013. Dr.M.R.Vaezi K., Hakim Sabzevari University Respiration Metabolism - the sum of all the chemical reactions that occur in the body. It is comprised of: anabolism synthesis of molecules, requires input of energy catabolism break down of molecules,

More information

How Cells Harvest Energy. Chapter 7. Respiration

How Cells Harvest Energy. Chapter 7. Respiration How Cells Harvest Energy Chapter 7 Respiration Organisms classified on how they obtain energy: autotrophs: produce their own organic molecules through photosynthesis heterotrophs: live on organic compounds

More information

Cellular Respiration. Objectives

Cellular Respiration. Objectives Lecture 07 Objectives At the end of this series of lectures, you should be able to: Define terms. Compare the processes and locations of cellular respiration and photosynthesis. Explain how breathing and

More information

Cellular Respiration: Harvesting Chemical Energy

Cellular Respiration: Harvesting Chemical Energy Chapter 9 Cellular Respiration: Harvesting Chemical Energy You should be able to: 1. Explain how redox reactions are involved in energy exchanges. Name and describe the three stages of cellular respiration;

More information

Cellular Respiration Notes. Biology - Mrs. Kaye

Cellular Respiration Notes. Biology - Mrs. Kaye Cellular Respiration Notes Biology - Mrs. Kaye Energy Transfer In cellular respiration, chemical energy is converted into usable energy which is converted into heat energy. ATP and ADP ATP acts as an energy

More information

Cellular Respiration and Fermentation

Cellular Respiration and Fermentation LECTURE PRESENTATIONS For CAMPBELL BIOLOGY, NINTH EDITION Jane B. Reece, Lisa A. Urry, Michael L. Cain, Steven A. Wasserman, Peter V. Minorsky, Robert B. Jackson Chapter 9 Cellular Respiration and Fermentation

More information

Cellular Respiration and Fermentation

Cellular Respiration and Fermentation Cellular Respiration and Fermentation How do plants and animals obtain the glucose they need? Plants: Animals: Cellular Respiration the process that releases energy from food in the presence of oxygen

More information

10/25/2010 CHAPTER 9 CELLULAR RESPIRATION. Life is Work. Types of cellular respiration. Catabolic pathways = oxidizing fuels

10/25/2010 CHAPTER 9 CELLULAR RESPIRATION. Life is Work. Types of cellular respiration. Catabolic pathways = oxidizing fuels CHAPTER 9 CELLULAR RESPIRATION Life is Work Living cells require transfusions of energy from outside sources to perform their many tasks: Chemical work Transport work Mechanical work Energy stored in the

More information

Harvesting energy: photosynthesis & cellular respiration part 1I

Harvesting energy: photosynthesis & cellular respiration part 1I Harvesting energy: photosynthesis & cellular respiration part 1I Agenda I. Overview (Big Pictures) of Photosynthesis & Cellular Respiration II. Making Glucose - Photosynthesis III. Making ATP - Cellular

More information

Biology. Slide 1 of 39. End Show. Copyright Pearson Prentice Hall

Biology. Slide 1 of 39. End Show. Copyright Pearson Prentice Hall Biology 1 of 39 2 of 39 9-1 Chemical Pathways Food serves as a source of raw materials for the cells in the body and as a source of energy. Animal Cells Animal Mitochondrion Plant Plant Cells 3 of 39 Both

More information

Cellular Metabolism 6/20/2015. Metabolism. Summary of Cellular Respiration. Consists of all the chemical reactions that take place in a cell!

Cellular Metabolism 6/20/2015. Metabolism. Summary of Cellular Respiration. Consists of all the chemical reactions that take place in a cell! Cellular Metabolism Biology 105 Lecture 6 Chapter 3 (pages 56-61) Metabolism Consists of all the chemical reactions that take place in a cell! Cellular metabolism: Aerobic cellular respiration requires

More information

Section 9 2 The Krebs Cycle and Electron Transport (pages )

Section 9 2 The Krebs Cycle and Electron Transport (pages ) Section 9 2 The Krebs Cycle and Electron Transport (pages 226 232) This section describes what happens during the second stage of cellular respiration, called the Krebs cycle. It also explains how high-energy

More information

Cellular Respiration. How is energy in organic matter released for used for in living systems?

Cellular Respiration. How is energy in organic matter released for used for in living systems? Cellular Respiration How is energy in organic matter released for used for in living systems? Cellular Respiration Organisms that perform cellular respiration are called chemoheterotrophs Includes both

More information

Cellular Metabolism 9/24/2013. Metabolism. Cellular Metabolism. Consists of all the chemical reactions that take place in a cell!

Cellular Metabolism 9/24/2013. Metabolism. Cellular Metabolism. Consists of all the chemical reactions that take place in a cell! Cellular Metabolism Biology 105 Lecture 6 Chapter 3 (pages 56-61) Metabolism Consists of all the chemical reactions that take place in a cell! Cellular Metabolism Aerobic cellular respiration requires

More information

Reading Preview. Cellular Respiration. Overview of Cellular Respiration. Glycolysis. Essential Questions

Reading Preview. Cellular Respiration. Overview of Cellular Respiration. Glycolysis. Essential Questions Cellular Respiration Living organisms obtain energy by breaking down organic molecules during cellular respiration. Real-World Reading Link Monarch butterflies must constantly feed on nectar from flowers

More information

Cellular Respiration Guided Notes

Cellular Respiration Guided Notes Respiration After you hear word 'respiration', you may now think about breathing. During breathing, the is entered with each inhale and is released with each exhale. You may have noticed that breathing

More information

Chemical Energy. Valencia College

Chemical Energy. Valencia College 9 Pathways that Harvest Chemical Energy Valencia College 9 Pathways that Harvest Chemical Energy Chapter objectives: How Does Glucose Oxidation Release Chemical Energy? What Are the Aerobic Pathways of

More information

Cellular Metabolism. Biology 105 Lecture 6 Chapter 3 (pages 56-61)

Cellular Metabolism. Biology 105 Lecture 6 Chapter 3 (pages 56-61) Cellular Metabolism Biology 105 Lecture 6 Chapter 3 (pages 56-61) Metabolism Consists of all the chemical reactions that take place in a cell! Cellular Metabolism Aerobic cellular respiration requires

More information

Ch. 9 Cell Respiration. Title: Oct 15 3:24 PM (1 of 53)

Ch. 9 Cell Respiration. Title: Oct 15 3:24 PM (1 of 53) Ch. 9 Cell Respiration Title: Oct 15 3:24 PM (1 of 53) Essential question: How do cells use stored chemical energy in organic molecules and to generate ATP? Title: Oct 15 3:28 PM (2 of 53) Title: Oct 19

More information

Cellular Metabolism. Biol 105 Lecture 6 Read Chapter 3 (pages 63 69)

Cellular Metabolism. Biol 105 Lecture 6 Read Chapter 3 (pages 63 69) Cellular Metabolism Biol 105 Lecture 6 Read Chapter 3 (pages 63 69) Metabolism Consists of all of the chemical reactions that take place in a cell Metabolism Animation Breaking Down Glucose For Energy

More information

2. Cellular respiration uses oxygen to convert the chemical energy stored in organic molecules into -?-

2. Cellular respiration uses oxygen to convert the chemical energy stored in organic molecules into -?- HB Cell Respiration Questions (1/2 point each question or blank to fill in 37 points) 1. Organisms, such as plants that make their own food are called -?- 2. Cellular respiration uses oxygen to convert

More information

Cellular Respiration: Harvesting Chemical Energy

Cellular Respiration: Harvesting Chemical Energy Chapter 9 Cellular Respiration: Harvesting Chemical Energy PowerPoint Lecture Presentations for Biology Eighth Edition Neil Campbell and Jane Reece Lectures by Chris Romero, updated by Erin Barley with

More information