Enzyme Action: Testing Catalase Activity

Size: px
Start display at page:

Download "Enzyme Action: Testing Catalase Activity"

Transcription

1 Enzyme Action: Testing Catalase Activity Pennsylvania Science Standards: S11.A S11.A S11.A S11.A Keystone Eligible Content Bio.B.4.1.1, Bio.B.4.1.2, and Bio.B Introduction and Background Many organisms can decompose hydrogen peroxide (H 2 O 2 ) enzymatically. Enzymes are globular proteins, responsible for most of the chemical activities of living organisms. They act as catalysts, as substances that speed up chemical reactions without being destroyed or altered during the process. Enzymes are extremely efficient and may be used over and over again. One enzyme may catalyze thousands of reactions every second. Both the temperature and the ph at which enzymes function are extremely important. Most organisms have a preferred temperature range in which they survive, and their enzymes most likely function best within that temperature range. If the environment of the enzyme is too acidic or too basic, the enzyme may irreversibly denature, or unravel, until it no longer has the shape necessary for proper functioning. H 2 O 2 is toxic to most living organisms. Many organisms are capable of enzymatically destroying the H 2 O 2 before it can do much damage. H 2 O 2 can be converted to oxygen and water, as follows: 2 H 2 O 2 2 H 2 O + O 2 Although this reaction occurs spontaneously, enzymes increase the rate considerably. At least two different enzymes are known to catalyze this reaction: catalase, found in animals and protists, and peroxidase, found in plants. A great deal can be learned about enzymes by studying the rates of enzyme-catalyzed reactions. The rate of a chemical reaction may be studied in a number of ways including: measuring the pressure of the product as it appears (in this case, O 2 ) measuring the rate of disappearance of substrate (in this case, H 2 O 2 ) measuring the rate of appearance of a product (in this case, O 2 which is given off as a gas) In this experiment, you will measure the rate of enzyme activity under various conditions, such as different enzyme concentrations, ph values, and temperatures. It is possible to measure the pressure of oxygen gas formed as H 2 O 2 is destroyed. If a plot is made, it may appear similar to the graph shown. At the start of the reaction, there is no product, and the pressure is the same as the atmospheric pressure. After a short time, oxygen accumulates at a rather constant rate. The slope of the curve at this initial time is constant and is called the initial rate. As the peroxide is destroyed, less of it is available to react and the O 2 is produced at lower rates. When no more peroxide is left, O 2 is no longer produced. -1-

2 Guiding Questions: How do changes in concentration, ph, and temperature affect the ability of enzymes to function? Vocabulary: enzyme, catalase, denature, catalyst Safety: Wear safety goggles Be cautious of over-pressurized test tubes. Be cautious of hot water. Materials Needed (per group): LabQuest ph group only: Vernier Gas Pressure Sensor ph buffers (4, 7, 10) ph group only 1-hole rubber stopper assembly Temperature group only: 10 ml graduated cylinder ice 250 ml beaker of tap water thermometer 3% H 2 O 2 (about 12mL per group) Ring stand with clamp enzyme suspension in small beaker (see 600 ml beaker teacher notes) four 18 X 150 mm test tubes Test tube rack Dropper pipette

3 Procedure (Part 1 - Testing the Effect of Enzyme Concentration): 1. Obtain and wear goggles. 2. Connect the plastic tubing to the valve on the Gas Pressure Sensor. 3. Connect the Gas Pressure Sensor to LabQuest and choose New from the File menu. If you have an older sensor that does not auto-id, manually set up the sensor ( sensor menu sensor setup ) 4. On the Meter screen, tap Rate. Change the data-collection rate to 0.5 samples/second and the data-collection length to 180 seconds. 5. Place four test tubes in a rack and label them 1, 2, 3, and Add 3 ml of 3.0% H 2 O 2 and 3 ml of water to each test tube as shown in Table 1. Table 1 Test tube label Volume of 3% H 2 O 2 (ml) Volume of water (ml) Figure 2 Figure 2 7. Use a clean dropper pipette to add 1 drop of enzyme suspension to test tube 1. Note: Be sure not to let the enzyme fall against the side of the test tube. 8. Insert the 1-hole stopper assembly into the test tube. Note: Firmly twist the stopper for an airtight fit. Gently swirl the test tube to thoroughly mix the contents. The reaction should begin. The next step should be completed as rapidly as possible. 9. Connect the free-end of the plastic tubing to the connector in the rubber stopper as shown in Figure Start data collection by tapping the green play button in the lower left corner. Data collection will end after 3 minutes. 11. Monitor the pressure readings displayed on the handheld screen. If the pressure exceeds 130 kpa, the pressure inside the tube will be too great and the rubber stopper is likely to pop off. Disconnect the plastic tubing from the Gas Pressure Sensor if the pressure exceeds 130 kpa. 12. When data collection has finished, an auto-scaled graph of pressure vs. time will be displayed. Disconnect the plastic tubing connector from the rubber stopper. Remove the rubber stopper from the test tube and discard the contents in a waste beaker. 13. To examine the data pairs on the displayed graph, select any data point. As you tap on each data point, the pressure and time values are displayed to the right of the graph. -3-

4 14. Determine the rate of enzyme activity for the curve of pressure vs. time. To help make comparisons between experimental runs, choose your data points at the same time value, ideally the point where the data values begin to increase and the point where the pressure values no longer increase. a. Choose Curve Fit from the Analyze menu (found on the graph screen). b. Select Linear for the Fit Equation. The linear-regression statistics for these two data columns are displayed for the equation in the form y = mx + b c. Enter the absolute value of the slope, m, as the reaction rate in Table 4. d. Select OK. 15. Store the data from the first run by tapping the File Cabinet icon. 16. Find the rate of enzyme activity for test tubes 2, 3 and 4: a. Add 2 drops of the enzyme solution to test tube 2. Repeat Steps b. Add 3 drops of the enzyme solution to test tube 3. Repeat Steps c. Add 4 drops of the enzyme solution to test tube 4. Repeat Steps

5 Procedure (Part 2 - Testing the Effect of Temperature): 1. Obtain and wear goggles. 2. Connect the plastic tubing to the valve on the Gas Pressure Sensor. 3. Connect the Gas Pressure Sensor to LabQuest and choose New from the File menu. If you have an older sensor that does not auto-id, manually set up the sensor ( sensor menu sensor setup ) On the Meter screen, tap Rate. Change the data-collection rate to 0.5 samples/second and the datacollection length to 180 seconds. 4. Place four clean test tubes in a rack and label them T 0 5, T 20 25, T 30 35, and T Add 3 ml of 3% H 2 O 2 and 3 ml of water to each test tube, as shown in Table 2. Table 2 Test tube label Volume of 3% H 2 O 2 (ml) Volume of water T 0 5 C 3 3 T C (room temp) 3 3 T C 3 3 T C 3 3 Figure 2 7. Measure the enzyme activity at 0 5 C : a. Prepare a water bath at a temperature in the range of 0 5 C by placing ice and water in a 600 ml beaker. Check that the temperature remains in this range throughout this test. b. Place Test Tube T 0 5 C in the cold water bath until the temperature of the mixture reaches a temperature in the 0 5 C range. Record the actual temperature of the test-tube contents in the blank in Table 4. c. Add 2 drops of the enzyme solution to Test Tube T 0 5 C. 8. Insert the 1-hole stopper assembly into the test tube. Note: Firmly twist the stopper for an airtight fit. Gently swirl the test tube to thoroughly mix the contents. The reaction should begin. The next step should be completed as rapidly as possible. 9. Connect the free-end of the plastic tubing to the connector in the rubber stopper as shown in Figure Start data collection by tapping the green play button in the lower left corner. Data collection will end after 3 minutes. 11. Monitor the pressure readings displayed on the handheld screen. If the pressure exceeds 130 kpa, the pressure inside the tube will be too great and the rubber stopper is likely to pop off. Disconnect the plastic tubing from the Gas Pressure Sensor if the pressure exceeds 130 kpa. -5-

6 12. When data collection has finished, an auto-scaled graph of pressure vs. time will be displayed. Disconnect the plastic tubing connector from the rubber stopper. Remove the rubber stopper from the test tube and discard the contents in a waste beaker. 13. To examine the data pairs on the displayed graph, select any data point. As you tap on each data point, the pressure and time values are displayed to the right of the graph. 14. Determine the rate of enzyme activity for the curve of pressure vs. time. To help make comparisons between experimental runs, choose your data points at the same time value, ideally the point where the data values begin to increase and the point where the pressure values no longer increase. a. Choose Curve Fit from the Analyze menu (found on the graph screen). b. Select Linear for the Fit Equation. The linear-regression statistics for these two data columns are displayed for the equation in the form y = mx + b c. Enter the absolute value of the slope, m, as the reaction rate in Table 4. d. Select OK. 15. Store the data from the first run by tapping the File Cabinet icon. 16. Measure the enzyme activity at C: a. Prepare a water bath at a temperature in the range of C by placing warm water in a 600 ml beaker. Check that the temperature remains in this range throughout this test. b. Place Test Tube T C in the warm water bath until the temperature of the mixture reaches a temperature in the C range. Record the actual temperature of the testtube contents in the blank in Table 4. c. Add 2 drops of the enzyme solution to Test Tube T C. d. Repeat Steps Measure the enzyme activity at C: a. Prepare a water bath at a temperature in the range of C by placing hot water in a 600 ml beaker (hot tap water will probably work fine). Check that the temperature remains in this range throughout this test. b. Place Test Tube T C in the warm water bath until the temperature of the mixture reaches a temperature in the C range. Record the actual temperature of the test-tube contents in the blank in Table 4. c. Add 2 drops of the enzyme solution to Test Tube T C. d. Repeat Steps Measure the enzyme activity at C (room temperature): a. Record the temperature of Test Tube T C in Table 4. b. In the tube labeled T C, add 2 drops of the enzyme solution. c. Repeat Steps

7 Procedure (Part 3 - Testing the Effect of ph): 1. Obtain and wear goggles. 2. Connect the plastic tubing to the valve on the Gas Pressure Sensor. 3. Connect the Gas Pressure Sensor to LabQuest and choose New from the File menu. If you have an older sensor that does not auto-id, manually set up the sensor ( sensor menu sensor setup ) 4. On the Meter screen, tap Rate. Change the data-collection rate to 0.5 samples/second and the data-collection length to 180 seconds. 5. Place three clean test tubes in a rack and label them ph 4, ph 7, and ph Add 3 ml of 3% H 2 O 2 and 3 ml of each ph buffer to each test tube, as in Table 3. Table 3 Test tube Label Volume of 3% H 2 O 2 (ml) Volume of buffer (ml) ph ph ph In the tube labeled ph 4, add 2 drops of the enzyme solution. Figure 2 8. Insert the 1-hole stopper assembly into the test tube. Note: Firmly twist the stopper for an airtight fit. Gently swirl the test tube to thoroughly mix the contents. The reaction should begin. The next step should be completed as rapidly as possible. 9. Connect the free-end of the plastic tubing to the connector in the rubber stopper as shown in Figure Start data collection by tapping the green play button in the lower left corner. Data collection will end after 3 minutes. 11. Monitor the pressure readings displayed on the handheld screen. If the pressure exceeds 130 kpa, the pressure inside the tube will be too great and the rubber stopper is likely to pop off. Disconnect the plastic tubing from the Gas Pressure Sensor if the pressure exceeds 130 kpa. 12. When data collection has finished, an auto-scaled graph of pressure vs. time will be displayed. Disconnect the plastic tubing connector from the rubber stopper. Remove the rubber stopper from the test tube and discard the contents in a waste beaker. -7-

8 13. To examine the data pairs on the displayed graph, select any data point. As you tap on each data point, the pressure and time values are displayed to the right of the graph. 14. Determine the rate of enzyme activity for the curve of pressure vs. time. To help make comparisons between experimental runs, choose your data points at the same time value, ideally the point where the data values begin to increase and the point where the pressure values no longer increase. a. Choose Curve Fit from the Analyze menu (found on the graph screen). b. Select Linear for the Fit Equation. The linear-regression statistics for these two data columns are displayed for the equation in the form y = mx + b c. Enter the absolute value of the slope, m, as the reaction rate in Table 4. d. Select OK. 15. Store the data from the first run by tapping the File Cabinet icon. 16. In the tube labeled ph 7, add 2 drops of the enzyme solution. Repeat steps In the tube labeled ph 10, add 2 drops of the enzyme solution. Repeat steps

9 NAME DATE DATA RECORDING & PROCESSING Test tube label 1 Drop 2 Drops 3 Drops 4 Drops 0 5 C range: C C range: C C range: C C range: C Table 4 (M) Slope, or rate (kpa/min) ph 4 ph 7 ph 10 Plot your data on the corresponding plot -9-

10 QUESTIONS Part I Effect of Enzyme Concentration 1. How does changing the concentration of enzyme affect the rate of decomposition of H 2 O 2? 2. What do you think will happen to the rate of reaction if the concentration of enzyme is increased to five drops? Predict what the rate would be for 5 drops. Part II Effect of Temperature 2. At what temperature is the rate of enzyme activity the highest? Lowest? Explain. 3. How does changing the temperature affect the rate of enzyme activity? Does this follow a pattern you anticipated? 4. Why might the enzyme activity decrease at very high temperatures? Part III Effect of ph 5. At what ph is the rate of enzyme activity the highest? Lowest? 6. How does changing the ph affect the rate of enzyme activity? Does this follow a pattern you anticipated? -10-

11 7. List 3 sources of error that may have affected the results of your experiment. List possible changes in the procedure to reduce the source of the error. Source of Error Possible improvement to Procedure EXTENSIONS 1. Different organisms often live in very different habitats. Design a series of experiments to investigate how different types of organisms might affect the rate of enzyme activity. Consider testing a plant, an animal, and a protist. 2. Presumably, at higher concentrations of H 2 O 2 there is a greater chance that an enzyme molecule might collide with H 2 O 2. If so, the concentration of H 2 O 2 might alter the rate of oxygen production. Design a series of experiments to investigate how differing concentrations of the substrate hydrogen peroxide might affect the rate of enzyme activity. 3. Design an experiment to determine the effect of boiling the catalase on the reaction rate. 4. Explain how environmental factors affect the rate of enzyme-catalyzed reactions. -11-

12 Enzyme Action: Testing Catalase -- Teacher Notes Science in Motion Set Up Time: 30 minutes Time needed to complete the lab: minutes for one or two of the parts minutes for all three parts. Target Grade Level: 8-12, Biology Activity 1. Assign each lab group one of the three variables to test. Share the collected data for analysis. 2. Your hot tap water may be in the range of C for the hot-water bath. If not, you may want to supply pre-warmed temperature baths for Part 2, Step 17, where students need to maintain very warm water. Warn students not to touch the hot water. 3. Many different organisms may be used as a source of catalase in this experiment. If enzymes from an animal, a protist, and a plant are used by different teams in the same class, it will be possible to compare the similarities and differences among those organisms. Often, either beef liver, beef blood, or living yeast are used. 4. To prepare the yeast solution, dissolve 7 g (1 package) of dried yeast per 100 ml of 2% glucose solution. Incubate the suspension in C water for at least 10 minutes to activate the yeast. Test the experiment before the students begin. The yeast may need to be diluted if the reaction occurs too rapidly. The reaction in Part 1 with 3 ml of 3% hydrogen peroxide, 3 ml of water, and 2 drops of suspension should produce a pressure of 1.3 atmospheres in 40 to 60 seconds. To prepare a 2% sugar solution, add 20 grams of sugar to make one liter of solution (100 ml per group is needed). 5. To prepare a liver suspension, homogenize 0.5 to 1.5 g of beef liver in 100 ml of cold water. You will need to test the suspension before use, as its activity varies greatly depending on its freshness. Dilute the suspension until the reaction in Step 12, with 3 ml of 3% hydrogen peroxide, 3 ml of water, and 2 drops of suspension produces a pressure of 130 kpa in 40 to 60 seconds. The color of the suspension will be a faint pink. Keep the suspension on ice until used in an experiment. 6. 3% H 2 O 2 may be purchased from any supermarket. If refrigerated, bring it to room temperature before starting the experiment. 7. Emphasize to your students the importance of providing an airtight fit with all plastic-tubing connections and when closing valves or twisting the stopper into a test tube. 8. The length of plastic tubing connecting the rubber stopper assemblies to each gas pressure sensor must be the same for all groups. It is best to keep the length of tubing reasonably small to keep the volume of gas in the test tube low. Note: If pressure changes during data collection are too small, you may need to decrease the total gas volume in the system. Shortening the length of tubing used will help to decrease the volume. 9. You may need to let students know that at ph values above 10 enzymes will become denatured and the rate of activity will drop. If you have ph buffers higher than 10, have students perform an experimental run using them. -12-

13 Sample Results: Table 4 Test tube label Slope, or rate (kpa/min) 1 Drop Drops Drops Drops C range: 4 C C range: 21 C C range: 34 C C range: 51 C ph ph ph

14 ANSWERS TO QUESTIONS Science in Motion 1. The rate should be highest when the concentration of enzyme is highest. With higher concentration of enzyme, there is a greater chance of an effective collision between the enzyme and H 2 O 2 molecule. 2. Roughly, the rate doubles when the concentration of enzyme doubles. Since the data are somewhat linear, the rate is proportional to the concentration. At a concentration of 5 drops, the rate in the above experiment should be about 111 kpa/min. 3. The temperature at which the rate of enzyme activity is the highest should be close to 30 C. The lowest rate of enzyme activity should be at 60 C. 4. The rate increases as the temperature increases, until the temperature reaches about 50 C. Above this temperature, the rate decreases. 5. At high temperatures, enzymes lose activity as they are denatured. 6. Student answers may vary. Activity is usually highest at ph 10 and lowest at ph Student answers may vary. Usually, the enzyme activity increases from ph 4 to 10. At low ph values, the protein may denature or change its structure. This may affect the enzyme s ability to recognize a substrate or it may alter its polarity within a cell. Sources of error: Number of drops, size of drops, temperature not maintaned, snug fit of stopper, improper mixing, did not cap quick enough, improper concentration of hydrogen peroxide to water 1 kpa is approximately the pressure exerted by a 10-g mass resting on a 1-cm 2 area kpa = 1 atm. There are 1,000 pascals in 1 kilopascal. -14-

Evaluation copy 17B. Enzyme Action: Testing Catalase Activity. Computer

Evaluation copy 17B. Enzyme Action: Testing Catalase Activity. Computer Enzyme Action: Testing Catalase Activity Computer 17B Many organisms can decompose hydrogen peroxide (H 2 O 2 ) enzymatically. Enzymes are globular proteins, responsible for most of the chemical activities

More information

Enzyme Action: Testing Catalase Activity

Enzyme Action: Testing Catalase Activity Enzyme Action: Testing Catalase Activity LabQuest 6A Many organisms can decompose hydrogen peroxide (H 2 O 2 ) enzymatically. Enzymes are globular proteins, responsible for most of the chemical activities

More information

ENZYME ACTION: TESTING CATALASE ACTIVITY

ENZYME ACTION: TESTING CATALASE ACTIVITY Name Date Period ENZYME ACTION: TESTING CATALASE ACTIVITY Many organisms can decompose hydrogen peroxide (H 2 O 2 ) enzymatically. Enzymes are globular proteins, responsible for most of the chemical activities

More information

Evaluation copy. Enzyme Action: Testing Catalase Activity. Computer

Evaluation copy. Enzyme Action: Testing Catalase Activity. Computer Enzyme Action: Testing Catalase Activity Computer 6A Many organisms can decompose hydrogen peroxide (H 2 O 2 ) enzymatically. Enzymes are globular proteins, responsible for most of the chemical activities

More information

Enzyme Action: Testing Catalase Activity

Enzyme Action: Testing Catalase Activity Enzyme Action: Testing Catalase Activity Many organisms can decompose hydrogen peroxide (H 2 O 2 ) enzymatically. Enzymes are globular proteins, responsible for most of the chemical activities of living

More information

APBiology Unit 1, Chapter 5

APBiology Unit 1, Chapter 5 APBiology Unit 1, Chapter 5 Research Question How do abiotic or biotic factors influence the rates of enzymatic reactions? Background Enzymes are the catalysts of biological systems. They speed up chemical

More information

AP Biology Unit 1, Chapter 5

AP Biology Unit 1, Chapter 5 AP Biology Unit 1, Chapter 5 Research Question How do abiotic or biotic factors influence the rates of enzymatic reactions? Background Enzymes are the catalysts of biological systems. They speed up chemical

More information

Lactase Action. Evaluation copy

Lactase Action. Evaluation copy Lactase Action Computer 24A Lactose, a disaccharide sugar found naturally in mammalian milk, is utilized by infants as one of their initial sources of energy. During infancy, mother s milk is often the

More information

Osmosis. Evaluation copy

Osmosis. Evaluation copy Osmosis Computer 1B In order to survive, all organisms need to move molecules in and out of their cells. Molecules such as gases (e.g., O 2, CO 2 ), water, food, and wastes pass across the cell membrane.

More information

Enzyme Analysis using Tyrosinase. Evaluation copy

Enzyme Analysis using Tyrosinase. Evaluation copy Enzyme Analysis using Tyrosinase Computer 15 Enzymes are molecules that regulate the chemical reactions that occur in all living organisms. Almost all enzymes are globular proteins that act as catalysts,

More information

Osmosis. Computer OBJECTIVES

Osmosis. Computer OBJECTIVES Osmosis Computer 22 In order to survive, all organisms need to move molecules in and out of their cells. Molecules such as gases (e.g., O 2, CO 2 ), water, food, and wastes pass across the cell membrane.

More information

Name: Date: AP Biology LAB : FACTORS INFLUENCING ENZYME ACTIVITY

Name: Date: AP Biology LAB : FACTORS INFLUENCING ENZYME ACTIVITY LAB : FACTORS INFLUENCING ENZYME ACTIVITY Background Enzymes are biological catalysts capable of speeding up chemical reactions by lowering activation energy. One benefit of enzyme catalysts is that the

More information

AP BIOLOGY Enzyme Catalysis

AP BIOLOGY Enzyme Catalysis AP BIOLOGY Enzyme Catalysis Introduction In general, enzymes are proteins produced by living cells; they act as catalysts in biochemical reactions. A catalyst affects the rate of a chemical reaction. One

More information

The Hydrogen Peroxide Breakdown

The Hydrogen Peroxide Breakdown Biology The Hydrogen Peroxide Breakdown Examining Factors That Affect the Reaction Rate of Enzymes MATERIALS AND RESOURCES EACH GROUP aprons 2 beakers, 50 ml calculator, graphing forceps goggles graduated

More information

Using Freezing-Point Depression to Find Molecular Weight. Evaluation copy

Using Freezing-Point Depression to Find Molecular Weight. Evaluation copy Using Freezing-Point Depression to Find Molecular Weight Computer 4 When a solute is dissolved in a solvent, the freezing temperature is lowered in proportion to the number of moles of solute added. This

More information

EXERCISE 5. Enzymes H amylase + starch + amylase-starch complex maltose+ amylase.

EXERCISE 5. Enzymes H amylase + starch + amylase-starch complex maltose+ amylase. EXERCISE 5 Enzymes LEARNING OBJECTIVES Demonstrate enzyme activity by the hydrolysis of starch by amylase. Determine the effect of different temperatures on the rate of starch hydrolysis. Determine the

More information

Enzymes: What s in your spit? Teacher Version

Enzymes: What s in your spit? Teacher Version Enzymes: What s in your spit? Teacher Version In this lab students will investigate a few of the different enzymes from our body. You will learn how these enzymes work and how their activity is dependent

More information

Catalase Lab - A Bio ENZYME ACTIVITY Investigation Created by Gen Nelson, modified by Dr G

Catalase Lab - A Bio ENZYME ACTIVITY Investigation Created by Gen Nelson, modified by Dr G Catalase Lab - A Bio ENZYME ACTIVITY Investigation Created by Gen Nelson, modified by Dr G INTRODUCTION Hydrogen peroxide (H 2O 2) is a poisonous byproduct of metabolism that can damage cells if it is

More information

ENZYME ACTIVITY. Practical 3

ENZYME ACTIVITY. Practical 3 Practical 3 ENZYME ACTIVITY BACKGROUND Enzymes speed up chemical reactions by lowering activation energy (that is, the energy needed for a reaction to begin). In every chemical reaction, the starting materials

More information

Terminology-Amino Acids

Terminology-Amino Acids Enzymes 1 2 Terminology-Amino Acids Primary Structure: is a polypeptide (large number of aminoacid residues bonded together in a chain) chain of amino acids linked with peptide bonds. Secondary Structure-

More information

Catalytic Activity of Enzymes

Catalytic Activity of Enzymes Catalytic Activity of Enzymes Introduction Enzymes are biological molecules that catalyze (speed up) chemical reactions. You could call enzymes the Builders and Do-ers in the cell; without them, life could

More information

(LM pages 91 98) Time Estimate for Entire Lab: 2.5 to 3.0 hours. Special Requirements

(LM pages 91 98) Time Estimate for Entire Lab: 2.5 to 3.0 hours. Special Requirements Laboratory 7 Chemical Aspects of Digestion (LM pages 91 98) Time Estimate for Entire Lab: 2.5 to 3.0 hours Special Requirements Incubation. Students should start these sections at the beginning of the

More information

ENZYME ACTIVITY. Introduction

ENZYME ACTIVITY. Introduction ENZYME ACTIVITY This activity is an alternative to the titration proposed for Enzyme Catalysis (AP Bio Lab #2, Biology Lab Manual). There are numerous alternative lab activities that measure the rate of

More information

MiSP ENZYME ACTION Teacher Guide, L1 - L3. Introduction

MiSP ENZYME ACTION Teacher Guide, L1 - L3. Introduction MiSP ENZYME ACTION Teacher Guide, L1 - L3 Introduction The subject of this unit, enzymes, is typically a high school topic and is studied in depth in Advanced Placement Biology. Even so, it can be successfully

More information

Problem: What would happen to enzyme activity if enzymes are placed outside their normal conditions? Hypothesis:

Problem: What would happen to enzyme activity if enzymes are placed outside their normal conditions? Hypothesis: Name: Date: Period: Honors Biology: Enzyme Lab Background information What would happen to your cells if they made a poisonous chemical? You might think that they would die. In fact, your cells are always

More information

How do abiotic or biotic factors influence the rates of enzymatic reactions?

How do abiotic or biotic factors influence the rates of enzymatic reactions? Big Idea 4 Interactions investigation 13 ENZYME ACTIVITY* How do abiotic or biotic factors influence the rates of enzymatic reactions? BACKGROUND Enzymes are the catalysts of biological systems. They speed

More information

BIOLOGY 1101 LAB 1: OSMOSIS & DIFFUSION. READING: Please read pages & in your text prior to lab.

BIOLOGY 1101 LAB 1: OSMOSIS & DIFFUSION. READING: Please read pages & in your text prior to lab. BIOLOGY 1101 LAB 1: OSMOSIS & DIFFUSION READING: Please read pages 27-31 & 83-86 in your text prior to lab. INTRODUCTION: All living things depend on water. A water molecule is made up of an oxygen atom

More information

Investigation 13: Enzyme Activity Notes From the teacher

Investigation 13: Enzyme Activity Notes From the teacher Day 1: Investigation 13: Enzyme Activity Notes From the teacher Before class: Read Entire Lab and Complete Pre Lab. Pre-Lab: 1. What is the difference between catalytic and anabolic enzymes? 2. Describe

More information

ENZYME CONCENTRATIONS AND ENZYME ACTIVITY: PLANNING SHEET

ENZYME CONCENTRATIONS AND ENZYME ACTIVITY: PLANNING SHEET Activity 2.11 Student Sheet ENZYME CONCENTRATIONS AND ENZYME ACTIVITY: PLANNING SHEET To investigate how enzyme concentration can affect the initial rate of reaction. Wear eye protection, lab coats and

More information

Amylase: a sample enzyme

Amylase: a sample enzyme Amylase: a sample enzyme Objectives: After completion of this laboratory exercise you will be able to: 1. Explain the importance of enzymes in biology. 2. Explain the basic properties of an enzyme as a

More information

Identification of Organic Compounds Lab

Identification of Organic Compounds Lab Identification of Organic Compounds Lab Introduction All organic compounds contain the element carbon (C). Organic compounds usually also contain oxygen (O) or hydrogen (H) or both. They may also contain

More information

fossum/files/2012/01/10 Enzymes.pdf

fossum/files/2012/01/10 Enzymes.pdf http://www.laney.edu/wp/cheli fossum/files/2012/01/10 Enzymes.pdf Enzyme Catalysis Enzymes are proteins that act as catalysts for biological reactions. Enzymes, like all catalysts, speed up reactions without

More information

ENZYMES: BIOLOGICAL CATALYSTS OF LIFE

ENZYMES: BIOLOGICAL CATALYSTS OF LIFE Potential Energy Lab 6 ENZYMES: BIOLOGICAL CATALYSTS OF LIFE OBJECTIVES Define catalyst, enzyme, activation energy, enzyme-substrate complex, substrate, product, active site, denaturation, and cofactor;

More information

INVESTIGATION 13 ENZYME ACTIVITY

INVESTIGATION 13 ENZYME ACTIVITY INVESTIGATION 13 ENZYME ACTIVITY BACKGROUND Enzymes are the catalysts of biological systems. They speed up chemical reactions in biological systems by lowering the activation energy, the energy needed

More information

How do abiotic or biotic factors influence the rates of enzymatic reactions?

How do abiotic or biotic factors influence the rates of enzymatic reactions? Investigation 13 ENZYME ACTIVITY* How do abiotic or biotic factors influence the rates of enzymatic reactions? BACKGROUND Enzymes are the catalysts of biological systems. They speed up chemical reactions

More information

Student Manual. Background STUDENT MANUAL BACKGROUND. Enzymes

Student Manual. Background STUDENT MANUAL BACKGROUND. Enzymes Background Enzymes Enzymes are typically proteins (some nucleic acids have also been found to be enzymes) that act as catalysts, speeding up chemical reactions that would take far too long to occur on

More information

SAFETY & DISPOSAL onpg is a potential irritant. Be sure to wash your hands after the lab.

SAFETY & DISPOSAL onpg is a potential irritant. Be sure to wash your hands after the lab. OVERVIEW In this lab we will explore the reaction between the enzyme lactase and its substrate lactose (i.e. its target molecule). Lactase hydrolyzes lactose to form the monosaccharides glucose and galactose.

More information

Name Group Members. Table 1 Observation (include details of what you observe)

Name Group Members. Table 1 Observation (include details of what you observe) Name Group Members Macromolecules, Part 1 - PROTEINS There are four classes of macromolecules that are important to the function of all living things. These include carbohydrates, lipids, proteins and

More information

Challenge Finding which plants have an enzyme called catalase That breaks hydrogen peroxide into water and oxygen.

Challenge Finding which plants have an enzyme called catalase That breaks hydrogen peroxide into water and oxygen. Challenge Finding which plants have an enzyme called catalase That breaks hydrogen peroxide into water and oxygen. General Description Visitors work with 3% hydrogen peroxide and several different fruits

More information

Enzymes: What s in your spit? Student Version

Enzymes: What s in your spit? Student Version Enzymes: What s in your spit? Student Version In this lab students will investigate a few of the different enzymes from our body. You will learn how these enzymes work and how their activity is dependent

More information

March 4, 2017 Built for Speed

March 4, 2017 Built for Speed EDUCATOR GUIDE March 4, 2017 Built for Speed Teacher Guide for Illuminating Catalysts Cla time: 30-50 minutes Purpose: Testing different catalysts and conditions for the light-producing luminol reaction.

More information

Investigation: Enzymes

Investigation: Enzymes Investigation: Enzymes INTRODUCTION: What would happen to your cells if they made a poisonous chemical? You might think that they would die. In fact, your cells are always making poisonous chemicals. They

More information

Organic Compounds in the Foods

Organic Compounds in the Foods Organic Compounds in the Foods Purpose: This lab activity will help you understand the chemical composition (i.e., carbohydrates, proteins, and fats) of the foods that you eat. Materials we will be using:

More information

Properties of an Enzyme: Wheat Germ Acid Phosphatase Experiment #10

Properties of an Enzyme: Wheat Germ Acid Phosphatase Experiment #10 Properties of an Enzyme: Wheat Germ Acid Phosphatase Experiment #10 Objective To show the catalysis of a chemical reaction by an active enzyme and to observe the effects of temperature, killing the enzyme

More information

Β-FRUCTOFURANOSIDASE ENZYME

Β-FRUCTOFURANOSIDASE ENZYME KINETICS ANALYSIS OF Β-FRUCTOFURANOSIDASE ENZYME 2-The effects of enzyme concentration on the rate of an enzyme catalyzed reaction. Systematic names and numbers β-fructofuranosidase (EC 3.2.1.26) Reactions

More information

EXERCISE 6 - Lab Procedures

EXERCISE 6 - Lab Procedures EXERCISE 6 - Lab Procedures I. Determine the effect of substrate concentration on enzyme activity. e sure you do not confuse the enzyme (glucose oxidase) with the substrate (glucose)! 1. Turn on the Spec-20

More information

09 Enzymes. December 04, Chapter 9 Enzymes. Mr. C Biology 1

09 Enzymes. December 04, Chapter 9 Enzymes. Mr. C Biology 1 Chapter 9 Enzymes Mr. C Biology 1 Chapter 9 Enzymes Metabolism is the sum of all chemical reactions in the body. Your metabolism is controlled by enzymes. Enzymes are proteins made in the ribosome from

More information

Day 1 Discuss activation energy enzyme graph Initial notebook entries Watch enzyme activation energy/enzyme introductory video Begin to brainstorm

Day 1 Discuss activation energy enzyme graph Initial notebook entries Watch enzyme activation energy/enzyme introductory video Begin to brainstorm Day 1 Discuss activation energy enzyme graph Initial notebook entries Watch enzyme activation energy/enzyme introductory video Begin to brainstorm experimental design ideas Investigating Enzyme Function

More information

Energy Content of Foods

Energy Content of Foods Skills Practice Lab Energy Content of Foods PROBEWARE LAB You are a lab technician working for NASA. Recently you were given the job of deciding what type of foods should be included in the next space

More information

LAB: DIFFUSION ACROSS A SELECTIVELY PERMEABLE MEMBRANE

LAB: DIFFUSION ACROSS A SELECTIVELY PERMEABLE MEMBRANE LAB: DIFFUSION ACROSS A SELECTIVELY PERMEABLE MEMBRANE NAME: PERIOD: DATE: Building Background Knowledge: 1) SELECTIVELY PERMEABLE MEMBRANE: Every cell is surrounded by a selectively permeable membrane

More information

Lab 6: Cellular Respiration

Lab 6: Cellular Respiration Lab 6: Cellular Respiration Metabolism is the sum of all chemical reactions in a living organism. These reactions can be catabolic or anabolic. Anabolic reactions use up energy to actually build complex

More information

LAB Catalase in Liver HONORS BIOLOGY, NNHS

LAB Catalase in Liver HONORS BIOLOGY, NNHS Name Date Block LAB Catalase in Liver HONORS BIOLOGY, NNHS OBJECTIVES: 1. To observe the effect of catalase on the chemical breakdown of hydrogen peroxide. 2. To observe the effects of temperature and

More information

MOHAWK COLLEGE OF APPLIED ARTS AND TECHNOLOGY CHEMICAL AND ENVIRONMENTAL TECHNOLOGY DEPARTMENT. Lab Report ROOM NO: FE E309

MOHAWK COLLEGE OF APPLIED ARTS AND TECHNOLOGY CHEMICAL AND ENVIRONMENTAL TECHNOLOGY DEPARTMENT. Lab Report ROOM NO: FE E309 MOHAWK COLLEGE OF APPLIED ARTS AND TECHNOLOGY CHEMICAL AND ENVIRONMENTAL TECHNOLOGY DEPARTMENT Lab Report ROOM NO: FE E309 EXPERIMENT NO : 9 TITLE : Factors Affecting Enzyme Function Submitted by Class

More information

Titration Lab 3/10/15. By Maya Parks. Partner: Colin Welch. Abstract:

Titration Lab 3/10/15. By Maya Parks. Partner: Colin Welch. Abstract: Titration Lab 3/10/15 By Maya Parks Partner: Colin Welch Abstract: In this lab, we used the technique of titration to determine the molarity of an acid. This was a concept learned in class, and this lab

More information

Progressive Science Initiative. Click to go to website:

Progressive Science Initiative. Click to go to website: Slide 1 / 28 New Jersey Center for Teaching and Learning Progressive Science Initiative This material is made freely available at www.njctl.org and is intended for the non-commercial use of students and

More information

Pre-lab Homework Lab 6: Photosynthesis & Cellular Respiration

Pre-lab Homework Lab 6: Photosynthesis & Cellular Respiration Lab Section: Name: Pre-lab Homework After reading over the lab and the topics of photosynthesis and cellular respiration from your textbook, answer these questions to be turned in at the beginning of the

More information

Enzymes. Cell Biology. Monday, November 02, 2015 Mrs Wrightson

Enzymes. Cell Biology. Monday, November 02, 2015 Mrs Wrightson Enzymes Cell Biology 1 Enzymes 2 Recap Enzymes are specific: They only act with one substrate. Watch Me Type of Reaction Substrate Enzyme Product Degradation Starch Amylase Maltose Degradation Protein

More information

Lab 2. The Chemistry of Life

Lab 2. The Chemistry of Life Lab 2 Learning Objectives Compare and contrast organic and inorganic molecules Relate hydrogen bonding to macromolecules found in living things Compare and contrast the four major organic macromolecules:

More information

Source 1 Evaluation. Source (using Harvard reference style)

Source 1 Evaluation. Source (using Harvard reference style) 1 Evaluation (using Harvard reference style) Type of Overview of Secondary Relevance and Reliability of the Morton, D. and Perry, J.B. (2011) Laboratory manual for human biology. Available at: https://books.google.com.au/books?id=aenovttzlpcc&pg=pt78&dq=the

More information

GCSE. Biology Practical Manual. Unit 3: Practical Skills CCEA GCSE TEACHER GUIDANCE

GCSE. Biology Practical Manual. Unit 3: Practical Skills CCEA GCSE TEACHER GUIDANCE GCSE CCEA GCSE TEACHER GUIDANCE Biology Practical Manual Unit 3: Practical Skills 1.4 Investigate the effect of temperature on the action of an enzyme For first teaching from September 2017 Practical

More information

Instruction Manual Updated 8/27/2013 Ver. 1.1

Instruction Manual Updated 8/27/2013 Ver. 1.1 Water Analysis Kit Part No. 144-95 Instruction Manual Updated 8/27/2013 Ver. 1.1 OFI Testing Equipment, Inc. 11302 Steeplecrest Dr. Houston, Texas 77065 U.S.A. Tele: 832.320.7300 Fax: 713.880.9886 www.ofite.com

More information

Enzymes - Exercise 3 - Rockville

Enzymes - Exercise 3 - Rockville Enzymes - Exercise 3 - Rockville Objectives -Understand the function of an enzyme. -Know what the substrate, enzyme, and the product of the reaction for this lab. -Understand how at various environments

More information

Enzymes & Experimental Design

Enzymes & Experimental Design Lab 4- Bio 201 Name: Enzymes & Experimental Design OBJECTIVES: To continue to practice to apply hypothesis testing. To continue to practice experimental design. To gain a better understanding of enzymes

More information

LAB: DIFFUSION ACROSS A SELECTIVELY PERMEABLE MEMBRANE

LAB: DIFFUSION ACROSS A SELECTIVELY PERMEABLE MEMBRANE LAB: DIFFUSION ACROSS A SELECTIVELY PERMEABLE MEMBRANE NAME: PERIOD: DATE: Building Background Knowledge: 1) SELECTIVELY PERMEABLE MEMBRANE: Every cell is surrounded by a selectively permeable membrane

More information

The Effect of Hydrogen Peroxide Concentration (substrate) on the Activity of the Enzyme Catalase

The Effect of Hydrogen Peroxide Concentration (substrate) on the Activity of the Enzyme Catalase The Effect of Hydrogen Peroxide Concentration (substrate) on the Activity of the Enzyme Catalase Exercise adapted from: Allot, A. & Mindorff, D. (2007). Biology Course Companion. Oxford: Oxford University

More information

SALIVA TEST Introduction

SALIVA TEST Introduction SALIVA TEST Introduction This is a practical lesson using saliva to learn digestive enzyme activity. We can check the existence of reducing sugars clearly by Benedict s reaction after salivary enzyme decomposes

More information

Experiment Optional #2: The Synthesis of Aspirin

Experiment Optional #2: The Synthesis of Aspirin Experiment Optional #2: The Synthesis of Aspirin The natural world provides us with many of the medications in common use today. Taxol is the common name of a medication used in treating certain cancers;

More information

Standards: Next Generation Science Standards ( )

Standards: Next Generation Science Standards (   ) Discovering Enzymes Author(s): Pascale Chenevier and Gil Toombes Date Created: 2000 Subject: Chemistry Grade Level: Middle & High School Standards: Next Generation Science Standards ( www.nextgenscience.org

More information

Procine sphingomyelin ELISA Kit

Procine sphingomyelin ELISA Kit Procine sphingomyelin ELISA Kit For the quantitative in vitro determination of Procine sphingomyelin concentrations in serum - plasma - celiac fluid - tissue homogenate - body fluid FOR LABORATORY RESEARCH

More information

Biochemical Analysis of Plant Enzymes

Biochemical Analysis of Plant Enzymes EDVOTEK P.O. Box 1232 West Bethesda, MD 20827-1232 The Biotechnology Biochemical Analysis of Plant Enzymes 904 EDVO-Kit # Storage: Store entire experiment in the refrigerator. Experiment Objective: In

More information

Enzymes Adapted from Air All Around: Oxygen Investigation

Enzymes Adapted from Air All Around: Oxygen Investigation Enzymes Adapted from Air All Around: Oxygen Investigation Author: Doris Pun & Brittland DeKorver Institute for Chemical Education and Nanoscale Science and Engineering Center University of Wisconsin-Madison

More information

cellular respiration

cellular respiration Name: Date: 1. The energy found in ATP molecules synthesized in animal cells comes directly from A. sunlight B. organic molecules C. minerals D. inorganic molecules 2. A green plant is kept in a brightly

More information

Blood Urea Nitrogen Enzymatic Kit Manual Catalog #:

Blood Urea Nitrogen Enzymatic Kit Manual Catalog #: Blood Urea Nitrogen Enzymatic Kit Manual Catalog #: 5602-01 TABLE OF CONTENTS GENERAL INFORMATION... 2 Product Description... 2 Procedure Overview... 2 Kit Contents, Storage and Shelf Life... 3 Required

More information

EXPERIMENT 3 ENZYMATIC QUANTITATION OF GLUCOSE

EXPERIMENT 3 ENZYMATIC QUANTITATION OF GLUCOSE EXPERIMENT 3 ENZYMATIC QUANTITATION OF GLUCOSE This is a team experiment. Each team will prepare one set of reagents; each person will do an individual unknown and each team will submit a single report.

More information

CoaguChek S System. Quick Reference Guide. This is a CLIA-waived System. Coagulation Testing with Fresh Whole Blood

CoaguChek S System. Quick Reference Guide. This is a CLIA-waived System. Coagulation Testing with Fresh Whole Blood CoaguChek S System This is a CLIA-waived System Quick Reference Guide Coagulation Testing with Fresh Whole Blood May not print or view at 100% All unmarked prints black. Coag Swoosh prints gradients of

More information

Rat Hemoglobin A1c (HbA1c) Kit Instructions

Rat Hemoglobin A1c (HbA1c) Kit Instructions V.3 Crystal Chem Rat Hemoglobin A1c (HbA1c) Kit Instructions For the quantitative determination of hemoglobin A1c (HbA1c) in rat whole blood Catalog #80300 96 Assays For research use only. Not for use

More information

Lab #3 Potentiometric Titration of Soda Ash (after Christian, p , p ) (phenolphthalein)

Lab #3 Potentiometric Titration of Soda Ash (after Christian, p , p ) (phenolphthalein) Lab #3 Potentiometric Titration of Soda Ash (after Christian, p.692-694, p.718-720) I: INTRODUCTION In this lab, an unknown sample of soda ash (a crude mixture of sodium carbonate) will be titrated with

More information

Instructions for Use Enbrel (en-brel) (etanercept) for injection, for subcutaneous use Multiple-dose Vial

Instructions for Use Enbrel (en-brel) (etanercept) for injection, for subcutaneous use Multiple-dose Vial Instructions for Use Enbrel (en-brel) (etanercept) for injection, for subcutaneous use Multiple-dose Vial How do I prepare and give an injection with Enbrel multiple-dose vial? A multiple-dose vial contains

More information

LeadCare BLOOD LEAD ANALYZER. Quick Reference Guide

LeadCare BLOOD LEAD ANALYZER. Quick Reference Guide LeadCare II BLOOD LEAD ANALYZER Quick Reference Guide Precautions Precautions Caution The LeadCare II Blood Lead Analyzer is a CLIA-waived device. Facilities that perform tests with the LeadCare II System

More information

Classwork #10 - Enzymes Key Vocabulary protein enzyme catalyst reactant substrate active site product

Classwork #10 - Enzymes Key Vocabulary protein enzyme catalyst reactant substrate active site product Biology 2017-2018 Noble efforts change lives. Name: Excellence. Tenacity. Community. Reflection. Classwork #10 - Enzymes Key Vocabulary protein enzyme catalyst reactant substrate active site product Pre-Reading

More information

Biology Unit 3 Review. Objective 1. Describe the important functions of organic molecules Carbohydrates Lipids Proteins Nucleic acids

Biology Unit 3 Review. Objective 1. Describe the important functions of organic molecules Carbohydrates Lipids Proteins Nucleic acids Biology Unit 3 Review Name Objective 1. Describe the important functions of organic molecules Carbohydrates Lipids Proteins Nucleic acids 1. What is the difference between organic and inorganic molecules?

More information

ENZYME ACTIVITY. Readings: Review pp , and in your text (POHS, 5 th ed.).

ENZYME ACTIVITY. Readings: Review pp , and in your text (POHS, 5 th ed.). ENZYME ACTIVITY Readings: Review pp. 51-58, and 128-139 in your text (POHS, 5 th ed.). Introduction Enzymes are biological catalysts; that is, enzymes are able to mediate the conversion of substrate into

More information

Lesson 8: Effect of temperature on an oyster s heart rate

Lesson 8: Effect of temperature on an oyster s heart rate Lesson 8: Effect of temperature on an oyster s heart rate Focus Question: How does temperature affect the heart rate of an oyster? Purpose: In this lab based activity, students investigate the effect of

More information

Protn-Latex. For Determination of Protein in Latex. (Cat. # Latex, Latex) think proteins! think G-Biosciences

Protn-Latex. For Determination of Protein in Latex. (Cat. # Latex, Latex) think proteins! think G-Biosciences 415PR-02 G-Biosciences 1-800-628-7730 1-314-991-6034 technical@gbiosciences.com A Geno Technology, Inc. (USA) brand name Protn-Latex For Determination of Protein in Latex (Cat. # 786-20Latex, 786-21Latex)

More information

May 13, 2017 Data Back Ban of Artificial Trans Fats

May 13, 2017 Data Back Ban of Artificial Trans Fats EDUCATOR GUIDE May 13, 2017 Data Back Ban of Artificial Trans Fats Teacher Guide: Greasy Spots Class time: 30-50 minutes. Purpose: Students can use three different types of assays to test a variety of

More information

Observing Respiration

Observing Respiration Chapter 9 Cellular Respiration Design an Experiment Observing Respiration Introduction Cellular respiration occurs in all living things. During this process, animals take in oxygen and release carbon dioxide

More information

Carbohydrates Chemical Composition and Identification

Carbohydrates Chemical Composition and Identification Carbohydrates Chemical Composition and Identification Introduction: Today, scientists use a combination of biology and chemistry for their understanding of life and life processes. Thus, an understanding

More information

How to Use ENBREL : Vial Adapter Method

How to Use ENBREL : Vial Adapter Method How to Use ENBREL : Vial Adapter Method SETTING UP FOR AN INJECTION Select a clean, well-lit, flat working surface, such as a table. Take the ENBREL dose tray out of the refrigerator and place it on your

More information

Testing for the Presence of Macromolecules

Testing for the Presence of Macromolecules 5 McMush Lab Testing for the Presence of Macromolecules Carbohydrates, lipids, proteins, and nucleic acids are organic molecules found in every living organism. These macromolecules are large carbon-based

More information

Biodiversity Study & Biomass Analysis

Biodiversity Study & Biomass Analysis PR072 G-Biosciences 1-800-628-7730 1-314-991-6034 technical@gbiosciences.com A Geno Technology, Inc. (USA) brand name Biodiversity Study & Biomass Analysis Teacher s Guidebook (Cat. # BE-403) think proteins!

More information

Topic 4: Enzymes and metabolism

Topic 4: Enzymes and metabolism Topic 4: Enzymes and metabolism 1. An is a living molecule produced by glands to digest food in the alimentary canal. living molecule produced by cells to synthesise complex molecules from simpler ones.

More information

The Great Peanut Problem

The Great Peanut Problem The Great Peanut Problem Calorimetry SCIENTIFIC Introduction All human activity requires burning food for energy. How much energy is released when food burns in the body? How is the calorie content of

More information

3 To gain experience monitoring a titration with a ph electrode and determining the equivalence point.

3 To gain experience monitoring a titration with a ph electrode and determining the equivalence point. Titrations PURPOSE To determine the concentration of acetic acid in vinegar. GOALS 1 To perform an acid-base titration. 2 To gain experience titrating carefully to a visible endpoint. 3 To gain experience

More information

Rate of Decomposition of Hydrogen Peroxide as a Function of Catalase. Concentration

Rate of Decomposition of Hydrogen Peroxide as a Function of Catalase. Concentration Rate of Decomposition of Hydrogen Peroxide as a Function of Catalase Concentration Performed: Herrin High School September 11, 2017 Mr. Johns INTRODUCTION Purpose: To determine how the concentration of

More information

TABLE OF CONTENTS GENERAL INFORMATION... 1

TABLE OF CONTENTS GENERAL INFORMATION... 1 BIOO RESEARCH PRODUCTS Glucose Assay Kit Manual Catalog #: 5611-01 BIOO Scientific Corp. 2011 TABLE OF CONTENTS GENERAL INFORMATION... 1 Product Description... 1 Procedure Overview... 1 Required Materials

More information

Biology 2180 Laboratory #3. Enzyme Kinetics and Quantitative Analysis

Biology 2180 Laboratory #3. Enzyme Kinetics and Quantitative Analysis Biology 2180 Laboratory #3 Name Introduction Enzyme Kinetics and Quantitative Analysis Catalysts are agents that speed up chemical processes and the catalysts produced by living cells are called enzymes.

More information

Heart Rate and Blood Pressure as Vital Signs

Heart Rate and Blood Pressure as Vital Signs Heart Rate and Blood Pressure as Vital Signs Computer 10 Since the earliest days of medicine heart rate has been recognized as a vital sign an indicator of health, disease, excitement, and stress. Medical

More information

FOOD CALORIMETRY OVERVIEW & PURPOSE

FOOD CALORIMETRY OVERVIEW & PURPOSE FOOD CALORIMETRY OVERVIEW & PURPOSE How much energy is released when your body burns food? Have you ever looked at the nutrition label on a package of food or a soda can? It s here that you can find Calories

More information

PFK Activity Assay Kit (Colorimetric)

PFK Activity Assay Kit (Colorimetric) PFK Activity Assay Kit (Colorimetric) Catalog Number KA3761 100 assays Version: 02 Intended for research use only www.abnova.com Table of Contents Introduction... 3 Background... 3 General Information...

More information

You should wear eye protection throughout this practical. Amylase is harmful, avoid contact with eyes and skin.

You should wear eye protection throughout this practical. Amylase is harmful, avoid contact with eyes and skin. Practical 3 - The identification of biological chemicals present in solutions This practical focuses on making decisions about measurements and observations, recording and presenting data and observations,

More information